Hassan 1988

download Hassan 1988

of 5

Transcript of Hassan 1988

  • 8/18/2019 Hassan 1988

    1/5

    J O U R N A L O F M A T E R I A L S S C I E N C E 2 3 ( 1 9 88 ) 2 5 0 0 - 2 5 0 4

    A s t u d y o f t h e s t r u c t u r a l , e l e c t r i c a l a n d o p t i c a l

    p r o p e r t ie s o f c o p p e r t e l lu r i u m o x i d e g la ss es

    M . A . H A S S A N , C . A . H O G A R T H

    Physics Department, Brun el University, Uxbr idge, M iddlesex, UK

    The resu l t s o f an i nves t i ga t i on o f some proper t i es o f CuO-TeOz g lasses a re repor ted . X- ray

    d i f f rac t i on , d i f fe r en t i a l s c ann i ng c a l o r im e t r y and op t i c a l ab s o r p t i on m eas u r em en t s a r e d i s -

    c us s ed w i t h r es pec t t o t he c om pos i t ions . D .c . c o nd uc t i v i t y is m eas u r ed i n t he t em pe r a t u r e

    r ange 293 t o 4 53 K and d i s c us s ed i n t e r m s o f s m a l l po l a r on t heo r y .

    1.

    I n t r o d u c t i o n

    Several transition metal oxides when heated with

    glass-forming substances such as PzOs, TeO2 and

    GeO 2, etc., form glasses on quenching the melt. The

    loss of oxygen from the melt produces a proportion of

    lower valency transition metal ions, and electrical

    conduction in these glasses occurs by electron hopp ing

    from an ion in the low valency state (e.g. Cu +) tran-

    sition metal to a n ion in the higher valency state

    C u ~ + ) [ 1 1 .

    Differential thermal analysis, X-ray diffraction and

    electrical conductivity for CuO-TeO2 glasses have

    been studied by Ivanova e t a l . [2]. They foun d that for

    all the compositions examined, the dependence of

    electrical conduct ivity, cr, as a function o f reciprocal

    temperature (l/T) yields different activation energies

    at low and high temperatures. Electrical conductivity

    measurements for glasses of the ternary system CuO-

    V2Os-TeO 2 have been investigated by Dimitriev e t a l .

    [3]. They noted that the temperature dependence of

    the conductance is better described by the Arrhenius

    equation above 100~ and that the calculated acti-

    vat ion energy varies within the limits 0.4 to 0.8 eV.

    The physical parameters obtained from measure-

    ments such as X-ray diffraction, differential scan-

    ning calorimetry (DSC), and optical absorpt ion are

    discussed with respect to the compositions. The con-

    ductivity was measured for semiconducting copper

    tellurium oxide glasses. The present studies show that

    the conductivityof CuO-TeO2 glasses is slightly higher

    than that of the corresponding CuO-P205 glasses [4].

    2 . E x p e r i m e n t a l w o r k

    Six glasses in the CuO-TeO 2 system with 15, 25, 30,

    35, 40, and 50 mol % CuO were prepared by melting

    the oxides in alumina crucibles for 30min a t 700 to

    900 ~ C. The electrical measurements were made by

    standard techniques. Evaporated gold electrodes were

    found to give ohmic contacts for fields up to at least

    103 V cm-~ and were used in al l the electrical measure-

    ments. Thin glass films, which are necessary for optical

    absorption measurements, were obtained by blowing

    techniques. Specimens in the thickness range 2.5 to

    6.25 m were obtained as measured using a Sigma

    comparator. All thin films were unannealed when

    used for optical'measurements. The optical absorp-

    tion measurements were made on thin blown films at

    room temperature in the wavelength range 200 to

    900 nm.

