Etude de la tenue en tension des dispositifs de...

177
N° d’ordre : 01 ISAL 0018 Année 2001 THESE présentée DEVANT L’INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON pour obtenir LE GRADE DE DOCTEUR Formation doctorale : Génie Electrique École doctorale : Electronique, Electrotechnique, Automatique par Karine ISOIRD (Maitre ès Sciences) Etude de la tenue en tension des dispositifs de puissance en carbure de silicium par caractérisations OBIC et électriques Soutenue le 13 JUIN 2001 devant la Commission d’examen Jury MM Michel AMIET Docteur Examinateur Jean CAMASSEL Directeur de recherche CNRS Examinateur Jean Pierre CHANTE Professeur Examinateur Mark JOHNSON Docteur Examinateur Marie Laure LOCATELLI Docteur Directeur Pierre MERLE Professeur Rapporteur Françis MISEREY Professeur Examinateur Roberta NIPOTI Docteur Rapporteur Cette thèse a été préparée au laboratoire CEGELY site INSA de LYON

Transcript of Etude de la tenue en tension des dispositifs de...

N° d’ordre : 01 ISAL 0018 Année 2001

THESE

présentée

DEVANT L’INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

pour obtenir

LE GRADE DE DOCTEUR

Formation doctorale : Génie ElectriqueÉcole doctorale : Electronique, Electrotechnique, Automatique

par

Karine ISOIRD

(Maitre ès Sciences)

Etude de la tenue en tension desdispositifs de puissance en carbure desilicium par caractérisations OBIC et

électriques

Soutenue le 13 JUIN 2001 devant la Commission d’examen

Jury MM

Michel AMIET Docteur Examinateur

Jean CAMASSEL Directeur de recherche CNRS Examinateur

Jean Pierre CHANTE Professeur Examinateur

Mark JOHNSON Docteur Examinateur

Marie Laure LOCATELLI Docteur Directeur

Pierre MERLE Professeur Rapporteur

Françis MISEREY Professeur Examinateur

Roberta NIPOTI Docteur Rapporteur

Cette thèse a été préparée au laboratoire CEGELY site INSA de LYON

INSA de Lyon / Département des études doctorales

2

Écoles Doctorales

• Matériaux de LyonINSAL – ECL -UCB. Lyon1 – Univ. De Chambéry – ENSResponsable : Professeur A. HOAREAU, UCBL (Tél. : 04.72.44.85.66)

Formations doctorales associées :Génie des Matériaux (Pr. R. FOUGERES, Tél : 04. 72. 43. 81 .49)Matière condensée surfaces et interfaces

(Pr. G. GUILLOT, Tél : 04.72.43.81.61)Matériaux polymères et composites

(Pr. H. SAUTEREAU, Tél : 04.72.43.81.78)

• Mécanique, Energétique, Génie Civil, Acoustique (MEGA)°

Responsable : Pr. J. BATAILLE, ECL (Tél : 04.72.43.8079)Formations doctorales associées :Acoustique (Pr. J.L. GUYADER, Tél : 04.72.43.80.80)Génie Civil : Sols, matériaux, structures, physique du bâtiment (Pr. P. LAREAL, Tél : 04.72.43.82.16)Mécanique (Pr. G. DALMAZ, Tél : 04.72.43.83.03)Thermique et Energétique (Pr. M. LALLEMAND, Tél : 04.72.43.81.54)

• Electronique, Electrotechnique, Automatique (EEA)

INSAL - ECL – UCB. Lyon1 – Univ. de Saint-Etienne

Responsable : Professeur G. GIMENEZ, INSAL(Tél : 04.72.43.83.32)

Formations doctorales associées :Acoustique (Pr. J.L. GUYADER, Tél : 04.72.43.80.80)Automatique Industrielle (Pr. SCAVARDA, Tél : 04.72.43.83.41)Dispositifs de l’électronique intégrée

(Pr. P. PINARD, Tél : 04.72.43.80.79)Génie biologique et médical (Pr. I MAGNIN, Tél : 04.72.43.85.63)Génie électrique (Pr. J.P. CHANTE, Tél : 04.72.43.87.26)Signal, Image, Parole (Pr. G. GIMENEZ, Tél : 04.72.43.83.32)

• Ecole doctorale interdisciplinaire Sciences-Santé (EDISS)

INSAL – UCB Lyon1 – Univ. de Saint-Etienne – Univ. Aix-Marseille2

Responsable : Professeur A. COZZONE, CNRS-Lyon(Tél 04.72.72.26.75)

Formations doctorales associées :Biochimie (Pr. M. LAGARDE, Tél : 04.72.43.82.40)Génie biologique et médical (Pr. I. MAGNIN, Tél : 04.72.43.85.63)

INSA de Lyon / Département des études doctorales

3

Autres formations Doctorales

• Analyse et modélisation des systèmes biologique

Responsable : Professeur S. GRENIER, INSAL Tél : 04.72.43.83.56

• Chimie inorganique

Responsable : Professeur P. GONNARD, INSALTél : 04.72.43.81.58

• Conception en bâtiment et technique urbaines

Responsable : Professeur M. MIRAMOND, INSALTél : 04.72.43.82.09

• DEA Informatique de Lyon

Responsable : Professeur J.M. JOLION, INSAL Tél : 04.72.43.87.59

• Productique : Organisation économique et génie informatiquepour l’entreprise

Responsable : Professeur J. FAVREL, INSAL Tél : 04.72.43.83.63

• Sciences et techniques du déchet

Responsable : Professeur P. MOSZKOWICZ, INSALTél : 04.72.43.83.45

4

Institut nationaldes sciences appliquéesde LyonDirecteur : J. ROCHAT

• ProfesseursS. AUDISIO physico-chimie industrielleJ.C. BABOUX GEMPMM*B. BALLAND physique de la matièreD. BARBIER physique de la matièreG. BAYADA modélisation mathématique

et calcul scientifiqueC. BERGER (Mlle) physique de la matièreM. BETEMPS automatique industrielleJ.M. BLANCHARD LAEPSI**C. BOISSON vibrations acoustiquesM. BOIVIN mécanique des solidesH. BOTTA équipe développement urbainG. BOULAYE informatiqueJ. BRAU centre de thermiqueM. BRISSAUD génie électrique et ferroélectricitéM. BRUNET mécanique des solidesJ.C. BUREAU thermodynamique appliquéeJ.Y. CAVAILLE GEMPMM*J.P. CHANTE composants de puissance et applicationsB. CHOCAT unité de recherche en génie civil

• ProfesseursB. CLAUDEL LAEPSI**M. COUSIN unité de recherche en génie civilM. DIOT thermodynamique appliquéeA. DOUTHEAU chimie organiqueR. DUFOUR mécanique des structuresJ.C. DUPUY physique de la matièreH. EMPTOZ reconnaissance des formes et visionC. ESNOUF GEMPMM*L. EYRAUD (Prof. Emérite) génie électrique et ferroélectricitéG. FANTOZZI GEMPMM*M. FAYET mécanique des solidesJ. FAVREL groupe de recherche en productique

et informatique des systèmesmanufacturiers

G. FERRARIS-BESSO mécanique des structuresY. FETIVEAU génie électrique et ferroélectricitéL. FLAMAND mécanique des contactsP. FLEISCHMANN GEMPMM*A. FLORY ingénierie des systèmes d'informationR. FOUGERES GEMPMM*F. FOUQUET GEMPMM*L. FRECON informatiqueR. GAUTHIER physique de la matièreM. GERY centre de thermiqueG. GIMENEZ CREATIS***

5

P. GOBIN (Prof. émérite) GEMPMM*P. GONNARD génie électrique et ferroélectricitéM. GONTRAND composants de puissance et applicationsR. GOUTTE (Prof. Emérite) CREATIS***G. GRANGE génie électrique et ferroélectricitéG. GUENIN GEMPMM*M. GUICHARDANT biochimie et pharmacologieG. GUILLOT physique de la matièreA. GUINET groupe de recherche en productique

et informatique des systèmesmanufacturiers

J.L. GUYADER vibrations acoustiquesJ.P. GUYOMAR génie électrique et ferroélectricité

• Professeurs

J.M. JOLION reconnaissance des formes et visionJ.F. JULLIEN unité de recherche en génie civilA. JUTARD automatique industrielleR. KASTNER unité de recherche en génie civilH. KLEIMANN génie électrique et ferroélectricitéJ. KOULOUMDJIAN ingénierie des systèmes d'informationM. LAGARDE biochimie et pharmacologieM. LALANNE mécanique des structuresA. LALLEMAND centre de thermiqueM. LALLEMAND (Mme) centre de thermiqueP. LAREAL unité de recherche en génie civilA. LAUGIER physique de la matièreCh. LAUGIER biochimie et pharmacologieP. LEJEUNE génétique moléculaire

des micro-organismesA. LUBRECHT mécanique des contactsY. MARTINEZ ingénierie des systèmes d'informationH. MAZILLE physico-chimie industrielleP. MERLE GEMPMM*J. MERLIN GEMPMM*J.P. MILLET physico-chimie industrielleM. MIRAMOND unité de recherche en génie civilN. MONGEREAU(Prof. Emérite) unité de recherche en génie civilR. MOREL mécanique des fluidesP. MOSZKOWICZ LAEPSI**P. NARDON biologie appliquéeA. NAVARRO LAEPSI**A. NOURI (Mme) modélisation mathématique

et calcul scientifiqueM. OTTERBEIN LAEPSI**J.P. PASCAULT matériaux macromoléculairesG. PAVIC vibrations acoustiquesJ. PERA unité de recherche en génie civilG. PERRACHON thermodynamique appliquéeJ. PEREZ (Prof. Emérite) GEMPMM*P. PINARD physique de la matièreJ.M. PINON ingénierie des systèmes d'information

• ProfesseursD. PLAY conception et analyse des systèmes mécani-

ques

6

J. POUSIN modélisation mathématiqueet calcul scientifique

P. PREVOT groupe de recherche en apprentissage, coopé-ration et interfaces multimodales

R. PROST CREATIS***M. RAYNAUD centre de thermiqueJ.M. REYNOUARD unité de recherche en génie civilE. RIEUTORD (Prof. Emérite) mécanique des fluidesJ. ROBERT-BAUDOUY(Mme) génétique moléculaire

des micro-organismesD. ROUBY GEMPMM*P. RUBEL ingénierie des systèmes d'informationC. RUMELHART mécanique des solidesJ.F. SACADURA centre de thermiqueH. SAUTEREAU matériaux macromoléculairesS. SCARVARDA automatique industrielleD. THOMASSET automatique industrielleM. TROCCAZ génie électrique et ferroélectricitéR. UNTERREINER CREATIS***J. VERON LAEPSI**G. VIGIER GEMPMM*A. VINCENT GEMPMM*P. VUILLERMOZ physique de la matière

• Directeurs de recherche C.N.R.S.Y. BERTHIER mécanique des contactsP. CLAUDY thermodynamique appliquéeN. COTTE-PATTAT (Mme) génétique moléculaire

des micro-organismesP. FRANCIOSI GEMPMMJ.F. GERARD matériaux macromoléculairesM.A. MANDRAND (Mme) génétique moléculaire

des micro-organismesJ.F. QUINSON GEMPMMA. ROCHE matériaux macromoléculaires

• Directeurs de recherche I.N.R.A.

G. BONNOT biologie appliquéeG. FEBVAY biologie appliquéeS. GRENIER biologie appliquéeY. MENEZO biologie appliquée

• Directeurs de recherche I.N.S.E.R.M.

A.F. PRINGENT (Mme) biochimie et pharmacologieI. MAGNIN (Mme) CREATIS***

GEMPMM* : Groupe d’étude métallurgie physique et physique des matériauxLAEPSI** : Laboratoire d'analyse environnementale des procédés et systèmes industrielsCREATIS*** : Centre de recherche et d'applications en traitement de l'image et du signal

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

7

A la mémoire de mon grand-père

A mes grands-parents

A mes parents

A mes frères et sœur

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

8

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

9

Remerciements.

Je teins tout d’abord à remercier M. Jean-Pierre CHANTE de m’avoir permis de

réaliser cette thèse dans son équipe, au sein du CEntre de Génie Electrique de LYon

(CEGELY) à l’INSA de Lyon.

Je remercie tout particulièrement Marie-Laure LOCATELLI pour sa disponibilité et

la qualité de son encadrement ainsi que pour le soutien et la patience dont elle a fait preuve

tout au long de ces quatre années. L’aide et le soutien de M. Dominique PLANSON m’ont

été tout aussi utiles, notamment dans le domaine de la simulation électrique et de la

conception des jeux de masques. Je remercie M. Christophe RAYNAUD pour son aide

précieuse dans le traitement et l’analyse des caractéristiques électriques. M. Mihai LAZAR

a mon entière gratitude pour sa large participation à ces travaux, notamment en ce qui

concerne le traitement des analyses physico-chimiques et la réalisation des composants.

Je suis très honorée que Mme Roberta NIPOTI et M. Pierre MERLE aient accepté

d’être les rapporteurs de ce travail, qu’ils en soient ici remerciés. Je tiens à remercier

M. AMIET, M. MISEREY, M. CAMASSEL et M. JOHNSON d’avoir accepté d’être

membre du jury.

Je tiens à remercier la DGA et Schneider Electrics qui ont permis la poursuite de

l’étude sur la tenue en tension des composants en SiC en maintenant un soutien financier

depuis de nombreuses années.

Je remercie Mme DUBOIS (LPM) pour les analyses SIMS, l’équipe du CIME pour

leur disponibilité et leur conseil, M. PELISSIER (LMGP) pour les attaques KOH, M.

MITLHENER et son équipe (SIEMENS), Mme NIPOTI et son équipe (LAMEL) pour la

réalisation des contacts ohmiques, Mlle ORTOLLAND, M. WRIGHT et toute l’équipe de

l’université de NEWCASTLE pour la réalisation des contacts Schottky semi-transparents,

M. LEBEDEV et son équipe (IOFFE) pour les mesures DLTS.

J’exprime ma plus sincère gratitude à toute l’équipe du CEGELY (permanents et

doctorants) et notamment à M. Pascal BEVILACQUA et Mme Nicole VIALLY pour leur

disponibilité, leur sympathie et leur gourmandise. Un grand merci à toute l’équipe SiC : N.

ARSSI, N. DAVAL, L. OTTAVIANI, F. NALLET, C. PION, Z. SASSI, D. TOURNIER,

pour leur serviabilité, leur bonne humeur et leur patience.

Enfin je ne pourrais terminer sans remercier très sincèrement ceux qui ont

largement contribué à l’aboutissement de ce travail et qui me supportent depuis de

nombreuses années : JEUSS, STP, COQ’S et DREYFUS.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

10

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

11

Table des matières.

