Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf ·...

22
Revue de micropaléontologie 52 (2009) 267–288 Original article Typological versus morphometric separation of orthophragminid species in single samples – a case study from Horsarrieu (upper Ypresian, SW Aquitaine, France) Séparation typologique et morphométrique des espèces d’Orthophragmines dans des échantillons isolés – application à un échantillon provenant de Horsarrieu (Yprésien supérieur, Sud-Ouest de l’Aquitaine, France) György Less a,, Lajos Ó. Kovács b a University of Miskolc, Department of Geology and Mineral Resources, 3515, Miskolc-Egyetemváros, Hungary b Hungarian Office for Mining and Geology, Columbus u. 17-23, 1145, Budapest, Hungary Abstract Thirteen different orthophragminid taxa could be separated typologically from a single sample collected by C.W. Drooger from the late Ypresian of Horsarrieu, marnière Sourbet (SW France). Drooger doubted the existence of many co-occurring evolutionary lineages of larger foraminifera in the Eocene suggesting that this may be an artifact of the typological species concept widely used by the Paleogene larger foraminiferal experts. It is shown here that typologically determined taxa can be separated as well with the morphometric method, recommended by Drooger. This proves also the validity of the concept of simultaneous evolutionary lineages. It has been found that the typological method is preferable when separating different taxa in single samples, but in some cases, the independence of quantitatively close populations can only be proved biometrically. At the same time, the morphometric method is more advantageous in characterizing the evolution within particular evolutionary lineages because it gives much more reliable stratigraphical results. The 13 orthophragminid taxa from Horsarrieu are systematically described. A new species, Orbitoclypeus droogeri nov. sp., and two new chronosubspecies, O. furcatus palaeofurcatus and Asterocyclina stella praestella are introduced. © 2008 Elsevier Masson SAS. All rights reserved. Résumé Treize taxons d’Orthophragmines ont été identifiés selon leur typologie sur un seul échantillon prélevé par C.W. Drooger dans la marnière Sourbet située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur. Drooger met en doute la coexistence d’un grand nombre de lignées évolutives de grands foraminifères du Paléogène, pensant à un artéfact lié au concept d’espèces typologiques largement appliqué par les experts des grands foraminifères de l’Éocène. Dans cet article, il est démontré que des taxons déterminés selon leur typologie pouvaient également être séparés par leur morphométrie, méthode recommandée par C.W.Drooger. Cela confirme la coexistence de différentes lignées évolutives. Il apparaît qu’une séparation typologique des différents taxons d’échantillons isolés est préférable, mais que dans certains cas, l’indépendance de populations quantitativement proches peut être prouvée uniquement par la biométrie. Par ailleurs, la morphométrie est plus adaptée à la caractérisation de l’évolution au sein de lignées particulières, car elle permet un meilleur contrôle des résultats stratigraphiques. Les 13 taxons d’Orthophragmines sont systématiquement décrits. Une nouvelle espèce, Orbitoclypeus droogeri nov. sp., et deux nouvelles sous-espèces chronologiques, O. furcatus palaeofurcatus et Asterocyclina stella praestella sont introduites. © 2008 Elsevier Masson SAS. All rights reserved. Keywords: Lower Eocene; Foraminifera; Discocyclinidae; Orbitoclypeidae; Biometry; France Mots clés : Éocène inférieur ; Foraminifères ; Discocyclinidae ; Orbitoclypeidae ; Biométrie ; France Corresponding author. E-mail address: [email protected] (G. Less). 0035-1598/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.revmic.2008.10.001

Transcript of Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf ·...

Page 1: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

A

otiadtiO©

R

sédsqqlsp©

K

M

0d

Revue de micropaléontologie 52 (2009) 267–288

Original article

Typological versus morphometric separation of orthophragminid species insingle samples – a case study from Horsarrieu (upper Ypresian, SW

Aquitaine, France)

Séparation typologique et morphométrique des espèces d’Orthophragminesdans des échantillons isolés – application à un échantillon provenant de

Horsarrieu (Yprésien supérieur, Sud-Ouest de l’Aquitaine, France)

György Less a,∗, Lajos Ó. Kovács b

a University of Miskolc, Department of Geology and Mineral Resources, 3515, Miskolc-Egyetemváros, Hungaryb Hungarian Office for Mining and Geology, Columbus u. 17-23, 1145, Budapest, Hungary

bstract

Thirteen different orthophragminid taxa could be separated typologically from a single sample collected by C.W. Drooger from the late Ypresianf Horsarrieu, marnière Sourbet (SW France). Drooger doubted the existence of many co-occurring evolutionary lineages of larger foraminifera inhe Eocene suggesting that this may be an artifact of the typological species concept widely used by the Paleogene larger foraminiferal experts. Its shown here that typologically determined taxa can be separated as well with the morphometric method, recommended by Drooger. This proveslso the validity of the concept of simultaneous evolutionary lineages. It has been found that the typological method is preferable when separatingifferent taxa in single samples, but in some cases, the independence of quantitatively close populations can only be proved biometrically. Athe same time, the morphometric method is more advantageous in characterizing the evolution within particular evolutionary lineages becauset gives much more reliable stratigraphical results. The 13 orthophragminid taxa from Horsarrieu are systematically described. A new species,rbitoclypeus droogeri nov. sp., and two new chronosubspecies, O. furcatus palaeofurcatus and Asterocyclina stella praestella are introduced.2008 Elsevier Masson SAS. All rights reserved.

ésumé

Treize taxons d’Orthophragmines ont été identifiés selon leur typologie sur un seul échantillon prélevé par C.W. Drooger dans la marnière Sourbetituée à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur. Drooger met en doute la coexistence d’un grand nombre de lignéesvolutives de grands foraminifères du Paléogène, pensant à un artéfact lié au concept d’espèces typologiques largement appliqué par les expertses grands foraminifères de l’Éocène. Dans cet article, il est démontré que des taxons déterminés selon leur typologie pouvaient également êtreéparés par leur morphométrie, méthode recommandée par C.W. Drooger. Cela confirme la coexistence de différentes lignées évolutives. Il apparaîtu’une séparation typologique des différents taxons d’échantillons isolés est préférable, mais que dans certains cas, l’indépendance de populationsuantitativement proches peut être prouvée uniquement par la biométrie. Par ailleurs, la morphométrie est plus adaptée à la caractérisation de

’évolution au sein de lignées particulières, car elle permet un meilleur contrôle des résultats stratigraphiques. Les 13 taxons d’Orthophragminesont systématiquement décrits. Une nouvelle espèce, Orbitoclypeus droogeri nov. sp., et deux nouvelles sous-espèces chronologiques, O. furcatusalaeofurcatus et Asterocyclina stella praestella sont introduites.

2008 Elsevier Masson SAS. All rights reserved.

eywords: Lower Eocene; Foraminifera; Discocyclinidae; Orbitoclypeidae; Biometr

ots clés : Éocène inférieur ; Foraminifères ; Discocyclinidae ; Orbitoclypeidae ; Bi

∗ Corresponding author.E-mail address: [email protected] (G. Less).

035-1598/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.oi:10.1016/j.revmic.2008.10.001

y; France

ométrie ; France

Page 2: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icropaléontologie 52 (2009) 267–288

1

(iOosiatmcdO

p

tieopi

FP

oaptpfippeg

(DapL

68 G. Less, L. Ó. Kovács / Revue de m

. Introduction

All the three major groups of Eocene larger foraminiferaNummulitidae: Hottinger, 1977; Schaub, 1981; Alveolin-dae: Hottinger, 1960; Drobne, 1977; Discocyclinidae andrbitoclypeidae united under the informal collective name ofrthophragmines: Less, 1987, 1998) are characterized by a con-iderable number of co-occurring evolutionary lineages. This isn sharp contrast with the behavior of both the Late Cretaceousnd Oligo-Miocene forms (Drooger, 1993). In the opinion ofhe “Utrecht School” (Khan and Drooger, 1971) this controversyay be not real and appears only due to the different taxonomical

oncepts, since the evolutionary lineages of the Eocene forms areetermined typologically, while those of the Late Cretaceous andligo-Miocene forms are separated on a morphometric basis.Concerning the orthophragmines, Drooger (1993:

p. 171–172, 174) writes:

“Less (1987). . . had evidently a wider [than that of theUtrecht School] species concept [of the orthophragmines]because, if their [the Utrecht School’s] numerical data persample showed no clear discontinuity, they treated suchobservations as representing a single population or species.Less’ determinations cannot be evaluated in this respectbecause his numerical data are rather generalized, neithertabulated nor presented graphically. His introduction of alarge number of 0–1 discriminations for the establishing ofspecies (groups) evidently leads to frequent recognition ofmany species per sample. For instance, his locality Horsar-rieu in southern France contains as many as eight species ofDiscocyclina based on a total of 25 specimens, and in additiontwo species of Nemkovella on six specimens and another twoof Orbitoclypeus on seven individuals. With such a speciesvariation at one locality, I start to feel uneasy, fearing thatthe species concept is too narrowly typological rather thanpopulational. . . I am quite willing to believe that it is possiblethat the procedure of Fermont (1982) led to undue lumpingof unrelated forms. On the other hand, however, the splittingthat Less is showing is primarily based on his firm belief inthe important role of the discriminating qualitative parame-ters, but it is not convincing from the morphometric point ofview. Although there is no proof, one starts to suspect that atleast part of Less’ species (groups) could well be members orvariants in otherwise homogeneous populations. . . the mor-phometric methods of the Utrecht School seem to lead tothe conclusion that development courses of the Orthophrag-minae were random. There may be a chance of arriving atgreater clarity if the classification methods of Less can beconfirmed and re-shaped from a better documented investi-gation of populational variation”.

Based on a large number of specimens, the aim of this paper iso check whether the empirically recognized and typologicallydentified orthophragminid populations (referring to different

volutionary lineages, each corresponding to different species inur interpretation) can, or cannot, be discriminated by the mor-hometric method. The term “typological determination” is usedn this paper in Drooger’s (1993) interpretation. It includes not

aitm

ig. 1. Locality-map of the sample investigated.rovenance de l’échantillon examiné.

nly the identification of each specimen with a certain taxon butlso the preceding procedure characterized by Drooger (1993:p. 27) as “the intuitive appraisal of differences recognized byhe specialist on the basis of his ‘experience”’, i.e. the entirerocess of empirical pattern recognition. Thus, the crucial dif-erence between the typological and morphometric approachesn Drooger’s (1993) interpretation is the manner of generatingopulations: empirical or numerical. The way of giving an appro-riate name is of secondary interest in this respect, since at thend of the morphometric procedure also, a Linnean name isiven to each population (Drooger, 1993: pp. 31–32).