    3 . R e s u l t s a n d d i s c u s s i o n

    3 . 1 . X - r ay d i f f r ac t i on

    X-ray diffraction is a quite useful technique because it

    is possible to detect readily crystals in a glassy matrix

    if the crystals are of dimensions greater than typically

    100 nm [5]. The X-ray diffraction pattern of an amorph-

    ous material is distinctly different from that of crystal-

    line materia l and consists of a few broad diffuse haloes

    15 nlol % CuO

    25 m01% Cu0

    1 d i f f r a c t i on o f t h re e

    igure

    X - r a y

    p a t t e r n s

    sa mpl e s o f c op pe r - t e l l u r i um ox i de g l as ses .

    2500 0 0 2 2 - 2 4 6 1 / 8 8 $ 0 3 .0 0 + . 12

    9 1988 Chapman and Hall Ltd.

  • 8/18/2019 Hassan 1988

    2/5

    T A B L E I E x o t h e r m a l a n d e n d o t h e r m a l t e m p e r a t u r e t r a n s it i o n

    p e a k s f o r s o m e g l a s s s a m p l e s u s i n g D S C i n t h e ra n g e 5 0 t o 6 0 0 ~

    C u O E n d o t h e r m a l E x o t h e r m a l - A H

    ( m o i % ) t e m p ( ~ t e m p ( ~ ( j g - l )

    15 356 410 88 .26

    436 472 45 .30

    25 352 396 14.79

    428 476 54 .24

    T A B L E I I C h e m i c a l c o m p o s i t i o n an d d e r iv e d pa r a m e t e r s o f

    C u O - T e O 2 g l as s es

    Cu O W E e , ( = 2 W ) Eop~ E o

    ( m o l %) ( e V ) ( e V ) ( e V ) ( e V )

    15 0.8 1.60 - -

    25 0.74 1.48 2.75 0.33

    30 0.69 1.38 2.68 0.34

    35 0.66 1.32 2.62 0.37

    40 0.60 1.20 2.55 0.49

    50 0.53 1.06 2.30 0.75

    r a t h e r t h a n s h a r p r i n g s . A l l g l a s s s a m p l e s w e r e t e s t e d

    a n d t h e r e s u l t s s h o w e d t h e a b s e n c e o f c r y s t a l li n e

    c h a r a c t e r i s t i c s . F i g . 1 s h o w s t y p i c a l X - r a y d i f f r a c t i o n

    p a t t e r n s f o r t h r e e c o m p o s i t i o n s , r e c o r d e d w i t h a

    P h i l l i p s t y p e P W 1 0 5 0 d i f f r a c t o m e t e r , u s i n g a c o p p e r

    t u b e a n d n i c k e l f i l t e r .

    3.2. Thermal analysis

    I n t h i s i n v e s t i g a t i o n t h e d i f f e r e n t i a l s c a n n i n g c a l o r -

    i m e t r y ( D S C ) t e c h n i q u e w a s u s e d . A n i m p o r t a n t u s e

    o f D S C i n g l as s e s i s t o m e a s u r e t h e g l a s s t r a n s i t i o n

    t e m p e r a t u r e , T g . A s a m p l e a n d a n i n e r t r e f e r e n c e a r e

    u s e d a n d t h e c e l l i s d e s i g n e d t o e n a b l e a d i r e c t q u a n -

    t i t a t i v e m e a s u r e m e n t f o r t h e e n t h a l p y c h a n g e s t h a t

    o c c u r i n a s a m p l e a s a f u n c t i o n o f e it h e r t e m p e r a t u r e

    o r t i m e t o b e m a d e .