TABLE DES MATIÈRES....................................................................................................11

TABLE DES SYMBOLES ET CONSTANTES ...................................................................15

1. CONSTANTES : .......................................................................................................15

2. DEFINITION DES SYMBOLES ET NOTATIONS : ..................................................15

INTRODUCTION GÉNÉRALE. .........................................................................................17

CHAPITRE 1.......................................................................................................................21LE CARBURE DE SILICIUM : GÉNÉRALITÉS. .............................................................21

1. PROPRIÉTÉS ET APPLICATIONS DU SIC. .......................................................................231.1. Pourquoi SiC ? Et quelles applications ? ......................................................................23

1.2. Quelques dates importantes dans l’histoire du SiC. .......................................................25

2. LE PHÉNOMÈNE DE CLAQUAGE DANS LE CARBURE DE SILICIUM. ..................................262.1. Le claquage en volume. ................................................................................................26

2.1.1. Le champ critique et les coefficients d’ionisation. ...................................................... 26

2.1.2. Influence de la température. ...................................................................................... 29

2.2. Le claquage localisé. ....................................................................................................302.2.1. Nécessité des terminaisons de jonction. ..................................................................... 30

2.2.2. Influence de la qualité du matériau. ........................................................................... 32

a) Défauts structuraux.................................................................................................... 32

⇒ Les micropores..................................................................................................... 33

⇒ Les dislocations vis. ............................................................................................. 33

b) Autres défauts. .......................................................................................................... 33

3. LES DIODES DE PUISSANCE EN SIC. .............................................................................343.1. Les diodes bipolaires....................................................................................................34

3.2. Les diodes Schottky. .....................................................................................................35

3.3. Les JBS (Junction Barrier Schottky). .............................................................................36

3.4. Conclusion...................................................................................................................37

CHAPITRE 2.......................................................................................................................39MESURE DES COEFFICIENTS D’IONISATION DU SIC–6H PAR LA TECHNIQUEOBIC. ..................................................................................................................................39

1. QUELQUES RAPPELS SUR LES COEFFICIENTS D’IONISATION. .........................................411.1. Le facteur de multiplication M. .....................................................................................41

1.2. Les différents modèles des coefficients d’ionisation. ......................................................441.2.1. Modèle de WOLFF. .................................................................................................. 44

1.2.2. Modèle de SHOCKLEY. ........................................................................................... 44

1.2.3. Modèle de BARAFF. ................................................................................................ 45

1.3. Détermination expérimentale de αn et αp: état de l’art ...................................................46

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

12

1.3.1. Les différentes méthodes et structures de tests............................................................ 46

a) Les dispositifs à gain interne. ..................................................................................... 46

b) Création de porteurs en excès dans les diodes bipolaires ou Schottky ........................... 46

⇒ Cas d’une injection pure d’électrons. ..................................................................... 47

⇒ Cas d’une injection pure de trous. ......................................................................... 48

⇒ Cas d’une génération dans la ZCE ......................................................................... 48

1.4. Les coefficients d’ionisation dans le SiC. ......................................................................49

1.4.1. Les valeurs de αn et αp de A. O. Konstantinov dans le SiC–4H. ................................... 50

1.4.2. Les valeurs de αn et αp de R. Raghunatan dans le SiC–6H et SiC–4H en fonction de la

température. ...................................................................................................................................... 50

2. LE BANC EXPÉRIMENTAL D’OBIC...............................................................................512.1. Principe de fonctionnement. .........................................................................................52

2.1.1. Principes physiques. ................................................................................................. 52

2.1.2. Expression théorique du photocourant. ...................................................................... 55

a) Expression du photocourant dans la zone de charge d’espace. ...................................... 56

b) Expression du photocourant dans les zones neutres. .................................................... 57

2.1.3. Spécificités liées au SiC............................................................................................ 58

2.2. Le banc de mesures, fonctionnement général et utilisations............................................582.2.1. Fonctionnement général. ........................................................................................... 59

2.2.2. Caractéristiques du banc expérimental d’OBIC........................................................... 59

3. CHOIX DE LA MÉTHODE ET VALIDATION......................................................................613.1. Choix du dispositif de test.............................................................................................61

3.2. Description de la méthode et validation par simulation..................................................623.2.1. Simulation d’une injection pure de trous ou d’électrons. ............................................. 62

3.2.2. Simulation d’une injection mixte de porteurs. ............................................................ 64

3.2.3. Détermination des coefficients d’ionisation à partir des mesures OBIC d’une Schottky de

type N. .............................................................................................................................................. 67

4. CONCEPTION ET RÉALISATION DU DISPOSITIF DE TEST. ................................................694.1. Conception du véhicule–test avec l’outil ISE .................................................................70

4.1.1. Rôle des paramètres des JTE sur la tenue en tension. .................................................. 73

4.1.2. Rôle des caractéristiques de la couche épitaxiée sur la tenue en tension. ...................... 74

4.2. Réalisation des diodes Schottky. ...................................................................................75

5. MESURES...................................................................................................................765.1. Caractérisation des différents paramètres technologiques..............................................76

5.1.1. Caractéristiques de la couche épitaxiée. ..................................................................... 76

5.1.2. Paramètres des JTE................................................................................................... 78

5.1.3. Caractéristiques électriques. ...................................................................................... 80

6. CONCLUSION. ............................................................................................................81

CHAPITRE 3.......................................................................................................................83CARACTÉRISATION DE LA TENUE EN TENSION DE DIODES BIPOLAIRESPLANES 1,5 KV EN SIC-6H. ..............................................................................................83

1. ETUDE DE DIODES BIPOLAIRES PROTÉGÉES PAR JTE DOPÉE BORE. ...............................86

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

13

1.1. Description des dispositifs. ...........................................................................................86

1.2. Rôle du profil de l’émetteur sur la tenue en tension. ......................................................87

1.2.1. Caractérisations électriques et analyse physico-chimique. ........................................... 87

a) Caractéristiques électriques. ....................................................................................... 87

b) Tension de claquage. ................................................................................................. 89

1.2.2. Mesures & Simulations OBIC. .................................................................................. 91

1.2.3. Discussion. .............................................................................................................. 93

1.3. Caractérisation des diodes avec JTE. ............................................................................941.3.1. Analyse des caractéristiques directes et inverses à 300 K. ........................................... 94

1.3.2. Evolution des caractéristiques avec la température. .................................................... 97

a) Sous polarisation directe. ........................................................................................... 97

b) Sous polarisation inverse. .......................................................................................... 98

1.3.3. Etude de la tenue en tension. ................................................................................... 101

1.4. Conclusion................................................................................................................. 104

2. RÔLE DE LA JTE DOPÉE ALUMINIUM SUR L’ÉVOLUTION DE LA TENSION DE CLAQUAGE. ...

............................................................................................................................ .. 1042.1. Descriptions des dispositifs. ....................................................................................... 104

2.1.1. JTE99’F3. .............................................................................................................. 105

2.1.2. JTE99’F4. .............................................................................................................. 105

2.2. Comparaison des performances des JTE99’F3 et JTE99’F4. ........................................ 1062.2.1. Tests électriques à 300 K. ....................................................................................... 106

2.2.2. Etude des courants de fuite et de la tenue en tension. ................................................ 110

2.2.3. Mesures OBIC et discussion.................................................................................... 115

a) Mesures OBIC......................................................................................................... 115

b) Discussion. ............................................................................................................. 117

3. SYNTHÈSE. .............................................................................................................. 118

CHAPITRE 4..................................................................................................................... 121ETUDE DU COMPORTEMENT ÉLECTRIQUE DE DIODES BIPOLAIRES 5 KV ENSIC-4H............................................................................................................................... 121

1. CONCEPTION ET RÉALISATION DES DISPOSITIFS. ........................................................ 1231.1. Conception des diodes bipolaires avec l’outil MEDICI. ............................................... 123

1.1.1. Tension de claquage en volume. .............................................................................. 124

1.1.2. Etude de la protection périphérique. ........................................................................ 124

a) Structure étudiée et définition des paramètres utilisés. ............................................... 125

b) Influence de la dose et de la profondeur de la protection périphérique ........................ 126

c) Influence de la longueur de la protection périphérique ............................................... 127

1.2. Description du jeu de masques.................................................................................... 128

1.2.1. Les différents types de diodes. ................................................................................ 129

1.2.2. Les motifs de tests. ................................................................................................. 129

1.3. Procédé de fabrication. .............................................................................................. 130

2. CARACTÉRISTIQUES ÉLECTRIQUES ET ANALYSES PHYSICO-CHIMIQUES....................... 1302.1. Comportements typiques. ............................................................................................ 130

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

14

2.2. Analyses complémentaires. ......................................................................................... 1332.2.1. Mesures de la résistance de contact d’anode. ............................................................ 133

2.2.2. Mesures capacitives. ............................................................................................... 134

2.2.3. Analyses SIMS. ...................................................................................................... 136

a) Emetteur. ................................................................................................................ 136

b) JTE. ....................................................................................................................... 137

3. CARACTÉRISATION DE LA TENUE EN TENSION À TEMPÉRATURE AMBIANTE................. 1393.1. Influence du milieu ambiant........................................................................................ 141

3.1.1. Tests dans une huile silicone. .................................................................................. 142

3.1.2. Mesures électriques sous ambiance SF6 en surpression. ............................................ 143

3.2. Mesures OBIC............................................................................................................ 145

3.3. Discussion. ................................................................................................................ 148

4. CONCLUSION DU CHAPITRE. ..................................................................................... 149

CONCLUSION GÉNÉRALE. ........................................................................................... 151

BIBLIOGRAPHIE............................................................................................................. 155

ANNEXE ........................................................................................................................... 165

1. ANNEXE A : LE BANC DE MESURES OBIC. ................................................................ 1671.1. Le LASER .................................................................................................................. 167

1.2. Le banc optique.......................................................................................................... 167

1.3. Les appareils de tests et de mesures. ........................................................................... 170

1.4. Le pilotage du banc et le traitement des mesures. ........................................................ 171

2. ANNEXE B : MODÈLES ET PARAMÈTRES UTILISÉS DANS LE LOGICIEL DE SIMULATION

ISE. ............................................................................................................................ .. 1722.1. Modèles de bande interdite et masse effective.............................................................. 172

2.2. Concentrations d'électrons et de trous ........................................................................ 173

2.3. Mobilité ..................................................................................................................... 173

2.4. Mobilité à fort champ électrique ................................................................................. 173

2.5. Ionisation par impact et claquage par avalanche......................................................... 174

2.6. Module "Optik". ......................................................................................................... 1742.6.1. Définition du faisceau optique. ................................................................................ 174

a) La direction............................................................................................................. 174

b) La longueur d’onde et intensité. ............................................................................... 175

2.6.2. Caractéristique du matériau éclairé. ......................................................................... 175

3. ANNEXE C : CONFIGURATION DU FOUR DE RECUIT POST-IMPLANTATION. .................. 1763.1. Configuration pour le recuit de type F3 [Ottaviani’99]................................................ 176

3.2. Configuration pour le recuit de type F4 [Lazar’01]. .................................................... 176

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

15

TABLE DES SYMBOLES ET CONSTANTES

1. CONSTANTES :

Charge électronique élémentaire : q = 1,6×10-19 C

Constante de Boltzmann : k = 1,38×10-23 J.K-1

Constante de Planck : h = 6,62×10-34 J.s

Masse de l’électron libre : mo = 9,1×10-31 kg

Permittivité du vide : εo = 8,85×10-14 F.cm-1

Vitesse de la lumière : c = 3×108 cm.s-1

2. DEFINITION DES SYMBOLES ET NOTATIONS :

a (cm-4) gradient de concentration dedopants

LP (cm) longueur de pénétration

C (F) capacité λ (nm) longueur d’onded’éclairement

Ea (eV) énergie d’activation Na (cm-3) concentration d’accepteursEg (eV) largeur de bande d’énergies

interditesNd (cm-3) concentration de donneurs

en,p taux d’émission desélectrons et des trous.

Nt (cm-3) concentration de centresprofonds

f (Hz) fréquence Nv,c (cm-3) densités d’états dans lesbandes de conduction et de

valence.g facteur de dégénérescence Rs (Ω) Résistance série

G (S) conductance T (K) températureJd (A) densité de courant direct VBR (V) tension de claquageJr (A) densité de courant inverse Vd (V) tension directe

n coefficient d’idéalité VR (V) tension inversem* (kg) masse effective Ln,p (µm) longueur de diffusion des

porteursεr permittivité diélectrique du

matériauσn,p (cm-2) section de capture des

électrons et des trous.λth

(W/cm.K)conductivité thermique τn,p (s) durée de vie des porteurs

α (cm-1) coefficient d’absorptionoptique

µn,p (cm2/V.s) mobilité des porteurs

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

16

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisation OBIC et électriques.

17

Introduction Générale.

Les propriétés physiques du carbure de silicium (SiC) font de ce matériau un

bon candidat pour les applications haute tension, haute fréquence, haute température et

forte puissance. Son champ critique environ sept fois supérieur à celui du silicium

permet de réduire l’épaisseur et d’augmenter le dopage de la couche semi-conductrice

pour supporter une même tension inverse. Sa bonne conductibilité thermique proche de

celle du cuivre, son grand gap et son excellente vitesse de saturation des porteurs sont

autant d’avantages qui contribuent au grand intérêt porté au SiC par le CEGELY dès

1991.

L’objectif des recherches menées au CEGELY est de concevoir, réaliser et

caractériser des dispositifs plus ou moins haute tension (600 V à 5 kV) en SiC. La

conception de nouveaux types de composants et l’étude de la tenue en tension de diodes

bipolaires en sont les deux axes principaux.

L’objectif de tenue en tension de 5 kV nécessite la mise au point de différentes

étapes technologiques sur des diodes de plus faibles calibres en tension (1,5 kV). La

connaissance de certains paramètres physiques ainsi que l’identification des différents

mécanismes intervenant lors du claquage du composant sont indispensables pour

optimiser la conception et la réalisation de démonstrateurs haute tension en SiC. Un des

objectifs de ces travaux de thèse est d’extraire les coefficients d’ionisation des électrons

et des trous du matériau à partir du facteur de multiplication mesuré par méthode OBIC

(Optical Beam Induced Current) pour évaluer de manière précise la tenue en tension de

dispositifs en SiC. D’autre part, afin d’exploiter au maximum les performances

électriques du matériau et d’optimiser le compromis chute de tension à l’état passant et

tenue en tension, il est nécessaire de protéger la périphérie des composants pour

atteindre une tension de claquage proche de celle en volume. La création de caissons P

ou P+ par implantation ionique d’aluminium est une étape importante (objet au CEGELY

des thèses de L. Ottaviani (1999), E. Morvan (1999) et M. Lazar en cours). Elle permet

de réaliser des jonctions émettrices et des protections périphériques telles que des JTE

(Junction Termination Extension), de meilleure qualité pour se rapprocher de la tenue en

tension volumique des dispositifs. L’étude expérimentale du comportement de ces

protections périphériques et l’identification des différents paramètres intervenant sur

Introduction Générale.