In 1988, C.W. Drooger collected a sample from HorsarrieuFig. 1), marnière Sourbet (Fr. 2358, in the collection of theepartment of Micropaleontology, Rijksuniversiteit, Utrecht) to

ssess the validity of the multitude of species in one single sam-le. The locality of this sample is the same as for sample HX iness (1987) and sample HORSA in Less and Ó. Kovács (1996)

nd in Less (1998), but Drooger’s sample (marked by HORSXn the last two papers cited above) represents the topmost part ofhe marl-pit because at that time it was already abandoned and

ostly flooded (C.W. Drooger, personal communication).

Page 3: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

icropaléontologie 52 (2009) 267–288 269

pthteosaBtao

2

2

m1bdrocotTs

suasmbasa(

2

fda“tdceiabi

Fig. 2. General architecture of orthophragmines according to Portnaya (1974),with smaller modifications. 1. Equatorial layer; 2. Lateral layers; 3, 4. megalo-spheric embryon: 3, protoconch, 4, deuteroconch; 5. Equatorial chamberlets; 6.Piles; 7. Lateral chamberlets in axial section; 8. Umbo; 9. Collar; 10. Granules(ends of piles) on the test surface; 11. Lateral chamberlets on the test surface.Structure généralisée des orthophragmines d’après la figure de Portnaya (1974)avec quelques modifications. 1. Couche équatoriale ; 2. Couche latérale ; 3,4. Embryon megalosphérique : 3, protoconque, 4, deutéroconque ; 5. Logetteséquatoriales ; 6. Piles ; 7. Logettes latérales en coupe axiale ; 8. Bouton ; 9.CL

dbqoit

ttnsetrdetrlgmae

lwca(cl

G. Less, L. Ó. Kovács / Revue de m

The senior author studied the orthophragmines of this sam-le both typologically and morphometrically. Almost 80% ofhe 400 randomly picked specimens could be split into twoalves along the equatorial plane by pliers (Less, 1981) andhen stained by pink chemical ink. Two hundred and eighty-ight well-preserved specimens of the A-generation and eightf the B-generation could be determined typologically on thepecies level. In 205 of the A-forms, it was possible to executell the necessary measurements and counts (see in detail below).ased on an agreement with C.W. Drooger, one-half of each of

hese latter specimens was sent back to Utrecht, the other halvesre deposited in the Eocene collection of the Geological Institutef Hungary in Budapest.

. Investigation methods

.1. Selection of specimens

Almost all the important features for determining orthophrag-ines have to be studied in their equatorial section (Less, 1987,

993), which has to be prepared first. Thus, the specimens toe split have to be selected beforehand, by their exterior. Asiscussed by Less (1987: pp. 70–71), the presence/absence ofibs is the only external feature that has a determining role, butnly at the species level. Otherwise, there exists some kind oforrelation between the exterior and the interior characters ofrthophragminid taxa, but it is by far not straightforward becausehe external variability of most of the species is rather wide.he correlation is quite strong in ribbed forms and much lessignificant when the test’s surface is unribbed.

Therefore, we executed the random picking of specimenseparately for the unribbed and the ribbed forms. Sincenribbed forms are much more diverse, we picked 300 unribbednd 100 ribbed specimens for splitting. We managed toplit into two halves, 241 unribbed and 76 ribbed speci-ens. Of these, 225 unribbed and 71 ribbed forms could

e determined on the species level. Seven unribbed (3.1%)nd one ribbed specimens (1.4%) were found to be micro-pheric. In 161 unribbed and 44 ribbed specimens, we wereble to apply all the necessary measurements and countssee below).

.2. The typological determination of orthophragminid taxa

Orthophragmines (Fig. 2) are three-layered orbitoidal largeroraminifera of the late Paleocene and Eocene with two well-eveloped lateral layers symmetrical to the central equatorial onend with almost rectangular equatorial chamberlets. The nameorthophragmines” is an informal collective term comprisingwo independent families, Discocyclinidae and Orbitoclypei-ae, that can be distinguished unambiguously only by theirompletely different microspheric juvenaria observable in thequatorial section. More details about their architecture are given

n Less (1987, 1993), Ferrandez-Canadell and Serra-Kiel (1992)nd Ferràndez-Canadell (1998). Both families are found in twoiogeographical provinces, in America and in the Tethys, hav-ng developed almost separately from each other. The way of

tefc

ollerette ; 10. Granules (extrémités des piles) sur la surface du test ; 11.ogettes latérales à la surface du test.

etermining Tethyan orthophragminid taxa is described in detaily Less (1987, 1993). Fig. 3 summarizes the discriminativeualitative features for separating the four different Tethyanrthophragminid genera. In practice, Asterocyclina is easilydentifiable also in the equatorial section by its star-shaped equa-orial annuli with mostly five rays.

Within these genera, particular species are distinguished byhe combination of some clearly qualitative features, such ashe external shape (ribbed or unribbed), the type of rosette (theetwork of piles and lateral chamberlets on the test’s lateralurface), the type of adauxiliary chamberlets and the shape ofquatorial annuli and also of some primarily quantitative fea-ures – that are in fact evaluated qualitatively and, therefore,ecognizable immediately by the expert – such as the shape andimension of the A-form embryon and the shape and width ofquatorial chamberlets. All these features are immediately syn-hesized by an experienced human eye on each specimen (patternecognition) and identified with a certain type (described in theiterature), whose image is stored in the brain of an expert on aiven group. In fact, this process, termed here typological deter-ination, is an intuitive synthesis in which pattern recognition

nd typological identification are practically combined for anxperienced specialist.

Some of these typologically determinable species rapidly fol-ow each other in stratigraphical order (e.g. D. pseudoaugustaeith a multilepidine embryon is followed by D. fortisi with a

entrilepidine one), but much more often their specific featuresre rather stable. At the same time, one can observe a gradualuni-directional in the long term but fluctuating in the short term)hange (mostly increase in size or in number) of some morpho-ogical elements of these qualitatively stable species throughoutheir long stratigraphical range. Such species are interpreted as

volutionary lineages whose development can efficiently be usedor stratigraphical purposes. Therefore, this evolution has to beharacterized as precisely as possible.
Page 4: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

270 G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288

Fig. 3. Features separating Tethyan orthophragminid families and genera. 1. Spiral microspheric juvenarium; 2. Biserial microspheric juvenarium; 3. Equatorialchamberlets with annular stolons; 4. Equatorial chamberlets without annular stolons; 5. Single equatorial layer; 6. Equatorial layer axially subdivided in the ribs; 7.Unribbed, flat to discoidal test of circular outline, fine granules and central umbo, varying in size; 8. Flat test of circular outline, small central umbo, fine granules,numerous initial and secondary ribs; 9. Unribbed, inflate test of circular outline, coarse granules in the centre, no distinct umbo; 10. Flat test of circular to wavyoutline, small central umbo, seven to nine initial ribs, optionally bifurcating at the edges, coarse granules on both the umbo and the ribs; 11. Stellate to pentagonaltest with distinct, non-bifurcating ribs, coarse granulation, central umbo generally present; 12–18. Embryon types: 12, semi-isolepidine, 13, nephrolepidine, 14,trybliolepidine, 15, centrilepidine, 16, eulepidine, 17, excentrilepidine, 18, isolepidine.Particularités des familles et des genres d’orthophragmines de la Téthys. 1. Juvenarium microsphérique spiral ; 2. Juvenarium microsphérique biserial ; 3, 4. Systèmede stolons des logettes équatoriales en coupe équatoriale : 3, avec stolon annulaire, 4, sans stolon annulaire ; 5, 6. Couche équatoriale en coupe axiale : 5, unique,6, subdivisée axialement dans les côtes. 7–11. Vue externe : 7, test circulaire exempt de côte, plat ou discoïdal, granulation fine et bouton central à taille variable, 8,test circulaire plat, petit bouton central, granulation fine, plusieurs côtes partant du bouton et côtes secondaires, 9, test circulaire exempt de côte, renflé, granulationgrossière au centre, sans bouton net, 10, test plat onduleux ou circulaire, petit bouton central, sept à neuf côtes partant du bouton qui peuvent bifurquer aux bords,g al avT 15, c

ftf1actporIDoa

be

mceoeasntto

om

ranulation grossière sur le bouton et sur les côtes, 11, test stellaire ou pentagonypes d’embryon : 12, semi-isolépidine, 13, nephrolépidine, 14, trybliolépidine,

Recently, there has been a general agreement among largeroraminiferal experts working on different groups on the exis-ence of long-lived evolutionary lineages but two methods existor characterizing their evolution. The Basel School (Hottinger,960, 1977; Drobne, 1977; Schaub, 1981) uses a typologicalpproach and characterizes the course of the evolution by a suc-ession of typical forms each including the holotype and alsohe population from the type locality. Hence, these types (inter-reted as distinct species) serve as central, favored momentsf the development of the given evolutionary lineage and theelated populations from other sites are grouped around them.n contrast, the morphometric Utrecht School (as summarized inrooger, 1993) does not characterize the evolution with the helpf “central moments” but subdivides it by artificial limits using

well-measurable, rapidly evolving parameter of the lineage.

We think that the typological distinction of successive taxa,eing very close to each other within the evolutionary lin-ages, may be rather subjective, and therefore, may allow

lteb

ec quatre à six côtes non bifurquées, généralement avec bouton central. 12–18.entrilépidine, 16, eulépidine, 17, excentrilépidine, 18, isolépidine.

isdeterminations among closely related taxa that, in turn, canause mistakes in the age-determinations. Unfortunately, theserrors are hard to recognize and rectify subsequently. A sec-nd disadvantage of the typological discrimination of successivevolutionary stages is that they cannot be recognized immedi-tely by the human brain (unlike different evolutionary lineages,ee above). Therefore, in this case, the typological approach isot a reflection of the immediate pattern recognition but ratherranslates somehow a complicated procedure of comparisons, athe end of which the result is very often just a name, the validityf which is hard to control.

Therefore, in order to eliminate these pitfalls, in the casef orthophragmines, Less (1987, 1993, 1998) has chosen theorphometric method of the Utrecht School. If successive evo-

utionary stages are delimited based on biometrical values –hat are certainly artificial due to the gradual nature of thevolution – their determination becomes much more reliableecause it is supported by statistically evaluated measurements

Page 5: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de microp

Fig. 4. Measurement system for the A-forms of orthophragmines. See explana-tSs

torrcpoTqetOparIp

o

•••

••••

Fpma

2

tgeodcpoouf

ion in the text.ystème de mesure des formes A des orthophragmines. Pour des explications,e référer au texte.

hat can be easily summarized in simple tables. In the practicef orthophragmines, species-names are used for typologicallyecognizable entities. These species, which in most cases cor-espond to evolutionary lineages, are subdivided into artificialhronosubspecies that are defined by biometric limits of theopulational means of the outer cross diameter of the sec-nd chamber of the A-form embryon in equatorial section (d).his quantitative feature has been chosen among several otheruantitative parameters because it was proven to be the mostasily and objectively measurable one and because it reflectshe fastest and least variable evolutionary progress (Less, 1998).ther parameters are also very useful because they may sup-ort the determination of subspecies in intermediary cases, andlso because they are of much help to the less experiencedesearchers in determining the actual population at species level.n this paper, they are used for the morphometric separation ofopulations in the Horsarrieu sample.

