Lec4_non (1).pptx

download Lec4_non (1).pptx

of 29

Transcript of Lec4_non (1).pptx

  • 8/14/2019 Lec4_non (1).pptx

    1/29

    Chemical Reaction Engineering (CRE)is the field that studies the rates and

    mechanisms of chemical reactions andthe design of the reactors in which they

    take place.

    Lecture 4

  • 8/14/2019 Lec4_non (1).pptx

    2/29

    Lecture 4 Tuesday 1/18/2011Block 1

    Size CSTRs and PFRs given r A=f(X)Block 2

    Reaction Orders Arrhenius Equation

    Block 3

    Stoichiometric TableDefinitions of ConcentrationCalculate the Equilibrium Conversion, X e

    2

  • 8/14/2019 Lec4_non (1).pptx

    3/29

    Reactor Differential Algebraic Integral

    A

    A

    r

    X F V 0CSTR

    A A r dV dX F 0

    X

    A A r dX F V 0

    0PFR

    V r

    dt

    dX N A A 0

    0

    0

    X

    A

    A V r dX

    N t Batch

    X

    t

    A A r dW

    dX F 0

    X

    A A

    r

    dX F W

    00

    PBR

    X

    W3

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    4/29

    F A 0

    r A

    X

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    5/29

    F A 0r A

    Are a = Volume of PF

    V 0

    X 1 F A 0

    r A

    dX

    X 1

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    6/29

    6

    reactor firsttofedAof molesi pointtoupreactedAof moles

    X i

    Only valid if there are no side streams

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    7/29

    7

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    8/29

    Two steps to get

    Step 1: Rate Law

    Step 2: Stoichiometry

    Step 3: Combine to get

    r A f X

    r A

    g C i

    C i h X

    r A f X

    ReviewLecture 2

  • 8/14/2019 Lec4_non (1).pptx

    9/29

    BAA CkCr

    Order RectionOverall

    Binorder

    AinorderPower Law Model

    9

    C3BA2 A reactor follows an elementary rate law if the

    reaction orders just happens to agree with thestoichiometric coefficients for the reaction as written.e.g. If the above reaction follows an elementary ratelaw B

    2AAA CCk r

    ReviewLecture 3

  • 8/14/2019 Lec4_non (1).pptx

    10/29

    E = Activation energy (cal/mol)R = Gas constant (cal/mol*K)T = Temperature (K)

    A = Frequency factor (same units as rate constant k)(units of A, and k, depend on overall reaction order)

    10

    RT E Aek

    T k AT 0 k 0

    A 10 13

    T

    k

    ReviewLecture 3

  • 8/14/2019 Lec4_non (1).pptx

    11/29

    These topics build upon one another

    Mole Balance Rate Laws Stoichiometry

    11

    ReviewLecture 3

  • 8/14/2019 Lec4_non (1).pptx

    12/29

    r A f X

    r A g C i Step 1: Rate Law

    C i h X Step 2: Stoichiometry

    r A f X Step 3: Combine to get

    12

    ReviewLecture 3

  • 8/14/2019 Lec4_non (1).pptx

    13/29

    We shall set up Stoichiometry Tables using species A as our basis of calculation in the followingreaction. We will use the stochiometric tables toexpress the concentration as a function ofconversion. We will combine C i = f(X) with theappropriate rate law to obtain -r A = f(X).D

    a

    dC

    a

    cB

    a

    bA

    A is the limiting Reactant.

    13

  • 8/14/2019 Lec4_non (1).pptx

    14/29

    N A N A 0 N A 0 X

    N B N B 0 b

    a N A 0 N A 0 N B 0 N A 0

    b

    a X

    For every mole of A that react, b /a moles of B react.Therefore moles of B remaining:

    Let B = N B0 /N A0

    Then:

    N B N A 0 B ba X

    N C N C 0 c

    a N A 0 X N A 0 C

    c

    a X

    14

  • 8/14/2019 Lec4_non (1).pptx

    15/29

    Species

    Symbol

    Initial Change Remaining

    B B N B0 =N A0 B -b/aN A0 X N B=N A0 ( B-b/aX)

    A A N A0 -N A0 X N A=N A0 (1-X)

    Inert I N I0 =N A0 I ---------- N I =N A0 I

    F T0 N T =N T0 +N A0 X

    Wher e: 0

    0

    0

    0

    00

    00

    0

    0

    A

    i

    A

    i

    A

    i

    A

    ii y

    yC C

    C C

    N N

    1

    ab

    ac

    ad and

    C C N C0 =N A0 C +c/aN A0 X N C =N A0 ( C +c/aX )D D N D0 =N A0 D +d/aN A0

    XN D=N A0 ( D+d/aX)

    15 = change in total number of mol per mol Areacted

  • 8/14/2019 Lec4_non (1).pptx

    16/29

    Note: If the reaction occurs in the liquid phaseor

    if a gas phase reaction occurs in a rigid (e.g. steel)

    batch reactorV V 0Then

    C A N A

    V N A 0 1 X

    V 0C A 0 1 X

    C B N B

    V N A 0

    V 0 B

    ba

    X

    C A 0 B ba

    X

    etc.16

  • 8/14/2019 Lec4_non (1).pptx

    17/29

    Suppose r A k AC A2

    C B

    Batch: 0VV

    17

    r A k AC A 0 2 1 X 2

    B ba X

    Equimolar feed: B 1

    Stoichiometric feed: B ba

  • 8/14/2019 Lec4_non (1).pptx

    18/29

    r A f X and we have

    if r A k A C A2 C

    B then

    r A C A 03

    1 X 2 B ba

    X

    Constant Volume Batch

    18

    Ar

    1

    X

  • 8/14/2019 Lec4_non (1).pptx

    19/29

    Consider the following elementary reaction withKC=20 dm 3/mol and C A0 =0.2 mol/dm 3.Xe for both a batch reactor and a flow reactor.