    T h e t h e r m a l s t a b i l i t y o f t h e g l a ss e s w a s s t u d i e d

    i n a P e r k i n E l m e r D S C 7 e q u i p m e n t f o r t w o c o m p o -

    s i t i o n s i n t h e t e m p e r a t u r e r a n g e 3 1 3 to 8 7 3 K . T h e

    h e a t f l ow t o t h e s a m p l e w a s m e a s u r e d u n d e r t h e r m a l l y

    c o n t r o l l e d c o n d i t i o n s . D S C g a v e m u c h m o r e s e n si ti v e

    r e s u l t s s h o w i n g t h a t t h e t r a n s i t i o n s s t a r t e d a t a l o w e r

    t e m p e r a t u r e t h a n e x p e c t e d . F i g . 2 s h o w s t y p i c a l c u r v e s

    o f th e t r a n s i t i o n s a n d T a b l e I g i v e s a s u m m a r y f o r t h e

    g l a ss e n d o t h e r m a l p e a k v a l u e s , e x o t h e r m a l p e a k v a l u e s

    a n d t h e a m o u n t o f h e a t a b s o r b e d b y t h e g la s s i n t h e

    e n d o t h e r m a l t r a n s i t i o n s .

    3 .3 . Optica l absorpt ion

    A m a i n f e a t u r e o f t h e a b s o r p t io n e d g e o f a m o r p h o u s

    s e m i c o n d u c t o r s , p a r t i c u l a r l y a t t h e l o w e r v a l u e s o f

    a b s o r p t i o n c o e f f ic i e n t , i s a n e x p o n e n t i a l i n c r e a s e o f

    t h e a b s o r p t i o n c o e f fi c ie n t e ( c o) w i t h p h o t o n e n e r g y

    (h ~o ) i n a c c o r d a n c e w i t h a n e m p i r i c a l r e l a t i o n d u e t o

    Urbach [6 ]

    c~ = ~o ex p

    ( h c o / E o )

    (1)

    wh ere c~0 i s a co ns ta n t , E0 i s the U rba ch ene rgy wh ich

    i n d i c a t e s t h e w i d t h o f t h e b a n d t a i l s o f t h e l o c a l i z e d

    s t a te s a n d m i s t h e a n g u l a r f r e q u e n c y o f t h e r a d i a t i o n .

    O p t i c a l a b s o r p t i o n m e a s u r e m e n t s w e r e m a d e a s

    a f u n c t i o n o f p h o t o n e n e r g y a t r o o m t e m p e r a t u r e .

    F i g . 3 s h o w s t h e a b s o r b a n c e i n a r b i t r a r y u n i t s a s a

    f u n c t i o n o f t h e w a v e l e n g t h f o r g l a s s fi l m s o f d i ff e r e n t

    c o m p o s i t i o n s .

    T h e a b s o r p t i o n c o e f f i c ie n t c~ (co) c a n b e d e t e r m i n e d

    n e a r t h e e d g e f r o m t h e f o r m u l a

    1 I 0

    ~ ( c ~ ) = ~

    tn 7

    ( 2 )

    w h e r e d i s t h e t h i c k n e s s o f t h e s a m p l e , I 0 a n d I

    a r e t h e i n t e n s i t i e s o f t h e i n c i d e n t a n d t r a n s m i t t e d

    b e a m s , r e s p e c t iv e l y . T h e m o s t s a t i s f a c t o r y re s u l t s w e r e

    o b t a i n e d b y p l o t t i n g t h e q u a n t i t y ( ~ 0 ) ) 1/2 a s a func-

    t i o n o f ( hc o) a s s u g g e s t e d b y D a v i s a n d M o t t [ 7] . F o r

    a b s o r p t i o n b y i n d i r e c t tr a n s i t io n s t h e e q u a t i o n t a k e s

    t h e f o r m

    ~ ( c o ) = A ( h c o - E o p t ) 2 / h c o

    (3)

    w h e r e A i s a c o n s t a n t , E o p t i s t h e b a n d g a p a n d t h i s

    40 -

    30-

    E

    g

    2 0

    10-

    ~

    .d

    I I I

    100 300

    Tempe rature ( o C)

    s ~ o

    Figure 2 T y p i c a l D S C c u r v e s f o r t w o

    c o p p e r - t e l l u r i u m o x i d e g l a s s e s . ( - - - )

    2 5 m o I % Cu O , ( ) 1 5 t o o l % Cu O .