The nine parameters measured (in micrometers) and countedn the equatorial section of A-forms are as follows (Fig. 4):

p and P2: outer width and height of the protoconch;d and D2: outer width and height of the deuteroconch;a: distance from the bottom of the deuteroconch to the bottomof the protoconch upwards (in Fig. 4, a is negative!);N: number of adauxiliary chamberlets (Fig. 4, N = 15);

H: average height of adauxiliary chamberlets;w: average width of equatorial chamberlets;n: number of equatorial annuli in the first 500 �m from theembryon’s rim (in Fig. 4, n = 6.6).

aléontologie 52 (2009) 267–288 271

or a biometrical characterization of populations, 10 quantitativearameters are used; six parameters (p, d, N, H, w and n) areeasured or counted directly, while four others are calculated

s follows:

Z: evolutionary index of the embryon (Less, 1992).Z = 100(0.5 + [P2 + 2·a]/[2D2 – P2 – 2a + abs(P2 + 2a)]);

W: average width of the adauxiliary chamberlets (in microm-eters).

W = (D2/c)([(d + H)2 + (D2 + H)2]/2)1/2/(N + 1), wherec = D2 – a if a < 0, otherwise c = D2;F: isometry index of adauxiliary chamberlets.

F = 100 H/(H + W);G: isometry index of equatorial chamberlets.

G = 100[(500 – H)/(n – 1)]/[(500 – H)/(n – 1) + w].

.3. Morphometric separation of populations

As it is discussed above, both qualitative and quantitative fea-ures play a role in determining orthophragmines. Since in thisroup A-forms are usually the majority, quantitative analysis isxclusively based on them and therefore, the different juvenariaf the B-forms (separating Discocyclinidae from Orbitoclypei-ae) are not used. In order to avoid Drooger’s (1993: pp. 171)riticism, that Less (1987) worked with too many discriminativearameters of yes/no character, with as a result the very numer-us taxa present in any single sample, only the presence/absencef the two most important and unambiguous characters aresed here for the primary group segregation. These are asollows:

the presence or absence of the annular stolon of the equatorialchamberlets (Fig. 3). This separates the two Tethyan genera ofDiscocyclinidae from one another, namely Nemkovella, bear-ing only radial stolons, from Discocyclina, possessing alsoproximal annular ones. The Tethyan genera of Orbitoclypei-dae (Orbitoclypeus and Asterocyclina) do not have annularstolons, except for the first few annuli embracing the embryon.Therefore, they are also placed into the group without annu-lar stolons. There are two ways to establish this feature ina split equatorial section. If the equatorial chamberlets arefilled with micrite or glauconite, the annular stolon can beobserved directly in the equatorial section (stained by pinkchemical ink). In the case of shells which are empty or infilledwith limonite, the shape of the chamberlets is rectangularin Discocyclina and slightly hexagonal in the other threegenera;the presence or absence of ribbing on the surface of thetest. By the former nomenclature of orthophragmines, thisfeature separated the unribbed Discocyclina from Astero-cyclina and Aktinocyclina, both with ribs (Douvillé, 1922;Schweighauser, 1953; Neumann, 1958; Kecskeméti, 1959and others). Although this is no longer applicable for generic

determination because Discocyclina, Nemkovella and Orbito-clypeus have both ribbed and unribbed species (Less, 1987;Ferràndez-Canadell, 1997), it still remains a useful charac-ter because Asterocyclina is always ribbed. Moreover, this
Page 6: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icrop

qmbtltn

sslspdirl

tfitsoatvE0adaap

3s

tcffmcnb

(

(

(

72 G. Less, L. Ó. Kovács / Revue de m

feature is unambiguously recognizable without any majorpreparation.

Nine (p, d, Z, N, H, W, F, n and G) out of the 10uantitative parameters (see above) were chosen for morpho-etric separation. Parameter w was not taken into consideration

ecause its discriminative power is considerably lower thanhat of the other parameters. p, d, N, H, W and n wereogarithmically transformed, since their distribution in par-icular populations is closer to the lognormal than to theormal.

Since there are several closely related taxa in the Hor-arrieu sample, two different methods, an analytical and aynthetic one, have been tested in order to validate the typo-ogical separation. In the first method, the specimens areelected into ever fewer groups through successive bivariatelots constructed for different parameters, until the previouslyetermined typological taxa are reached and eventually val-dated. Although this method provides spectacular results, itequires a lot of time and the presentation is also ratherengthy.

In the synthetic method of cluster analysis, all the nine quan-itative parameters (see above) are simultaneously considered,rst with both qualitative parameters, then with only one of

hem each time and finally without any of them, in order totudy the influence of the qualitative parameters on the res-lution power of the separation. These qualitative parametersre treated as binary: 0 when absent and 1 when present. Inhis paper, one of the most widely employed and simplestarieties of cluster analysis is used: the similarity measure isuclidean distance; the variables are rescaled into the range ofto 1; and the agglomeration schedule is the between-group

verage linkage (Norusis, 1993: pp. 267–277). The obtainedendrograms, although they are less immediate than the bivari-te plots, show at once the number of the obtained groups,nd also identify these groups with the typologically selectedopulations.

. Typological determination of taxa in the Horsarrieuample

Two hundred and five specimens of A-forms (used for bothhe typological and morphometrical studies) could be empiri-ally grouped into 13 species belonging to four genera of twoamilies. For a better comparison the equatorial sections of A-orms of these 13 species are shown in Plates 1–3 with the sameagnification. The typological determination at species level

an be described by the procedure below (in fact, it is a recog-ition process based upon the synthetic skills of the humanrain):

A) ribs on the surface:

(a) ribbed forms (steps B–C) – 44 specimens,(b) unribbed forms (steps D–H) – 161

specimens;(B) ribbed forms in equatorial section:

aléontologie 52 (2009) 267–288

(a) sharp, stellate annuli, five to six rays, small nephro- tosemi-isolepidine embryon A. stella (Gümbel) (Plate 2,Figs. 6 and 7) – eight specimens,

(b) gently undulated annuli, seven to nine waves, larger eu-and excentrilepidine embryon (ribbed Orbitoclypeus,step C) – 36 specimens;

(C) ribbed Orbitoclypeus in equatorial section:(a) smaller, mostly eulepidine embryon, smaller equatorial

chamberletsO. furcatus (Rütimeyer) (Plate 3, Figs. 7–9) – 11

specimens,(b) larger, mostly excentrilepidine embryon, larger equa-

torial chamberlets.O. munieri (Schlumberger) (Plate 3, Figs. 5 and 6) –

25 specimens;D) unribbed forms in equatorial section:

(a) rectangular equatorial chamberlets with annularstolons (genus Discocyclina, step E) – 71 specimens,

(b) slightly hexagonal equatorial chamberlets withoutannular stolons (steps F–H) – 90 specimens;

(E) Discocyclina in equatorial section:(a) small semi-isolepidine embryon, very few adauxiliary

chamberlets with arcuate outer wall, small equatorialchamberlets.

D. trabayensis Neumann (Plate 1, Fig. 11) – onespecimen,

(b) small, mostly semi-isolepidine embryon, few adaux-iliary chamberlets with straight outer wall, smallequatorial chamberlets.

D. augustae Van der Weijden (Plate 1, Figs. 9 and10) – 29 specimens

(c) moderately small, mostly semi-nephrolepidineembryon, average in number adauxiliary andmedium-sized equatorial chamberlets.

D. dispansa (Sowerby) (Plate 1, Figs. 6 and 7) –seven specimens,

(d) moderately large, mostly trybliolepidine embryon,numerous adauxiliary and large equatorial chamberlets.

D. archiaci (Schlumberger) (Plate 1, Figs. 1 and 2)– 13 specimens,

(e) large centrilepidine embryon, many adauxiliary andlarge equatorial chamberlets.

D. fortisi (d’Archiac) (Plate 1, Figs. 3–5) – 21 spec-imens;

(F) embryon of the forms with equatorial chamberlets withoutannular stolons:(a) nephro- and semi-isolepidine embryon (genus

Nemkovella, step G) – 31 specimens,(b) Eu- or centrilepidine embryon (unribbed Orbito-

clypeus, step H) – 59 specimens;G) Nemkovella in equatorial section:

(a) larger, mostly nephrolepidine embryon, more numer-ous adauxiliary and larger equatorial chamber-

lets.

N. evae (Less) (Plate 2, Figs. 2 and 3) – 20 specimens,(b) small, mostly semi-isolepidine embryon, fewer adaux-

iliary and smaller equatorial chamberlets.

Page 7: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288 273

Plate 1. Equatorial sections of orthophragminids from Horsarrieu (France), marnière Sourbet, SBZ 10/11 zone boundary, upper Ypresian. 1–7, 9–11: A-forms, × 40,8: B-form, × 100. Figs. 1, 2. Discocyclina archiaci archiaci (Schlumberger); 1: E. 9202, 2: E. 9203. Figs. 3–5. D. fortisi (d’Archiac) simferopolensis Less; 3: E.9204, 4: E. 9206, 5: E. 9205. Figs. 6, 7. D. dispansa (Sowerby) taurica Less; 6: E. 9207, 7: E. 9208. Figs. 8–10. D. augustae Van der Weijden sourbetensis Less; 8:E. 9211, 9: E. 9210, 10: E. 9209. Fig. 11. D. trabayensis trabayensis Neumann, E. 9212.Sections équatoriales d’Orthophragmines provenant de Horsarrieu (France), marnière Sourbet, limite des zones SBZ 10/11, Yprésien supérieur.

Page 8: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

274 G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288

Plate 2. Equatorial sections. 1–9: Horsarrieu (France), marnière Sourbet, SBZ 10/11 zone boundary, Upper Ypresian; 10–11: Aurignac (France), sample AURI9 inLess (1998), SBZ 7 zone, lower Ypresian. 1: B-form, 2–11: A-forms. 1, 9: × 100, 2–8, 10, 11: × 40. Figs. 1–3. Nemkovella evae evae Less; 1: E. 9215, 2: E. 9213,3: E. 9214. Figs. 4, 5. N. strophiolata (Gümbel) fermonti Less; 4: E. 9216, 5: E. 9217. Figs. 8, 9. N. bodrakensis Less; E. 9218. Figs. 10, 11. Asterocyclina taramellii( stellaS ones(

(

4s

4

Munier-Chalmas); 10: E. 9235, 11: E. 9234. Figs. 6, 7. A. stella (Gümbel) praeections équatoriales. 1–9 : Horsarrieu (France), marnière Sourbet, limite des zLess, 1998), zone SBZ 7, Yprésien inférieur.