18

leur efficacité constituent une tâche importante en vue de l’augmentation de la tenue en

tension des dispositifs en SiC, c’est le second objectif principal de nos travaux. Les

principaux résultats de caractérisations et de simulations électriques et OBIC de diodes

bipolaires ou Schottky sont présentés dans ce mémoire.

Le premier chapitre rappelle les principales propriétés physiques et électriques

des polytypes du SiC les plus employés. Il fait aussi état des différents mécanismes mis

en jeu lors du claquage par avalanche ou assistés par des défauts, des dispositifs de

puissance en s’appuyant sur un état de l’art de la technologie du SiC et des

démonstrateurs de puissance réalisés.

En 1997 le laboratoire s’est muni d’un nouveau moyen de caractérisation, le

banc de mesure OBIC (Optical Beam Induced Current) dont le principe et la description

sont détaillés dans le second chapitre. Cette technique couramment employée pour la

caractérisation du comportement sous polarisation inverse des composants en silicium a

été adaptée au carbure de silicium. L’une des utilisations de cette méthode d’analyse est

l’extraction des coefficients d’ionisation à partir de véhicule-test dont la conception et

une partie de la réalisation ont été effectuées au laboratoire. La structure de test, la

méthode de mesures et les principaux résultats obtenus sont décrits dans le CHAPITRE

2.

L’autre principale utilisation du banc expérimental OBIC, complétée par des

analyses électriques et physico-chimiques (I(V), C(V), SIMS, MEB….), est l’étude de

l’influence de la périphérie sur le claquage prématuré des dispositifs 1,5 kV. Le

CHAPITRE 3 présente les différents résultats de simulations et expérimentaux de diodes

proposant des différences, notamment dans la réalisation de la protection périphérique.

Le dernier chapitre expose les différentes étapes de la mise en œuvre de diodes

bipolaires et Schottky en SiC-4H de tenue en tension théorique 5 kV. Dans cette partie

nous présenterons brièvement l’étude de conception réalisée à l’aide de l’outil de CAO

Medici et la réalisation des prototypes. Enfin, nous exposerons le détail des résultats

expérimentaux acquis avant de les analyser.

Une synthèse finale permettra de dégager les avancées réalisées et les problèmes

persistant, autant dans la réalisation que dans la caractérisation des composants haute

tension en SiC. Ceci permettra notamment de dégager les prospectives d’exploitation à

Introduction Générale.

19

court et moyen termes de la technique de caractérisation OBIC pour contribuer à

l’obtention de composants de puissance en carbure de silicium optimisés et performants.

Introduction Générale.

20

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

21

CHAPITRE 1Le Carbure de silicium : Généralités.1. PROPRIÉTÉS ET APPLICATIONS DU SIC..........................................................23

1.1. POURQUOI SIC ? ET QUELLES APPLICATIONS ?.............................................................23

1.2. QUELQUES DATES IMPORTANTES DANS L’HISTOIRE DU SIC...........................................25

2. LE PHÉNOMÈNE DE CLAQUAGE DANS LE CARBURE DE SILICIUM...........26

2.1. LE CLAQUAGE EN VOLUME. .........................................................................................262.1.1. Le champ critique et les coefficients d’ionisation. .......................................................26

2.1.2. Influence de la température. ......................................................................................29

2.2. LE CLAQUAGE LOCALISÉ. ............................................................................................302.2.1. Nécessité des terminaisons de jonction. ......................................................................30

2.2.2. Influence de la qualité du matériau. ...........................................................................32a) Défauts structuraux. ....................................................................................................... 32

⇒ Les micropores. ........................................................................................................ 33

⇒ Les dislocations vis. .................................................................................................. 33

b) Autres défauts. .............................................................................................................. 33

3. LES DIODES DE PUISSANCE EN SIC. .................................................................34

3.1. LES DIODES BIPOLAIRES. .............................................................................................34

3.2. LES DIODES SCHOTTKY. ..............................................................................................35

3.3. LES JBS (JUNCTION BARRIER SCHOTTKY). ..................................................................36

3.4. CONCLUSION. .............................................................................................................37

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

22

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

23

CHAPITRE 1Le carbure de silicium : Généralités.

La plupart des composants utilisés actuellement dans les différents domaines de

l’électronique sont en silicium. Toutefois les limitations physiques et non

technologiques de ce matériau ont initié la recherche sur d’autres types de matériau et

notamment les composés III-V (GaAs, GaN…) ou des semi-conducteurs tels que SiC.

1. Propriétés et applications du SiC.

1.1. Pourquoi SiC ? Et quelles applications ?

SiC existe sous différentes formes cristallines appelées polytypes on en connaît

plus de 170 à ce jour. Dans cette thèse on ne s’intéressera qu’à deux d’entre eux :

SiC-6H et SiC-4H. Le carbure de silicium possède des propriétés physiques qui le

rendent très attractif pour un large domaine d’applications :

• C’est un matériau à large bande interdite (Eg ≥ 2,3 eV), le nombre de porteurs

intrinsèques est donc très faible par rapport au silicium (ni = 2,3 10-6 cm-3 à

300 K pour SiC-6H), le courant de fuite inverse des dispositifs reste faible à

hautes températures d’où l’intérêt pour des applications à haute température

notamment dans le secteur de l’automobile.

• Son champ électrique critique élevé (Ec = 2 à 3 MV/cm) lui permet de tenir la

tension sur une couche environ 10 fois moins épaisse et 50 fois plus dopée

qu’avec le silicium. Cela permet donc d’améliorer le compromis chute de

tension à l’état passant, tenue en tension. De plus sa conductivité thermique

(λth) est proche de celle du cuivre ce qui en fait un candidat idéal pour des

applications forte puissance dans le domaine de la traction, des protections

de réseau électrique ou de la transmission et de la distribution d’énergie.

• La vitesse de saturation (Vsat) des porteurs deux fois supérieure à celle du

silicium laisse envisager la réalisation de composants hautes fréquences

utilisables particulièrement dans les télécommunications.

CHAPITRE 1Le Carbure de silicium : Généralités.

24

• Ses propriétés mécaniques et sa résistance aux radiations lui permettent d’être

employé dans des milieux hostiles et dans des installations nucléaires ou

spatiales.

Un point négatif est la mobilité des porteurs qui est très faible par rapport à d’autres

matériaux comme le silicium ou GaAs (Tableau 1–1).

Matériau Eg (eV) nià 300 K(cm-3)

εεεεr µµµµn(cm2/V.s)

µµµµp(cm2/V.s)

Ec(MV/cm)

Vsat(107cm/s)

λλλλth(W/cm.K)

Si 1,1 (I) 1,5×1010 11,8 1350 600 0,3 1 1,5GaAs 1,4 (D) 1,8×106 12,8 8500 400 0,4 2 0,5GaP 2,3 (I) 7,7×10-1 11,1 350 100 1,3 1,4 0,8GaN 3,3 (D) 1,9×10-10 9 900 3,3 2,5 1,3

SiC-3C 2,2 (I) 6,9 9,6 900 40 1,2 2 4,5SiC-4H 3,26 (I) 8,2×10-9 10 1000 115 2,9 2 4,5SiC-6H 3 (I) 2,3×10-6 9,7 380 70 2,7 2 4,5

C 5,45 (I) 1,6×10-27 5,5 1900 1600 5,6 2,7 20

Tableau 1–1 : Propriétés physiques de différents matériaux semi-conducteurs.

Les facteurs de mérite permettent de comparer différents matériaux semi-

conducteurs en fonction de leurs propriétés physiques. La figure suivante (Fig. 1–1)

montre les avantages des différents semi-conducteurs en fonction du facteur de mérite

de Johnson (JFM = C satE .V2π

, critère de choix du matériau pour les fortes puissances et

hautes fréquences), du facteur de mérite combiné (CFM = 2th sat C. . .V .Eλ ε µ ) et de la largeur

de la bande interdite.

20

10

0 121

4161

81

1

3

5

GaAs

GaN

Si

SiC-3C

SiC-6HSiC-4H

C

CFM

E g (eV

)

JFM

Fig. 1–1 : Comparaison des différents matériaux semi-conducteurs.

CHAPITRE 1Le Carbure de silicium : Généralités.

25

On constate que le diamant (C) est très avantageux, cependant les étapes

technologiques pour fabriquer les composants restent très difficiles à réaliser. GaN et

SiC sont pour l’instant les meilleurs candidats potentiels pour remplacer le Si.

Au laboratoire les recherches sont axées essentiellement dans le domaine de la

puissance, notamment pour la conception de composants de puissance : diode bipolaire

haute tension (5 kV), thyristor haute tension et limiteur de courant.

1.2. Quelques dates importantes dans l’histoire du SiC.

Le Carbure de silicium a été découvert en 1824 par un suédois lors d’une

expérience pour produire du diamant. Le premier procédé de fabrication est élaboré en

1891 par E. G. Acheson. Mais il faut attendre 1893 pour qu’un scientifique français

découvre SiC à l’état naturel (Moissanite) dans une météorite aux Etats-Unis. Au début

du siècle (1907) les propriétés électroluminescentes du SiC sont découvertes par

l’électronicien H.J. Round. L’exploitation du SiC commence en 1950 avec la mise au

point du procédé de croissance par Lely. Très vite le matériau est abandonné sauf en

U.R.S.S. car les substrats obtenus sont de trop petites tailles. Il faudra attendre la fin des

années 1970 et des nouvelles méthodes de croissance pour relancer la recherche sur SiC.

C’est en 1979 que la première LED en SiC voit le jour. Les premiers composants haute

tension (1000 V pour une diode bipolaire et 400 V pour une diode Schottky)

apparaissent au début des années 1990. Depuis de nombreux démonstrateurs ont été

réalisés confirmant ainsi les potentialités du SiC pour les applications haute tension,

forte puissance. Un fait marquant de l’année 2000 est la commercialisation de dispositifs

en carbure de silicium. Le premier composant à être mis sur le marché (janvier 2000)

par Cree Research Inc. (USA) est un MESFET (10 W, 2GHz, 48 V). Par la suite, c’est

Microsemi Corp. (USA) et Infineon Technologies (Allemagne) qui ont annoncé la

commercialisation de diodes Schottky. La dernière annonce en date (octobre 2000)

concerne le transfert technologique de Daimler Chrysler vers une société américaine

Vishay Intertechnology Inc. en vue d’une commercialisation de diodes Schottky et JBS

(Junction Barrier Schottky).

CHAPITRE 1Le Carbure de silicium : Généralités.

26

2. Le Phénomène de claquage dans le carbure de silicium.

Ce phénomène est caractérisé par la tension de claquage VBR, qui est la tension

maximale que peut supporter un composant à l’état bloqué. Considérons une jonction

PN quelconque. Lorsqu’elle est soumise à une polarisation inverse, le courant mesuré à

ses bornes reste faible et varie très peu avec la tension. Quand la tension de polarisation

est proche de VBR, on constate une variation importante du courant. On dit alors que le

composant est claqué. Cet accroissement du courant peut entraîner la destruction totale

ou partielle du dispositif. Ces variations peuvent être dues à une augmentation du

nombre de porteurs dans tout le dispositif (à la jonction) ou localement.

2.1. Le claquage en volume.

Supposons une jonction plane infinie, alors l’augmentation très rapide du

courant inverse est due à la multiplication par avalanche des porteurs qui participent au

courant. Sous l’effet d’un fort champ électrique, les porteurs sont accélérés et lors d’un

choc avec les atomes du réseau, ils peuvent créer d’autres porteurs, on dit alors qu’il y a

multiplication par avalanche des porteurs (ce phénomène sera décrit plus en détail dans

le chapitre suivant). Pour évaluer théoriquement la tension de claquage des dispositifs il

est nécessaire de connaître le champ critique (Ec) et les coefficients d’ionisation (αn et

αp).

2.1.1. Le champ critique et les coefficients d’ionisation.

Les coefficients d’ionisation sont définis comme le nombre de porteurs créés

par un électron ou par un trou par unité de longueur parcourue parallèlement au champ

électrique (voir CHAPITRE 2 § 1.2.).

Le champ électrique critique est le champ électrique maximal atteint à la

jonction quand V = VBR et qui procure suffisamment d’énergie aux porteurs pour induire

la multiplication par avalanche.

Si on considère une jonction P+NN+ (Fig. 2–1) non tronquée (la largeur de la

zone de charge d’espace (WZCE) quand V = VBR est inférieure à l’épaisseur de la couche

épitaxiée (WN)), alors le champ électrique a un profil triangulaire, on néglige l’extension

CHAPITRE 1Le Carbure de silicium : Généralités.

27

de la ZCE dans la zone la plus dopée. Le champ électrique atteint sa valeur maximale à

la jonction et s’exprime sous la forme suivante :

2 ( / )b brc

qN VE V cmε

= (1)

où q est la charge élémentaire, Nb est le dopage de la couche N et VBR est la

tension de claquage du dispositif et ε la permittivité du matériau.

P+ N N+

x (µm)

E (V/cm)

Wzce

WnEc

Fig. 2–1 : Profil du champ électrique dans une structure P+NN+ à jonction abruptenon tronquée.

Pour améliorer le compromis résistance spécifique à l’état passant/tenue en

tension, on préfère utiliser une couche épitaxiée de plus faible épaisseur et plus dopée,

on a alors une zone de charge d’espace tronquée.

Si l’on considère maintenant une jonction abrupte dont la ZCE est tronquée

(Fig. 2–2) où WZCE ≈ WN quand V = VBR, alors le profil du champ électrique est

trapézoïdal et le champ critique s’écrit :

0

0

( / )brc

V VE V cmW+= (2)

avec

00

2 ( )b

VW cmqNε= (3)

où V0 est la tension nécessaire pour déserter totalement la couche N d’épaisseur

W0.

CHAPITRE 1Le Carbure de silicium : Généralités.

28

P+ N N+

x (µm)

E (V/cm)

W0

Ec

Fig. 2–2 : Profil du champ électrique dans une jonction abrupte P+NN+ tronquée.

