Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7...

93
Vol. 59, No. 248 2020. 7 ◆特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No. 3 2020. 7 Journal of the Heat Transfer Society of Japan Thermal Science and Engineering

Transcript of Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7...

Page 1: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Vol. 59, No. 2482020. 7

◆特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線

Vol. 28, No. 32020. 7

Journal of the Heat Transfer Society of Japan

Thermal Science and Engineering

Page 2: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 J. HTSJ, Vol. 59, No. 248

(a) 3 RB Ra =3360

(b) 3 RT (Ra = 21,300)

(c) Ra ((a) Ra = 11,300, 2100 s;

(b) Ra = 16,600, 1800 s; (c) Ra = 21,300, 1440 s) RT XCT

0.2 0.4 0.6 0.8u [mm/s]

0 0.2 0.4c [mol/L]

0V3

+

2 4 6 8i [mA/cm2]

0 0.11 0.12act [V]

0.1

Evaporator

Condenser

Vapor line

Liquid line Reservoir

LHP

MEXFLON

21 mm

http://www.htsj.or.jp/journals/1955.html

Page 3: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Vol.59 2020

No 248 July

···········

58 ························································· ··········· 1 59 ·········································· ··········· 2

32

58 ··········································· ··········· 3

··························· ··········· 5

· . A.J. Maxson ··········· 6

·························· ··········· 7

···························· ··········· 8

············································· ··········· 9

············································ ··········· 10 ··············································· ··········· 11 ······································ ··········· 12 ······················· ··········· 13

··················································· ··········· 14

···················································································· ··········· 15

······································ ··········· 21 ······························· ··········· 27

·································································· ··········· 33

Page 4: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

······························· ··········· 40

················································································· ··········· 46

3

·········· ··········· 52

··················································· ··········· 59

Q 4

················································· ··········· 69

57 57 ····················· ··········· 74

········································································································· 79

58 2019 ················································· 80 2020 ··············· 82

····································································································· 83

·································································································· 87

Page 5: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Vol.59 No. 248 July 2020

CONTENTS

Opening-page Gravure: heat-page

Tetsuya SUEKANE (Yokyo Institute of Technology),

Shohji TSUSHIMA (Osaka University),

Hosei NAGANO (Nagoya University),

Yuichi NIIBORI (Tohoku University),

Noriyuki UNNO (Sanyo-Onoda City University),

Kazuhisa YUKI (Sanyo-Onoda City University) Opening Page

New and Former Presidents' Addresses The 58th Term in Retrospect

Yasuyuki TAKATA (Kyushu University) 1

Inauguration Address as the 59th President Katsunori HANAMURA (Tokyo Institute of Technology) 2

The 32nd Heat Transfer Society Awards Report from the Award Selection Committee of the Heat Transfer Society of Japan, 2019

Kazuhiko SUGA (Osaka Prefecture University) 3

On Receiving Scientific Contribution Award of the Heat Transfer Society of Japan Donatas SURBLYS (Tohoku University),

Takeshi OMORI, Hiroki KUSUDO, Yasutaka YAMAGUCHI (Osaka University) 5

On Receiving Scientific Contribution Award of the Heat Transfer Society of Japan Yasuo KAWAGUCHI (Tokyo University of Science),

Shumpei HARA, (Doshisha University),

Takahiro TSUKAHARA (Tokyo University of Science),

Andrew J. MAXSON (The Ohio State University) 6

On Receiving Scientific Contribution Award of the Heat Transfer Society of Japan Hiroshi SUZUKI, Ruri HIDEMA (Kobe University) 7

On Receiving Scientific Contribution Award of the Heat Transfer Society of Japan Takao TSUKADA, Masaki KUBO, Eita SHOJI, Hiroyuki FUKUYAMA (Tohoku Univ.), Ken-ichi SUGIOKA (Toyama Prefectural Univ.) 8

On Receiving Technical Achievement Award of the Heat Transfer Society of Japan Kimihito HATORI(Bethel),

Hideyuki KATO, Takashi YAGI(AIST), Tetsuya OTUKI(Bethel) 9

On Receiving Young Researcher Award of the Heat Transfer Society of Japan Yutaku KITA (Kyushu University) 10

On Receiving Young Researcher Award of the Heat Transfer Society of Japan Yoko TOMO (Kyushu University) 11

Page 6: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

On Receiving Young Researcher Award of the Heat Transfer Society of Japan Yusuke KUWATA (Osaka Prefecture University) 12

On Receiving Young Researcher Award of the Heat Transfer Society of Japan Kimihide ODAGIRI (Japan Aerospace Exploration Agency) 13

Special Issue: Newest Topics on Heat Transfer, Fluid Flow, and Mass Transport in Porous

Media, and the applications Newest Topics on Heat Transfer, Fluid Flow, and Mass Transport in Porous Media, and the applications

Kazuhisa YUKI (Sanyo-Onoda City University) 14

Mathematical models and applications on heat and mass transfer in porous media Yoshihiko SANO (Shizuoka University) 15

Scaling Turbulence Over Porous Media Kazuhiko SUGA (Osaka Prefecture University) 21

Instabilities in Fluid Flows in Porous Media Tetsuya SUEKANE (Tokyo Institute of Technology) 27

Can we realize the ultimate electrode structure in battery devices? An approach for PEFCs and RFBs. Shohji TSUSHIMA, Takahiro SUZUKI (Osaka University) 33

Nuclide Confinement Self-healing Barrier Formed in Crack Flow Field around Radioactive Waste Repository Yuichi NIIBORI (Tohoku University) 40

Performance Enhancement of Loop Heat Pipe based on Understanding of Thermo-Fluid Characteristics

on Porous Media Hosei NAGANO (Nagoya University) 46

3D visualization of the fluid flow around micro obstacles using index matching method

and a new development for photocatalytic reactor Noriyuki UNNO (Sanyo-Onoda City University),

Shin-ichi SATAKE (Tokyo University of Science) 52

Thermal Management of High Heat Flux Equipment with Unidirectional Porous Media Kazuhisa YUKI (Sanyo-Onoda City University) 59

Education Q Newton’s Law of Cooling, Part 4, Experiment on Natural Convection

Shigenao MARUYAMA (INT, Hachinohe College),

Syuichi MORIYA (Tohoku University) 69

The 57th National Heat Transfer Symposium of Japan Report of the 57th National Heat Transfer Symposium of Japan (Cancellation of Symposium)

Yukio TADA (Kanazawa University) 74

Calendar 79 Announcements 80 Note from the JHTSJ Editorial Board 87

Page 7: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 1 - J. HTSJ, Vol. 59, No. 248

5 5658

2

57

11ACTS2020

2021 (1)

(2)(3) 3 58

(1)

(2) 9ASCHT2019

2 3

(3) WEB58

SOLARIS2021Micro and Nano Flows MNF2022,

Nano-Micro Thermal RadiationNanoRad2023,

60

58

1

2

58 The 58th Term in Retrospect

Yasuyuki TAKATA (Kyushu University)

Page 8: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 2 - J. HTSJ, Vol. 59, No. 248

5 30 Web59

COVID-19

57Web

100 1

Web

OSWebinar Work Shop

1

1 1100nm

1

59 Inauguration Address as the 59th President

Katsunori HANAMURA (Tokyo Institute of Technology)

Page 9: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 3 - J. HTSJ, Vol. 59, No. 248

58 12 67 2

9 1

4 14 1

4

58

1) Surblys Donatas

53

D221,D222 2016 56

D312,H132 2019

2)

Andrew J. Maxson

52

G312 2015 54

E114 2017

3)

55

P1440 2018

4)

Cu

52

SP309 2015 56

J212 2019

1)

58 Report from the Award Selection Committee of the Heat Transfer Society of Japan, 2019

Kazuhiko SUGA (Osaka Prefecture University) e-mail: [email protected]

Page 10: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 4 - J. HTSJ, Vol. 59, No. 248

1)

55P1438 2018

2)

P1418 2018 3)

J321

2018 4)

56 D133

2019

1)

7 2019

1) 57 52 46 48 50

51

2) 50 51 55

3)

53 41 42 48 49 51

2

58

Page 11: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 5 - J. HTSJ, Vol. 59, No. 248

2019

3

Young1805

Carnot 9 Clausius Thomson

Gibbs GuggenheimTolmanKirkwood de Gennes

[1]

MD

1990 [2-4]

MD

Young

-SiO2

Darmstadt F. Müller-Plathe F. Leroy

[1] (1980). [2] Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem.

Phys., 151 (2019), 154501. [3] Yamaguchi, Y., Kusudo, H., Surblys, D., Omori, T.,

Kikugawa, G., J. Chem. Phys., 150 (2019), 044701. [4] Surblys, D., Leroy, F., Yamaguchi, Y., Müller-Plathe,

F., J. Chem. Phys., 148 (2018), 134707.

On Receiving Scientific Contribution Award

of the Heat Transfer Society of Japan

Donatas SURBLYS (Tohoku University), Takeshi OMORI, Hiroki KUSUDO, Yasutaka YAMAGUCHI (Osaka University)

e-mail: [email protected]

Page 12: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 6 - J. HTSJ, Vol. 59, No. 248

58

40

1997

LDV, PIV

DNS

PIV

52Int. J. Heat and Fluid Flow, 63

(2017) , 56-66.

0

Nagano, Tagawa, J. Fluid Mech., 305 (1995), 127-157.

OSU J.L. Zakin1997

Zakin

Zakin

20 2016

OSU 9 Zakin Ph. D Maxson

54 Int. J. Heat and Mass Transfer 130 (2019), 545-554.

Zakin

On Receiving Scientific Contribution Award of the

Heat Transfer Society of Japan

1, 2, 1, A.J. Maxson3 1. 2. 3.The Ohio State Univ. Yasuo KAWAGUCHI1, Shumpei HARA2, Takahiro TSUKAHARA1, Andrew J. MAXSON3

(1.Tokyo University of Science, 2.Doshisha University, 3.The Ohio State University) e-mail: [email protected]

Page 13: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 7 - J. HTSJ, Vol. 59, No. 248

3

10 20%

3

20 m

55

. COVID-19

On Receiving Scientific Contribution Award of the

Heat Transfer Society of Japan

Hiroshi SUZUKI, Ruri HIDEMA (Kobe University)

e-mail: [email protected], [email protected]

Page 14: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 8 - J. HTSJ, Vol. 59, No. 248

Cu

CuCu

Cu

52 56Scr. Mater. Metall. Mater. Trans. B

Int. J. Thermophys. Cu-Co Cu-Fe Cu

Si, Fe

Cu-Co

Cu-FeCo

FeCT

Cu-Co3D

MHD

MHD

Cu

On Receiving Scientific Contribution Award

of the Heat Transfer Science of Japan

Takao TSUKADA, Masaki KUBO, Eita SHOJI, Hiroyuki FUKUYAMA (Tohoku Univ.),

Ken-ichi SUGIOKA (Toyama Prefectural Univ.) e-mail: [email protected]

Page 15: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 9 - J. HTSJ, Vol. 59, No. 248