    2501

  • 8/18/2019 Hassan 1988

    3/5

    /

    " / ~ . . _ I 9

    =0.5, / .

    - ]

    ~ i /

    .~

    o

    . a ]

    1 . 0 / ,

    / , ' /

    I .

    , /

    I.

    1.5.

    4 0 0 5 0 0 6 0 0 7 0 0

    Wavelength (nrn)

    Figure 3 Absorban ce as a function of wav elength for three samp les

    of copper-tel lurium oxide glasses. ( ) 25 mol % C uO , ( - - - )

    35 mol % CuO , ( - . . . . . . ) 50 tool % CuO.

    r e l a t i o n a p p l i e s t o m a n y o x i d e g l a ss e s , p a r t i c u l a r l y a t

    t h e h i g h e r v a l u e s o f a b s o r p t i o n c o e ff ic i en t . F i g s 4 a n d

    5 s h o w p l o t s o f ( e hc o) 1/2 a g a i n s t h e ) a n d t h e e q u i v a l e n t

    U r b a c h p l o t i s p r e s e n t e d i n F i g s 6 a n d 7 in w h i c h t h e

    a b s o r p t i o n c o e f f i c ie n t s a r e p l o t t e d a s f u n c t i o n s o f hc o

    180

    1 6 0

    T

    5140

    3

    120

    100

    I n l

    (e)

    / I t I I

    2 . 0 2 .5 3 . 0 3 . 5

    r

    l

    /

    /

    / a / ~ J

    / 1 o i

    / ~ / i

    Photon energy eV)

    F i g u r e 4 (~hco) /2 plotted against hco for three samples o f co ppe r-

    te l lu r ium oxide g lasses. (a ) 50mo1% CuO, 2 .5#m; (b) 35m o1%

    CuO, 2 .7#m; (c ) 25mo1% CuO, 2 .6#m.

    (o) (b)

    100 -

    r a

    >o

    ' E 8 0

    6 O

    /

    / /

    / /

    I

    I I I I

    2.0 2.5 3 . 0 3,5

    Pho ton e nergy (eV)

    Figure 5 c~hc@/2

    p lo t ted aga ins t he ) fo r two samp les o f copper -

    te l lu r ium ox ide g lassesof the same th ickness, 6 .25 f i re. (a) 40 tool %

    CuO, (b) 30 tool % CuO.

    f o r d i f fe r en t c o m p o s i t io n s o f C u O - T e O 2 g l as se s . T h e

    v a l u e s o f E ov d e t e r m i n e d f r o m F i g s 4 a n d 5 b y e x t r a -

    p o l a t i n g t h e l in e a r p a r t s o f th e c u r v e s to (0~(D ) 1/2 = 0,

    a n d t h e v a l u e s o f E 0 w h i c h a r e d e t e r m i n e d f r o m

    F i g s 6 a n d 7 b y u s i n g E q u a t i o n 1 a r e t a b u l a t e d i n

    T a b l e I I . I t is c l e a r f r o m F i g . 8 t h a t t h e o p t i c a l g a p E o p ,

    d e c r e a s e s a s th e p r o p o r t i o n o f tr a n s i t i o n m e t a l o x i d e

    C u O i s i n c r e a s e d , b u t o n t h e o t h e r h a n d t h e w i d t h o f

    t h e b a n d t a i ls o f th e l o c a l i z e d s t a t e s is f o u n d t o

    i n c r e a s e w i t h i n c r e a s i n g C u O c o n t e n t , a s s h o w n i n

    F i g . 9 . T h e v a l u e o f E op t i s c o n s i d e r a b l y l a r g e r t h a n

    t w i c e t h e e l e c t r i c a l a c t i v a t i o n e n e r g y , W .

    3 . 4 . D . c .

    c o n d u c t i v i t y

    T h e d . c . e l e ct r ic a l c o n d u c t i v i t y o f C u O - T e O 2 g l a s s e s

    w a s m e a s u r e d i n t h e t e m p e r a t u r e r a n g e 2 9 3 t o 45 3 K .