N. strophiolata (Gümbel) (Plate 2, Figs. 4 and 5) –10 specimens,

(c) very small, semi-isolepidine embryon, very few adaux-iliary and smaller equatorial chamberlets.

N. bodrakensis (Less) (Plate 2, Figs. 8 and 9) – twospecimens;

H) unribbed Orbitoclypeus in equatorial section:(a) small, mostly eulepidine embryon, few adauxiliary and

small equatorial chamberlets.

O. douvillei (Schlumberger) (Plate 3, Figs. 10–12) –

33 specimens,(b) large centrilepidine embryon, numerous adauxiliary

and large equatorial chamberlets.

S

S

nov. ssp. Less; 6: holotype, E. 9232, 7: paratype, E. 9233.SBZ 10/11, Yprésien supérieur ; 10–11 : Aurignac (France), échantillon AURI9

O. droogeri nov. sp. (Plate 3, Figs. 1–4) – 26 speci-mens.

. Morphometric separation of taxa in the Horsarrieuample

.1. Separation with bivariate plots

tep 1: segregation of the ribbed and unribbed forms (as step Ain the typological separation).

tep 2: the distribution of ribbed forms on the Z–d bivariateplot (Fig. 5) confirms the typological separation into

Page 9: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288 275

Plate 3. Equatorial sections of orthophragminids from Horsarrieu (France), marnière Sourbet, SBZ 10/11 zone boundary, upper Ypresian. 1–12: A-forms, × 40, 13:B-form, × 100. Figs. 1–4. Orbitoclypeus droogeri nov. sp. Less; 1: holotype, E. 9219; 2–4: paratypes: 2: E. 9221, 3: E. 9222, 4: E. 9220. Figs. 5, 6. Orbitoclypeusmunieri munieri (Schlumberger); 5: E. 9223, 6: E. 9224. Figs. 7–9. Orbitoclypeus furcatus (Rütimeyer) palaeofurcatus nov. ssp. Less; 7: holotype, E. 9225; 8, 9:paratypes: 8: E. 9226, 9: E. 9227. Figs. 10–13. Orbitoclypeus douvillei douvillei (Schlumberger); 10: E. 9228, 11: E. 9229, 12: E. 9230, 13: E. 9231.Sections équatoriales d’Orthophragmines provenant de Horsarrieu (France), marnière Sourbet, limite des zones SBZ 10/11, Yprésien supérieur.

Page 10: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

276 G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288

Fig. 5. Distribution of the ribbed forms on a Z–d bivariate plot (d is on logarith-mRr

S

S

S

S

S

S

Fig. 6. Distribution of specimens of genus Discocyclina on the Z–d bivariatepRe

oeDf

4

Four different cluster-dendrograms have been obtained withthe method described earlier. The nine selected quantitative

ic scale).épartition des formes à côtes dans un digramme Z–d (d est en échelle loga-ithmique).

three taxa (A. stella, O. furcatus and O. munieri). Noneof them has annular stolons.

tep 3: segregation of the unribbed forms into two by the pres-ence or absence of annular stolons of the equatorialchamberlets. Discocyclina belong to the first groupwhile Nemkovella and the unribbed Orbitoclypeus tothe second one (as step D in the typological separation).

tep 4: separation of Discocyclina into a group with largeembryon (D. fortisi and D. archiaci) and into anotherone with small or medium size embryon (D. dispansa,D. augustae and D. trabayensis) by the Z–d bivariateplot (Fig. 6).

tep 5: segregation of the two taxa of Discocyclina with largeembryon (D. fortisi and D. archiaci) by the d–n (Fig. 7)and d–G (Fig. 8) bivariate plots. This was more or lessvisible in Fig. 6, too.

tep 6: isolation of D. dispansa from the group formed byD. augustae and D. trabayensis by the d–F (Fig. 9)and d–H (Fig. 10) bivariate plots. In this samplethese latter two taxa cannot be separated biometri-cally. Typologically they differ from one another in thecharacter of the adauxiliary chamberlets (“archiaci” ver-sus “varians” type with straight versus arcuate outerwall).

tep 7: returning to the group of Nemkovella and unribbedOrbitoclypeus, three groups can be recognized on theZ–d bivariate plot (Fig. 11). The one with large d valuescorresponds to O. droogeri nov. sp. The middle grouprepresents three taxa, whereas N. bodrakensis is alone

in the cluster with small d values.

tep 8: the remaining three taxa (O. douvillei, N. evae andN. strophiolata) are well segregated from each other onthe enlarged Z–d bivariate plot (Fig. 12).

FtRd

lot (d is on logarithmic scale).épartition des spécimens du genre Discocyclina dans un diagramme Z–d (dst en échelle logarithmique).

Following this procedure, 12 groups have been unambigu-usly distinguished. They correspond to the determined taxaxcept one group, in which there are two taxa (D. augustae and. trabayensis) that are separable by using another qualitative

eature of yes/no character.

.2. Separation by cluster-analysis

ig. 7. Distribution of specimens of genus Discocyclina with large embryon onhe d–n bivariate plot (d is on logarithmic scale).épartition des spécimens du genre Discocyclina à grand embryon dans uniagramme d–n (échelle logarithmique pour d).

Page 11: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288 277

Fig. 8. Distribution of specimens of genus Discocyclina with large embryon ontRd

pN

eostcbi

e

FtRd

Fig. 10. Distribution of specimens of genus Discocyclina with small embryonoRd

atDaoNccluster. This dendrogram shows that even without being aware of

he d–G bivariate plot (d is on logarithmic scale).épartition des spécimens du genre Discocyclina à grand embryon dans uniagramme d–G (échelle logarithmique pour d).

arameters (Z, F, G and the logarithmically transformed p, d,, H, W and n) are used in all of them.

In constructing Fig. 13, the two qualitative features (the pres-nce/absence of ribs and the presence/absence of annular stolonsf the equatorial chamberlets) have been used as well. The 205pecimens are grouped into 12 clusters clearly correspondingo the 12 typologically separated species. Only D. trabayensisould not be isolated from D. augustae, just as in the case of the

ivariate plots. Altogether, five of the 205 specimens (2.4%) fellnto an inadequate cluster.

In constructing Fig. 14, none of the qualitative param-ters were used. Even in this dendrogram that eliminates

ig. 9. Distribution of specimens of genus Discocyclina with small embryon onhe d–F bivariate plot (d is on logarithmic scale).épartition des spécimens du genre Discocyclina à petit embryon dans uniagramme d–F (échelle logarithmique pour d).

a1

FaRd

n the d–H bivariate plot (d is on logarithmic scale).épartition des spécimens du genre Discocyclina à petit embryon dans uniagramme logarithmique d–H (échelle logarithmique pour d).

ll subjectivity, 10 clusters have been obtained. Eight ofhem correspond to separate species (D. fortisi, D. archiaci,. augustae, D. dispansa, N. evae, N. bodrakensis, O. droogeri

nd O. munieri), while the other two are constituted by a pairf species each (O. douvillei with O. furcatus and A. stella with. strophiolata). D. trabayensis falls into this last combinedluster. Altogether, 12 specimens (5.9%) fell into an inadequate

nything of the qualitative features of orthophragmines, at least0 different taxa can be distinguished in the Horsarrieu sample.

ig. 11. Distribution of specimens belonging to the group of genus Nemkovelland unribbed Orbitoclypeus on the Z–d bivariate plot (d is on logarithmic scale).épartition des spécimens appartenant au Nemkovella et Orbitoclypeusépourvu de côtes dans un diagramme Z–d (échelle logarithmique pour d).

Page 12: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

278 G. Less, L. Ó. Kovács / Revue de microp

Fig. 12. Distribution of specimens belonging to Orbitoclypeus douvillei,Nemkovella evae and N. strophiolata on the Z–d bivariate plot (d is on loga-rithmic scale).Re

otu(eos

5

sitp(–(

oLd(

paoOtr

eiftlmewiu

mi

md

6

recid

fOwt(fts

ncbnras compared with Less (1987).

épartition des spécimens appartenant à Orbitoclypeus douvillei, Nemkovellavae et N. strophiolata dans un diagramme Z–d (échelle logarithmique pour d).

In constructing the other two dendrograms (not given here),nly one of the qualitative features was used. When using onlyhe ribbing, the same 12 clusters were obtained as in the case ofsing both qualitative features (Fig. 13) but with 16 specimens7.8%) falling into an inadequate cluster. Using only the pres-nce/absence of annular stolons, the same 10 clusters werebtained as in the case of Fig. 14, however with only fourpecimens (2.0%) falling into an inadequate cluster.

. Evaluation of the results

Twelve out of the 13 typologically separated orthophragminidpecies representing the same number of phylogenetic lineagesn the Horsarrieu sample are also discriminated by a morphome-rical analysis. In the latter, only two discriminative qualitativearameters have been used. By adding another such parameterthe character of the outer wall of the adauxiliary chamberlets

straight versus arcuate) the existence of a thirteenth taxonD. trabayensis) could also be verified.

As a consequence, in routine works, the measurement systemf orthophragmines introduced in Less (1987) and updated iness (1993) can be reduced to the measurement of a single one,, the outer width of the deuteroconch as introduced by Less1998).

The high number of orthophragminid species in single sam-les is not unique and also characteristic for the Nummulitidaend Alveolinidae. This phenomenon distinguishes the late Pale-cene and Eocene from both the Late Cretaceous and the

ligo-Miocene; and it is by no means the result of a subjec-

ive (typological) approach of the Paleogene larger foraminiferalesearchers.

is

aléontologie 52 (2009) 267–288

The combined use of qualitative and quantitative parameterslaborated by Less (1987, 1993) is suitable for distinguish-ng parallel lineages but (since there are always specimensalling into an inadequate cluster) cannot take the lead overhe empirical discrimination. Moreover, the latter requires muchess time. The morphometric separation of lineages can be

isleading if the system used for their discrimination is inad-quate, since different species can be erroneously identifiedith each other. Therefore, the use of discriminating qual-

tative parameters (of yes/no character) must not be givenp.

However, in some other aspects, the morphometric method isore advantageous (provided an adequate system of parameters

s defined):

it can validate the typological separation (although, it cannotdisprove it);it assures a much more reliable identification of particular taxafrom different localities (especially, if they are determined bydifferent authors);by choosing a fairly evolutive quantitative parameter, it can bemuch more objectively used in determining the evolutionarydegree of particular populations within their own evolution-ary lineages (determined beforehand typologically). This iscrucial in age-determination.

So, it is concluded that use of both the typological andorphometric methods can be verified. Their advantages and

isadvantages are compared in Fig. 15.

. Systematic description

In this chapter, taxa from the sample studied from Horsar-ieu are described at subspecies level (whenever possible), withmended diagnosis based on the population mean of the innerross diameter of the deuteroconch (d) by using values definedn Less (1998) (instead of D, the mean deuteroconch mediumiameter in Less, 1987).