58

TA33/35

1999

2006

100

2016

2018 JISR7240

On Receiving Technical Achievement Award

of the Heat Transfer Society of Japan

, , , Kimihito HATORI(Bethel), Hideyuki KATO, Takashi YAGI(AIST), Tetsuya OTUKI(Bethel)

e-mail: [email protected]

Page 16: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 10 - J. HTSJ, Vol. 59, No. 248

COVID-19

Khellil Sefiane

2006

10 μL

/ < 1

1

Comfortable

1

On Receiving Young Researcher Award of the Heat Transfer Society of Japan

Yutaku KITA (Kyushu University)

e-mail: [email protected]

Page 17: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 11 - J. HTSJ, Vol. 59, No. 248

58

TEMCNT

CNT

TEM 10 nmCNT

CNT

CNTTEM

CNT

nmDLVO

TEM

EdinburghKhellil Sefiane

Alexandros Askounis East Anglia

2019 4

On Receiving Young Researcher Award of the Heat Transfer Society of Japan

Yoko TOMO (Kyushu University)

e-mail: [email protected]

Page 18: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 12 - J. HTSJ, Vol. 59, No. 248

58

2016

2

2

DNS

On Receiving Young Researcher Award of the Heat Transfer Society of Japan

Yusuke KUWATA (Osaka Prefecture University)

e-mail: [email protected]

Page 19: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

32

2020 7 - 13 - J. HTSJ, Vol. 59, No. 248

LHP

LHP

LHP LHP

LHP

3

5 6

LHP

LHP

18.2 W/cm2

LHP

2019 4

On Receiving Young Researcher Award of the Heat Transfer Society of Japan

Kimihide ODAGIRI (Japan Aerospace Exploration Agency)

e-mail: [email protected]

Page 20: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 14 - J. HTSJ, Vol. 59, No. 248

22

10

1999

MRI

3D

8

Newest Topics on Heat Transfer, Fluid Flow, and Mass Transport in Porous Media, and the applications

Kazuhisa YUKI (Sanyo-Onoda City University)

e-mail: [email protected]

Page 21: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 15 - J. HTSJ, Vol. 59, No. 248

[1-3]

[4, 5] [6] [7, 8] .

1

1

jf

jj

jPffPff

xTk

xxTuc

tTc

(1)

hj

sj

ss SxTk

xtTc

(2)

f s

1

VC.V.

phaseVphase

phase dVV

1

(3)

Vphase C.V.

VVphase (4)

Mathematical models and applications on heat and mass transfer in porous media

Yoshihiko SANO (Shizuoka University)

e-mail: [email protected]

Page 22: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 16 - J. HTSJ, Vol. 59, No. 248

. ~phase (5)

[1-3]

phasephasephasephase212121

~~ (6)

dAnVxx A i

phasei

phasephase

phase

phase

i int

11 (7)

tt

phasephase (8)

Aint C.V. -ni -

.

(1) (2)1 C.V.

intint

int

1

~~

A jjPff

A jj

f

f

PffA jf

j

f

fj

j

ff

jPff

f

Pff

dATnuVc

dAnxTk

V

TucdATnVk

xT

kx

xTu

ct

Tc

(9)

intint

int

1

1

1

A jjPff

A jj

f

A js

j

s

sj

s

sf

dATnuVc

dAnxTk

V

dATnVk

xT

kx

tT

c

(10)

2

-

-

sf TTT (11)

(9) (10)

f

jPffA jsf

jsf

j

j

f

jPffssPff

TucdATnV

kkxT

kk

x

xTu

ctT

cc

~~

1

1

int

(12)

(12)

Tortuosity

int

1A j

sf

jsf

jstag dATn

Vkk

xT

kkxT

k (13)

kstag

( ) sfstag kkk 1 (14)

( )1

1sf

stag kkk

(15)

Summation law[9]

Page 23: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 17 - J. HTSJ, Vol. 59, No. 248

fsstag kkk3

23

1

(16)

ssstag kk*

1,

(17)

ffstag kk *

, (18) *

[10]

fs

stags

kkkk*

(19)

(9)

2

f

jPffj

f

dis TucxT

k ~~

(20)

kdis

[11]

f

pf

f

xdis duk

k5.0

(21)

dp

kdisx

10~20[10]

2

(9) (10) -

int

1A j

jf

fsfsf dAn

xTk

VTTha

(22)

asf hf

Wakao [12] 6.0

31Pr1.12f

pf

f

pf dukdh

(23)

[13]

hv(=asf hf)

.

(9) (10) -

. Sano and Nakayama -

[8].

int

1A jjPff

fPff dATnuc

VTc

(24)

Page 24: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 18 - J. HTSJ, Vol. 59, No. 248

sffsf

fPff

k

f

disfj

j

ff

jPff

f

Pff

TTha

TcxT

kkx

x

Tuc

tT

c

jk

*

(25)

fsfsf

fPff

k

s

sj

s

ss

TThaTc

xT

kxt

Tc *11

(26)

hk

disstagj

j

f

jPffssPff

SxT

kkx

xTu

ctT

cc

jk1

1(27)

3SiC

Sano

[4, 5]

Forchheimer-Darcy

ff

f

f

TbGGKp

Rdxpd 2 (28)

sfv

f

disxx

f

f

f

p

TThdxTd

kkdxd

dxTd

Gc

*

(29)

3

0

3161

3*

fsv

ss

s

TTh

dxTd

Tkdxd

(30)

G K bForchheimer

Stephan-BoltzmannRosseland

Maxwell

(28-30) Sano

[4]4

Sano[5]

4

Sano

Page 25: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 19 - J. HTSJ, Vol. 59, No. 248

[6]

sfsf

j

f

disj

f

fj

j

f

j

f

cchaxc

Dxc

Dx

xc

ut

c

*

(31)

fssf

j

s

sj

s

cchaxc

Dxt

c *11 (32)

D h’ .

VQ t

Cf

tVQ

cccc

finf

finf exp0

(33)

Ca

2411 22 CaCaCa (34)

QVha

Ca sf

1 (35)

Ca VQ asf h’

Sano

Café Number

5

Sano

5

6

Sano

[7, 8]3

dbpb

dd

bb ppLa

dxud

dxud (36)

0bb

b

b

uKdx

pd (37)

0dd

d

d

uKdx

pd (38)

Page 26: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 20 - J. HTSJ, Vol. 59, No. 248

bmb

bbbb

b ccchacudxd (39)

mmddd

ddd ccchacu

dxd (40)

0mbmddd

mbbb cccchaccha (41)

b d mLp

Sano

[9]7

3

6

7

.

[1] Cheng, P., Advances in Heat Transfer 14, Academic Press, New York, (1978).

[2] Vafai, K., and Tien, CL., Int. J. Heat and Mass Transfer, 24 (1981) 195-203.

[3] Nakayama, A., PC-aided numerical heat transfer and convective flow, CRC Press, (1995).

[4] Sano, Y. et al., ASME TRANS. J. Solar Energy Eng., 134-2 (2011) 021006.

[5] Sano, Y. and Iwase, S., Open Journal of Heat, Mass and Momentum Transfer, 1 (2013)1-12.

[6] Sano, Y. et al., Journal of Food Engineering, 263 (2019) 1–12.

[7] Sano, Y. and Nakayama, A., ASME TRANS. J. HEAT TRANSFER, 134 (2012) 072602-11.

[8] Sano, Y., Interdisciplinary Information Sciences, 22-2 (2016) 215–227.

[9] Bai, X. and Nakayama, A., Applied Thermal Engineering, 160 (2019) 114011.

[10] Yang, C. and Nakayama, A., Int. J. Heat and Mass Transfer, 53 (2010) 3222-3230.

[11] Yagi, S. and Kunii, D., AIChE Journal, 6 (1960) 97-104.

[12] Wakao, N., and Kauei, S., Gorden & Breach Sci. Pub., N.Y. (1982).

[13] Fu, X. et. al., Experimental Thermal and Fluid Science, 17 (1998) 285-293.

Page 27: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 21 - J. HTSJ, Vol. 59, No. 248

[1-10]

1 REV Representative Elementary Volume

V fV

1 d , Dispersion: f

f f

f V

vV

(1)

/fV Vf

Darcy–Forchheimer [11] f

iji ij i

j

pu u

xK

F (2)

ijK Forchheimer/F

ij ij uF C FijC

[11]

1 1 d df

t tf

t Vf

v tt V

(3)

ff N-SDANS Double Averaged N-S

2

2

0,

1

1

fk

kf f f f

fi i ij

j i j

f fi j i j i

j

ux

u u p uu

t x x x

u u u u fx

(4)

if

[3] U u

, f

Scaling Turbulence Over Porous Media

Kazuhiko SUGA (Osaka Prefecture University)

e-mail: [email protected]

V

fV

1 REV Representative Elementary Volume

Page 28: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 22 - J. HTSJ, Vol. 59, No. 248

2 0.7( 0.08xy ) H

[7]/K K 2(a)

y=0

Reb 3600

0.7~0.8 8[1,7,9]

31.0xy

[8] 3ReK

2(b)2(c)

d h 1 lnp y dU

h (5)

pu /p pU U u 2(b)(5)

d h

/ 3KkkK

(a) case O

[U]/U

b

y/H(b)

[U]p+

y

0 d

H

h

[U]

zero-plane

(c)

0.70.08xy

2

O, ,

**ReK

*ReK

; case O : 0.7; 0.08 case : 0.7; 0.82 case : 0.7; 0.91#20,#13,#06: 0.8; 1.0

xy

4

0.953; 4.9xy

0.972;3.5

0.985;2.00.993;1.41

0.996;1.30

0.998;1.26

0.999;1.14

fs

fp

CC

ReK 3 DNS

Cfp Cfs

Page 29: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 23 - J. HTSJ, Vol. 59, No. 248

ReK ( / )pu K[1,5,13]

K K Kxx yy zz

[7]

1 1 1f f

i ij j ik kj jf u uK K F (6)

[11]

[3]

(4) 1

1 ( )

fx xx x

F Fxx xx x x xy y

f u

u u uu u u

K

K C C (7)

Kxx

ReKx ( / )Kpxxu

[7]Kozeny-Carman Darcy

Macdonald [14]

2 3 1/2[{180(1 ) / } ]Kx xxd K (8)

*Re /pK Kxu d

[7]

Kxdd

xxK

4

pxD**Re /pK pxcu D *ReK 100

[7]** *Re ReK K c=1/3.8

dh 5

[12] [13,15][4,5,6,12,13,15] [6,7]

6

0.4 **ReK

**ReK

6 5(a)

(a)

(b)

: case O, , [7]: #20, #13, #06[5]

[13] =0.96-0.98; xy=1.0[12] =0.8-0.95; xy=1.0[4] =0.7; xy=1.0[6] =0.56-0.84; xy=0.0, 1.0[15] =0.26; xy=1.0

: case O, , [6]: #20, #13, #06 [4]

**ReK

;

case O : 0.7; 0.08 case : 0.7; 0.82 case : 0.7; 0.91#20,#13,#06: 0.8; 1.0

xy

5

Page 30: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 24 - J. HTSJ, Vol. 59, No. 248

d h 2(c)d h

y

2(c)

KH 7[4]

POD

8[9]

29 x

10-2 10-1 100 10110-5

10-4

10-3

10-2

10-1

f (Hz)

E 11, x

/U02

y/H= 0.1y/H= 0y/H= -0.02

**Re 7400;Re 38.50.771.12

K

xy

8KH

0 500 1000 15000

1000

2000

3000

4000

5000

6000

: Breugem et al.: Kuwata & Suga, 2016 : Kuwata & Suga, 2017

, , : , , : #20, #13, #06

: case O, , [7]: #20, #13, #06[5]

Re

px

3.4

5.5C

4.3

:[12] =0.8-0.95; xy=1.0:[4] =0.7; xy=1.0:[6] =0.56-0.84; xy=0.0, 1.0

9 KH

10 DNS 2

0.84, 1.0xy

xp+=1450

zp+=8

00

xp+=1450

zp+=8

00

xp+=6670

zp+=3

670

xp+=990

zp+=5

50

0.3 u’ /Ub -0.3xp+=6670

zp+=3

670

2.7H

4.8H

(a) (b)

(c) (d )

0 9( 2 94)**K KRe . Re . 1 8( 7 26)**

K KRe . Re .