Plusieurs études ont été menées afin de déterminer expérimentalement les

coefficients d’ionisation du SiC. A partir de ces résultats, les variations du champ

critique en fonction du dopage de la couche épitaxiée ont été calculées numériquement

(Fig. 2–3). Les valeurs des coefficients d’ionisation et du champ critique ont permis de

tracer des abaques de tenue en tension en fonction des caractéristiques (dopage,

épaisseur) de la couche active (Fig. 2–4). De ce réseau de courbes les auteurs ont pu

déduire une forme analytique permettant d’évaluer la tension de claquage pour une

jonction abrupte non tronquée (Fig. 2–5).

1015 1016 10172,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

3,63,8

4,0

4,24,4

Nb (cm-3)

E c (M

V/cm

)

Ec = 1,52.104.Nb(1/7) SiC-6H [Raghunathan'99]

Ec = 1,64.104.Nb(1/7) SiC-4H [Raghunathan'99]

Ec = 2,49.106/(1-0,25.log(Nb/1016)) SiC-4H [Konstantinov'98]

Fig. 2–3 : Variation du champ critique en fonction du dopage de la couche épitaxiée à300 K.

CHAPITRE 1Le Carbure de silicium : Généralités.

29

1015 1016103

2x103

3x103

4x103

5x1036x1037x1038x1039x103104

SiC-4H [Konstantinov'98]αααα = 4*105exp(-1.67*107/E)

ββββ = 1.63*107exp(-1.67*107/E)

W = 10 µm W = 20 µm W = 30 µm W = 40 µm W = 50 µm

Dopage de la couche active (cm-3)

Tens

ion

de c

laqu

age

(V)

1015 1016103

2x103

3x103

4x103

5x1036x1037x1038x1039x103104 W = 10 µm

W = 20 µm W = 30 µm W = 40 µm W = 50 µm

SiC-4H [Ragunahthan'99]

αααα = 8*104exp(-1.79*107/E)

ββββ = 3.25*106exp(-1.79*107/E)

Dopage de la couche active (cm-3)

Tens

ion

de c

laqu

age

(V)

Fig. 2–4 : Tension de claquage pour différentes épaisseurs de la couche épitaxiée enfonction du dopage à 300 K.

1015 1016 1017102

103

104

VBR = 6.3*1014*Nb(-5/7) SiC-6H [Raghunathan'99]

VBR = 7.5*1014*Nb(-5/7) SiC-4H [Raghunathan'99]

VBR = 1720*(1016/Nb)0.8 SiC-4H [Konstantinov'98]

Dopage de la couche active (cm-3)

V BR (V

)

Fig. 2–5 : Variation de la tension de claquage pour une jonction abrupte nontronquée en fonction du dopage de la couche épitaxiée à 300 K.

2.1.2. Influence de la température.

Comme pour d’autres matériaux, l’effet de la température semble être bénéfique

à la tenue en tension des dispositifs en carbure de silicium. On constate une diminution

des coefficients d’ionisation avec la température [Ragmunahtan’99], ce qui tend à faire

croître la tension de claquage quand la température augmente. En effet lorsque la

température croît, le libre parcours moyen entre deux chocs avec un phonon diminue.

Donc l’apport d’énergie doit être plus important pour obtenir des collisions ionisantes.

On aura donc une meilleure tenue en tension quand la température de jonction sera plus

élevée.

CHAPITRE 1Le Carbure de silicium : Généralités.

30

2.2. Le claquage localisé.

Bien souvent le claquage des dispositifs apparaît pour des tensions inférieures à

la tension de claquage en volume (VBRTH déterminée théoriquement). Cela peut

s’expliquer soit par l’effet de la périphérie de la jonction que nous avons négligé dans le

paragraphe précédent soit par la présence de défauts électriquement actifs ou

structuraux.

2.2.1. Nécessité des terminaisons de jonction.

Lorsqu’on applique une tension inverse sur une jonction plane quelconque, les

équipotentielles tendent à se resserrer aux courbures , en particulier en périphérie de la

jonction (Fig. 2–6). Ceci se traduit par la présence d’un pic de champ électrique très

localisé en bordure du dispositif qui va provoquer le claquage prématuré du composant.

Pour obtenir une tension de claquage la plus proche possible de celle déterminée

théoriquement (VBRTH), il est nécessaire de protéger la périphérie du composant en

permettant une meilleure répartition du potentiel électrique à l’extrémité de la jonction.

Fig. 2–6 : Resserrement des équipotentielles en périphérie d’une jonction P+N.

Il existe plusieurs sortes de protection de jonction couramment employées pour

les composants en silicium [Baliga’87]. Ici nous ne détaillerons que celles qui sont le

plus fréquemment utilisées avec SiC (Fig. 2–7) :

• Les anneaux de garde implantés : ils sont polarisés grâce à l’extension latérale

de la ZCE, ce qui leur permet d’étaler les lignes de potentiel. Toutefois cette

P+

N

Contact

CHAPITRE 1Le Carbure de silicium : Généralités.

31

technologie est difficilement applicable au SiC en raison des faibles

distances inter-anneaux nécessaires et des courtes longueurs d’anneaux pour

obtenir une bonne efficacité.

• Les plaques de champ : le prolongement de la métallisation sur l’oxyde permet

un étalement des équipotentielles en périphérie de l’émetteur. L’efficacité de

cette protection dépend de l’épaisseur d’oxyde et de l’extension de la

métallisation. La qualité de l’interface oxyde/semi-conducteur et notamment

la quantité de charges présentes peut avoir une influence non négligeable sur

l’effet de la protection.

• La protection de type MESA : cette technique est incontournable pour les

diodes dont l’émetteur est épitaxié, elle est aussi employée pour des

composants dont la jonction est réalisée par implantation. La jonction est

terminée par une gravure verticale, ce qui évite la présence d’un fort champ

en périphérie de la zone P+, qui apparaît alors au pied de la gravure

[Lanois’97]. Les paramètres influents sur l’efficacité sont l’angle de gravure

(θ) et la profondeur (p).

• Les extensions de terminaison de jonction implantées que l’on nomme

couramment JTE (Junction Termination Extension) : ce sont des caissons

(poches) de type P moins dopés que l’émetteur. Le claquage intervient

lorsque les poches sont totalement désertées, on obtient alors un pic de

champ maximal équivalent en bord de poche et d’émetteur. La longueur et la

dose d’implantation sont les deux paramètres à optimiser pour assurer une

bonne efficacité de cette protection.

Le choix de la protection pour un composant se fait en fonction de son efficacité et

des contraintes liées à la réalisation technologique. Toutes ces techniques sauf la gravure

MESA sont également utilisées pour les composants unipolaires avec succès. On

retrouve même une combinaison de ces techniques sur des dispositifs haute tension,

[Sugawara’00], pour améliorer l’efficacité de la protection.

La protection par gravure MESA a été étudiée au laboratoire [Planson’94],

[Lanois’97], avant d’être abandonnée au profit des JTE implantées, théoriquement plus

efficace, [Ortolland’97].

CHAPITRE 1Le Carbure de silicium : Généralités.

32

Drain

Anode

Cathode

Emetteur

Couche épitaxiée

Substrat

Anneauxde garde

DrainCathode

Emetteur

Couche épitaxiée

Substrat

Oxyde

(a) (b)

Drain

Anode

Cathode

Emetteur

Couche épitaxiée

q

Substrat

p

Drain

Anode

Cathode

Emetteur

Couche épitaxiée

Substrat

JTE

(c) (d)

Fig. 2–7 : Différentes protections périphériques : (a) anneaux de garde, (b) plaques dechamp, (c) structure MESA, (d) extension latérale de jonction implantée (JTE).

2.2.2. Influence de la qualité du matériau.

On peut distinguer deux types de défauts influant sur la tenue en tension des

dispositifs de puissance en SiC : les défauts intrinsèques au matériau tels que les

micropores ou les inclusions et les défauts introduits par des étapes technologiques

comme l’implantation ionique.

a) Défauts structuraux.

Ce sont des défauts qui apparaissent lors de la croissance du matériau. Ils

peuvent provenir soit du substrat (micropores, dislocations) soit de la couche épitaxiée

(inclusions de polytype SiC-3C…). Leur influence sur le comportement des dispositifs

peut être très néfaste.

CHAPITRE 1Le Carbure de silicium : Généralités.

33

⇒ Les micropores.

Ces défauts apparaissent dans le substrat et se propagent parallèlement à l’axe

de croissance C pouvant ainsi traverser de part en part les différentes couches. Leurs

diamètres peuvent varier de 0,1 µm à quelques dizaines de microns. La présence de

micropores au voisinage d’un composant peut entraîner une diminution de la tenue en

tension (Tableau 2–1). Malgré une évolution dans la qualité du matériau, ces défauts

sont souvent à l’origine du mauvais fonctionnement des dispositifs de grande tailles

[Neudeck’00].

⇒ Les dislocations vis .

Il s’agit certainement du type de défauts le plus néfaste pour les composants de

puissance. Elles influent sur la tenue en tension mais aussi sur le comportement en direct

des dispositifs. Contrairement aux micropores peu de progrès ont été faits pour réduire

leur nombre. Il apparaît assez difficile d’éviter la présence de ce genre de défauts dans

les dispositifs dont la surface excède 1 mm2.

Type dedéfauts

Densité en1995 (cm-2)

Densité en2000 (cm-2)

Source desdéfauts

Impact sur lecomportement électrique

Micropores < 100 < 30 Substrat Réduction du VBR > 50 %,microplasmas, augmentationdu courant de fuite

Dislocationsvis

3000 à10000

3000 à10000

Substrat Réduction du VBR > 50 %,microplasmas, réduction dela durée de vie

Inclusionsde SiC-3C

< 5 Croissance dusubstrat et des

épitaxies

Réduction du VBR > 50 %,augmentation du courant defuite

Tableau 2–1 : Tableau récapitulatif des défauts structuraux et de leurs influences surla tenue en tension [Neudeck’00].

b) Autres défauts.

L’implantation d’ions tels Al ou B pour la création de régions de conductivité

de type P peut ainsi créer des défauts cristallins intrinsèques (lacunes…) ou extrinsèques

(interstitiels…). Ces défauts sont généralement éliminés par un recuit post implantation

adéquat. Cependant certains d’entre eux peuvent subsister et créer des niveaux profonds

dans la bande interdite du SiC. Ces défauts sont généralement à éviter car ils peuvent

provoquer un vieillissement prématuré des dispositifs ou des dysfonctionnements.

CHAPITRE 1Le Carbure de silicium : Généralités.

34

Un inconvénient du SiC est que les niveaux énergétiques que l’on appelle

superficiels de l’aluminium ou du bore sont situés assez loin de la bande de valence

(0,2 eV pour l’Al et 0,3 pour le Bore). Ces valeurs élevées sont responsables du fait qu’à

température ambiante seule une petite fraction des dopants est ionisée. Bien sûr, la

présence d’un champ électrique permet d’ioniser complètement les dopants. Quoiqu’il

en soit, l’ionisation des dopants en fonction de la température ainsi que la présence de

défauts profonds peut contribuer à une instabilité du comportement sous polarisation

inverse et de la tenue en tension [Neudeck’96], notamment lors de l’étude en régime

pulsé. Cela peut aussi donner lieu à une diminution de la tension de claquage lorsque

l’on augmente la température [Lebedev’97].

3. Les diodes de puissance en SiC.

L’une des applications des diodes de puissance SiC est l’utilisation de ces

composants dans les cellules de commutation des convertisseurs de puissance. La

réalisation récente de démonstrateurs de cellules de commutation utilisant des diodes

SiC (IGBT Si/PiN SiC, [Lendenmann’00], IGBT Si/ Schottky SiC [Peters’01]) a permis

de confirmer expérimentalement les améliorations apportées par l’utilisation du SiC en

électronique de puissance (diminution des pertes, fonctionnement à haute

température…). Il est important de souligner que les diodes utilisées dans ces modules

sont de grande taille et ont été réalisées volontairement sur des zones du substrat

exempts de défauts (micropores, dislocations vis).

3.1. Les diodes bipolaires.

Les premières diodes capables de tenir des tensions élevées (1000 V à 4500 V)

étaient des structures protégées par gravure MESA et de petite taille [Kordina’95].

Aujourd’hui, grâce notamment à l’amélioration de la qualité du matériau et à

l’augmentation de la vitesse de croissance des couches épitaxiées permettant l’obtention

de couches de plus en plus épaisses, de nombreux prototypes de grande taille (≥ 1 mm2)

ont une tenue en tension proche de 5 kV. Les jonctions principales de ces dispositifs

sont généralement réalisées par implantation dans des couches épitaxiées de SiC-4H,

toutefois certains démonstrateurs présentent un émetteur épitaxié. Les terminaisons de

CHAPITRE 1Le Carbure de silicium : Généralités.

35

jonction employées sont souvent une combinaison de plusieurs techniques (MESA et

JTE, double JTE…). Les performances des dispositifs présentant un bon compromis

chute de tension à l’état passant/tenue ne tension sont reportées dans le Tableau 3–1.

A noter que le record de tenue en tension d’une diode bipolaire est aujourd’hui

de 12,3 kV. Ce résultat obtenu sur un dispositif de petite taille a été annoncé par Cree

Research Inc. en octobre 1999 sans préciser les performances sous polarisation directe

du composant.

Référence [Kordina’95] [Peters’00] [Sugawara’00] [Lendenmann’01]Caractéristiques

de la coucheactive

45 µm1×1015 cm-3

SiC-6H

39 µm2×1015 cm-3

SiC-4H

50 µm1×1015 cm-3

SiC-4H

45 µm1,8×1015 cm-3

SiC-4HType d’émetteur Implanté Al Epitaxié Implanté Al-B

Type deprotection

périphérique

MESA Double JTE MESA – JTE JTE

Passivation Oxyde +nitrure

- Oxyde Oxyde

Jd (A/cm2)Vd (V)

1006

803,7

1004,7

1003,4

Jr (A/cm2)VBR (kV)

94,5 4,8 6,2 > 5

VBR calculé (kV) > 6,5 5,5 7,6 5,8Surface 2,2 mm² 3,14×10-2 mm² 20 mm²

Tableau 3–1 : Caractéristiques à 300 K des diodes bipolaires répertoriées dans lalittérature.

3.2. Les diodes Schottky.

Ce sont les premiers composants de puissance en SiC à être commercialisés. La

société américaine Microsemi associée à Sterling Semiconductor (un fournisseur de

substrats SiC), est la première en avril 2000 à annoncer la mise sur le marché des

Schottky en SiC (480 V – 1 A). C’est à partir du moi d’avril 2001, que des Schottky

(300 V – 10 à 20 A et 600 V 2 à 6 A) seront disponibles chez Infineon Technologies

(anciennement Siemens Semiconductors). Les caractéristiques de ces composants et

notamment en terme de tenue en tension sont supérieures à celles des Schottky Si

commercialisées (100 à 200 V – qq. 10 A).