    A l l m e a s u r e m e n t s w e r e t a k e n m o r e t h a n o n c e . T h e

    9.0

    'E

    v

    8.0

    (a).

    ~

    c)

    I I I

    2.0 2.5 3.0 3.5

    Pho ton energy (eV)

    Figure 6 Ln ~ plotted against he) for the three sa mples of Fig. 4.

    2 5 0 2

  • 8/18/2019 Hassan 1988

    4/5

    8~-

    JE

    2.0

    ( b )

    I I I

    2.5 3.0 3.5

    Photon energy (eV)

    Figure 7 L n e p l o t t e d a ga i ns t he ) fo r t he t w o sa mpl e s o f F i g . 5 .

    d . c . c o n d u c t i v i t y , aa .. . i n c r e a s e s w i t h t e m p e r a t u r e a n d

    a l s o w i t h t h e i n c re a s e in t h e c o n c e n t r a t i o n o f t r a n s i t i o n

    m e t a l o x i d e C u O i n t h e g l as s , a s s h o w n i n F i g . 1 0 . A l l

    g l as se s s h o w a s m o o t h v a r i a t i o n o f c o n d u c t i v i t y w i th

    ( 1 0 0 0 / T ) K - ~ . T h e d . c. c o n d u c t i v i t y i s a n e g a t i v e

    e x p o n e n t i a l f u n c t i o n o f i n v er s e t e m p e r a t u r e a n d c a n

    b e e x p r e s s e d b y t h e u s u a l e q u a t i o n

    O-d.c. = a0 e x p - (4 )

    w h e r e W i s t h e a c t i v a t i o n e n e r g y .

    T h e a c t i v a t i o n e n e r g i e s w e r e c a l c u l a t e d f r o m t h e

    s lopes o f the log ~d .c . aga in s t

    I/T

    c u r v e s a n d w e r e

    f o u n d t o d e c r e a s e a s th e c o n c e n t r a t i o n o f t ra n s i t i o n

    m e t a l o x i d e C u O i n c r e a s e s i n t h e g l a s s , a s s h o w n i n

    F i g . I I . T h e v a l u e s o f t h e a c t i v a t i o n e n e r g y , W , a b o v e

    r o o m t e m p e r a t u r e a r e t y p i c a l l y 0 .6 1 t o 0 .8 e V a n d a r e

    2.8

    2.6

    ~o

    2.4

    2.2

    25 35 45

    Cu0 con ten t ( mot % }

    Figure 8 Fop

    p l o t t e d a g a i n s t C u O c o n t e n t f o r c o p p e r - t e l l u r i u m

    oxide glasses.

    0.~

    0.6

    >=

    0.4

    0.2

    I I

    25 35 45

    CuO content {tool o/o)

    Figure 9 Eo p l o t t e d a g a i n s t C u O c o n t e n t f o r c o p p e r - t e l l u r i u m o x i d e

    glasses.

    c o n s i d e r a b l y l e s s t h a n h a l f t h e c a l c u l a t e d v a l u e s o f t h e

    o p t i c a l g a p , a s s h o w n i n T a b l e I I .

    T h e d . c . e l e c tr i c a l c o n d u c t i v i t y a n d t h e s h a p e o f th e

    c u r r e n t - v o l t a g e c h a r a c t e r i st i c s w e r e s e n s it i ve t o t e m -

    p e r a t u r e . T h e g l a s s e s s h o w o h m i c b e h a v i o u r a t l o w

    f ie lds , a s s how n in F ig . 12 . As can b e s een f rom

    F i g . 1 3 , th e r e s i s t a n c e o f C u O - T e O 2 g l a s s es i s i n d e -

    p e n d e n t o f ti m e . T h i s c o u l d b e t a k e n a s e v id e n c e t h a t

    t h e p o l a r i z a t i o n e f f e c t i n t h e s e g l a ss e s is m i n i m a l o r

    a b s e n t a n d t h e e l e c t r ic a l c o n d u c t i o n w o u l d i n t h i s c a s e

    b e d u e t o t r a n s p o r t o f e l e c tr o n s r a t h e r t h a n i o n s.