2 9( 9 97)**K KRe . Re . 6 2( 19 7)**

K KRe . Re .

11 ( 20py )

0.8, 1.0xy

POD mode 1

POD mode 2

POD mode 3

POD mode 4

y

x

z

7 DNS

POD 0.71, 1.0xy

Page 31: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 25 - J. HTSJ, Vol. 59, No. 248

Re /pu KH/xC 3.5 5C

[16] 9[4,5,12] [6,7]

C 3.4 5.5[7]

10[10] KH

[2]11

[5]

12

z [17] ( ) 30py d100z

( ) 200py d

KH

0.7

3 4

d

h

*ReK**ReK

KH

KH

1.0xy

[18]

DNS 1.0xy

[8] 1.0xy

3

1400

1200

1000

800

600

400

200

0

zp+

[5]

[17]

12 0.8, 1.0xy

Page 32: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 26 - J. HTSJ, Vol. 59, No. 248

KHKH

[19]1xy , 1,xz

ReKy ( / )Kpyyu 0.38 ReKy

KH

[1] Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. and Kaneda, M., Effects of wall permeability on turbulence, Int. J. Heat Fluid Flow, 31 (2010) 974-984.

[2] Suga, K., Mori, M. and Kaneda, M., Vortex structure of turbulence over permeable walls, Int. J. Heat Fluid Flow, 32 (2011) 586-595.

[3] Kuwata, Y. and Suga, K., Progress in the extension of a second-moment closure for turbulent environmental flows, Int. J. Heat Fluid Flow, 51 (2015) 268-284.

[4] Kuwata, Y. and Suga, K., Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls, Int. J. Heat Fluid Flow 61 (2016) 145-157.

[5] Suga, K., Nakagawa, Y. and Kaneda, M., Spanwise turbulence structure over permeable walls, J. Fluid Mech., 822 (2017) 186-201.

[6] Kuwata, Y. and Suga, K., Direct numerical simulation of turbulence over anisotropic porous media , J. Fluid Mech., 831 (2017) 41-71.

[7] Suga, K., Okazaki, Y., Ho, U. and Kuwata, Y., Anisotropic wall permeability effects on turbulent channel flows, J. Fluid Mech., 855 (2018) 983-1016.

[8] Kuwata, Y. and Suga, K., Extensive investigation of the influence of wall permeability on turbulence, Int. J. Heat Fluid Flow, 80 (2019) 108465.

[9] Suga, K., Okazaki, Y. and Kuwata, Y.,

Characteristics of turbulent square duct flows over porous media, J. Fluid Mech., 884 (2020) A7.

[10] Nishiyama, Y., Kuwata, Y. and Suga, K., Direct numerical simulation of turbulent heat transfer over fully resolved anisotropic porous structures, Int. J. Heat Fluid Flow, 81 (2020) 108515.

[11] Whitaker, S., Flow in porous media I: a theoretical derivation of Darcy’s law, Transp. Porous Med., 1 (1986) 3-25.

[12] Breugem, W. P., Boersma, B.J. and Uittenbogaard, R. E., The influence of wall permeability on turbulent channel flow, J. Fluid Mech., 562 (2006) 35-72.

[13] Manes, C., Poggi, D. and Ridol, L., Turbulent boundary layers over permeable walls: scaling and near-wall structure, J. Fluid Mech., 687 (2011) 141-170.

[14] Macdonald, I. F., El-Sayed, M. S., Mow, K. and Dullen, F. A. L., Flow through porous media: the Ergun equation revisited, Ind. Engng. Chem. Fundam., 3 (1979) 199-208.

[15] Detert, M., Nikora, V. and Jirka, G. H., Synoptic velocity and pressure fields at the water–sediment interface of streambeds, J. Fluid Mech., 660 (2010) 55–86.

[16] Dimotakis, P. E. and Brown, G. L., The mixing layer at high Reynolds number: large-structuredynamics and entrainment, J. Fluid Mech., 78 (1976) 535–560.

[17] Tomkins, C. D., and Adrian, R. J., Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech., 490 (2003) 37–74.

[18] Rosti, M. E., Brandt, L. and Pinelli, A., Turbulent channel flow over an anisotropic porous wall – drag increase and reduction, J. Fluid Mech., 842 (2018) 381–394.

[19] G mez-de Segra, G. and García-Mayoral, R., Turbulent drag reduction by anisotropic permeable substrates - analysis and direct numerical simulations, J. Fluid Mech., 875 (2019) 124-172.

Page 33: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 27 - J. HTSJ, Vol. 59, No. 248

2.0 ºC

CCS

CO2

1,000m 100

[1] 20 CO2

EORCCS

1,000m50 ºC 10 MPa CO2

0.7 0.8

CCS CO2

CO2

35 42% > 1 D1996 CO2

200m

CCS

1

WPNWP

CO2 NWPWP 5,000 m

[2]CO2

WP WP

imbibition drainageCO2 NWP CO2

WP

Instabilities in Fluid Flows in Porous Media

1

Tetsuya SUEKANE (Tokyo Institute of Technology)

e-mail: [email protected]

Page 34: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 28 - J. HTSJ, Vol. 59, No. 248

NWP CO2

CO2

Ca = iui/ ( i ui: ) Ca = 1.0 ×10-6

CO2 CO2

CO2

10 100CO2

CO2

CO2

CaNWP WP

NWP[3, 4]

NWP 30 %30% NWP

WP WPNWP

2 NWP100 % 40 % NWP

60 %

CO2

CO2

CO2

CCSWP

NWP CO2 CO2

Ca

CO2 CO2

CO2

2

Page 35: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 29 - J. HTSJ, Vol. 59, No. 248

CF

WPNWP

NWP2

WPNWP

[5]

0.59274691/48 CO2

IP [6]

CO2 CF

CaCF CO2

IP

CF CO2

21mm

3

VF VF M = i/ d ( d: ) M

>1 ”(un-)favorable”

CF VF

Ca M3 [7, 8]

3

CO2

CO2

4CO2 CO2 CO2

CO2

CO2

CCS

RB

3 [7, 8] CF-2 IP[9] 3D XCT [10], VF-2

3D XCT [11]

Page 36: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 30 - J. HTSJ, Vol. 59, No. 248

CO2

0RB

3[12, 13, 14]

RB

2

5a

[15]

[18]

RT 4

2

1 RB

2RT

4 RB RT

(a) 3 RB Ra =3360 [15]

(b) 3 RT (Ra = 21,300) [16, 17]

(c) Ra ((a) Ra = 11,300, 2100 s; (b) Ra = 16,600, 1800 s; (c) Ra = 21,300, 1440 s).

5 RT XCT

Page 37: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 31 - J. HTSJ, Vol. 59, No. 248

k g/ 3 RT RB

RB

RT

RB

RTVF

RT[19, 20]

4 RT

CF

1

[15 17] RT RB

[17]

CO2

[21, 22] pH = 3-5

CO2 ( fG = 393.5 kJ/mol)CaCO3 fG = 1207 kJ/mol

MgCO3 CaMg(CO3)2

~70% >5%

CO2

1 2016[23] 2012

230 CO2

500 m 20 50°C2 95 CO2

CarbFixEU

[1] Falcon-Suarez, I. et al. “CO2-brine flow-through on an Utsira Sand core sample: Experimental and modelling. Implications for the Sleipner storage field”, Intern. J. Greenh. Gas control 68 (2018):

Page 38: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 32 - J. HTSJ, Vol. 59, No. 248

236-246. [2] Iglauer, S., et al. "CO2 wettability of seal and

reservoir rocks and the implications for carbon geo sequestration." Water Resources Research 51.1 (2015): 729-774.

[3] Suekane, T. & Nguyen, H.T. "Relation between the initial and residual gas saturations of gases trapped by capillarity in natural sandstones." J Fluid Sci. Tech. 8.3 (2013): 322-336.

[4] Rasmusson, K., et al. "Residual trapping of carbon dioxide during geological storage—Insight gained through a pore-network modeling approach." Intern. J. Greenh. Gas control 74 (2018): 62-78.

[5] Stauffer, D., and Aharony, A. Introduction to percolation theory. Taylor & Francis, 2018.

[6] Wilkinson, D., and Willemsen, J.F. "Invasion percolation: a new form of percolation theory." J Phy. A: Math. and General 16.14 (1983): 3365.

[7] Lenormand, R, et al. "Numerical models and experiments on immiscible displacements in porous media." J Fluid Mech 189 (1988): 165-187.

[8] Hu, Y. et al. Experimental study of immiscible fluid displacement in three-dimensional porous media: Phase diagram, Advances in Water Resources 140 (2020): 140, 103584.

[9] Zhang, C. et al. Pore scale simulations of Haines jump and capillary filling in randomly distributed pore structures with implications for CO2 geological storage, J. MMIJ, (2020) to be published.

[10] Patmonoaji, A. et al. Tree-dimensional fingering structures in immiscible flow at the crossover from viscous to capillary fingering, J. Multiphase Flow, 112, (2020) 103147

[11] Suekane, T., et al. Three-dimensional viscous fingering in miscible displacement in porous media, Phy Rev Fluids, 2, 103902, (2017)

[12] Huppert, H.E., and Neufeld J.A. "The fluid mechanics of carbon dioxide sequestration." Annual Rev Fluid Mech 46 (2014): 255-272.

[13] Emami-Meybodi, Hamid, et al. "Convective dissolution of CO2 in saline aquifers: Progress in

modeling and experiments." Intern. J. Greenh. Gas control 40 (2015): 238-266.

[14] Pau, GS.H. et al. "High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers." Advances in Water Resources 33.4 (2010): 443-455.