In the zonal distribution by Less (1998), this assemblagealls to the boundary of orthophragminid zones OZ 6 andZ 7 (it contains D. archiaci archiaci marking OZ 6 togetherith D. fortisi simferopolensis marking OZ 7) corresponding

o the transition of the lower and middle Cuisian substagesSBZ 10/11 shallow benthic zone boundary) used in the largeroraminiferal stratigraphy by Serra-Kiel et al. (1998) or tohe upper Ypresian in terms of the standard stratigraphicalubdivisions.

New taxa are described in detail. In characterizing their inter-al morphology, the same types of embryons, of adauxiliaryhamberlets and of the growth pattern (g.p.) of equatorial cham-erlets are used as in Less (1987, 1993). For other taxa, only theecessary bibliography is cited, sometimes with some additionalemarks due to the changes in their extent and/or nomenclature

Statistical data of quantitative parameters (for the 205 spec-mens studied in detail in this paper) per population areummarized in Fig. 16, including the number of specimens, the

Page 13: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288 279

Fig. 13. Dendrogram of 205 orthophragminid specimens from Horsarrieu. Nine quantitative and two qualitative parameters are used. Specimens falling into aninadequate cluster are shifted to the left. See also explanation in the text. asstl: Asterocyclina stella, diarc: Discocyclina archiaci, diaug: D. augustae, didsp:D. dispansa, difor: D. fortisi, ditrb: D. trabayensis, nmbod: Nemkovella bodrakensis, nmeva: N. evae, nmstr: N. strophiolata, ordou: Orbitoclypeus douvillei, ordro:O. droogeri, orfur: O. furcatus, ormun: O. munieri.Dendrogramme de 205 spécimens d’orthophragmines d’Horsarrieu. Utilisation de neuf paramètres quantitatifs et de deux paramètres qualitatifs. Les spécimenstombant dans un groupe inadapté sont déplacés vers la gauche. Voir également les explications dans le texte.

Page 14: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

280 G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288

Fig. 14. Dendrogram of 205 orthophragminid specimens from Horsarrieu. No qualitative parameters are used. Specimens falling into an inadequate cluster are shiftedto the left. Same abbreviations for species as in Fig. 13. See also explanation in the text.Dendrogramme de 205 spécimens d’orthophragmines d’Horsarrieu. Aucun paramètre qualitatif n’a été utilisé. Les spécimens tombant dans un groupeinadapté sont déplacés vers la gauche. Les abréviations des espèces sont les mêmes que dans la Fig. 13. Voir également les explications dans letexte.

Page 15: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

G. Less, L. Ó. Kovács / Revue de micropaléontologie 52 (2009) 267–288 281

Fig. 15. Comparison of the typological and morphometric approaches from different aspects.Comparaison, selon différents aspects, des approches typologiques et morphométriques.

Fig. 16. Statistical data for orthophragminid populations from Horsarrieu. For details on the abbreviations of parameters see text. s.e.: standard error. A.: Asterocyclina,D.: Discocyclina, N.: Nemkovella, O.: Orbitoclypeus.Données statistiques des populations d’orthophragmines d’Horsarrieu. Se référer au texte pour le détail des abréviations des paramètres, s.e. : écart-type.

Page 16: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icrop

aitaf

EB

bT

p1

P

CFP

P

p

r

wev(GmfSd(i

p(

p

e

i

lsdzYf(Yntm

p

p

P

r

adcDswtdD1vTD

pT

p

CF

82 G. Less, L. Ó. Kovács / Revue de m

rithmetical mean, the standard error and the range (i.e. the min-mal and maximal values). Statistical data of parameter d for allhe 288 specimens (that contain also specimens on which notll the nine measurements and counts could be executed) can beound in Less (1998).

Figured specimens (marked by E.) are deposited in theocene collection of the Geological Institute of Hungary) inudapest.

Class FORAMINIFERIDA Eichwald, 1830.Order ROTALIACEA Ehrenberg, 1839.Family DISCOCYCLINIDAE Galloway, 1928.Genus Discocyclina Gümbel, 1870.

D. archiaci archiaci (Schlumberger, 1903).Plate 1, Figs. 1 and 2.1903. Orthophragmina archiaci nov. sp. (partim) – Schlum-

erger, pp. 277, Pl. 8, Figs. 5, 11 (non Pl. 8, Fig. 7,ext-Fig. C = O. schopeni crimensis).

1987. D. archiaci archiaci (Schlumberger) – Less,p. 132–133, Pl. 1, Fig. 13, Pl. 2, Figs. 1, 2, 6, 9–11, Pl. 3, Figs.–6, 8–11, Text-Fig. 26d (with synonymy).

1987. D. weijdeni nov. sp. – Less, pp. 139–140, Pl. 5, Fig. 11,l. 6, Figs. 1–3, Text-Fig. 26l.

1992. D. archiaci archiaci (Schlumberger) – Ferrandez-anadell and Serra-Kiel: Pl. 1, Figs. 1–8, Pl. 2, Figs. 1–8, Pl. 3,igs. 1–8, Pl. 4, Figs. 4–8, Pl. 5, Figs. 1, 3, 4, 6–8, Pl. 6, Figs. 1–6,l. 7, Figs. 1, 2, 4, 5, Pl. 8, Figs. 1–4.

2002. D. archiaci archiaci (Schlumberger) – Özcan, pp. 81,l. 4, Fig. 12, Text-Fig. 5C.

2002. Discocyclina sp. 1 – Özcan, pp. 83, Pl. 4, Figs. 10, 13.2007b. D. archiaci archiaci (Schlumberger) – Özcan et al.,

p. 293, Figs. 8i, 9 (partim).2007b. D. weijdeni Less – Özcan et al., pp. 301, Fig. 8n.Emended diagnosis: D. archiaci populations with dmean

anging from 390 to 600 �m.Remarks: formerly (Less, 1987) D. weijdeni of Horsarrieu

as distinguished from D. archiaci by its narrower and morelongated equatorial chamberlets. However, this feature canery easily be caused by the greater water depth in our localityas compared to other classical upper Ypresian localities likean, Bos d’Arros, Campo, etc.) that is supported also by theultitude of orthophragminid taxa and by the poor nummulitid

auna (Nummulites aff. irregularis and N. praelucasi, based onchaub, 1981). Elongation of chambers with increasing waterepth is a well-known phenomenon at operculinid forms, tooHottinger, 1977; Drooger, 1993). Therefore, here D. weijdenis synonymized with D. archiaci archiaci.

D. fortisi (d’Archiac, 1850) simferopolensis, Less, 1987.Plate 1, Figs. 3–5.1987. D. fortisi (d’Archiac) simferopolensis nov. ssp. – Less,

p. 146–147, Pl. 7, Figs. 10–14, Pl. 8, Figs. 1–4, Text-Figs. 26t–uwith synonymy).

2002. D. fortisi (d’Archiac) simferopolensis Less – Özcan,p. 82.

Ö

C

aléontologie 52 (2009) 267–288

2007b. D. fortisi (d’Archiac) simferopolensis Less – Özcant al., pp. 296, Figs. 10d–f, 11 (partim).

Emended diagnosis: D. fortisi populations with dmean rang-ng from 850 to 1100 �m.

Remarks: according to Less (1987, 1998), the D. fortisi-ineage can be subdivided into D. fortisi fortisi and D. fortisiimferopolensis that are separated by the biometrical limit ofmean equals to 850 �m and characterize the OZ six and sevenones (corresponding to the early and middle part of the latepresian, respectively) of Less (1998). Özcan (2002) could

ollow the evolution of the D. fortisi in Cayraz and YesilyurtHaymana-Polatlı Basin, central Anatolia) further to the latestpresian and to the early Lutetian (OZ 8a–9) and described aew taxon, D. fortisi cairazensis with dmean exceeding 1100 �mhus; the diagnosis of D. fortisi simferopolensis had to be

odified as it is delimited above.

D. dispansa (Sowerby, 1840) taurica, Less, 1987.Plate 1, Figs. 6 and 7.1987. D. dispansa (Sowerby) taurica nov. ssp. – Less,

p. 159–160, Pl. 12, Figs. 1–6, Text-Fig. 27m.1987. D. aaroni nov. sp. chalossensis nov. ssp. – Less,

p. 174, Pl. 18, Fig. 6–9, Text-Fig. 28b.2002. D. ‘dispansa’ (Sowerby) taurica Less – Özcan, pp. 81,

l. 2, Figs. 4–6, Text-Fig. 3E.Emended diagnosis: D. dispansa populations with dmean

anging from 160 to 230 �m.Remarks: the Horsarrieu forms are described in Less (1987)

s D. aaroni chalossensis based on two specimens only. Theiagnostic feature of D. aaroni is its “varians” type adauxiliaryhamberlets (with arcuate outer walls) that distinguishes it from. dispansa with “archiaci” type adauxiliary chamberlets (with

traight outer walls). In our sample some additional specimensere found. Among these forms, both types occur as well as

heir transitional ones. Also, in the upper part of the Nummulitesistans beds of the Crimean Simferopolian stage (populationF in Less, 1987, sample CRIDU in Less and Ó. Kovács,996 and Less, 1998) these forms can be found together withery similar quantitative parameters (Less, 1987: Table 11).herefore, here D. aaroni chalossensis is synonymized with. dispansa taurica.

D. augustae Van der Weijden, 1940 sourbetensis Less, 1987.Plate 1, Figs. 8–10.1987. D. augustae Weijden sourbetensis nov. ssp. – Less,

p. 152–153, Pl. 9, Figs. 7, 9–12, Pl. 10, Fig. 1, Pl. 17, Fig. 4,ext-Fig. 27f.

1987. D. dispansa (Sowerby) ganensis nov. ssp. – Less,p. 158–159, Pl. 11, Figs. 10–13, Text-Figs. 27l, 28a.

1992. D. dispansa (Sowerby) ganensis Less – Ferrandez-anadell and Serra-Kiel: Pl. 4, Figs. 1–3, Pl. 5, Figs. 2, 5, Pl. 6,igs. 7, 8, Pl. 7, Figs. 3, 6.

?2002. D. augustae Van der Weijden sourbetensis Less –zcan, pp. 80, Pl. 1, Figs. 11, 12, Pl. 2, Figs. 1–3, Text-Fig. 3C.2003. D. augustae Van der Weijden sourbetensis Less –

¸ olakoglu and Özcan, pp. 52, Pl. 1, Figs. 6–11, Text-Fig. 3B.