CHAPITRE 1Le Carbure de silicium : Généralités.

36

Des démonstrateurs haute tension (> 1 kV) se sont multipliés ces derniers

temps. Toutefois un grand nombre de ces composants sont réalisés avec des couches très

épaisses afin de tenir la tension, augmentant ainsi la résistance spécifique à l’état

passant (Ron) et limitant les performances sous polarisation directe. Ces études mettent

souvent en évidence la difficulté à réaliser des protections périphériques efficaces pour

les Schottky. Les caractéristiques de quelques composants les mieux optimisés sont

présentées dans le Tableau 3–2.

Référence [Alok’96] [Wahab’00] [Peters’01]Caractéristiques de la couche active 10 µm

8×1015 cm-3

SiC-4H

27 µm7×1014 cm-3

SiC-4H

13 µm5×1015 cm-3

SiC-4HType de protection périphérique Implantation

d’argonPlaque de

champJTE

Passivation - Oxyde PhotoimideJd (A/cm2) - Vd (V) 100 .- 1,19 100 – 3,9 250 – 1,7

Jr (A/cm2) - VBR (kV) < 10 – 1,33 5×10-6 – 3,56 4×10-5 – 1,2VBR calculé (kV) 1,7 5,2 2,5

Surface 7,06 mm² 10 mm²

Tableau 3–2 : Caractéristiques à 300 K des meilleurs démonstrateurs.

3.3. Les JBS (Junction Barrier Schottky).

Depuis deux ans un grand nombre de prototypes de ce composant ont vu le jour.

Ce dispositif réalisé par un contact Schottky sur une grille de jonction P+N permet de

cumuler les avantages de la Schottky en direct (faible chute de tension à l’état passant)

et de la diode bipolaire sous polarisation inverse (faible courant de fuite, tenue en

tension élevée). Sous polarisation directe le courant passe par les multiples canaux sous

le contact Schottky. En inverse une ZCE se crée autour des jonctions P+N et s’étale dans

le canal avant de le bloquer (Fig. 3–1), ce qui permet d’éviter la présence d’un fort

champ à la jonction métal/semi-conducteur. L’espacement des caissons P+ et le rapport

surface de contact Schottky sur la surface totale sont des paramètres à optimiser pour

obtenir les meilleures caractéristiques.

CHAPITRE 1Le Carbure de silicium : Généralités.

37

Fig. 3–1 : Schéma d’une JBS en coupe avec le trajet du courant direct.

Les démonstrateurs les plus performants, répertoriés dans la littérature sont

présentés dans le tableau suivant (Tableau 3–3).

Référence [Singh’00] [Dahlquist’00] [Sugawara’00a] [Tone’00] [Sheridan’01]Caractéristiques

de la coucheactive

20 µm2×1015 cm-3

SiC-4H

27 µm3×1015 cm-3

SiC-4H

50 µm1,8×1015 cm-3

SiC-4H

13 µm7×1015 cm-3

SiC-4H

30 µm2,5×1015 cm-3

SiC-4HType de

protectionpériphérique

JTE JTE JTE JTE Anneaux degarde

Passivation Oxyde Oxyde - Oxyde Oxyde +PolySi

Jd (A/cm2)Vd (V)

2003,1

1002

1006

6004

1002,73

Jr (A/cm2)VBR (kV)

3×10-4

1,5-

2,8> 50×10-3

3,63×10-3

1-

2,5VBR calculé (kV) 3,5 3,8 6 2 4,4

Rapport desurface

- 50 % 50 % - -

Surface - - 9×10-2 mm² 3,13 mm² -

Tableau 3–3 : Caractéristiques à 300 K des JBS répertoriées dans la littérature.

3.4. Conclusion.

Compte tenu des résultats publiés et malgré les progrès effectués ces dernières

années (qualité du matériau, maîtrise des étapes de fabrication…), il semble difficile

d’obtenir des dispositifs de grande taille, performants en direct et en inverse avec un

rendement de fabrication élevé. Les résultats présentés dans les tableaux précédents

CHAPITRE 1Le Carbure de silicium : Généralités.

38

témoignent d’un écart non négligeable entre la tenue en tension théorique et

expérimentale. Ces différences peuvent provenir d’une part, d’une estimation incorrecte

de la tension de claquage théorique, et d’autre part d’une mauvaise efficacité des

protections périphériques. Afin de mieux évaluer la tenue en tension des composants

SiC, il apparaît donc indispensable de connaître précisément les coefficients d’ionisation

du SiC et d’identifier les mécanismes responsables d’une dégradation des performances

des protections périphériques. Ces deux thèmes constituent l’essentiel des travaux

présentés dans ce mémoire.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

39

CHAPITRE 2Mesure des coefficients d’ionisation du SiC–6Hpar la technique OBIC.1. QUELQUES RAPPELS SUR LES COEFFICIENTS D’IONISATION. ..................41

1.1. LE FACTEUR DE MULTIPLICATION M. ...........................................................................41

1.2. LES DIFFÉRENTS MODÈLES DES COEFFICIENTS D’IONISATION. .......................................441.2.1. Modèle de WOLFF. ...................................................................................................44

1.2.2. Modèle de SHOCKLEY. .............................................................................................44

1.2.3. Modèle de BARAFF. ..................................................................................................45

1.3. DÉTERMINATION EXPÉRIMENTALE DE αN ET αP: ÉTAT DE L’ART ....................................46

1.3.1. Les différentes méthodes et structures de tests. ...........................................................46a) Les dispositifs à gain interne. ......................................................................................... 46

b) Création de porteurs en excès dans les diodes bipolaires ou Schottky................................ 46

⇒ Cas d’une injection pure d’électrons. ......................................................................... 47

⇒ Cas d’une injection pure de trous. .............................................................................. 48

⇒ Cas d’une génération dans la ZCE.............................................................................. 48

1.4. LES COEFFICIENTS D’IONISATION DANS LE SIC.............................................................49

1.4.1. Les valeurs de αn et αp de A. O. Konstantinov dans le SiC–4H.....................................50

1.4.2. Les valeurs de αn et αp de R. Raghunatan dans le SiC–6H et SiC–4H en fonction de la

température. ......................................................................................................................................50

2. LE BANC EXPÉRIMENTAL D’OBIC....................................................................51

2.1. PRINCIPE DE FONCTIONNEMENT. ..................................................................................522.1.1. Principes physiques. ..................................................................................................52

2.1.2. Expression théorique du photocourant. ......................................................................55a) Expression du photocourant dans la zone de charge d’espace. ........................................... 56

b) Expression du photocourant dans les zones neutres. ......................................................... 57

2.1.3. Spécificités liées au SiC. ............................................................................................58

2.2. LE BANC DE MESURES, FONCTIONNEMENT GÉNÉRAL ET UTILISATIONS. .........................582.2.1. Fonctionnement général. ...........................................................................................59

2.2.2. Caractéristiques du banc expérimental d’OBIC. .........................................................59

3. CHOIX DE LA MÉTHODE ET VALIDATION. .....................................................61

3.1. CHOIX DU DISPOSITIF DE TEST. ....................................................................................61

3.2. DESCRIPTION DE LA MÉTHODE ET VALIDATION PAR SIMULATION. .................................623.2.1. Simulation d’une injection pure de trous ou d’électrons. .............................................62

3.2.2. Simulation d’une injection mixte de porteurs. .............................................................64

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

40

3.2.3. Détermination des coefficients d’ionisation à partir des mesures OBIC d’une Schottky de

type N. ..............................................................................................................................................67

4. CONCEPTION ET RÉALISATION DU DISPOSITIF DE TEST. ..........................69

4.1. CONCEPTION DU VÉHICULE–TEST AVEC L’OUTIL ISE....................................................704.1.1. Rôle des paramètres des JTE sur la tenue en tension...................................................73

4.1.2. Rôle des caractéristiques de la couche épitaxiée sur la tenue en tension. .....................74

4.2. RÉALISATION DES DIODES SCHOTTKY. .........................................................................75

5. MESURES................................................................................................................76

5.1. CARACTÉRISATION DES DIFFÉRENTS PARAMÈTRES TECHNOLOGIQUES. ..........................765.1.1. Caractéristiques de la couche épitaxiée......................................................................76

5.1.2. Paramètres des JTE...................................................................................................78

5.1.3. Caractéristiques électriques.......................................................................................80

6. CONCLUSION. .......................................................................................................81

-

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

41

CHAPITRE 2Mesure des coefficients d’ionisation du SiC–6Hpar la technique OBIC.

Cette étude porte sur la détermination des coefficients d’ionisation des électrons

et des trous dans SiC-6H à l’aide de mesures OBIC. Ces coefficients sont des paramètres

importants pour évaluer la tenue en tension des dispositifs de puissance lors de leur

conception. Les écarts constatés entre les valeurs théoriques et pratiques des tensions de

claquages des différents composants sont en partie dus à l’incertitude sur les valeurs des

coefficients d’ionisation utilisées. Ceci est confirmé par la multitude de valeurs

présentées dans la littérature. Avant de rappeler les principes physiques régissant la

méthode OBIC, il est nécessaire d’aborder l’aspect théorique et pratique de la

détermination des coefficients d’ionisation.

1. Quelques rappels sur les coefficients d’ionisation.

Les électrons et les trous, soumis à l’action d’un fort champ électrique (proche

du champ critique), sont accélérés et acquièrent une énergie cinétique suffisante (Ei)

pour créer des paires électron–trou lors de chocs avec les atomes du réseau : c’est

l’ionisation des atomes par impact avec un électron ou un trou. Les porteurs générés

peuvent à leur tour engendrer la création de nouvelles paires électron–trou sous l’effet

du champ électrique qui les accélèrent. Ce phénomène cumulatif est appelé

multiplication par avalanche. C’est en 1953 que ce mécanisme est mis en évidence par

K.G. Mc Kay et K.B. Mc Afee, [Mc Kay’53] en créant des porteurs en excès dans des

jonctions PN à l’aide de faisceaux lumineux et de particules alpha. Il est caractérisé par

le facteur de multiplication M et les coefficients d’ionisation αn (pour les électrons) et

αp (pour les trous).

1.1. Le facteur de multiplication M.

M est défini comme le rapport du nombre de porteurs recueillis sur le nombre de

porteurs injectés dans la ZCE. Supposons une jonction plane infinie sous forte

polarisation inverse, la multiplication des porteurs a lieu dans la ZCE, là où le champ est

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

42

le plus important. Le courant d’électrons injecté dans la ZCE est Jn(0). Le nombre

d’électrons participant au courant augmente donc avec la distance à travers la ZCE et le

courant recueilli est MnJn(0). A partir de la figure présentée ci–dessous (Fig. 1–1) et en

supposant que la vitesse des porteurs est constante dans la structure on peut donc écrire :

0n

nn

J (W )MJ ( )

= (4)

et pp

p

J ( 0 )M

J (W )= (5)

P+ N

ZCE

Xjx

0 W

E

Jp(W)Jn(0)

ElectronsTrous

Fig. 1–1 : Jonction P+N soumise à une forte polarisation inverse.

Sachant que αn et αp sont les coefficients d’ionisation des électrons et des trous,

on peut donc décrire les variations des courants comme suit :

n n n p pJ J x J xα α∂ = − ∂ − ∂ (6)

dans le cas d’une injection d’électrons

et

p p p n nJ J x J xα α∂ = ∂ + ∂ (7)

dans le cas d’une injection de trous

avec :

( )2= + =n pJ( x ) J ( x ) J ( x ) Cste A / cm (8)

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

43

( )20= = =n

n nn n

J (W ) J(W )J (0 ) J A / cmM M

(9)

et ( )= = =p 2p p0

p p

J ( 0 ) J(0 )J (W ) J A / cmM M

(10)

En remplaçant Jp dans l’équation (6) par son expression en fonction de Jn et de J

et en résolvant cette équation on obtient :

0 00

0

x x

p n n px[ ( x )- ( x )] x' [ ( x )- ( x )] x'

n n pJ ( x ) exp J J ( x ).exp xα α α α

α∂ ∂ ∫ ∫ = + ∂

∫ (11)

On calcule alors Jn(W) et on divise cette valeur par Jn0 on obtient ainsi Mn en

fonction de αn et αp :

0

0

− ∂

− ∂

∫=

∫− ∂∫

W

n p

W

n px

[ ( x ) ( x )] x

nW [ ( x ) ( x )] x'

p

expM

1 ( x ).exp x

α α

α α

α

(12)

Après simplification de cette équation on obtient :

0

0

x

n p

nW [ ( x ) ( x )] x'

n

1M

1 ( x ).exp xα α

α− − ∂

=∫

− ∂∫(13)

De la même manière en résolvant l’équation (7) on obtient :

0

W

n px

pW [ ( x ) ( x )] x'

p

1M

1 ( x ).exp xα α

α− ∂

=∫

− ∂∫(14)

Lorsque Mn ou Mp tendent vers l’infini, alors la tension de claquage du

dispositif est atteinte. Cela revient à dire que l’intégrale d’ionisation

0

W

n px

W [ ( x ) ( x )] x'

p pI ( x ).exp xα α

α− ∂∫

= ∂∫ , pour les trous ou 0

0

x

n pW [ ( x ) ( x )] x'

n nI ( x ).exp xα α

α− − ∂∫

= ∂∫ ,

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

44

pour les électrons est égale à 1. C’est généralement le critère utilisé dans les simulateurs

pour déterminer la tension de claquage d’un composant.

1.2. Les différents modèles des coefficients d’ionisation.

αn et αp sont déterminés comme le nombre de collisions ionisantes que

provoque chaque porteur par unité de longueur parcourue parallèlement au champ

électrique.

La plupart des modèles décrivant le phénomène d’ionisation par impact se

basent sur un modèle local en supposant que l’ionisation dépend uniquement du champ

électrique local, on a donc :

[ ]=i i( x ) f E( x )α (15)

1.2.1. Modèle de WOLFF.

Dans ce modèle il est considéré que les porteurs atteignent l’énergie

d’ionisation Ei malgré les chocs avec les phonons. L’auteur [Wollf’54], fait donc

l’hypothèse que l’énergie perdue lors d’une collision avec un phonon est très inférieure

à celle acquise entre deux chocs. Dans ces conditions, en résolvant l’équation de

transport de Boltzmann on a :

− = 2

bEa.expα (16)

E : champ électrique.