[15] Wang, L., et al. Three-dimensional structure of natural convection in a porous medium: Effect of the dispersion on finger structure, Intern. J. Greenh. Gas control 53 (2016) 274-283

[16] Nakanishi, Y., et al. “Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium” Advances in Water Resources, Vol. 97, (2016): pp. 224-232.

[17] Wang, L., et al. “Effect of diffusing layer thickness on the density-driven natural convection of miscible fluids in porous media: Modeling of mass transport”, J Fluid Sci Tech Vol. 13, No. 1, (2018)

[18] Gleason, Kevin J., et al. "Geometrical aspects of sorted patterned ground in recurrently frozen soil." Science 232.4747 (1986): 216-220.

[19] Homsy, G.M. "Viscous fingering in porous media." Annual Rev Fluid Mech 19.1 (1987): 271-311.

[20] Manickam, O., and Homsy, G.M. "Fingering instabilities in vertical miscible displacement flows in porous media." J Fluid Mech 288 (1995): 75-102.

[21] Pan, S.-Y., et al. "An innovative approach to integrated carbon mineralization and waste utilization: A review." Aerosol Air Qual. Res 15 (2015): 1072-1091.

[22] Snæbjörnsdóttir, S.Ó., et al. "Carbon dioxide storage through mineral carbonation." Nature Reviews Earth & Environment (2020): 1-13.

[23] CO2 46(2007)

28-32. [24] Matter, Juerg M., et al. "Rapid carbon

mineralization for permanent disposal of anthropogenic carbon dioxide emissions." Science 352.6291 (2016): 1312-1314.

Page 39: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 33 - J. HTSJ, Vol. 59, No. 248

3

1

[1-6]

2

1

0

Open circuit voltage, OCV 𝐸OCV𝑉

𝑉 = 𝐸OCV − 𝜂act − 𝜂ohm − 𝜂conc (1)

𝜂act 𝜂ohm 𝜂conc

Shohji TSUSHIMA, Takahiro SUZUKI (Osaka University)

e-mail: [email protected]

Can we realize the ultimate electrode structure in battery devices? An approach for PEFCs and RFBs.

Page 40: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 34 - J. HTSJ, Vol. 59, No. 248

1-

(a)

(Air) Oxygen90% RH 45% RH

1(b)-

1(c)

-

2(a)

2.5

3.0

3.5

4.0

4.5

0 0.2 0.4 0.6

Cel

l vol

tage

[V]

Current density [mA/cm2]

0MPa10MPa20MPa40MPa50MPa70MPa

00.20.40.60.8

11.21.41.6

0 0.2 0.4 0.6 0.8 1 1.2

Cel

l vol

tage

[V]

Current density [A/cm2]

5.2ml/min Exp3.0ml/min Exp1.5ml/min Exp

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Cel

l vol

tage

[V

]

Current density [A/cm2]

Oxygen 90%RHOxygen 45%RHAir 90%RHAir 45%RH

(a) (b) ( ) (c) ( ) 1 -

100nm

(a)

H

H2 O2 (Air)e-

H2++2e-

1/2O2 + 2H++2e-

2O

H2 O2

O2

O2

H2

H2

H2O

(b) 2

Page 41: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 35 - J. HTSJ, Vol. 59, No. 248

2(b) 50 nm5 nm

3

[7-9]

10 m

4

[10]Catalyst Co ated Membrane, CCM

4 mm 400 m 100 m

2

𝐷eff𝜏𝑖

𝜏𝑖 = 𝐷bulk𝐷eff𝜀𝑖 (2)

𝜀𝑖i=SEM i=N2

[11] 1CNT

[12] CNT 15%

CNT CNT 0SEM N2

CNT

[13]

[14]

CNT 0 % CNT 15 % 𝐷eff [cm2/s] 0.041 0.078 𝜏SEM [ - ] 3.2 1.3 𝜏N2 [ - ] 2.2 1.1

3

(a) (b) 4

1 CNT

Page 42: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 36 - J. HTSJ, Vol. 59, No. 248

𝜀CL𝑘CL 𝑘r

𝜌L 𝜇L 𝑠L𝑝L [15]

𝜕𝑡[𝜀CL𝜌L𝑠L] + ∇ [𝜌L𝐮L] = 𝑄L (3)

𝐮L = − 𝑘CL𝑘r(𝑠L)L

∇𝑝L (4)

𝑄L

𝑝C𝑝G 𝜎L𝜃CL

𝑝C = 𝑝G − 𝑝L = 𝜎Lcos𝜃CL√𝜀CL𝑘CL 𝐽(𝑠L) (5)

8 m1000 m

[14] (4)

(6) Leverett

[16]

[17] 6

[18]

[19]

𝐽(𝑠L) =

⎩{{⎨{{⎧1.417(1 − 𝑠L) − 2.120(1 − 𝑠L)2 + 1.263(1 − 𝑠L)3 ,

𝑖𝑓 𝜃CL < 𝜋/21.417𝑠L − 2.120𝑠L2 + 1.263𝑠L3,

𝑖𝑓 𝜃CL ≥ 𝜋/2 (6)

500 m

5

/V2

V3 eVO2 2H e

VO2 H2O

HV2 / V3

in H2SO4 aq

VO2 / VO2in

H2SO4 aq

(a)

(b) 6

100 m

Page 43: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 37 - J. HTSJ, Vol. 59, No. 248

10 m6(b)

1(c)

[19]

𝑑 𝜀𝑡

7 2

7(a)7(b)

1(c) 3.0 mL/min

0.5~0.1

[20]

8

𝑙 𝜆 5

10 m 0.842.4 m 0.88 [20]

X CT

1.3

1.4

1.5

0 25 50 75 100

Cel

l vol

tage

[V]

Trial number8

(a) 2 (b)

7

32 ,VV 22 ,VOVO

Surface-to-bulk conc. ratio [-]

10

Page 44: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 38 - J. HTSJ, Vol. 59, No. 248

[21]𝑘m 𝑑𝐷 𝜈 |𝐮|

Sh = 𝑘m𝑑/𝐷Re = |𝐮|𝑑/𝜈 Sc = 𝜈/𝐷

Sh = 𝜒 Re𝜁 Sc𝜉 = 𝑘m𝑑/𝐷 (7)

𝜒 𝜁 𝜉

9

[22]100 m 100 m 100 m

50 m

2 m 0.8[22]

[23]

6(b)

[24]

JSPS 18H01383, 18K13702 JST

JPMJPR12C6

[F-19-OS-0016]

[1] Kulikovsky, A. A., A model for Optim al Catalyst Layer in a Fuel Cell, Electrochim. Acta, 79 (2012) 31.

[2] Wang, G. et al ., Op timization o f Polym er Electrolyte Fu el Cell Cathode Catalyst Layers v ia Direct Nu merical Sim ulation M odeling, Electrochim. Acta, 52 (2007) 6367.

[3] Friedmann, R. and Nguyen, T. V., Optimization of

0.2 0.4 0.6 0.8u [mm/s]

0 0.2 0.4c [mol/L]

0V3

+

2 4 6 8i [mA/cm2]

0 0.11 0.12act [V]

0.1

9

Page 45: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 39 - J. HTSJ, Vol. 59, No. 248

the Microstructure of the Cathode Catalyst Layer of a PEMFC for T wo-Phase Flow, J. Electrochem. Soc., 157 (2010) B260.

[4] Lamb, J. et al., Adjoint Method for the Optimization of th e Catalyst Distribu tion in Prot on Ex change Membrane Fuel Cells, 164 (2017) E3232.

[5] Vuppala, R. et al ., Optimization of M embrane Electrode Assembly of PEM Fuel Cell by Response Surface Method, Molecules, 24 (2019) 3097.

[6] Uchida, M ., PEFC Catalyst lay ers: Effect of Support Microstructure on Both Distributions of Pt and Ionomer and Cell Performance and Durability, Curr. Opin. Electrochem., 21 (2020) 209.

[7] Suzuki, T. et al ., Effects of Nafion® Ionomer and Carbon Par ticles on Stru cture Fo rmation in a Proton-Exchange Mem brane F uel Cell Catalyst Layer Fabricated by the Decal-Transfer Method, Int. J. Hydrog. Energy, 36 (2011) 12361.

[8] Suzuki, T . et al ., Fabr ication and Perfor mance Evaluation of St ructurally-Controlled PEMFC Catalyst Layers by Bl ending Platinum-Supported and Stand-alon e Carbon b lack, J. Pow er Sources, 233 (2013) 269.

[9] Suzuki, T. et al ., Investigation of Po rous Structure Formation of Catalyst Layers for Pro ton Exchange Membrane Fu el C ells and Thei r Ef fect on Cell Performance, Int. J. Hy drog. E nergy, 41 (2016) 20326.

[10] Suzuki, T. et al ., C omposition and Ev aluation of Single-Layer Electrod e Pro ton Exchange Membrane Fuel Cells for Mass Transfer Analysis, J. Therm. Sci. Technol., 11-3 (2016) 16-00370.

[11] Suzuki, T. et al., Ef fect of Blending Carbon Nanoparticles and Nano tubes on the Formation of Porous Structu re and th e Performance of Pro ton Exchange Membrane Fuel Cell Catalyst Layers, J. Power Sources, 286 (2015) 109.

[12] , , PEFC

2018 (2018), I121. [13] Tsushima, S. a nd Hi rai, S., A n O verview o f

Cracks and Interfacial V oids in Membrane

Electrode As semblies in P olymer Ele ctrolyte F uel Cells, J. Therm. Sci. Tech., 10-1 (2015) 1.

[14] Tsushima, S. et al., Fab rication of Micro-Grooved Catalyst Layers i n Po lymer Elect rolyte Fuel C ells by Inkj et Pr inting, The Ninth JSME-KSME Thermal a nd Fluids E ngineering C onference, (2017) TFEC9–1678

[15] Tsushima, S. and Hirai, S., In Situ Diagnostics for Water T ransport in Pro ton Exch ange Membrane Fuel Cells, Prog. Energ. Combust., 37 (2011) 204.

[16] Suzuki, T. et al., Analysis of Ionomer Distribution in C atalyst Layers by T wo-Stage Ion-Beam Processing, ECS Trans., 80-8 (2017) 419.

[17] Perry, M. L. and W eber, A. Z., Adv anced redox-flow batteries: a perspective, J. Electrochem. Soc., 163 (2016) A5064.

[18] Zhang, H. et al., Progress and Per spectives of Flow Batter y T echnologies, Ener gy, Electr ochem. Energy Rev., 2 (2019) 492.

[19] 55-230

(2016), 41. [20] Tsushima, S. and Suzuki, T ., Modeling and

Simulation of Vanadium Redox Flow Battery with Interdigitated Flow Field for Op timizing Electrode Architecture, J. El ectrochem. Soc ., 167-2 ( 2020) 020553.

[21] Milshtein, J. D. et al., Qu antifying Mass Transfer Rates i n R edox Flow B atteries, J. Electrochem. Soc., 164-11 (2017) E3265.

[22] Tsushima, S. et al., Evaluating Effects of Fibrous Electrode St ructure on Reaction and T ransport Processes in V anadium Redox Flow Batter ies, Annual M eeting-Int. Coalitio n for Energy Sto rage and Innovation (2020).