Page 17: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

icrop

Ö

l

bGH2bqqDabfts

F

F

P

L(

p

l

rrtlsneYrib2

Fo

F

C(

F

1aLmlteet

P

p

C(

a

l

a1tHlaf2Nt

p

eaba

G. Less, L. Ó. Kovács / Revue de m

2007b. D. augustae Van der Weijden sourbetensis Less –zcan et al., pp. 295, Figs. 8a–d, 9 (partim).Emended diagnosis: D. augustae populations with dmean

ess than 145 �m.Remarks: since Less (1987), the early representatives of

oth the D. augustae and D. dispansa-lineages from Gamarde,an-Berdoulou, Bos d’Arros, Horsarrieu (SW France) and theaymana-Polatlı and Safranbolu Basins of Turkey (Özcan,002; Colakoglu and Özcan, 2003; Özcan et al., 2007b) haveeen investigated. These two lineages are very similar in theirualitative features. Their evolution is parallel, in terms ofuantitative parameters, D. augustae repeats the evolution of. dispansa but with a four to six million years delay (Less

nd Ó. Kovács, 1996). From its quantitative parameters itecame clear that the forms described as D. dispansa ganensisrom Gan-Tuilerie rather belong to the D. augustae-lineage,herefore, they are put in synonymy here with D. augustaeourbetensis.

D. trabayensis trabayensis Neumann, 1955.Plate 1, Fig. 11.1955. D. trabayensis nov. sp. – Neumann, pp. 130, Pl. 6,

igs. 2–4, Pl. 7, Figs. 2, 3.1959. D. concentrica nov. sp. – Kecskeméti, pp. 45–47, Pl. 2,

igs. 6, 7, 9, Text-Fig. 10(?).1987. D. trabayensis trabayensis Neumann – Less, pp. 171,

l. 17, Figs. 1–3, 5–9, 13, Text-Fig. 27 (with synonymy).1987. D. trabayensis Neumann concentrica Kecskeméti –

ess, pp. 172, Pl. 17, Figs. 10–12, Pl. 18, Figs. 1, 2, Text-Fig. 27with synonymy).

2002. D. trabayensis trabayensis Neumann – Özcan,p. 79–80, Pl. 1, Figs. 8–10, Text-Fig. 3D.

Emended diagnosis: D. trabayensis populations with dmeaness than 125 �m.

Remarks: based on additional data on the middle Eoceneepresentatives of D. trabayensis from Gibret and Biarritz,ocher de Peyreblanque (both France), it became clear thatwo subspecies (D. t. trabayensis and D. t. concentrica) of theineage distinguished earlier by Less (1987) widely overlaptratigraphically. Therefore, here they are united under theame of D. trabayensis trabayensis. This implies that thevolution of this lineage is extremely slow during the latepresian and almost the entire middle Eocene where it is very

are as well. However, in the late Bartonian and Priabonian,ts evolution considerably accelerated; at the same time, itecame much more frequent as well (Less, 1999; Özcan et al.,007a).

Genus Nemkovella Less, 1987.

N. evae evae Less, 1987.Plate 2, Figs. 1–3.

1987. N. evae nov. sp. – Less, pp. 184, 186–187, Pl. 23,

igs. 1–7, 9–12, Pl. 24, Figs. 1–4, Text-Fig. 29a (with syn-nymy).

2002. N. evae Less – Özcan, pp. 84, Pl. 1, Fig. 3, Text-Fig. 3B.

i

cs

aléontologie 52 (2009) 267–288 283

2003. N. evae Less – Colakoglu and Özcan, pp. 54, Text-ig. 3A.

?2003. N. strophiolata (Gümbel) fermonti Less (partim) –¸ olakoglu and Özcan, pp. 54, Pl. 1, Figs. 2–4, Text-Fig. 3Aspecimens from sample SAK. 24).

2007b. N. evae evae Less – Özcan et al., pp. 302–304,igs. 10p–r, 12e, 13 (partim).

Remarks: formerly (Less, 1987, 1998; Less and Ó. Kovács,996) we believed that the evolution of N. evae is very slow,nd therefore, it could not be subdivided into chronosubspecies.ater (Özcan et al., 2007b) it appeared that the early andiddle Lutetian representatives of the lineage have much

arger embryon than that of the Ypresian forms. Thus, recentlywo chronosubspecies, the Ypresian N. evae evae and thearly-middle Lutetian N. evae karitensis (introduced in Özcant al., 2007b), subdivided by the biometric limit of dmean equalso 260 �m, are distinguished.

N. strophiolata (Gümbel, 1870) fermonti Less, 1987.Plate 2, Figs. 4 and 5.1987. N. fermonti nov. sp. – Less, pp. 187–188, Pl. 23, Fig. 8,

l. 24, Figs. 5, 6, Text-Fig. 29b.2002. N. strophiolata (Gümbel) fermonti Less – Özcan,

p. 84, Pl. 1, Figs. 1, 2, 4–7, Text-Fig. 3A.?2003. N. strophiolata (Gümbel) fermonti Less (partim) –

¸ olakoglu and Özcan, pp. 54, Pl. 1, Figs. 1, 5, Text-Fig. 3Aspecimens from sample SAK. 25).

2007b. N. strophiolata (Gümbel) fermonti Less – Özcan etl., pp. 302, Figs. 12b–d, 13 (partim).

Emended diagnosis: N. strophiolata populations with dmeaness than 150 �m.

Remarks: analyzing our quantitative data on late Ypresiannd early Lutetian Nemkovella, it appeared (Less and Ó. Kovács,996) that the forms described as “fermonti” much rather belongo the N. strophiolata-lineage than those called “bodrakensis”.orsarrieu is one of the oldest occurrences of the N. strophiolata

ineage along with Cayraz (Özcan, 2002) and Kiriklar (Özcan etl., 2007b). Nemkovella from the early/late Ypresian boundaryrom Sakarya (Haymana-Polatlı Basin, Colakoglu and Özcan,003) represent probably the segregation of N. strophiolata from. evae, therefore it is difficult to attribute these forms to either of

hem.

N. bodrakensis Less, 1987.Plate 2, Figs. 8 and 9.1987. N. strophiolata (Gümbel) bodrakensis nov. ssp. – Less,

p. 189, Pl. 24, Figs. 7–12, Text-Figs. 29c–e.Emended diagnosis: small-sized, flattened forms. The

xtremely small embryon is mostly semi-isolepidine. Thedauxiliary chambers are of the “varians” type, very low in num-ers, relatively wide but very low. The equatorial chamberletsre medium wide but very low. The growth pattern of the annuli

s of the “strophiolata” type.

Remarks: the poor quality of figuration of this taxon isaused by its preservation and rare occurrence in the sampletudied. N. bodrakensis is very rare in the Mediterranean upper

Page 18: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icropaléontologie 52 (2009) 267–288

Yiebs

p

p

ta

P

c

t

7b

lrs

Aanftd(FsYidehaA

c(

Fig. 17. Characteristics of the equatorial section of A-forms of AsterocyclinasCp

peaaamttfraÖf

lptA

oTsslCGtcwo

84 G. Less, L. Ó. Kovács / Revue de m

presian and lower Lutetian but it is easily distinguished due tots minute internal morphology from the contemporaneous N.vae evae and N. strophiolata fermonti not only in Horsarrieuut also in Saint-Barthélémy. See also the remarks to N.trophiolata fermonti.

Family ORBITOCLYPEIDAE Brönnimann, 1946.

Genus Asterocyclina Gümbel, 1870.

A. stella (Gümbel, 1861) praestella nov. ssp.Plate 2, Figs. 6 and 7.1973. A. stellata (d’Archiac) (partim) – Brolsma,

p. 419–420, Pl. 2, Figs. 1, 2.1982. A. taramellii (Munier-Chalmas) – Fermont,

p. 131–132, Table 3 (partim), Pl. 4, Figs. 1–6, Pl. 11, Figs. 1–3.1987. A. stella (Gümbel) taramellii (Munier-Chalmas) (par-

im) – Less, pp. 230–231, Pl. 36, Figs. 8–13 (non Pl. 36, Fig. 7nd Pl. 42, Fig. 10).

2003. A. stella (Gümbel) – Colakoglu and Özcan, pp. 58,l. 3, Fig. 9.

Etymology: it indicates that this subspecies is ancient asompared to the nominate subspecies of the lineage.

Holotype: specimen E. 9232, Plate 2, Fig. 6.Depository: Geological Institute of Hungary, Budapest.Type locality: Horsarrieu (Landes, SW Aquitaine, France),

opmost part of marnière Sourbet.Type level: Upper Ypresian, boundary of the OZ 6 and OZ

orthophragminid and of the SBZ 10 and 11 shallow benthiciozones.

Diagnosis: A. stella populations with dmean less than 150 �m.Description: external morphology: small (1–2 mm) more or

ess inflate asteroidal forms with five or rarely with six strongays, with “marthae” type rosette and with no interray areas. Theize ratio of forms “A” and “B” is not yet.

For internal morphology see Fig. 17.Remarks: Less (1987) described all Ypresian and Lutetian

sterocyclina with small (dmean less than 200 �m) embryonnd with no “stellate” type adauxiliary chamberlets under theame of A. stella taramellii. Later, Less (1993) separated theseorms from the A. stella-lineage as A. taramellii. Unfortunately,he equatorial section of topotypical “taramellii” from the mid-le Ilerdian of Spilecco is known only from the bibliographySchlumberger, 1904: Pl. 6, Fig. 51 and Neumann, 1958: Pl. 28,ig. 9, Pl. 29, Fig. 1, all figuring the same specimen). Numerouspecimens of Asterocyclina from the middle part of the lowerpresian of Aurignac (Plate 2, Figs. 10 and 11, sample AURI9,

n Less, 1998; corresponding to the passage of bed j – Marbrese Mancioux á Mélobésiées – and bed k – Marnes á Asterodiscust Xanthopsis – in Tambareau and Villatte (1977)) were studied;owever, that helped a lot in distinguishing A. taramellii (char-cteristic for the early Ypresian) from the early members of the

. stella lineage from the upper Ypresian and lower Lutetian.

The main difference between them is in the shape of theycles especially in the first annuli: while A. stella praestellaand also the following members of the lineage) has strong rays

o

(

tella praestella.aractéristiques de section équatoriale des formes A d’Asterocyclina stellaraestella.

assing rather sharply into the interray area already in the veryarly annuli, these passages are rather gradual at A. taramelliind also their rays are much less definite, especially in the firstnnuli. In other words, the first five to 10 annuli of A. taramelliire rather undulating, whereas in the case of A. stella, they areuch more asteroidal. The above mentioned figures of the topo-

ypical Spilecco “taramellii” show rather undulating first cycles;herefore, this name had to be reserved for the lower Ypresianorms and, consequently, the upper Ypresian and lower Lutetianepresentatives of the A. stella lineage needed a new name. Prob-bly, its the earliest occurrence that is recorded by Colakoglu andzcan (2003) from the lower/upper Ypresian boundary beds

rom Sakarya (Central Turkey).The upper biometrical limit of the former A. stella taramel-

ii (in Less, 1987) is also modified in the definition of A. stellaraestella nov. ssp., in order to follow Fermont’s (1982) distinc-ion between his A. taramellii (= A. stella praestella here) and. stella (= A. stella stella according to Less, 1998) from Israel.