    I 0 -6 -

    •E

    0-7

    T

    10 a

    8

    10-9

    10-10 I ~ t

    2.0 2.5 3.0 3.5

    1000 /T (K -1 )

    Figure 10 C o n d u c t i v i t y a s a f u n c t i o n o f i n v e r se t e m p e r a t u r e f o r f o u r

    s a m p l e s o f c o p p e r - t e l l u r i u m o x i d e g la ss . ( a ) 1 5 m o 1 % C u O ,

    (b ) 25 t oo l % C uO , ( c ) 30 t oo l % C uO , (d ) 40 t oo l % C uO.

    2 5 0 3

  • 8/18/2019 Hassan 1988

    5/5

    1.0

    05

    I 1 I i

    15 25 35 ~5

    CuO content (rno[ O/o)

    Figure l l V a r i a t i o n o f a c t i v a ti o n e n e r g y , W , w it h C u O c o n t e n t o f

    c o p p e r - t e l l u r i u m o x i d e g l a s s .

    4 . D i s c u s s i o n

    I t i s o f i n t e re s t t o d i s c u s s t h e f o l l o w i n g p o i n t s .

    ( i) T h e s h i f t o f t h e u l t r a v i o l e t a b s o r p t i o n b a n d t o

    l o n g e r w a v e l e n g t h w i t h t h e i n c r e a s i n g C u O c o n t e n t .

    ( ii ) T h e v a r i a t i o n o f E o pt w i t h e l e c t ri c a l a c t i v a t i o n

    e n e r g y .

    (i ii ) T h e k i n d o f c o n d u c t i o n m e c h a n i s m w h i c h i s

    l i k e l y to b e i n v o l v e d i n t h e s e m a t e r i a l s .

    ( i ) S t e v e l s [ 8 ] s u g g e s t s t h a t t h e m o v e m e n t o f t h e

    u l t r a v i o l e t a b s o r p t i o n b a n d t o l o n g e r w a v e l e n g t h s

    c o r r e s p o n d s t o a t r a n s i t i o n f r o m t h e n o n - b r i d g i n g

    o x y g e n s w h i c h b i n d a n e x c i t e d e l e c t r o n l e s s t i g h t l y

    t h a n a b r i d g i n g o x y g e n . A s c a n b e s e e n f r o m F i g . 3 th e

    s h i f t o f t h e u l t r a v i o l e t a b s o r p t i o n b a n d t o l o n g e r

    w a v e l e n g t h s w i t h i n c r e a s i n g C u O c o n t e n t c o u l d b e

    e x p l a i n e d i n t h e s a m e w a y . T h u s t h e r e s u l t o f F i g . 8

    s h o w i n g t h e v a r i a t i o n o f E op~ w i t h c o m p o s i t i o n c a n b e

    e x p l a i n e d b y s u g g e s t in g t h a t t h e n o n - b r i d g i n g o x y g e n

    (d)

    _ _ c )

    (b)

    10-9 (a)

    10-10

    10- 1

    10-12 I

    10-13 [ i I

    1 o 1o o 1o o o

    Applied voltoge V )

    Figure 12 V I c h a r a c t e ri s t ic s a t r o o m t e m p e r a t u r e o f t h e f o u r

    s a m p l e s o f F i g . 1 0.