[23] Chen, C. H. et al., Computational Design of Flow Fields fo r V anadium Redox Fl ow Batteries v ia Topology Optimization, J. Ener gy Stor age, 26 (2019) 100990

[24]

53(2016), B312.

Page 46: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

[1]

20040

1 [2]1(a)

80 μm 1(b)

80 μm

0.1 mmCa pH

12.0 1(c)

1 [2]

2 [2]

2 Ca

pH 12.5, 2.0 mL/h, 140

Nuclide Confinement Self-healing Barrier Formed in Crack Flow Field around Radioactive Waste Repository

Yuichi NIIBORI (Tohoku University)

e-mail: [email protected]

2020 7 - 40 - J. HTSJ, Vol. 59, No. 248

Page 47: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

h (a) 1(b)2(b)

2(c) 2(b)2(b)

2(c)

3

3

Ca Si

CapH 12.0

pH 9.5H4SiO4

[3,4]Calcium Silicate Hydrate:

CSH [2]

5%

[3] CapH

CaCa Si

X (SEM- EDX)

pH10 10 CSH

[5-8] CSHCa/Si 1.6

CSHCa Ca/Si

Ca/Si 0.83[8]. pH

K Na0.1 M(=mol/L)

Ca 102

4[6]

0.3 K/m 500 m 1000 m288 K 1000 m 318 K

CSH

4 :2.0 ml/h, pH:12.3 [6]

k

(m2)k b (m) k=b2/12

2020 7 - 41 - J. HTSJ, Vol. 59, No. 248

Page 48: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Cat

bt

a 0 a Ca0( )

t

s t Rs b b s k C dt (1)

(1) s

[mol/m3]

Sa

[m2] b0

[m]

kR [m/s] CCa Ca[mol/m3] Ca

(1)

R Ca0

st

k Cb b t (2)

bt kR

kR

0.6 mm/s 3.0 mm/s

32.0 kJ/molCSH Ca

Si SipH 9.5

Si

Si CSH(1)

Si0 [3,4]

45.5 kJ/mol [3]77 85 kJ/mol [4]

Al NaCa-Si CSH Ca-Al-Si

Ca-Na-Al-SipH 9.5

5 CSH(a) (b) CSH Ca/Si

[7] SiO2

CaO SiO2

n Qn

Ca/Si 1.6Q1 Q2 Ca/Si

Q1 Q2

Cs/SiCa/Si

1.0 Q2

Al Q3

CSHCa/Si

Ca/Si

5 CSH [7]

CSH (a), (b)

2020 7 - 42 - J. HTSJ, Vol. 59, No. 248

Page 49: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

CSH

CSH [9-13]CSH

Ca Ca/Si1.0 CSH

AmEu

Am-241 Am-243 432 7,370

Am

Eu Eu pH pH<6 3

pHEu(OH)3

Eu

CSHEu

7 Eu [9](

ms) CSHCSH

EuEu

OH7

OH CSHCSH

Eu CSHEu

CSH Eu

CSH Eu7 2

Eu CSH[10]

[s]

01exp( )F FI I t (3)

t [s] IF

IF0 6IF/IF0 1 ms 2 ms

, CSH10 Ca/Si

0.4 1.6 [9,10]

6 CSH Eu [9]

Ca/Si :0.8, :20, : 298 K

3 Eu1 Cs Cs-137

Cs-135 30 230Cs-137 Cs-135

Ba 2CSH [11]

I-

IO3-

I-129 1,570Trans Uranium

2020 7 - 43 - J. HTSJ, Vol. 59, No. 248

Page 50: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Nuclide TRU

I TRU

TRU [5]

7 CSH [12]

:20, : 298 K, NaCl

8 CSH [13]

:20, : 298 K, NaCl

7 8 CSHNaCl

78

(0.1 L/kg)[5] 10Kd [L/kg] c

[mol/L][mol/kg]

dsKc (4)

Kd

Rd[-] 11d s dR K (5)

s [kg/m3][-]

0 1

[1/s]

2

2e

d d

Dc u c c ct R x R x (6)

u [m/s] De [m2/s]

(5) 1 (6)

(4)

Kd=0.1 L/kg1.0 L/kg

CSHCSH

mM

2020 7 - 44 - J. HTSJ, Vol. 59, No. 248

Page 51: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

NaCl (NaCl 0.6 mol/L)[12]

CSH

CSH

Ca/Si 1.0 CSH

[1] Niibori, Y., Chapter 6 Radioactive Waste Disposal in Radioactive Waste Engineering and Management edited by S. Nagasaki and S. Nakayama, Springer (2015).

[2] Niibori, Y. et al., Deposition of Calcium-Silicate- Hydrate Gel on Rough Surface of Granite from Calcium-rich Highly Alkaline Plume, Scientific Basis for Nuclear Waste Management XXXV (Materials Research Society Proceedings), 1475 (2012) 349.

[3] Dove, P. M., Kinetic and thermodynamic controls on silica reactivity in weathering environments,

Reviews in Mineralogy Volume 31, Mineralogical Society of America (Washington, D.C), 235-290, (1995).

[4] Niibori, Y. et al., Dissolution Rates of Amorphous Silica in Highly Alkaline Solution, Journal of Nuclear Science and Technology, 37-4 (2000) 349.

[5] , TRU TRU

, JNC TY1400-2005-013 (2005).

[6] Chida, T. et al., Influences of Temperature on Permeability Changes of Flow-paths Altered by Highly Alkaline Ca-rich Groundwater, Proc. of WM2015 Conference, Paper ID 15192 (2015).

[7] , , , ,

, , 22-2 (2015) 29.

[8] Baston, G. et al., Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field, Mineralogical Magazine, 76 (2012) 3045.

[9] Funabashi, T. et al., Sorption Behavior of Eu(III) into CSH Gel in Imitated Saline Groundwater, Proc. of WM2012 Conference, Paper ID 12145 (2012).

[10] Y. Niibori, M. Narita, A. Kirishima, T. Chida, H. Mimura, Mechanical Engineering Journal, 1(4), 1-7 (2014).

[11] Saito, Y. et al., Interactions of Cesium and Barium Ions with Calcium Silicate Hydrate under the Condition Saturated with Saline Water, Proc. of WM2015 Conference, Paper ID 15247 (2015).

[12] Onodera, H. et al., Sorption Behavior of Iodate Ions on Calcium Silicate Hydrate under a High Saline Condition, Proc. of WM2018 Conference, Paper ID 18176 (2018).

[13] Tago, H. et al., Sorption Behavior of Iodide Ions on Calcium Silicate Hydrate Formed under the Condition Saturated with Saline Water, Proc. of WM2017 Conference, Paper ID 17069 (2017).

2020 7 - 45 - J. HTSJ, Vol. 59, No. 248

Page 52: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

5G

Loop Heat Pipe, LHP

[1]

1mm LHP 5.5kW LHP10m LHP 4m

LHP LHP[2] LHP

LTS W/cm2

LHP 1LTSLHP

LHP

LHP[3-5]

LHP

LHP

LHP 1

m

1 LHP

Condenser

EvaporaterReservoir

Vapo

r lin

e

Liqu

id li

ne

Wick(porous media) Vapor

groove

Heat input

Heat output

A

A’

A A’VaporSubcooledliquid

Hosei NAGANO (Nagoya University)

e-mail: [email protected]

Performance Enhancement of Loop Heat Pipe based on Understanding of

Thermo-Fluid Characteristics on Porous Media

2020 7 - 46 - J. HTSJ, Vol. 59, No. 248

Page 53: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Pcap

Pwick

Ploop

Phead 2 Pcap_lim rp

Pwick Darcy KKozeny-Carman

Ploop

Darcy–Weisbach 2

Qev Qapp

CCQhl

(1)

(2)

kw

kw

rp

[6]qMax

2 cos

,128

,

LHPrp

K kw

5

LHP

LHP

3 LHP[7]

[8] 4Pore Network Model, PNM

LHP[9, 10]

PNM

3 LHP [7]

-60-50-40-30-20-1001020304050607080

0

20

40

60

80

100

120

140

0 3600 7200 10800 14400 18000

Tem

pera

ture

[]

Time [s]

Heater Thb(cal.)TC13 Tv(cal.)TC24 Tsub(cal.)TC30 Tl(cal.)TC3 Tcc(cal.)Qapply

Hea

t loa

d [W

]

Qapply.

2 LHP

Fluid prop Wick propWettability Fluid propWick prop Shape Power Fluid propShapePowerFluid prop

Wick pressure loss Liquid pressureCapillary limiy Loop pressure losses A AreaD Diameterh HeadL LengthQ Powert Thickness

Contact angPermeability

Latent heatViscosityDensitySurface tens

(3)

2020 7 - 47 - J. HTSJ, Vol. 59, No. 248

Page 54: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

(a) Low heat flux

(b) High heat flux

Temperature Pressure Evaporation

4 (a) (b)

LHP

[11] 1

100 =/

1

Name SS1.0 m SS4.5 m SS22 m

Cross section

SEM

Pore radius, m 1.0 4.4 22.5 Porosity, - 0.57 0.56 0.71

Permeability, m2 1.3 10-13 2.5 10-13 1.0 10-11 Material SS316L Size, mm W15 h5 D10

Channel, mm W1 h1 D10

5

(4)

(4)

(a) Infrared (b) Visible

5

6

7

6 7

rp

Pcap_lim KPwick

3

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50

Hea

t tra

nsfe

r coe

ffici

ent,

W/m

2 K

Heat flux, W/cm2

22 m

4.5 m

1 m

2020 7 - 48 - J. HTSJ, Vol. 59, No. 248

Page 55: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

88(a)

8(b)

8(c)

(a) Low (b) Middle (c) High 8

9 [12]Qcond

Qev

Qapp

Qev1 Qev2 2

Qev1 Qev2

10

10

Hea

t tra

nsfe

r coe

ffici

ent,

W/m

2 K

05000

100001500020000250003000035000

10 20 30 40 50Heat flux, W/cm2

(a) (b)

f

02000400060008000

10000120001400016000

5 10 15 20

(a) (b) (c)

f

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8

ExperimentModel

(a) (b) (c)

f

(a) Low Heat Flux

(b) Middle Heat Flux

(c) High Heat Flux

9

Meniscus radius of liquid bridge 1

finbaselfin

fin

base

basemen LLg

Am

KL

Am

KLr

TP

TTP

RkTT

v

vs

l

lh 22

2

Liquid film thickness and interface temperature

Balance between Qcond and Qev Predicted hev

vh

applyev TT

qhb

bridgel

hl

bridgefin

lossapply dLTTknn

QQ0

21

21 sinrrcosr menmenmenl

32

246 Xff.k

lhp

l

ev 23

221

21 lq

kgc

NMX _ev

vl

lpl

Qapply is divided into Qev1 and Qev2Qev1 is calculated by .Qev2 is calculated by Nishikawa-Fujita equation.

Qev1 to Qev2 ratio is calculated by iterative computation.