Comparison: A. stella praestella can be confused only withther members of the genus bearing similarly small embryon.he distinction from A. taramellii is given above. The otherimilar form, A. stellata adourensis (with practically the sametratigraphical range), has “stellate” type adauxiliary chamber-ets. However, sometimes (especially in the lower and middleuisian) the type of these chamberlets is not too definite, e.g. inan-Tuilerie (France), we can find both types and their transi-

ions as well (Brolsma, 1973; Ferràndez i Canadell, 1999). In thisase, the distinction of the two species is rather artificial: heree deal rather with one single population but in the “moment”f separation of the two species.

Range: the late Ypresian and early Lutetian OZ 5–8brthophragminid and SBZ 10–13 shallow benthic biozones.

SW Aquitaine (Horsarrieu, Gan, Saint-Barthélémy), Crimeathe upper part of the Nummulites distans zone of the Simfer-

Page 19: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

icrop

os

r

t

7b

“cbtp

trttc

eb

b

FdC

cY2iemO

b

sDdodD

oIicsicta

o

Plate 3, Figs. 5 and 6.

G. Less, L. Ó. Kovács / Revue de m

polian beds), Turkey (Sakarya), Israel (Ein Avedat section:amples Is 199–375 in Fermont, 1982).

Genus Orbitoclypeus Silvestri, 1907.

O. droogeri nov. sp.Plate 3, Figs. 1–4.Etymology: in honor of Cornelis W. Drooger, the outstanding

esearcher of orbitoidal foraminifera who initiated this study.Holotype: specimen E. 9219, Plate 3, Fig. 1.Depository: Geological Institute of Hungary, Budapest.Type locality: Horsarrieu (Landes, SW Aquitaine, France),

opmost part of marnière Sourbet.Type level: Upper Ypresian, boundary of the OZ 6 and OZ

orthophragminid and of the SBZ 10 and 11 shallow benthiciozones.

Diagnosis: medium-sized, moderately inflate forms withchudeaui” type rosette. The embryon is centrilepidine, the twohambers are very large. The “varians” type adauxiliary cham-erlets are numerous, very wide and moderately high as well ashe equatorial chamberlets. The annuli are circular, their growthattern is of “varians” type.

Description: external morphology: usually medium-sized (3o 6 mm), moderately inflate forms without a distinct umbo. Theosette is of the “chudeaui” type. The granules are coarse (80o 120 �m in diameter), somewhat bigger in the center than inhe periphery. Each granule is surrounded by five to eight lateralhamberlets whose size is smaller than that of the granules.

For the internal morphology of A-forms see Fig. 18. Thequatorial section of B-forms: no microspheric specimens have

een found yet.

Axial section: in this section, the species could not be studied.Remarks: no Orbitoclypeus with such large embryon has

een known yet, that is why this new species is established. Its

ig. 18. Characteristics of the equatorial section of A-forms of Orbitoclypeusroogeri.aractéristiques de section équatoriale des formes A d’Orbitoclypeus droogeri.

p

FoRe

aléontologie 52 (2009) 267–288 285

losest ancestor might be O. multiplicatus known from the lowerpresian of Spilecco (Northern Italy) and Turkey (Less et al.,007). However, the size of the embryon of this form (dmeans about 350–500 �m) seems to too small for inferring a directvolution towards O. droogeri. Unfortunately, we could not findicrospheric specimens that could prove the generic identity of. droogeri.We have no knowledge of any descendant of O. droogeri that

ears far the largest embryon of its genus.Comparison: this species can be confused only with

ome Discocyclina (D. fortisi simferopolensis, D. pulcra pulcra,. spliti spliti, D. pratti minor) having similar-sized centrilepi-ine embryon. Therefore, the recognition of the presence or lackf the annular stolons of the equatorial chamberlets is crucial inistinguishing O. droogeri from the above-mentioned taxa ofiscocyclina.In this respect, it is interesting to compare D. fortisi simfer-

polensis and O. droogeri that occur together in our sample.n Fig. 19, we have plotted the average width of the adauxil-ary chamberlets (W) against the average shape of the equatorialhamberlets (G) for all specimens of the two taxa. Fig. 19 clearlyhows that the two taxa form two different clusters even not tak-ng into account by their different stolon system of the equatorialhamberlets. Also on the dendrogram of Fig. 14 (in whose cons-ruction we did not use the presence/lack of annular stolons) theyre separated into two different clusters.

Range: it is known so far only from the upper Ypresian bedsf the type level in Horsarrieu.

O. munieri munieri (Schlumberger, 1904).

1904. Orthophragmina munieri nov. sp. – Schlumberger,p. 125, Pl. 3, Fig. 12.

ig. 19. Distribution of specimens belonging to Discocyclina fortisi simfer-polensis and Orbitoclypeus droogeri on the W–G bivariate plot.épartition des spécimens appartenant à Discocyclina fortisi simferopolensist Orbitoclypeus droogeri dans un diagramme W–G.

Page 20: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icropaléontologie 52 (2009) 267–288

p

p

aSfaeeOpaL2aOwSsn

o

t

7b

2

(r

et(wpsél(b

mptCg

Fig. 20. Characteristics of the equatorial section of A-forms of OrbitoclypeusfCp

oll

oea

p

L

n

CFP

Ö(

C

Ö

t

86 G. Less, L. Ó. Kovács / Revue de m

1987. O. bayani (Munier-Chalmas) (partim) – Less,p. 203–205, Pl. 27, Figs. 5, 6.

2007b. O. munieri munieri (Schlumberger) – Özcan et al.,p. 309–310, Figs. 13 (partim), 141 p. (with synonymy).

Remarks: these forms were described in Less (1987)s O. bayani. However, a relatively abundant material frompilecco (Northern Italy, the type locality of O. bayani) androm Turkey (Özcan et al., 2007b) demonstrated that O. munierind O. bayani correspond to two different taxa (Less, 1998) andvolutionary lineages. O. munieri is described in detail in Özcant al. (2007b) and is subdivided into two chronosubspecies,. munieri munieri, with dmean above 220 �m, and O. munierionticus (described in Less et al., 2007), below this limit, atbout the boundary of the OZ 3/4 orthophragminid zones byess (1998). We assume that O. munieri with dmean between20 and 300 �m is characteristic for the late early Ypresiannd represents an intermediate chronosubspecies between. munieri ponticus and the topotypical O. munieri munieriith dmean above 300 �m from the Marne à Xanthopsis inainte-Colombe, close to Horsarrieu and representing theame lithostratigraphic unit. Such populations with reasonableumber of specimens, however, are not yet recorded.

O. furcatus (Rütimeyer, 1850) palaeofurcatus nov. ssp.Plate 3, Figs. 7–9.Etymology: it marks that this subspecies is the most ancient

ne of its lineage known so far.Holotype: specimen E. 9225, Plate 3, Fig. 7.Depository: Geological Institute of Hungary, Budapest.Type locality: Horsarrieu (Landes, SW Aquitaine, France),

opmost part of marnière Sourbet.Type level: Upper Ypresian, boundary of the OZ 6 and OZ

orthophragminid and of the SBZ 10 and 11 shallow benthiciozones.

Diagnosis: O. furcatus populations with dmean less than00 �m.

Description: external morphology: small and medium-sized3 to 6 mm), flattened forms with seven to nine relatively thickibs that bifurcate at the edges. “Marthae” type rosette.

For internal morphology see Fig. 20.Remarks: according to Less (1987) the O. furcatus lin-

age starts only in the late Lutetian and it is subdivided intowo evolutionary stages, namely “rovasendai” and “furcata”this latter name is corrected here to “furcatus” in agreementith the gender of the genus). Since then we have found morerimitive forms of the lineage in stratigraphically much lowertrata. The population from the lower Lutetian beds of Gibret,glise (Orbitoclypeus furcatus nov. ssp. Gibret) will be describedater with the diagnosis of dmean between 200 and 270 �mLess, 1998) while the even less advanced Horsarrieu populationelongs to the new subspecies described here.

Comparison: among the ribbed Orbitoclypeus only theost primitive members of the O. munieri-lineage (O. munieri

onticus, described in Less et al., 2007) possesses similarype and similar-sized embryon as O. furcatus palaeofurcatus.oncerning their quantitative parameters, they cannot be distin-uished from each other in practice. However, the bifurcation

Ltat

urcatus palaeofurcatus.aractéristiques de section équatoriale des formes A d’Orbitoclypeus furcatusalaeofurcatus.

f O. munieri ponticus is less regular and also their annuli areess regularly undulated. Due to the difference in stratigraphicalevel, the accompanying fauna is totally different.

Range: as yet, Horsarrieu is the oldest known occurrencef the lineage. Consequently, O. furcatus palaeofurcatus mayxtend from about the beginning of the late Ypresian up tobout the end of this stage.

O. douvillei douvillei (Schlumberger, 1903).Plate 3, Figs. 10–13.1903. Orthophragmina douvillei nov. sp. – Schlumberger,

p. 283–284, Pl. 9, Figs. 21, 22(?), 23, 24.1987. Orbitoclypeus douvillei (Schlumberger) (partim) –

ess, pp. 205–206, Pl. 27, Figs. 7–9, Text-Figs. 30i, j (non k).1987. Orbitoclypeus varians (Kaufmann) horsarrieuensis

ov. ssp. – Less, pp. 209, Pl. 28, Figs. 9–12, Text-Fig. 30m.1999. Orbitoclypeus douvillei (Schlumberger) – Ferràndez i

anadell, pp. 82–84, 88, Pl. 1, Figs. 5–8, Pl. 2, Figs. 5–8, Pl. 5,igs. 2, 3, 6, Pl. 7, Figs. 1–8, Pl. 9, Figs. 5–8, Pl. 12, Figs. 1–8,l. 16, Figs. 3, 6–8.