Or l’hypothèse effectuée n’est valable que pour les forts champs électriques.

1.2.2. Modèle de SHOCKLEY.

Shockley [Shockley’61] fait ici l’hypothèse que les porteurs qui participent à

l’ionisation par impact ne subissent pas de chocs avec les phonons, ce sont des électrons

ou des trous “chanceux”.

− =

i

R

EqL Eb.expα (17)

q : charge élémentaire

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

45

LR : libre parcours moyen.Ei : énergie d’ionisation.

Cette théorie a l’avantage de prendre uniquement en compte des porteurs

ionisants ayant une vitesse parallèle à la direction du champ électrique mais elle n’est

valable que dans une gamme de faibles valeurs de E. Cette définition des coefficients

d’ionisation est en accord avec la formule empirique donnée par Chynoweth

[Chynoweth’58] :

.expb

Eaα−

= (18)

1.2.3. Modèle de BARAFF.

La spécificité de cette théorie est de prendre en compte certaines

caractéristiques du matériau comme le libre parcours moyen LR, l’énergie perdue lors

d’une collision avec un phonon ER et l’énergie d’ionisation Ei. De plus Baraff

[Baraff’62] a démontré que son modèle était valable pour toutes les valeurs de champ

électrique, il retrouve d’ailleurs les expressions de Wolff et de Shockley comme cas

limites. Son modèle a été revu par Crowell et Sze [Crowell’66] et prend en compte

l’énergie moyenne perdue lors d’une collision RE⟨ ⟩ et non ER.

( )2

2 4

2 4

2

0

1 .exp

11,5 1,7 3,9 1046 11,9 1,75 10

757 75,5 1,92

,

tanh

ax bx c

R

iR

i R

R R R

R

La r rb r rc r r

EEr xE qL E

E L EE L kT

α + +

=

= − + ×= − + ×

= − + −⟨ ⟩= =

⟨ ⟩ = =

(19)

Un autre avantage de cette approche est la prise en compte de la température,

car RE⟨ ⟩ , LR sont des valeurs qui dépendent de la température.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

46

1.3. Détermination expérimentale de αn et αp: état de l’art

La méthode utilisée pour obtenir les valeurs des coefficients d’ionisation est

basée sur la mesure du facteur de multiplication. A partir des résultats de M obtenus et

de différentes hypothèses on extrait les valeurs de αn et αp en fonction des variations du

champ électrique. Ceci nécessite une connaissance très précise de la répartition et des

variations de E dans la structure de test.

1.3.1. Les différentes méthodes et structures de tests.

De nombreuses structures ont été utilisées pour extraire les coefficients

d’ionisation, on peut toutefois distinguer deux catégories de composants, ce qui suppose

des techniques de mesure différentes.

a) Les dispositifs à gain interne.

Le transistor bipolaire dont la jonction base–collecteur est le siège de la

multiplication comporte deux avantages [Maes’90]. Le premier est la possibilité de

contrôler très précisément le courant d’émetteur et le second est de multiplier par β

(gain du transistor) le courant de multiplication. Les trous générés par l’ionisation des

atomes par les électrons injectés dans le collecteur vont créer un courant qui se

superpose au courant de base. On obtient ainsi une décroissance du courant de base

proportionnelle au facteur de multiplication et au courant d’émetteur. Ce qui permet

d’extraire les coefficients d’ionisation pour des faibles valeurs de M.

B BC E BCI (V ) I ( M(V )- 1)∆ = (20)

Pour le JFET [Sayle’71] malgré son gain interne qui permet de mesurer M pour

des valeurs de champ faibles, il est difficile de connaître avec exactitude le profil du

champ dans la région d’avalanche (canal).

b) Création de porteurs en excès dans les diodes bipolaires ouSchottky

De nombreuses mesures ont été effectuées sur des diodes bipolaires ou Schottky

avec différentes protections périphériques. Dans ce type de structures le profil du champ

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

47

électrique est plus facile à déterminer que dans le cas du JFET. Pour le déterminer avec

exactitude il est nécessaire de connaître le profil de dopage de la jonction. Plusieurs

méthodes comme les mesures C(V) ou les analyses SIMS sont souvent employées et

permettent d’obtenir des résultats relativement précis.

Pour mesurer plus précisément M, ces composants nécessitent une création de

porteurs en excès par un faisceau lumineux ou électronique. Nous nous intéresserons ici

uniquement aux porteurs générés optiquement. Les paires électron–trou résultant de

l’absorption des photons sont soumises au champ électrique présent dans le composant.

Si E est suffisamment grand apparaît alors l’ionisation par impact. Les variations du

facteur de multiplication se traduisent alors par l’accroissement du photocourant :

0

= ph

ph

J (V )M(V )

J (V ) (21)

Jph(V) est la densité de courant photogénéré à une tension V donnée.

Jph(V0) est la densité de courant photogénéré à la tension V0 donnée, pour

laquelle il n’y a pas de multiplication des porteurs.

Cette technique de mesure présente plusieurs avantages. Elle permet d’une part

l’étude d’une zone bien précise (éclairement local) et d’autre part de favoriser en

adaptant la longueur d’onde du faisceau incident la multiplication de l’un des types de

porteurs.

⇒ Cas d’une injection p ure d’électrons.

Lorsqu’on éclaire une jonction P+N avec un faisceau de longueur d’onde (λ) très

courte, donc lorsque la photogénération a lieu à proximité de la surface (voir Fig. 2–2),

alors on considère que seuls les électrons participent à la multiplication et donc M = Mn.

Cette approximation peut entraîner des erreurs assez importantes et notamment pour les

matériaux pour lesquels αn << αp. Pour les diodes Schottky de type N on obtient une

injection d’électrons quand φb < hc/λ < Eg, (φb est la hauteur de barrière de la diode

Schottky) ceci reste très difficile à réaliser. Pour obtenir une injection de ce type dans

une Schottky P il faudrait éclairer le dispositif en face arrière par une longueur d’onde

suffisamment longue pour créer des porteurs proches de la ZCE.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

48

⇒ Cas d’une injection p ure de trous.

L’obtention de ce type d’injection dans une jonction P+N nécessite soit un

éclairement latéral directement dans la région N ou en face arrière de manière à générer

des porteurs proches de la ZCE. Si on éclaire la région P+, deux conditions sont

nécessaires pour considérer que l’ionisation est dominée par les trous (M = Mp). La

longueur d’onde doit être relativement longue (proche de λc définie comme la longueur

d’onde pour laquelle les photons ont une énergie égale à la largeur de la bande interdite

du semi–conducteur photoexcité). Les couches de la structure utilisée doivent être

dimensionnées pour que la multiplication des porteurs générés dans la ZCE soit

inférieure à celle engendrée par les trous créés optiquement dans la zone N. Il en est de

même pour les Schottky de type N. Pour la Schottky de type P on a une injection de

trous si φb < hc/λ < Eg.

⇒ Cas d’une génératio n dans la ZCE

Considérons une jonction quelconque (P+N) soumise à un éclairement de

longueur d’onde λ. Si la longueur de pénétration Lp est supérieure à la profondeur de

jonction Xj alors on a génération de porteurs dans la ZCE et dans les zones neutres (P+ et

N). La jonction est donc soumise à une injection simultanée des trous et des électrons de

part et d’autre de la ZCE siège d’une génération de porteurs g(x). On a donc

pnn n p p

JJ J J qg( x )x x

α α∂∂ = − = − − +

∂ ∂ (22)

avec = + =ph n pJ ( x ) J ( x ) J ( x ) Cste

En résolvant l’équation différentielle avec les conditions aux limites suivantes

Jn(0) = JP,n et Jn(W) = Jph–JN,p, on obtient :

( )0

20

0

− ∂ − ∂

− ∂

∫ ∫+ + ∂

=∫

− ∂

W W

n p n px

W

n px

W[ ( x ) ( x )] x [ ( x ) ( x )] x'

N ,p P,n

phW [ ( x ) ( x )] x'

p

J J exp qg( x )exp xJ A / cm

1 ( x ).exp x

α α α α

α α

α

(23)

où l’on reconnaît Mn et Mp et on identifie MZCE.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

49

00

0

W

n px

W

n px

W [ ( x ) ( x )] x'

WZCE

W [ ( x ) ( x )] x'

p

qg( x )exp xM .q g( x ) x

1 ( x ).exp x

α α

α α

α

− ∂

− ∂

∫∂

∂ =∫

− ∂

∫∫

∫(24)

le coefficient global M(V) s’écrivant :

0 0

+ += =ph n P,n p N ,p ZCE ZCE

ph ph

J (V ) M J M J M JM(V )

J (V ) J (V )(25)

où JP,n est la densité de courant photogénéré d’électrons en zP (Voir CHAPITRE 2 §2.1.2)JN,p est la densité de courant photogénéré de trous en zN (Voir CHAPITRE 2 § 2.1.2)JZCE est la densité de courant photogénéré dans la ZCE (Voir CHAPITRE 2 § 2.1.2).

Malgré une meilleure approximation de E la résolution des intégrales

d’ionisation (Voir CHAPITRE 2 § 1.1) reste complexe, il est donc difficile d’en extraire

αn et αp. Pour simplifier les équations, Van Overstraeten [Van Overstraeten’70] suppose

que le rapport k = αn/αp est constant et que la variation de αn et αp en fonction du champ

est du type a.exp–b/E. Ceci lui permet d’avoir Mn(V) et Mp(V) mesurés pour une injection

pure d’électrons ou de trous, en fonction d’un seul coefficient d’ionisation. Ces

hypothèses lui permettent d’obtenir de bons résultats, mais ne peuvent être appliquées à

tous les matériaux car le rapport k peut varier dans certains matériaux suivant la gamme

de champ électrique présent dans la structure. D’autres résultats ont été obtenus en

utilisant des méthodes plus rigoureuses et notamment en prenant en compte la variation

de la ZCE en fonction de la tension pour le calcul de M [Woods’73]. A noter que le

dispositif utilisé est une diode Schottky.

1.4. Les coefficients d’ionisation dans le SiC.

Les valeurs de αn et αp présentées dans la littérature ont la particularité d’être

assez inhomogènes. Toutefois tous les auteurs s’accordent à dire que l’ionisation par

impact dans SiC–6H ou SiC–4H est dominée par les trous (αp > αn). Dans ce paragraphe,

seuls les résultats obtenus par A. O. Konstantinov pour SiC–4H et ceux de R.

Raghunathan pour SiC–6H et 4H seront présentés. Ces jeux de paramètres sont

couramment employés dans les simulateurs comme Medici ou ISE.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

50

1.4.1. Les valeurs de αn et αp de A. O. Konstantinov dans leSiC–4H.

Le dispositif choisi par l’auteur pour extraire αn et αp est une diode bipolaire

P+N Mésa à pentes négatives [Konstantinov’98]. La technique utilisée pour la protection

périphérique de la jonction émettrice permet d’obtenir un claquage en volume du

dispositif et non en périphérie comme c’est souvent le cas. Le courant d’avalanche

mesuré est initié par le champ électrique en volume et non par le champ électrique en

périphérie. Les couches N et N+ ont été réalisées par VPE (Vapour Phase Epitaxy) sur

un substrat de type P+. La diode est éclairée à λ = 325 nm (longueur de pénétration

Lp = 7,4 µm) par la face N+. On peut donc supposer que l’on se trouve dans le cas d’une

injection pure de trous (les épaisseurs des couches N et N+ ne sont pas connues) et donc

M = Mp. Les expressions de αn et αp sont obtenues en faisant coïncider la courbe

expérimentale de M et les résultats de simulation de la structure de test. Dans le calcul

de M l’auteur ne tient pas compte de l’effet de l’étalement de la ZCE sur le courant

photogénéré ce qui peut induire une erreur non négligeable surtout pour les faibles

valeurs de E.

71,67×10-7 Ep = 1,63×10 expα (26)

71,67×10-5 En = 4×10 expα (27)

1.4.2. Les valeurs de αn et αp de R. Raghunatan dans le SiC–6Het SiC–4H en fonction de la température.

La structure de test est une diode Schottky de type P en SiC–6H et SiC–4H dont

la protection périphérique est réalisée par implantation ionique d’argon pour amorphiser

le semi–conducteur en surface, [Raghunatan’97]. Le dispositif est bombardé par un

faisceau d’électrons dont on ne connaît pas l’énergie qui génère des porteurs induisant

un courant. L‘épaisseur de la couche épitaxiée est environ de 2 µm et le dopage varie de

6×1015 cm-3 à 1×1016 cm-3 selon le cas. Les auteurs émettent trois hypothèses pour

simplifier l’expression du facteur de multiplication :

• E constant dans la couche épitaxiée

• M = MP

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

51

• αp >> αn

Alors M peut s’écrire : ( )exp= pWM α

Des mesures à température ambiante il est déduit :

71,48 1062,5 10 exp

− ×

= × Epα pour SiC–6H (28)

71,7 1063,5 10 exp E

pα− ×

= × pour SiC–4H (29)

En considérant M = Mp, les auteurs négligent la multiplication dans la ZCE, ce

qui induit une erreur non négligeable sur les valeurs de αp dans la gamme de champ

étudiée.

La même procédure est exploitée pour connaître la dépendance en température,

dans la gamme [300, 500] K, [Raghunatan’99].

71,48 106 3( , ) (4,6 10 7, 4 10 )exp E

p T E Tα− ×

= × − × pour SiC–6H (30)

71,79 106 4( , ) (6,3 10 1,07 10 ) exp E

p T E Tα− ×

= × − × pour SiC–4H (31)

2. Le banc expérimental d’OBIC.

Les méthodes faisant intervenir des faisceaux lumineux, sont couramment

employées pour la caractérisation des matériaux et des dispositifs ( Photoluminescence,

DLOS, OBIC….). C. G. B. Garrett et W. H. Brattain en 1956 [Garrett’56] sont les

premiers à utiliser les mesures optiques pour caractériser le claquage de dispositifs.

Depuis, la méthode OBIC (Optical Beam Induced Current) ou LBIC (Light Beam

Induced Current) est fréquemment employée pour étudier le comportement électrique

des composants dans des domaines comme l’optoélectronique ou l’électronique de

puissance.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

52

2.1. Principe de fonctionnement.

Les principaux mécanismes physiques mis en jeu sont ici décrits en tenant

compte des spécificités et des incertitudes sur les grandeurs physiques des différents

polytypes du SiC.

2.1.1. Principes physiques.

Plaçons–nous dans le cas théorique où une jonction pn faiblement polarisée en

inverse est éclairée latéralement par un faisceau laser de longueur d'onde λ focalisé à la

surface du semi–conducteur. La photoexcitation du matériau par un faisceau

suffisamment énergétique (hc/λ ≥ Eg) donne lieu à des transitions bande à bande qui

génèrent des paires électron–trou : c’est le phénomène d’absorption optique intrinsèque.