The contact heat transfer coefficient (hcnt ) is estimated by experimental resul. Predicted hcal is calculated by

11

11h

evevhcntcal A

AhAhh

2020 7 - 49 - J. HTSJ, Vol. 59, No. 248

Page 56: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2

1 2

(3)

[13, 14]

PNM[15] nfin nbridge

2 5

11 12

11

12

LHP[16] 13 LHP

4.7cm2

400mm 4.5 mSUS316 0.2mm 30

13 LHP

14

14 LHP

200W42.5W/cm2

25000 34000 W/m2K15 LHP

(3)LHP

400mm 42.5 W/cm2

LHP

20

30

40

50

60

70

80

90

0 50 100 150 200

0 10 20 30 40 50EvaporatorReservoirCondenser

Tem

pera

ture

, OC

Heat load, W

Heat flux, W/cm2

2020 7 - 50 - J. HTSJ, Vol. 59, No. 248

Page 57: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

15 LHP

LHPLHP

LHP 10m100W/cm2

/Worcester Polytechnic Institute

/Jet Propulsion Laboratory

[1] Ku, J., Operational Characteristics of Loop Heat Pipes, SAE Technical Paper, 1999-01-2007 (1999).

[2] Mitomi, M. and Nagano, H., Long-Distance Loop Heat Pipe for Effective Utilization of Energy, Int. J. Heat Mass Transf., 77 (2014) 777.

[3] Liao, Q. and Zhao, T. S., A Visual Study of Phase-Change Heat Transfer in a Two Dimensional Porous Structure with a Partial Heating Boundary, Int. J. Heat Mass Transf. 43 (2000) 1089.

[4] Mottet, L. et al., Three Dimensional Liquid and Vapor Distribution in the Wick of Capillary Evaporators, Int. J. Heat Mass Transf. 83 (2015) 636.

[5] Launay, S. and Mekni, N., Specifically Designed Loop Heat Pipe for Quantitative Characterization, Proc. 15th IHPC, Clemson (2010) 25–30.

[6] Kaya, T. and Goldak, J., Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe, Int. J. Heat Mass Transf., 49 (2006) 3211.

[7] Nishikawara, M. et al., Transient Thermo-Fluid Modeling of Loop Heat Pipes and Experimental Validation, J. Thermophys. Heat Transf., 27-4 (2013) 641.

[8] Nishikawara, M. and Nagano, H., Numerical Simulation of Capillary Evaporator with Microgap in a Loop Heat Pipe, Int. J. Therm. Sci., 102 (2016) 39.

[9]

Therm. Sci. Eng., 23-4 (2015) 71. [10] Nishikawara, M. et al., Formation of Unsaturated

Regions in the Porous Wick of a Capillary Evaporator, Int. J. Heat Mass Transf. 89 (2015) 588.

[11] Odagiri, K. et al., Microscale Infrared Observation of Liquid-vapor Interface Behavior on the Surface of Porous Media for Loop Heat Pipes, Appl. Therm. Eng., 126-5 (2017) 1083.

[12] Odagiri, K., Nagano, H., Characteristics of Phase-Change Heat Transfer in A Capillary Evaporator based on Microscale Infrared/Visible Observation, Int. J. Heat Mass Transf., 130 (2019) 938.

[13] Oka C. et al., Effect of Wettability of A Porous Stainless Steel on Thermally Induced Liquid–Vapor Interface Behavior, Surf. Topogr. Metrol. Prop., 5-4 (2017) 044006.

[14] Odagiri, K. et al., Thermo-Fluid Dynamics in a Wettability-Enhanced Evaporator based on Microscale Infrared/Visible Observations, Proc. Joint 19th IHPC and 13th IHPS, Pisa (2018).

[15] Nishikawara, M. et al., Numerical Study on Heat- Transfer Characteristics of Loop Heat Pipe Evaporator Using Three-Dimensional Pore Network Model, Appl. Therm. Eng., 126-5 (2017) 1098.

[16] , Therm.

Sci. Eng., 27-1 (2019) 25.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200

Y.Maydanik (Cu-Water)T. Tharayil (Cu-Water nano-G)J.Li (Cu-Water)X.Lu (SS-Methanol)D.Wang (SS-Methanol)S.Wu (PTFE-Ammonia)X.H. Nguyen (Cu-Water)H.Li (Ni-Ammonia)R. Singh (Cu-Water)M. Nishikawara (PTFE-Ethanol)H. Nagano (PTFE-Acetone)G. P. Celata (SS-Water)

Hea

t flu

x, W

/cm

2

Heat transfer distance, mm

This work

2020 7 - 51 - J. HTSJ, Vol. 59, No. 248

Page 58: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

porous media

2X X-ray

radiography [1] Neutron radiography [2] 3

X X-ray stereography [3]

3

3

X X-ray microtomography [4]

Neutron tomography [5] m

Magnetic resonance imaging, MRI[6]

X

MRI

Electrical capacitance tomography [7,8]Electrical

impedance tomography [9]

Index matching method IM

Particle image velocimetry, PIV

[10-13] IM

Table 1[14]

Table 1. IM

1.49

1.46

(60-70wt ) 1.4

3D visualization of the fluid flow around micro obstacles using index matching method and a new development for photocatalytic reactor

Noriyuki UNNO (Sanyo-Onoda City University), Shin-ichi SATAKE (Tokyo University of Science)

E-mail: [email protected]

1.49

2020 7 - 52 - J. HTSJ, Vol. 59, No. 248

Page 59: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

IMPIV

1.33 IM

[15]

MEXFLON [16]UV

MYPOLYMER PIV

3[17]

mm 3

3

3

3

m 3Micro digital holographic

particle tracking velocimetry -DHPTV[18] 3

Multilayer nano-particle tracking velocimetryMnPTV [19]

IM

IM

Fig.1 -DHPTV

S/N

X-Y-ZPTV 3

Fig.1

IM

[20]

2020 7 - 53 - J. HTSJ, Vol. 59, No. 248

Page 60: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Fig.2 -DHPTV

IM[21]

Fig.2 -DHPTV[21]

Fig.3

3

Fig.4PTV

Fig.5IM -DHPTV

Fig.3

Fig.4 IM

Fig.5

MEXFLONIM Fig.6

MEXFLON

[22]MYPOLYMER

-DHPTV[23]

Fig.6 MEXFLON

2020 7 - 54 - J. HTSJ, Vol. 59, No. 248

Page 61: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

IM MnPTV3 (Fig.7)

Total internal reflection, TIR)

Fig.7 TIR

IMMgF2

1-propanolMEXFLON

[24, 25] MEXFLON

Fig.8

MEXFLON

Fig.8

MnPTV IM

Fig.9(a)[26]

MYPOLYMER UV

1.33

UV

Fig.9(b)Liquid transfer imprint lithography LTIL

MEXFLONMYPOLYMER MnPTV [27]

Fig.9 IM MnPTV

2020 7 - 55 - J. HTSJ, Vol. 59, No. 248

Page 62: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

IM IM

Fig.9

Fig.9 : (a) (b) (c) (d)

2UV

UV

[28]

MEXFLON IM

Fig.10

Fig.10 IM UV

UV

UVMEXFLON

UV

TiO2

UV 90%[29]

2020 7 - 56 - J. HTSJ, Vol. 59, No. 248

Page 63: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

IMFig.11

UV

[30]

Fig.11

IM-DHPTV MnPTV

X

IM

IM

JSPS 26420158

MEXFLON

[1] Roels, S., Carmeliet, J., International Journal of Heat and Mass Transfer, 49(25-26) (2006) 4762.

[2] Cnudde, V., Dierick, M., Vlassenbroeck, J., Masschaele, B., Lehmann, E., Jacobs, P., Van Hoorebeke, L., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1) (2008) 155.

[3] Kingston, T. A., Morgan, T. B., Geick, T. A., Robinson, T. R., Heindel, T. J., Flow Measurement and Instrumentation, 39 (2014) 64.

[4] Dobson, K. J., Coban, S. B., McDonald, S. A., Walsh, J. N., Atwood, R. C., Withers, P. J., Solid Earth, (4), (2016) 1059.

[5] Dierick, M., Vlassenbroeck, J., Masschaele, B., Cnudde, V., Van Hoorebeke, L., Hillenbach, A., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1-3), (2005) 296.

[6] Granwehr, J., Harel, E., Han, S., Garcia, S., Pines, A., Sen, P. N., Song, Y. Q., Physical review letters, 95(7) (2005) 075503.

[7] Matusiak, B., da Silva, M. J., Hampel, U., Romanowski, A., Industrial & engineering chemistry research, 49(5) (2010) 2070.

[8] Voss, A., Hosseini, P., Pour-Ghaz, M., Vauhkonen, M., Seppänen, A., Materials & Design, 181, (2019) 107967.

[9] Haegel, F. H., Zimmermann, E., Esser, O., Breede, K., Huisman, J. A., Glaas, W., Berwix, J.,

2020 7 - 57 - J. HTSJ, Vol. 59, No. 248

Page 64: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Vereecken, H., Nuclear Engineering and design, 241(6) (2011) 1959.

[10] Budwig, R., Experiments in fluids, 17(5) (1994) 350.

[11] Stöhr, M., Roth, K., Jähne, B. Experiments in Fluids, 35(2) (2003) 159.

[12] Hassan, Y. A., Dominguez-Ontiveros, E. E., Nuclear Engineering and Design, 238(11), (2008) 3080.

[13] Butscher, D., Hutter, C., Kuhn, S., von Rohr, P. R., Experiments in fluids, 53(4) (2012) 1123.

[14] Wright, S. F., Zadrazil, I., Markides, C. N., Experiments in Fluids, 58(9) (2017) 108.

[15] Byron, M. L., Variano, E. A., Experiments in fluids, 54(2) (2013) 1456.

[16] Someya, S., Ochi, D., Li, Y., Tominaga, K., Ishii, K., Okamoto, K. Applied Physics B, 99(1-2), (2010) 325.

[17] Cierpka, C., Kähler, C. J., Journal of visualization, 15(1) (2012) 1.

[18] Satake, S., Kunugi, T., Sato, K., Ito, T., Kanamori, H., Taniguchi, J., Measurement Science and Technology, 17(7) (2006) 1647.

[19] Li, H., Sadr, R., Yoda, M., Experiments in Fluids, 41(2) (2006) 185.

[20] Yuki, K., Okumura, M., Hashizume H., Toda, S., Morley, NB., Sagara, A., Journal of Thermo- physics and Heat Transfer 22(4) (2008) 638.

[21] Satake, S., Aoyagi, Y., Tsuda, T., Unno, N., Yuki, K., Fusion Engineering and Design, 89(7-8), (2014) 1064.

[22] Satake, S., Aoyagi, Y., Unno, N., Yuki, K., Seki, Y., Enoeda, M., Fusion Engineering and Design, 98 (2015) 1864.

[23] Matsuda, Y., Kigami, H., Unno, N., Satake, S., Taniguchi, J., Journal of Photopolymer Science and Technology, 33(5) (2020) 557.