    2 5 0 4

    1 0 1 1

    1 0 1 0

    c

    c ~

    1 0 9

    - - 2 0 C

    5 0 ~ C

    S

    z ~- -- e ~ - e _- e

    80 ~ C

    1 2 0 ~

    1 0 8 I l

    I

    1 2 3

    T im e h )

    Figure 13

    Variation of resistance with tim e for a 30mo1% CuO

    sample at different emperatures.

    i o n c o n t e n t i n c r e a s e s w i t h i n c r e a s i n g C u O c o n t e n t ,

    s h i f t i n g t h e b a n d e d g e t o l o w e r e n e r g i e s a n d t h u s

    c o n s e q u e n t l y l e a d i n g t o a d e c r e a s e i n E o p t .

    ( ii ) As c an be seen f i ' om Tab le I I , th e so -ca l led

    o p t i c a l g a p ( Eo pt ) i s t h r e e t o f o u r t i m e s l a r g e r t h a n t h e

    h i g h - t e m p e r a t u r e a c t i v a t i o n e n e r g y . T h i s i s c o n s i s t e n t

    w i t h t h e r e s u lt s o f m a n y w o r k e r s o n o x i d e a n d c h a l-

    c o g e n i d e g l a s se s w h i c h s h o w t h a t t h e e l e c t r i c a l e n e r g y

    g a p , s o m e t i m e s r e g a r d e d a s t w i c e t h e a c t i v a t i o n e n e r g y ,

    W , is le s s t h a n t h e v a l u e o f th e o p t i c a l g a p o n t h e s a m e

    g l a ss . T h e r e s u l t s s u g g e s t t h a t t h e e l e c t r o n i c a c t i v a t i o n

    i s n o t a c r o s s t h e w h o l e m o b i l i t y g a p b u t i s p o s s i b l y

    f r o m o n e o r m o r e t r a p p i n g l e v e l s t o t h e c o n d u c t i o n

    b a n d o r f r o m b o n d i n g s t a t e s t o a t r a p p i n g l e v e l .

    ( ii i) T h e l o g o- a g a i n s t r e c i p r o c a l t e m p e r a t u r e p l o t

    d i s p l a y s l in e a r b e h a v i o u r w h i c h i s t y p i c a l o f t h e s m a l l

    p o l a r o n h o p p i n g m e c h a n i s m e x h i b i t e d b y 3 d a n d 4 d

    t r a n s i t i o n m e t a l o x i d e g l a s s e s .

    R e f e r e n c e s

    h I . G . A U S T I N a n d N . F . M O T T ,

    Adv. Phys.

    18 (1969) 41 .

    2 . Y . Y . I V A N O V A , M . R . M A R I N O V a n d Y . B . D I M I -

    T R I E V ,

    Compt. Rend. Acad. Bulg. Sci.

    25 (1972) 1391.

    3. Y . B. D I M I T R I E V , M . R . M A R I N O V a n d Y . Y . I V A N -

    O V A ,

    ibid.

    25 (1972) 237 .

    4 . M . A . H A S S A N a n d C . A . H O G A R T H , ( to b e p u b l i s h e d

    1989).

    5 . G . W . A N D E R S O N a n d W . D . L U E H R S , J. Appl. Phys.

    39 (1968) 1634.

    6. F . U R B A C H ,

    Phys. Rev.

    92 (1953) 1324.

    7 . E . A . D A V I S a n d N . F . M O T T , Phil . Mag. 2 2 (1 9 7 0 ) 9 0 3 .

    8 . J . M . S T E V E L S , P r o c e e d i n g s 1 3 t h I n t e r n a t i o n a l C o n g r e s s

    o n P u r e a n d A p p l i e d C h e m i s t r y , U p p s a l a , S t o c k h o l m , 1 9 53 ,

    e d i t e d b y S . C l a e s e n a n d V . L a m e r , V o l . 5 ( A l m q v i s t a n d

    W i k s e l , S t o c k h o l m 1 95 3, A c a d e m i c , L o n d o n , N e w Y o r k , 1 9 54 )

    p . 519.

    R e c e i v e d 7 J u l y

    a n d a c c e p t e d 9 O c t o b e r 1 9 8 7