Dans le cas où le faisceau optique ne serait pas assez énergétique les porteurs peuvent

être créés par des transitions indirectes assistées par des niveaux profonds de la bande

d’énergie interdite : c’est l’absorption optique extrinsèque.

Plaçons–nous dans le cas d’une absorption optique intrinsèque. Les porteurs

photogénérés dans la zone de charge d’espace vont être séparés, accélérés par le champ

électrique qui règne dans la zone de charge d’espace (ZCE) puis collectés aux bornes du

dispositif où l’on mesure le courant photogénéré. Dans le cas où les porteurs sont

générés dans une zone où le champ électrique est négligeable aucun signal n’est détecté

(Fig. 2–1). L’amplitude du signal mesuré varie ainsi suivant le point d’injection des

porteurs. Ce schéma montre que le signal OBIC est maximal lorsque les porteurs sont

générés dans la zone de charge d’espace et qu’il varie de façon exponentielle lorsqu’on

s’en éloigne, jusqu'à devenir nul. Si les porteurs ne sont pas injectés dans la ZCE ils

vont diffuser avant de se recombiner (si d, définie comme la distance entre le point

d’injection et le bord de la ZCE, est supérieure à la longueur de diffusion des porteurs

minoritaires Ld) ou diffuser et atteindre la ZCE (si d ≤ Ld).

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

53

Sig

nal O

BIC

X

P+ N

ZCE

Flux de photons

génération optique

X

Z

Fig. 2–1: Signal OBIC d’une jonction polarisée sous faible tension inverse enfonction du point d’injection des porteurs.

Supposons maintenant une jonction plane infinie polarisée en inverse à une

tension donnée V, ce qui implique une profondeur de zone de charge d’espace constante

W. Si on éclaire le dispositif perpendiculairement à la jonction en faisant varier la

longueur d’onde à puissance optique transmise constante P, alors on remarque une

variation du courant collecté (Fig. 2–2). L’absorption optique intrinsèque est

caractérisée par le coefficient d’absorption α qui est lié à l’indice complexe de

réfraction du semi–conducteur (N = n + ik) et à la longueur d’onde d’éclairement par la

relation 4 kπα =λ

. Donc lorsque λ diminue α augmente et les porteurs photogénérés sont

créés à proximité de la surface du semi–conducteur. Plus la longueur d’onde est courte

moins il y a de porteurs photogénérés dans la zone désertée et donc plus le courant

collecté sera faible si l’on néglige la participation des porteurs générés hors ZCE :b

OBICS f ( ) A exp − λ = λ . Cette loi n’est valable que si les longueurs d’onde d’éclairement

utilisées sont inférieures à la longueur d’onde critique (λc définie comme la longueur

d’onde pour laquelle les photons ont une énergie égale à la largeur de la bande interdite

du semi–conducteur photoexcité).

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

54

Sign

al O

BIC

(A)

Position du spot (µm)

P+

N

ZCE

Flux de photons

Génération optiquesuivant la longueur d'onde

d'éclairement

Wzce

Anode

Cathode

λ2

λ3

λ1

l3 < l2 < l1

x

Z

N+

Fig. 2–2 : Variation du Signal OBIC en fonction de la longueur d’onde d’éclairementpour une tension V donnée à puissance optique transmise P constante.

Le second paramètre influant sur les variations du signal OBIC est la tension de

polarisation. Si la diode est éclairée à une longueur d’onde λ < λc donnée et à puissance

optique transmise P constante et que l’on polarise le dispositif sous différentes tensions

suffisamment faibles pour négliger la multiplication des porteurs par avalanche (Fig. 2–

3), alors le niveau du signal augmente. En effet lorsque la tension de polarisation

augmente la ZCE s’étale de part et d’autre de la jonction et donc le nombre de porteurs

photogénérés dans la ZCE et participant au photocourant croît. En négligeant le courant

dû aux porteurs générés hors de la ZCE on peut écrire : b VOBICS f (V) A exp= = . Le

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

55

niveau du signal OBIC mesuré tend vers une valeur limite quand la profondeur de la

ZCE est supérieure ou égale à la longueur de pénétration des porteurs ( P1L =α

, définie

comme la longueur à laquelle 63 % du flux lumineux est absorbé par le semi–

conducteur).Si

gnal

OB

IC (A

)

Position du spot (µm)

P+

N

Flux de photons

Génération optiquepour une longueur

d'onde donnée

N+

Anode

Cathode

W1W2W3W4

V4V3V2V1

V1 < V2 < V3 < V4

x

z

Fig. 2–3 : Variation du signal OBIC en fonction de la tension de polarisation pourune longueur d’onde λλλλ donnée à puissance optique constante P.

2.1.2. Expression théorique du photocourant.

Pour modéliser les courants on considère une jonction P+N faiblement polarisée

en inverse et soumise à un éclairement permanent monochromatique

perpendiculairement à la surface, de longueur d’onde λ ≤ λc, que l’on sépare en trois

parties (Fig. 2–4), les zones neutres P+ et N où s’établissent des courants de diffusion et

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

56

la ZCE où règne un champ électrique E. Dans cette zone le courant sera essentiellement

dû à la génération optique, le courant généré thermiquement est négligeable. Si l’on

considère que l’on se trouve en faisceaux parallèles, alors la densité de courant est

[Gärtner’59]:

, , ( / ²)= + +ph ZCE P n N pJ J J J A cm (32)

P+

N

zce

Flux de photons

z

zjzP

zN

wn

wpE

JP,n

JN,p

JZCE

ElectronTrou0 x

Fig. 2–4 : Les différents courants dans une jonction P+N polarisée en inverse.

a) Expression du photocourant dans la zone de charged’espace.

Le courant généré dans la zone désertée est lié à l’éclairement de celle–ci, donc

au nombre de paires électron–trou créées par absorption de photons dans le SiC.

( ) ( / ²)= − ∫ N

P

zZCE zJ q g z dz A cm (33)

zN et zP : Limites de la ZCE respectivement dans les zones N et P+

g(z) : Génération optique par unité de temps et de volume

⇒ −= zg( z ) exp αφα (34)φ : Flux absorbé par le matériau et donnant lieu à des générations (nombre de

photons absorbés par unité de temps et de surface)⇒ = − 0( 1 R )φ η φ (35)

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

57

η : Rendement quantique du dispositif (Nombre de photons absorbés sur lenombre de paires électron-trou créées).

R : Coefficient de réflexion du matériau.

φ0 : Flux incident (nombre de photons incidents par unité de temps et par unitéde surface)

Alors, on peut écrire :

2( exp ) ( / )exp− −= −N Pz zZCEJ q A cmα αφ (36)

b) Expression du photocourant dans les zones neutres.

Le courant photogénéré dans les zones neutres est un courant de diffusion. Il

faut donc résoudre les équations de continuité dans chaque zone où n et p sont les

porteurs générés optiquement.

∂ − + =∂

2

p 2p

p pD g( z ) 0z τ

dans la zone N (37)

∂ − + =∂

2

n 2n

n nD g( z ) 0z τ

dans la zone P (38)

Avec les conditions aux limites suivantes :

z = ∞ ⇒ p = 0 z = zP ⇒ n = 0

z = zN ⇒ p = 0 z = 0 ⇒ n nz 0

nS n = Dz =

∂ ∂

Avec : Sn vitesse de recombinaison en surface, τn et τp durées de vie des

électrons et des trous, Dn et Dp coefficients de diffusion des électrons et des trous.

La densité de courant de trous en zN est :

2, ( / )

=

∂ = − ∂ N

N p pz z

pJ qD A cmz

(39)

On a :

Ndp ( z ) 2N ,p

dp

LJ q exp ( A / cm )

1 Lαα

φα

−= −+

(40)

De même la densité de courant d’électrons en zP est :

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

58

2, ( / )

=

∂ = ∂ p

P n nz z

nJ qD A cmz

(41)

Ce qui donne :

( ) ( )

( )

PP

dndnn ndn n dn n

dn P

dn P Pdn n n n

dn dn

1z zLL

( z ) 2P,n

exp L S D exp D L SLJ q exp 1 ( A / cm )

L 1 z z1 L D Ch S L ShL L

α

α

ααφ

αα

− + +

+ − = −

− + +

(42)

2.1.3. Spécificités liées au SiC.

Dans SiC il n’est pas fréquent de pouvoir réaliser des jonctions profondes car

elles nécessitent soit des implantations ioniques canalisées difficiles à mettre en œuvre

soit des implantations fortes énergies (quelques MeV). Les jonctions P+N sont donc

souvent réalisées par une série d’implantation dont l’énergie maximale n’excède pas 300

keV ce qui correspond à une profondeur de jonction de 0,8 µm à 1 µm. On peut penser

que la longueur de diffusion des porteurs est supérieure à la profondeur de la jonction,

donc tous les porteurs générés dans la zone P+ et qui ne se recombinent pas à la surface,

participent au courant induit. Il est donc possible de considérer zP=0, alors le

photocourant ne dépend plus que de l’étalement de la ZCE dans la couche épitaxiée (zN).

Le photocourant total s’écrit donc :

( )2exp1 /1

nz

ph

dp

J q A cmL

α

φα

− = − − +

(43)

α dépendant de la longueur d’onde d’éclairement λ et zN variant en racine

carrée de la tension appliquée V, on retrouve bien ici l’expression des variations du

photocourant en fonction de λ et de V (§ 2.1.1) si l’on néglige la participation des trous

générés dans la zone N.

2.2. Le banc de mesures, fonctionnement général et utilisations.

Après l’aspect théorique de la méthode OBIC voici l’aspect pratique. Dans cette

partie, un bref rappel du fonctionnement est présenté ainsi que les principaux avantages

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

59

et inconvénients du banc expérimental (Fig. 2–5). Les différents blocs qui composent le

banc de mesures OBIC et leurs fonctionnements sont décrits en détail dans l’annexe A.

Fig. 2–5 : Banc expérimental d’OBIC.

2.2.1. Fonctionnement général.

Le dispositif polarisé en inverse est éclairé en surface par un faisceau optique

échantillonné par un disque perforé et focalisé par une série de composants optiques

(polariseur, lentilles, trou source ) pour obtenir un spot de plus ou moins grande taille.

Le courant photogénéré est mesuré aux bornes d’une résistance placée en série avec le

composant par une détection synchrone. Des platines motorisées permettent de déplacer

le composant sous le spot lumineux afin de parcourir un diamètre ou d’effectuer une

cartographie du dispositif.

2.2.2. Caractéristiques du banc expérimental d’OBIC.

Le laser argon doublement ionisé utilisé dans le banc de mesures permet

d’obtenir des longueurs d’onde dans l’U.V. et l’U.V. profond, nécessaires pour avoir

une absorption optique intrinsèque (λ ≤ λc = 1240/Eg) dans SiC.

La littérature fait état d’une multitude de valeurs pour le coefficient

d’absorption α pour les polytypes du SiC, les valeurs que nous avons choisies d’utiliser

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

60

et qui correspondent aux longueurs d’onde que nous utilisons sont reportées dans le

tableau suivant [Sridhara’99], [Choyke’68].

SiC–6H SiC–4HLongueur

d’onde fourniespar le LASER

λλλλ (nm)

Coefficientd’absorption αααα

(cm–1)

Longueur depénétration

Lp(µm)

Coefficientd’absorption αααα

(cm–1)

Longueur depénétration

Lp(µm)

300[Choyke’68]

4942 2

333,6[Sridhara’99]

1760 5,7 900 11

334,5[Sridhara’99]

1723 5,8 845 11,7

335,8[Sridhara’99]

1657 6 790 12,7

351,1[Sridhara’99]

1060 9,4 290 35

363,8[Choyke’68]

725 13,8

Tableau 2–1 : Coefficient d’absorption et longueur de pénétration pour le SiC–6H etle SiC–4H à 300 K.

On constate que les longueurs d’onde employées permettent de générer des

porteurs à proximité d’une jonction pour SiC–6H, ce qui n’est pas le cas pour SiC-4H.

En revanche l’utilisation de ces raies U.V. permet de sonder les couches épitaxiées

épaisses ( > 10 µm) en SiC–4H nécessaires à la réalisation de diodes hautes tensions

(> 2 kV).

Un des avantages de ce banc de mesures est de pouvoir mesurer de faibles

signaux (30 à 40 pA) grâce à l’utilisation de la détection synchrone. De plus le banc

optique a été conçu de manière à obtenir différents diamètres de spot (3,3 µm ; 13 µm ;

36 µm). Cette résolution du banc de mesures nous permet ainsi de mettre en évidence

des défauts tels que les micropores ou d’étudier précisément l’évolution du champ

électrique en périphérie de jonction.

Ce dispositif est renforcé par un système de visualisation composé d’une caméra

mono CCD et un moniteur vidéo, ce qui permet le positionnement et le contrôle du

diamètre du faisceau U.V. focalisé à la surface du dispositif. Ce système nous permet

d’effectuer les réglages dans l’U.V. et non dans le visible. Ainsi on contrôle mieux la

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

61

puissance optique incidente et l’on peut calculer le flux de photons absorbé par SiC

( incPhc

ηλφ = voir CHAPITRE 2 § 2.1.2)

En pratique les valeurs des puissances transmises pour les différentes longueurs

d’onde, mesurées à l’aide d’une photodiode silicium pour une puissance du faisceau

U.V. de 10 mW en sortie du Laser sont les suivantes :

Pour un spot de 3,3 µm, PTransmise = 65×10–9 W.

Pour un spot de 13 µm, PTransmise = 0,92×10–9 W.

Pour un spot de 36 µm, PTransmise = 8,2×10–9 W.

Pour obtenir les spots de diamètre 13 et 36 µm les trous source ne sont pas positionnés

au point de focalisation des lentilles. Dans ces conditions on perd une partie de la

puissance du faisceau optique, ce qui explique les faibles valeurs de puissances

mesurées pour les spots de tailles supérieures à 3 µm.

Le positionnement du trou source permettant d’obtenir les différentes tailles de

spot et surtout l’état de surface du dispositif peuvent entraîner des variations de la

puissance transmise qui sont difficiles à quantifier.