[24] Unno, N., Maeda, A., Satake, S., Tsuji, T., Taniguchi, J., Microelectronic Engineering, 133, (2015) 98.

[25] Nakata, S., Unno, N., Satake, S., Taniguchi, J., Microelectronic Engineering, 160 (2016) 81.

[26] Unno, N., Nakata, S., Satake, S., Taniguchi, J. T Experiments in Fluids, 57(7) (2016) 120.

[27] Unno, N., Kigami, H., Fujinami, T., Nakata, S., Satake, S., Taniguchi, J., Microelectronic Engineering, 180 (2017) 86.

[28] Usami, H., Ohta, K., Inagawa, S., Journal of Photochemistry and Photobiology A: Chemistry, 332 (2017) 595.

[29] Kuniyasu, M., Unno, N., Satake, S., Yuki, K., Seki, Y., Journal of Photochemistry and Photobiology A: Chemistry, 338 (2017) 8.

[30] Myoga, A., Iwashita, R., Unno, N., Satake, S., Taniguchi, J., Yuki, K., Seki, Y., Optical Review, 25(3) (2018) 450.

2020 7 - 58 - J. HTSJ, Vol. 59, No. 248

Page 65: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

[1] [2]

1 mm[3]

Yuki[4] Mori[5, 6] Kandlikar[7] Mori

[8][9-11]

[12, 13]

5 MW/m2 Bai[14] Yuki [15]

[16, 17] [18, 19]

[20, 21]

10 MW/m2

10 MW/m2 Sharafat [22, 23] 400 He

10 MW/m2

10 MW/m2

Joshi Pin-fin

[24-26]

[27]Smakulski

[28]

10 MW/m2

Toda YukiEVAPORON Evaporated Fluid

Porous-Thermodevice[29, 30]

[31]

EVAPORON-2 [32, 33]EVAPORON-3

Thermal Management of High Heat Flux Equipment with Unidirectional Porous Media

Kazuhisa YUKI (Sanyo-Onoda City University)

e-mail: [email protected]

2020 7 - 59 - J. HTSJ, Vol. 59, No. 248

Page 66: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

[34] 10 MW/m2

Fig. 1

10 MW/m2

[35]

EVAPORON-4

Fig. 2

Fig. 2

90 %

Fig. 1 Various kinds of porous media

Fig. 2 Porosity and pore size of porous media

Unno

[36]30~50 %

keff

(1 )eff f sk k k (1)

kf ks

10 30 50 70 901

10

100

1000

Sinteredparticles Fibrous

FoamOpen cell

Porosity (%)

PoreSize( m)

FoamOpen cellc

2020 7 - 60 - J. HTSJ, Vol. 59, No. 248

Page 67: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

kf ks

Tortuosity

(1)

0.940 W/m/K

Boomsma [37]1 W/m/K

0.3

Fig. 3 1 5 mm

5 mm 5 mm 50 mm

0.5 MW/m2

100

1.0 mm

d

d5, 10 20

0 0.48398 W/m/K

0.026 W/m/KFinite Volume

Fig. 3 Calculation of effective thermal conductivity for particle-sintered porous medium Method FVM Cradle Stream v13

Finite Element Method FEM

Fig. 45 10

20 7.8 W/m/K 19.2 W/m/K 45.9 W/m/K

52 4 %

2012 % (1)

(1)

2020 7 - 61 - J. HTSJ, Vol. 59, No. 248

Page 68: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Fig. 4 Effective thermal conductivity of particle-sintered porous medium

keff||

keff

Ogushi [38]

(2)

( 1) ( 1)( 1) ( 1)eff sk k (3)

Behrens

(2)

0.48 220 W/m/K 5

Fig. 3Fig. 5

20.1 mm 1.9 mm

Fig. 60.5

100 W/m/K

Fig. 5 Square array model and staggered array model for uni-directional porous media

0 0.2 0.4 0.60

100

200

300

400

Square Array Behrens eqn. FEM simulation

Staggered Array Behrens eqn. FEM simulation

Effe

ctiv

e th

erm

al c

ond.

[W/m

/K]

Porosity [-]

Fig. 6 Effective thermal conductivity keff of uni-directional porous media

Chiba

0.735%

42%

Chiba[39]

K Kozney-Carman K=d2 3/180/(1- )2

(1 )eff sk k

2020 7 - 62 - J. HTSJ, Vol. 59, No. 248

Page 69: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2

/

10 MW/m2

MW/m2

[31, 40] Fig. 1Biporous

[41]

Darcy-Weithbach

2 32pK d (4) Fig. 7

dp 100 m

0 0.1 0.2 0.3 0.4 0.5 0.610-14

10-13

10-12

10-11

10-10

10-9

Cozney-Karman Unidirectional porous

Perm

eabi

lity

[m2 ]

Porosity [-]

Fig. 7 Permeability of unidirectional porous

0.3, 0.4, 0.5

30.6, 12.7, 5.6

Wick

[3]

1

1 MW/m2

[42]Fig. 8

10 mm 0.33, 1.71, 3.03

2020 7 - 63 - J. HTSJ, Vol. 59, No. 248

Page 70: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

0 2 4 6 8 100

20

40

60

80

100

Heat flux (MW/m2)

Tem

pera

ture

gap

(K)

Copper paste 0.33 MPa Copper paste 1.71 MPa Copper paste 3.03 MPa Solder 0.33 MPa Solder 1.71 MPa Solder 3.03 MPa

Fig. 8 Temp. gap due to contact thermal resistance

MPa 2

2 MW/m2

3.03 MPa 40 K0.33 MPa 100 K

5 MW/m2 10 K 10 MW/m2

20 K

[43]Peterson [44]

HIP

MEMS

21 mm

Fig. 9 Unidirectional porous media

((a): Lotus copper, (b) Exploded welded porous pipe)

3Fig. 9(a)

[45][46]

HokamotoFig. 9(b) [47]

8[48]

3D[49]

3D

Fig. 10 21

(a) (b)

2020 7 - 64 - J. HTSJ, Vol. 59, No. 248

Page 71: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Fig. 10 Two heat removal devices proposed

10m

m

Copper blockGroove

CoolantVaporPorous medium

Fig. 11 EVAPORON-4

EVAPORON Evaporated-Fluid- Porous- Thermodevice [29-34]

Fig. 11(a) Fig. 11(b)9 5

Fig. 11(c)1.0 mm 0.5 mm

0.5 mm 20

1 5 10 50 100

1

5

10EVAPORON-4

Tsub=40 KWithout TIM

0.5 L/min 1.0 L/min 2.0 L/min

Wall Superheat (K)

Hea

t Flu

x (M

W/m

2 ) Soldering 0.5 L/min 1.0 L/min 2.0 L/min

Fig. 12 Boiling curves of EVAPORON-4

mm 10 mm 2482.6 mm

5EVAPORON-4 Fig. 12(a)

Fig. 12

[50]40 K

0.5 L/min

3 MW/m2

6 MW/m2

1.8 2.0 L/min

9 MW/m2

10 MW/m2

2.0 L/min4 MW/m2

2 mmEVAPORON-4

CFD

(a)

(b) (c)

Liquid supplyVapor discharge

Liquid supplyVapor discharge

2020 7 - 65 - J. HTSJ, Vol. 59, No. 248

Page 72: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Fig. 13 Unidirectional porous copper fabricated by 3D printing technique

Fig. 133D

[49]

[51]

EVAPORON

Fig. 14

Fig. 9(a)

[52-54]

Fig. 14

Fig. 14(a)(b)

CHF

[15]0.5 mm

1.0 mm 10 mm 10 mm 10 mm

2mm 65.9 % 0.49mmFig. 15

1.4 MW/m2

0.5 mm 4.6 MW/m2

58.9 K 1.0 mm 5.3 MW/m2 111 K

Fig. 14(a)

CFD

Groove

Lotus copperCoolant

Vapor

Vapor

Groove

Lotus copper

Coolant

Fig. 14 Breathing phenomenon spontaneously induced by lotus copper on a grooved heat transfer surface

(a)

(b)

2020 7 - 66 - J. HTSJ, Vol. 59, No. 248

Page 73: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

1 5 10 50 1000

100

200

300

400

500

600

Wall Superheat (K)

Hea

t flu

x (W

/cm

2 )

Water Zuber 110W/cm2

Smooth Run1 Smooth Run2 Lotus-Groove0.5 Run1 Lotus-Groove0.5 Run2 Lotus-Groove1.0 Run1 Lotus-Groove1.0 Run2

Fig. 15 CHF improvement by breathing phenomenon

[55]

1

EVAPORON-4

[1] , 2 , (2001).

[2] Patankar, G., et al., International Journal of Heat and Mass Transfer, 148, 119106 (2020).

[3] ( ) https://www.fujikura.co.jp/products /electronics/thermal/01/2044118_12671.html.

[4] Yuki, K., Boiling -Research and Advances-, Elsevier, pp.593-609 (2017).

[5] Mori, S., et al., International Journal of Heat and Mass Transfer, vol. 108, pp. 2534–2557 (2017).

[6] Mori, S., Boiling -Research and Advances-, Elsevier, pp.212-226 (2017).

[7] M., P., Chinmay, et al., Heat Transfer Engineering, 35, No. 10, pp.887-902 (2014).

[8] Mori, S., et al., International Journal of Multiphase Flow, 35, 10, pp. 946-951 (2009).

[9] Rahman, M., M., et al., Langmuir, 30, 37, pp. 11225-11234 (2014).

[10] Li, H., C., et al., International Journal of Heat and Mass Transfer, 54, 15–16, pp. 3146-3155 (2011).

[11] Liter, G., S., et al., International Journal of Heat and Mass Transfer, 44, 22, pp. 4287–4311 (2001).

[12] Dai, X., et al., Applied Physics Letters 102 (16), 161605 (2013).

[13] Dai, X., et al., Applied Physics Letters, 112, 253901 (2018).

[14] Bai, L., Applied Physics Letters, 108, 233901 (2016).

[15] Yuki, K., et al., Journal of Thermal Science and Technology, (Accepted on 2020/6/18) (2020).

[16] Mahjoob, S., et al., International Journal of Heat and Mass Transfer, 51, 15-16, pp. 3701-3711 (2008).

[17] Huang, F., Z., International Journal of Heat and Mass Transfer, 53, 5–6, pp. 1164-1174 (2010).

[18] Kamiuto, K., et al., International Communications in Heat and Mass Transfer, 32, 7, pp. 947-953 (2005).

[19] Takeda, T., et al., Proceedings of the 30th International Symposium on Transport Phenomena (ISTP30), 2019.

[20] Fand, R. M., et al., International Journal of Heat and Mass Transfer, 36, 18, pp. 4407–4418 (1993).

1.0

2.0

3.0

4.0

5.0

6.0

(MW

/m2 )

2020 7 - 67 - J. HTSJ, Vol. 59, No. 248

Page 74: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

[21] Yuki, K., et al., Journal of Thermophysics and Heat Transfer, 22, 4, pp. 638-648 (2008).

[22] Sharafat, S., et al., Journal Fusion Science and Technology, 52, 3, pp. 559-565 (2007).