2002. Orbitoclypeus douvillei douvillei (Schlumberger) –zcan, pp. 84–85, Pl. 2, Figs. 10–12, Pl. 3, Fig. 6, Text-Fig. 4B

partim).2003. Orbitoclypeus douvillei douvillei (Schlumberger) –

¸ olakoglu and Özcan, pp. 56, Pl. 3, Fig. 11.2007b. Orbitoclypeus douvillei douvillei (Schlumberger) –

zcan et al., pp. 305, Figs. 12k–r, 13 (partim).Emended diagnosis: O. douvillei populations with dmean less

han 200 �m.Remarks: having examined more material from the lower

utetian deposits of Gibret, église (France) it became clearhat O. douvillei and O. chudeaui described in Less (1987)s separate species constitute in fact one single evolu-ionary lineage, and therefore, they have been united into

Page 21: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

icrop

Orbsdib1Fwa

rsaffpwi

A

(MbGg(mtt(AftiatUrPti

R

B

C

D

D

D

F

F

F

F

F

H

H

K

K

L

L

L

L

L

L

L

L

N

N

N

G. Less, L. Ó. Kovács / Revue de m

. douvillei by Less (1993, 1998). The upper Ypresian rep-esentatives of this rapidly evolving lineage characterizedy dmean less than 260 �m by Less (1998) are recentlyubdivided into two by Özcan (2002) using the limit ofmean equals to 200 �m. The name of O. douvillei douvilleis preserved for populations with dmean less than 200 �m,ecause in its type locality, Bos d’Arros (France), dmean is61 �m according to Less (1998) and 185–190 �m based onerràndez i Canadell (1999). For latest Ypresian populationsith dmean ranging from 200 to 260 �m Özcan (2002) introducednew name, O. douvillei yesilyurtensis.

Having compared O. varians horsarrieuensis from Horsar-ieu described in Less (1987) (named O. marthae horsarrieuen-is in Less, 1993) with O. douvillei douvillei from the samplenalyzed in this paper, they proved to be very similar and, there-ore, the name of “horsarrieuensis” is abandoned here. We haveound only four specimens of these latter forms from sam-le HORSA (HX in Less, 1987) whose surface was not veryell preserved, and probably therefore, their type of rosette was

ncorrectly determined.

cknowledgements

This paper is a contribution to the I.G.C.P. projects No. 286“Early Paleogene Benthos”) and 393 (“Neritic events at the

iddle-Upper Eocene boundary”) and it was partly fundedy the National Scientific Research Fund of Hungary (OTKA,rants, No. T 16863, 32370 and K 60645). We are especiallyrateful to Cornelis W. Drooger (Utrecht) and Lukas HottingerBasel, special thanks also for reviewing and improving the ter-inology used both in English and French) whose ideas about

he two (typological versus morphometric) methods inspired uso write this paper. Many thanks are due to Yvette TambareauToulouse) for sending comparative early Asterocyclina fromurignac (S France), to Ercan Özcan (Antalya, then Istanbul)

or the possibility to study Turkish materials and for consul-ations, to Maria and Stephen Szabó (London) for linguisticmprovements of the English text, to Heléne Pauwels (Orléans)nd Gábor Csillag (Budapest) for the French translation and tohe workers in the Department of Micropaleontology at the Stateniversity of Utrecht who kindly assisted in studying the mate-

ial in their collection. The very useful remarks of Johannes S.ignatti (Rome, special thanks for additional linguistic correc-

ions) and Carles Ferràndez-Canadell (Barcelona) helped a lotn improving this paper.

eferences

rolsma, M.S., 1973. Biometric data on discocyclinids from early Eocenedeposits of the Tuilerie de Gan. Proceedings of the Koninklijke NederlandseAkademie van Wetenschappen (B) 76, 411–422.

¸ olakoglu, S., Özcan, E., 2003. Orthophragminid foraminiferal assem-blages from an Ilerdian-Early Cuisian reference section (Sakarya section,

Haymana-Polatlı Basin, Central Anatolia – Turkey). Rivista Italiana di Pale-ontologia e Stratigrafia 109, 45–62.

ouvillé, H., 1922. Révision des orbitoïdes. Deuxième partie : les orthophrag-mina du Danien et de l’Éocène. Bulletin de la Société Géologique de France(4) 22, 55–100.

Ö

aléontologie 52 (2009) 267–288 287

robne, K., 1977. Alvéolines paléogènes de la Slovénie et de l’Istrie. Schweiz-erische Paläontologische Abhandlungen 99, 1–175.

rooger, C.W., 1993. Radial Foraminifera; Morphometrics and Evolution. Ver-handelingen der Koninklijke Nederlandse Akademie van Wetenschappen.Afdeling Natuurkunde (1) 41, 1–242.

ermont, W.J.J., 1982. Discocyclinidae from Ein Avedat (Israel). UtrechtMicropaleontological Bulletins 15, 1–173.

erràndez-Canadell, C., 1997. A new, ribbed species of Nemkovella Less, 1987(Discocyclinidae), and discussion of the genus Actinocyclina Gümbel, 1870.Journal of Foraminiferal Research 27, 175–185.

erràndez-Canadell, C., 1998. Morphostructure and paleobiology of Mesogeanorthophragminids (Discocyclinidae and Orbitoclypeidae, Foraminifera).Acta Geologica Hispanica 31, 183–187.

errandez-Canadell, C., Serra-Kiel, J., 1992. Morphostructure and paleobiol-ogy of Discocyclina Gümbel, 1870. Journal of Foraminiferal Research 22,147–165.

erràndez i Canadell, C., 1999. Morfoestructura i paleobiologia dels ortofrag-mínids de la mesogea (Discocyclinidae i Orbitoclypeidae, Foraminifera)[Morphostructure and paleobiology of Mesogean orthophragminids (Disco-cyclinidae and Orbitoclypeidae, Foraminifera]. Institut d’Eastudis Catalans,Secció de Ciències i Tecnologia, Arxius de les secions de ciències 121, 1–339(in Catalan with English summary).

ottinger, L., 1960. Recherches sur les Alvéolines paléocènes et éocènes.Schweizerische Paläontologische Abhandlungen 75–76, 1–236 (+Atlas).

ottinger, L., 1977. Foraminifères operculiniformes. Mémoires du Muséumd’Histoire Naturelle n. sér. (C) 40, 1–159.

ecskeméti, T., 1959. Die Discocycliniden des südlichen Bakonygebirges.Annales Historico-naturales Musei Nationalis Hungarici (Mineralogia etPalaeontologia) 51, 31–84.

han, M.A., Drooger, C.W., 1971. On variation in Nummulites assemblages.I–II. Proceedings of the Koninklijke Nederlandse Akademie van Weten-schappen (B) 72, 97–121.

ess, Gy, 1981. New method for the examination of equatorial sections of largerorbitoid foraminifera. Magyar Állami Földtani Intézet Évi Jelentése 1979,445–457.

ess, Gy., 1987. Paleontology and stratigraphy of the European Orthophragmi-nae. Geologica Hungarica series Palaeontologica 51, 1–373.

ess, Gy., 1992. Numeric description of the equatorial section of the embryowith two chambers of orbitoid large foraminifers. Acta Geologica Hungarica35, 3–26.

ess, Gy., 1993. Numeric characterization of “Orthophragmina” populations.Acta Geologica Hungarica 35, 193–215.

ess, Gy., 1998. The zonation of the Mediterranean Upper Paleocene and Eoceneby Orthophragminae. Opera Dela Slovenska Akademija Znanosti in Umet-nosti (IV) 34, 21–43.

ess, Gy., 1999. The late Paleogene larger foraminiferal assemblages of theBükk Mountains (NE Hungary). Revista Espanola de Micropaleontología31, 51–60.

ess, Gy., Ó. Kovács, L., 1996. Age-estimates by European PaleogeneOrthophragminae using numerical evolutionary interpolation. Geobios 29,261–285.

ess, Gy., Özcan, E., Báldi-Beke, M., Kollányi, K., 2007. Thanetian and earlyYpresian Orthophragmines (Foraminifera: Discocyclinidae and Orbito-clypeidae) from the Central Western Tethys (Turkey, Italy and Bulgaria)and their Revised Taxonomy and Biostratigraphy. Rivista Italiana di Pale-ontologia e Stratigrafia 113, 419–448.

eumann, M., 1955. Étude des Orthophragmines contenues dans les marnesà Xanthopsis dufourii (Lutétien inf.) de la Chalosse de Montfort (Landes).Bulletin de la Société géologique de France (6) 5, 125–134.

eumann, M., 1958. Révision des Orbitoididés du Crétacé et de l’Éocène enAquitaine occidentale. Mémoires de la Société Géologique de France (n.sér.) 37, 1–174.

orusis, M.J., 1993. SPSS for Windows Professional Statistic Release 6.0. SPSS

Inc., 385 p.

zcan, E., 2002. Cuisian orthophragminid assemblages (Discocyclina, Orbito-clypeus and Nemkovella) from the Haymana-Polatlı Basin (Central Turkey):biometry and description of two new taxa. Eclogae Geologicae Helvetiae95, 75–97.

Page 22: Original article Typological versus morphometric ...fold1.ftt.uni-miskolc.hu/~foldlgy/107.pdf · située à Horsarrieu (Sud-Ouest de la France) et daté de l’Yprésien supérieur.

2 icrop

Ö

Ö

P

S

S

S

S

S

88 G. Less, L. Ó. Kovács / Revue de m

zcan, E., Less, Gy., Báldi-Beke, M., Kollányi, K., Kertész, B., 2007a. Biometricanalysis of middle and upper Eocene Discocyclinidae and Orbitoclypeidae(Foraminifera) from Turkey and updated orthophragmine zonation in thewestern Tethys. Micropaleontology 52, 485–520.

zcan, E., Less, Gy., Kertész, B., 2007b. Late Ypresian to Middle LutetianOrthophragminid Record from Central and Northern Turkey: taxonomy andremarks on zonal scheme. Turkish Journal of Earth Sciences 16, 281–318.

ortnaya, V.L., 1974. Diskotsiklinidy eotsenovykh otlozheniy Kryma i ikh bios-tratigraficheskoye znacheniye. Moscow State University, Moscow, 175 p. (inRussian).

chaub, H., 1981. Nummulites et Assilines de Téthys paléogène. Taxinomie,phylogenèse et biostratigraphie. Schweizerische Paläontologische Abhand-lungen 104–106, 1–236 (+Atlas I–II).

chlumberger, C., 1903. Troisième note sur les Orbitoïdes. Bulletin de la SociétéGéologique de France (4) 3, 273–289.

T

aléontologie 52 (2009) 267–288

chlumberger, C., 1904. Quatrième note sur les Orbitoïdes. Bulletin de la SociétéGéologique de France (4) 4, 119–136.

chweighauser, J., 1953. Mikropalaeontologische und stratigraphischeUntersuchungen im Paleocaen und Eocaen des Vicentin (Nordi-talien) mit besonderer Berücksichtigung der Discocyclinen undAsterocyclinen. Schweizerische Paläontologische Abhandlungen 70,1–92.

erra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A.K.,Less, Gy., Pavlovec, R., Pignatti, J., Samsó, J.M., Schaub, H., Sirel, E.,Strougo, A., Tambareau, Y., Tosquella, J., Zakrevskaya, E., 1998. Larger

foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletinde la Société Géologique de France 169,281–299.

ambareau, Y., Villatte, J., 1977. L’Éocène marin du domaine sous-pyrénéen(Itinéraire 6). In: Jaffrezo, M. (Ed.), Guides géologique régionaux. Pyrénéesorientales. Corbières. Éditions Masson, Paris, pp. 106–117.