    Calculating the equilibrium conversionfor gas phase reaction,X e

    C

    B2AAA K

    CCk r

    BA2

    19

  • 8/14/2019 Lec4_non (1).pptx

    20/29

    Step 1: dX dt

    r AV N A 0

    30 2.0 dmmol C A

    mol dm K C 3 20

    Step 2: rate law, BB2AAA Ck Ck r

    Calculate X e

    B

    AC

    k

    k K

    C

    B2AAA K

    CCk r

    20

  • 8/14/2019 Lec4_non (1).pptx

    21/29

    Symbol

    Initial Change Remaining

    B 0 N A0 X N A0 X/2

    A N A0 -N A0 X N A0 (1-X)

    Totals: N T0=N A0 NT=N A0 -N A0 X/2

    @ equilibrium: -r A=0C

    Be2Ae K

    CC0

    K e C BeC Ae

    2 C Ae N Ae

    V C A 0 1 X e

    C Be C A 0 X e

    221

    Calculate X e

  • 8/14/2019 Lec4_non (1).pptx

    22/29

    Species Initial Change Remaining A N A0 -N A0 X N A=N A0 (1-X)B 0 +N A0 X/2 N B=N A0 X/2

    NT0=N A0 NT=N A0 -N A0 X/2

    S o l u t i o n :

    2Ae

    BeC C

    CK

    C

    Be2AeAA K

    CCk 0r At equilibrium

    0VV 2/BAStoichiometry

    ConstantvolumeBatch

    Calculating the equilibrium conversion

    for gas phase reaction

    22

  • 8/14/2019 Lec4_non (1).pptx

    23/29

    2e0Ae

    2e0A

    e0A

    eX1C2

    X

    X1C2

    XC

    K

    82.0202

    X1

    XCK 2 2

    e

    e0Ae

    X eb 0.703

    23

  • 8/14/2019 Lec4_non (1).pptx

    24/29

    A A F A0 -F A0 X F A=F A0 (1-X)

    Species

    Symbol

    ReactorFeed

    Change

    ReactorEffluent

    B B F B0=F A0 B -b/aF A0 X

    FB=F A0 ( B-b/aX)

    i F i0

    F A 0

    C i 0 0

    C A 0 0

    C i0

    C A 0

    yi 0

    y A 0Where:

    Flow System Stochiometric Table

    24

  • 8/14/2019 Lec4_non (1).pptx

    25/29

    Species Symbol ReactorFeed Change ReactorEffluent

    0A

    0i

    0A

    0i

    00A

    00i

    0A

    0ii y

    yCC

    CC

    FFWhere:

    Inert I F I0= A0 I ---------- F I=F A0 I FT0 F T=F T0+F A0 X

    C C F C0 =F A0 C +c/aF A0 X F C=F A0 ( C+c/aX)

    D D F D0=F A0 D +d/aF A0 X F D=F A0 ( D+d/aX)

    1a

    bac

    adand

    A

    A

    F

    CConcentration Flow System

    25

    Flow System Stochiometric Table

  • 8/14/2019 Lec4_non (1).pptx

    26/29

    Species Symbol Reactor Feed Change Reactor Effluent

    A A F A0 -F A0 X F A=F A0 (1-X)

    B B F B0=F A0 B -b/aF A0 X F B=F A0 ( B-b/aX)

    C C F C0 =F A0 C +c/aF A0 X F C=F A0 ( C+c/aX)

    D D F D0=F A0 D +d/aF A0 X F D=F A0 ( D+d/aX)

    Inert I F I0=F A0 I ---------- F I=F A0 I

    FT0 F T=F T0+F A0 X

    0A

    0i

    0A

    0i

    00A

    00i

    0A

    0ii y

    yCC

    CC

    FF

    1a

    bac

    adWhere: and

    AA

    FCConcentration Flow System

    26

  • 8/14/2019 Lec4_non (1).pptx

    27/29

    AA

    FCConcentration Flow System:

    0Liquid Phase Flow System:

    C A F A

    F A 0 1 X

    0 C A 0 1 X

    C B N B

    N A 0

    0

    B ba

    X

    C A 0 B ba

    X

    Flow Liquid Phase

    etc.

    27

    We will consider C A and C B for gas phasereactions in the next lecture

  • 8/14/2019 Lec4_non (1).pptx

    28/29

    Mole Balance

    Rate LawsStoichiometry

    Isothermal Design

    Heat Effects

    28

  • 8/14/2019 Lec4_non (1).pptx

    29/29

    End of Lecture 4

    29