[23] Sharafat, S., et al., Fusion Engineering and Design, 81(1), pp. 455-460 (2006).

[24] Nasr, H., M., et al., Journal of Electronic Packaging, 139 / 011006 (2017).

[25] Nasr, H., M., et al., International Journal of Heat and Mass Transfer, 108, pp. 1702–1713 (2017).

[26] Asrar, P., et al., International Journal of Heat and Mass Transfer, 121, pp. 329-342 (2018).

[27] Narayanan, S., et al., International Journal of Heat and Mass Transfer, 58, pp. 300–311 (2013).

[28] Smakulski, P., et al., Applied Thermal Engineering, 104, pp. 636–646 (2016).

[29] Toda, S., et al., Proceedings of the 13th International Heat Transfer Conferences (IHTC13), BOI-58 (2006).

[30] Yuki, K., et al., Journal of Thermal Science, 14, 3, pp. 272-280 (2005).

[31] Yuki, K., et al., Special Topics & Reviews in Porous Media — An International Journal, 1, 1, pp. 1-13 (2010).

[32] Yuki, K., et al., Fusion Science and Technology, 60, pp. 238-242 (2011).

[33] Yuki, K., et al., Fusion Science and Technology, 64, 2, pp. 325 – 330 (2013).

[34] Takai, K., et al., Plasma and Fusion Research, 12, 1405015 (2017).

[35] Yuki, K., et al., Proceedings of the 6th International Conference on Porous Media and Its Applications in Science and Engineering (ICPM6), (2016).

[36] Unno, N., Journal of Thermal Science and Technology, 15, 1, Paper No.19-00654 (2020).

[37] Boomsma, K., et al., International Journal of Heat and Mass Transfer, 44, pp. 827–836 (2001).

[38] Ogushi, T., et al., Journal of Applied Physics, 95, 10, pp. 9843-9847 (2004).

[39] Chiba, H., et al., JSME International Journal, Series B Fluids and Thermal Engineering, 47, 3, pp. 516-521 2004 .

[40] , , , (2017).

[41] Soma, S., et al., International Journal of Multiphase Flow, 122, 103154 (2020).

[42] Kibushi, R., et al., Proceedings of 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC2018), FE2-3 (2018).

[43] , 53 , G113 (2016).

[44] Li, C., et al., Proceedings of 2005 ASME Summer Heat Transfer Conference (2005).

[45] Nakajima, H., Progress in Materials Science, 52, 7, pp. 1091-1173 (2007).

[46] Chiba, H., et al., Journal of Thermal Science and Technology, 5, 2, pp. 222-237 (2010).

[47] Hokamoto, K., et al., Materials Letters, 137, pp. 323–327 (2014).

[48] Yuki, K., et al., Proceedings of the 27th International Symposium on Transport Phenomena, Paper no. 126 (2016).

[49] , 56, C114 (2019).

[50] Takai, K., et al., Fusion Engineering and Design, 136, Part A, pp. 518-521 (2018).

[51] 54, C115 (2017).

[52] Yuki, K., et al., Transactions of The Japan Institute of Electronics Packaging, 9 (2016), pp. E16-013-1-E16-013-7.

[53] , 2017, J0330103 (2017).

[54] Yuki, K., Kibushi, R., Unno, N., Ide, T., Ogushi, T., Murakami, M., Patent publication number 2018-204882 (2018).

, 57 (2020).

2020 7 - 68 - J. HTSJ, Vol. 59, No. 248

Page 75: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Q

1642-1727Scala graduum Caloris. A Scale of

the Degree of Heat, [1][2]1 [3]

2 [4]

3 [5]

[6]0.7 m/s

Optiks[7]

[6] [1]

[6] [8][1] 290

[5]132

[5]103 107 27 mm 4

4 1 inch 1.93 kg 4.25 lb1

(a) (b)

1 4 4 1 inch(a) (b)

2

190 290[6] 100°N 294

4

Newton’s Law of Cooling, Part 4, Experiment on Natural Convection

, Shigenao MARUYAMA (INT, Hachinohe College), Syuichi MORIYA (Tohoku University)

e-mail: [email protected]

2020 7 - 69 - J. HTSJ, Vol. 59, No. 248

Page 76: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Q

2

0T T

4 4d { ( ) ( )}d cTc V S h T T T Tt (1)

c V St

ch [9]

1/ 4/ 0.54L c LNu h L k Ra (2)

L

1

22 °N [6]

2 3 [5]

2

3

33 2

340

0.28

2 3

3

300

2020 7 - 70 - J. HTSJ, Vol. 59, No. 248

Page 77: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Q

4

4 1

700

5 0.7 m/sGrigull

[10]

[3]

1687

2 2

1

[11]

[12]

2

d ( )d

mv kvt (3)

,m v,t k 0v

0 exp( )kv v tm (4)

i t iv

0T ddTc V hSTt (6)

0T i t

iT

T’ (degree of heat in geometrical progression)[2]

(°N)T

2' log ( /12) 1T T (8)

i

i

v v v v k tv v v v m

i

i

T T T T hS tT T T T c V

2020 7 - 71 - J. HTSJ, Vol. 59, No. 248

Page 78: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Q

(7)

2

T’

T[1]

3 52 °N 5.9 [8]

0 °N (8)

(7)

[1]

[1]

[6]

1 [3]

[1]

3 [5]

[6]

4

8 degree of heat in geometrical progression

[6]

[1]

[1]

[1] “Scala graduum Caloris (A Scale of the Degrees of Heat)”, Philosophical Transactions, No. 270, pp. 824-829, (April 1701).

[2] “The Correspondence of Isaac Newton, Volume IV, 1964-1709”, Edited by J.F. Scott, Cambridge University Press, PP.357-365, (1967).

[3] 1Vol. 54, No. 229, pp.31-34, (2015).

i i

T T T T

hST T tc V

2020 7 - 72 - J. HTSJ, Vol. 59, No. 248

Page 79: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

Q

[4] 2

Vol. 57, No. 240, pp.65-69, (2018).

[5] 3 Vol. 59, No. 246,

pp.46-51, (2020). [6] Newton, I., “Hydrostatics, Optics, Sound and

Heat,” The Portsmouth Collection, MS Add. 3970, pp. 594-599, (1672-1706).

[7] Newton, I., Optiks: or A Treatise of the Reflexions, Refractions, Inflexions and Colors of Light, (1704).

[8] Simms, D. L., “Newton’s Contribution to the

Science of Heat”, Annals of Science, Vol. 61, pp.33-77, (2004).

[9] Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley & Sons, pp.574-577, (2007).

[10] Grigull, U., “Newton’s Temperature Scale and the Law of Cooling,” Waerme und Stoffuebertrang, Vol. 18, pp.195-199, (1984).

[11] (1977). [12] Ruffner, J. A., “Reinterpretation of the Genesis of

Newton’s Law of Cooling,” Archives of History of Exact Science, Vol. 2, pp. 138-152, (1964).

2020 7 - 73 - J. HTSJ, Vol. 59, No. 248

Page 80: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

57

57 2020 63 5

2 1

11

OS1 OS2 OS3 OS4 OS5

OS6 OS7 MEMS OS8 OS9

OS10 OS11

BPA GS

344

40

49

2 58

5 30

1 57

https://htsj-conf.org/symp2020/

57 Report of the 57th National Heat Transfer Symposium of Japan

(Cancellation of Symposium)

Yukio TADA (Kanazawa University)

2020 7 - 74 - J. HTSJ, Vol. 59, No. 248

Page 81: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

57

344 56 370 55375 54 323 53

346

171

2 1087

102 3 13

WEB

WEB

KOA

33

17

4 25 1

5 12

3 28

3 28

3 29

3 30

3 31

4 3

3 283 20

2020 7 - 75 - J. HTSJ, Vol. 59, No. 248

Page 82: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

57

2 57

2020 7 - 76 - J. HTSJ, Vol. 59, No. 248

Page 83: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

57

WEB

WEB2

5 20 WEB https://htsj-conf.org/symp2020/proceedings.htmlID

2

WEB

57WEB

57

KOA

IDURL https://htsj-conf.org/symp2020/proceedings.html ID : ********** **********

2020 7 - 77 - J. HTSJ, Vol. 59, No. 248

Page 84: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.
Page 85: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 79 - J. HTSJ, Vol. 59, No. 248

2021

2nd ACTS

ACTS2020 [email protected]

2020 8 21( )

23( )

2020 7 31 7 13

06-6466-1588 [email protected]

9 2( )

4( )

33

7 10 7 10 [email protected]

9 18( )

20( )

2020 8 14 8 20 Tel:03-3714-0427 [email protected]

9 24( )

26( )

48 5 29 7 24 [email protected]

10 13( )

16( )

31st International Symposium on Transport Phenomena (ISTP31)

9 1 9 1 ISTP31

[email protected]

10 14( )

15( )

48

6 19 8 28 [email protected]

10 28( )

30( )

41 9 30 7 31 [email protected] 086-251-8046/FAX 086-251-8266

11

12

30( )

1( )

10 11 15 10 18 [email protected]

Page 86: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 80 - J. HTSJ, Vol. 59, No. 248

58 2019

1. 2020 5 30 13:00 13:40

2. Cisco Webex

3. 1,032

4. 613 63 550 29

517

5.

27

1 58 2019

58 2019

1 58 2019

2 58 2019

2 58 2019

3 58 2019

3 58 2019

4 59 2020

4 59 2020

17 1

17 1

Page 87: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 81 - J. HTSJ, Vol. 59, No. 248

59 2020

17 1

17 1

5

2

2

6 59 2020

6 59 2020

7 59 2020

7 59 2020

2020 5 30

58 2019

Page 88: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 82 - J. HTSJ, Vol. 59, No. 248

2020

3 Thermal Science and Engineering Journal of

Thermal Science and Technology 5

25

2 1 2 4

2020 12 4

PDF

E-mail: [email protected]

TEL 093-884-3140, FAX 093-871-8591 804-8550

Page 89: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

HP ML

HP ML

ML HP

1 4 l

HP

ML HP

HP ML HP

HP

HP

http://www.htsj.or.jp/wp/media/36banner.pdf

[email protected]

[email protected] [email protected]

[email protected] [email protected]

Word Text

HP

ML pdf

2020 7 - 83 - J. HTSJ, Vol. 59, No. 248

Page 90: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.
Page 91: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.
Page 92: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.
Page 93: Vol. 59, No. 248 2020. 7 Thermal Science and …Vol. 59, No. 248 2020. 7 特集:ポーラス体内における伝熱・流動・物質輸送現象と応用の最前線 Vol. 28, No.

2020 7 - 87 - J. HTSJ, Vol. 59, No. 248

Note from the JHTSJ Editorial Board

59

Q Q

Q Q

Heart Transfer

PDF URL

2020 http:/www.htsj.or.jp/journals/1955.html PDF

Hajime NAKAMURA (National Defense Academy)

e-mail: [email protected]

TSE

TSE

239-8686 1-10-20

Phone: 046-841-3810 3419

E-mail: [email protected]