3. Choix de la méthode et validation.

3.1. Choix du dispositif de test.

Les dispositifs de type JFET ou transistor bipolaire restent difficiles à réaliser

en SiC. Nous avons donc opté pour une structure plus simple à mettre en œuvre (diode

bipolaire ou diode Schottky) et compatible avec les savoir–faire de l’équipe et de nos

collaborateurs. Cependant une métallisation semi–transparente est indispensable pour

pouvoir éclairer la jonction principale afin de déterminer M. Les épaisseurs de métaux

(aluminium et titane) nécessaires à la réalisation d’un contact ohmique sur une diode

P+N sont préjudiciables à l’efficacité d’une métallisation semi–transparente aux U.V.

D’autre part le profil de dopage de l’émetteur d’une diode bipolaire reste difficile à

connaître avec précision. Ceci entraîne des erreurs plus ou moins importantes sur

l’évaluation de la répartition du champ E dans le dispositif. En conséquence, le

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

62

véhicule–test choisi est une diode Schottky à contact semi–transparent. La couche

épitaxiée est de faible épaisseur (2,5 µm) et le dopage de l’ordre de 5×1015 cm-3. Ces

caractéristiques ont été choisies pour obtenir une répartition quasi rectangulaire de E en

volume afin d’avoir une multiplication par avalanche homogène dans la structure.

3.2. Description de la méthode et validation par simulation.

On se propose de décrire et valider ici la méthode employée pour extraire αn et

αp en simulant une diode Schottky 1D en SiC–6H (N ou P) soumise à un éclairement de

différentes longueurs d’onde à l’aide de l’outil ISE (Integrated Systems Engineering).

Les coefficients d’ionisation utilisés pour ces simulations sont donnés par les équations

(26) et (27) les autres modèles et paramètres employés sont rapportés dans l’annexe B.

Les simulations présentées ici ont été faites en considérant les caractéristiques

des dispositifs décrites dans le tableau suivant (Tableau 3–1). Les dopages et épaisseurs

des couches correspondent aux caractéristiques données par Cree Research pour les

plaquettes utilisées ultérieurement pour la réalisation des dispositifs de test.

Dopage de lacouche épitaxiée

(Nd, Na)

Epaisseur de lacouche épitaxiée

(e)

Hauteur debarrière (φφφφb)

Tension declaquage

théorique (VBR)Schottky N 5,5×1015 cm–3 2,5 µm 1 eV 614 VSchottky P 7×1015 cm–3 2,5 µm 1,7 eV 612 V

Tableau 3–1 : Caractéristiques des structures simulées.

3.2.1. Simulation d’une injection pure de trous ou d’électrons.

Dans un premier temps, plaçons–nous dans le cas théorique d’une injection pure

de trous pour la Schottky de type N ou d’électrons pour la Schottky de type P en

générant optiquement des porteurs hors de la ZCE. Pour cela on éclaire le dispositif à

une longueur d’onde quelconque en imposant l’éclairement du semi–conducteur non pas

en surface mais à une profondeur z > e. Le facteur de multiplication (Fig. 3–1) est

calculé comme le rapport du courant photogénéré avec ionisation par impact sur celui

obtenu sans prendre en compte le phénomène d’avalanche. On voit apparaître la

multiplication (M > 1) pour V > 400 V dans le cas des trous et pour V > 550 V dans le

cas des électrons. Quand la tension dépasse les 600 V les deux courbes se rejoignent,

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

63

prés de la tension de claquage les électrons et les trous participent pleinement à la

multiplication.

0 50 250 300 350 400 450 500 550 6001

10

100

SiC-6H à 300 K M = Mp (Schottky type n)M = Mn (Schottky type p)

Tension inverse (V)

M

Fig. 3–1 : Variation de M pour une injection pure de trous ou d’électrons.

En supposant le champ électrique constant dans l’épitaxie N et αn négligeable

devant αp, on peut ainsi déterminer αp à partir des mesures de M de la Schottky N et de

son expression qui se ramène à : pp W

1M Mexp−α= = . Pour extraire αn, on pose p

n

et

on résout l’équation M = Mn = f(αn, k) en fixant la valeur de k. La couche épitaxiée N

ou P étant désertée dès les faibles valeurs de V (34 V pour le type N et 43 V pour le type

P), on prendra W = 2,58 µm et VEW

= − .

Dans la gamme de champ électrique [1,5×106 – 2,2×106] V/cm on retrouve bien

les valeurs de αp utilisées pour la simulation (Fig. 3–2). Pour les électrons la plage est

beaucoup plus réduite, en effet le phénomène d’avalanche apparaît plus tard

(E > 1,8 ×106 V/cm) et l’ionisation induite par les trous vient perturber les mesures pour

E ≥ 2,2×106 V/cm.

Au vu des résultats de ces simulations, nous disposons d’une plage de tension

[400 - 570] V suffisamment étendue pour espérer mesurer αp. En revanche la

détermination de αn apparaît beaucoup plus critique.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

64

4,0x10-7 4,5x10-7 5,0x10-7 5,5x10-7 6,0x10-7 6,5x10-7 7,0x10-7 7,5x10-7100

101

102

103

104

105

SiC-6H à 300 K

αp utilisé pour la simulation αn utilisé pour la simulation

ααααp

ααααn

1/E (cm/V)

α αααn &

α αααp (

cm-1)

ααααp extrait de Mpααααn extrait de Mn

2,4x1062,2x106 2x106 1,8x106 1,6x106 1,4x106

E (V/cm)

Fig. 3–2 : ααααn et ααααp en fonction du champ électrique, extraits à partir des variations deMn et MP.

Le banc expérimental et le véhicule–test utilisés ne nous permettent pas de nous

placer exactement dans les conditions de simulations. En effet lors des mesures le

dispositif sera éclairé en surface avec des longueurs d’onde plus ou moins absorbées à

travers le métal semi–transparent, donc les porteurs seront aussi générés dans la ZCE.

3.2.2. Simulation d’une injection mixte de porteurs.

On se propose d’étudier le cas en simulant la structure (N ou P) soumise à un

éclairement de différentes longueurs d’onde (300 nm, 351,1 nm et 364,7 nm) à partir de

la surface. Le facteur de multiplication est calculé pour chaque configuration.

Comme précédemment la multiplication apparaît pour V > 400 V pour la

Schottky N (Fig. 3–3). Dans la gamme de tension [450 – 610] V on observe une

diminution des valeurs de M lorsque la longueur d’onde d’éclairement diminue.

Lorsqu’on éclaire la diode à λ = 300 nm la plupart des photons sont absorbés dans la

ZCE, la multiplication est dominée par les porteurs générés dans la ZCE. Le cas d’un

éclairement à une longueur d’onde relativement longue (351,1 nm, 364,7 nm), est plus

favorable à une multiplication par les trous, bien que la multiplication dans la ZCE ne

soit pas négligeable.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

65

0 50 250 300 350 400 450 500 550 6001

10

100 M pour λλλλ = 300 nm M pour λλλλ = 351,1 nm M pour λλλλ = 364,7 nm M pour une injection pure de trous

Tension inverse (V)

M

Fig. 3–3 : Variation de M de la Schottky type N en fonction de la tension pourdifférentes longueurs d’onde d’éclairement.

Pour déterminer αp on suppose le champ constant dans la structure et M = Mp

dans la Schottky de type N. Des variations de M on calcule alors les valeurs de αp que

l’on peut écrire :

7

71,6 ×10-E7

p = 1,11×10 expα pour λ =364,7 nm (44)

Le fait de supposer qu’un seul type de porteurs favorise la multiplication

entraîne une erreur de plus de 40% à 70% suivant la longueur d’onde d’éclairement sur

les valeurs obtenues pour αp (Fig. 3–4) dans la gamme de champ électrique [1,6×106 –

2,2×106] V/cm. Les erreurs commises sur l’extraction des paramètres sont dues au fait

que l’on néglige la multiplication dans la ZCE.

Pour λ = 300 nm, la longueur de pénétration du faisceau Lp est inférieure à

l’épaisseur de la couche épitaxiée. Ce qui signifie que plus de 63 % des porteurs sont

générés dans la ZCE. En posant M = MZCE et αn négligeable devant αp, on obtient alors

des valeurs pour αp 15 à 20 % supérieures à celles utilisées lors de la simulation, αp

s’écrit alors sous la forme :

71,6×10-E7

p = 1,46×10 expα (45)

Ceci est dû au fait que l’on néglige la multiplication induite par les trous

photogénérés hors ZCE, alors que l’on a (voir § 1.3.1) :

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

66

,

( )+

= p N p ZCE ZCE

ph 0

M J M JM

J V(46)

4,0x10-7 4,5x10-7 5,0x10-7 5,5x10-7 6,0x10-7 6,5x10-7 7,0x10-7 7,5x10-7

102

103

104

Pour M = Mpααααp extrait pour λλλλ = 363,8 nmααααp extrait pour λλλλ = 351,1 nmααααp extrait pour λλλλ = 300 nm

ααααp extrait pour λλλλ = 300 nm avec M = MZCE ααααp utilisé pour la simulation

1/E (cm/V)

α αααp (

cm-1)

2,4x1062,2x106 2x106 1,8x106 1,6x106 1,4x106E (V/cm)

Fig. 3–4 : ααααp en fonction du champ électrique, extrait à partir des mesures de M àdifférentes longueurs d’onde.

Pour la Schottky de type P nous obtenons des valeurs de M (Fig. 3–5)

supérieures à Mn. Comme on le remarque sur les courbes M augmente dès 450 V, c’est

donc l’ionisation par des porteurs photogénérés dans la ZCE que l’on observe. Il

apparaît donc impossible de connaître αn directement à partir des mesures de M si

αn << αp.

0 50 250 300 350 400 450 500 550 6001

10

100 M pour λλλλ = 300 nm M pour λλλλ = 351,1 nm M pour λλλλ = 364,7 nm M pour une injection pure d'électrons

Tension inverse (V)

M

Fig. 3–5 : Variation de M de la Schottky type P en fonction de la tension pourdifférentes longueurs d’onde d’éclairement.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

67

3.2.3. Détermination des coefficients d’ionisation à partir desmesures OBIC d’une Schottky de type N.

Comme nous l’avons vu, le fait de considérer qu’une partie de la multiplication

(M = MZCE ou M = Mp) et que le champ électrique est constant dans la structure entraîne

des erreurs importantes sur les valeurs de αp. Toutefois ces valeurs approchées

constituent un élément de départ pour l’optimisation par simulation de αp et αn.

L’étape de simulation consistera à faire coïncider les valeurs mesurées de M

avec celles calculées par simulation d’une diode Schottky prenant en compte les

spécificités de la structure de test (dopage et épaisseur de la couche épitaxiée et hauteur

de barrière). Le fait de considérer le profil réel de dopage de la couche épitaxiée extrait

des mesures C(V) permet de prendre en compte la répartition réaliste du champ

électrique dans la structure. La méthode d’optimisation de αp et αn est basée sur la

minimisation de l’erreur ( ( )n 2

i, i,mesuré simuléi=1

ε = M -M∑ ) en faisant varier les paramètres

ap, bp, an et bn des expressions :n ,pbE

n,p n,pa expα−

= .

Nous proposons donc de valider cette étape en exploitant les résultats obtenus

dans le paragraphe précédent (équations (44) et (45)). Les valeurs calculées du facteur

de multiplication M d’une structure unidimensionnelle éclairée à λ = 300 nm ou à

λ = 364,7 nm sont ensuite comparées à celles obtenues par simulation d’une diode

Schottky (M300 et M364) dont les coefficients d’ionisation sont fournis par les équations

(26) et (27)

Comme le montre la figure suivante (Fig. 3–6) qui compare M300 à M calculé

pour αn = 0, le fait de négliger la contribution de la multiplication par les électrons n’a

pas d’influence sur les variations de M lorsque VR < 550 V. Il apparaît clairement que

l’ionisation induite par les électrons n’intervient réellement que pour les tensions très

proches de VBR (570 V < VR).

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

68

0 50 250 300 350 400 450 500 550 600 650 700

1

10

100SiC-6H à 300 K

λ = 300 nm

M M (ααααn = 0)

Tension inverse (V)

M

Fig. 3–6 : Influence de ααααn sur les valeurs de M calculées à 300 K par simulation d’uneSchottky N à 300 K éclairé à λλλλ =300 nm.

On peut donc dans un premier temps, fixer αn égal à 0 pour optimiser αp dans la

gamme de tension [400 - 550] V. Ainsi on obtient avec une erreur < 1 % sur M :

571,65×10-

E7p = 1, ×10 expα

pour λ = 300 nm (47)

et7 71,6 ×10-E7

p = 1,67×10 expα pour λ =364,7 nm (48)

4,0x10-7 4,5x10-7 5,0x10-7 5,5x10-7 6,0x10-7 6,5x10-7 7,0x10-7 7,5x10-7

102

103

104

ααααp donné par Konstantinov ([Konstantionv'98])

ααααp optimisé pour λλλλ = 300 nm (eq 44) ααααp optimisé pour λλλλ = 364,7 nm (eq 45)

1/E (cm/V)

α αααp (

cm-1)

2,4x1062,2x106 2x106 1,8x106 1,6x106 1,4x106E (V/cm)

Fig. 3–7 : ααααp en fonction du champ électrique, optimisé par simulation à différenteslongueurs d’onde pour obtenir une erreur sur les variations de M < 1 % dans la

gamme de tension 400 – 570 V.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

69

Les expressions du coefficient d’ionisation des trous obtenues après

optimisation par simulation sont relativement proches de celle donnée par Konstantinov

(équation (26)) l’erreur commise sur les paramètres ap et bp est inférieure à 10 %. Ces

résultats tendent à prouver que cette étape est nécessaire pour atténuer les erreurs dues à

la simplification de l’expression de M.

A partir de ces simulations on peut aussi obtenir une expression approchée de

αn. Pour cela on fixe αp et on fait varier les paramètres an et bn de αn afin de minimiser ε

sur toute la gamme de tension. Les valeurs obtenues pour ε < 1 % sont :71,65×10-

E5n = 3,68×10 expα

pour λ = 300 nm (49)

et7 71,6 ×10-E5

n = 3,64×10 expα pour λ =364,7 nm (50)

4,0x10-7 4,5x10-7 5,0x10-7 5,5x10-7 6,0x10-7 6,5x10-7 7,0x10-7 7,5x10-7100

101

102

103

ααααn donné par Konstantinov ([Konstantionv'98])

ααααn optimisé pour λλλλ = 300 nm (eq 46) ααααn optimisé pour λλλλ = 364,7 nm (eq 47)

1/E (cm/V)

α αααn (

cm-1)

2,4x1062,2x106 2x106 1,8x106 1,6x106 1,4x106E (V/cm)

Fig. 3–8 : ααααn en fonction du champ électrique, optimisé par simulation à différenteslongueurs d’onde pour obtenir une erreur sur les variations de M < 1 % sur toute la

gamme de tension.

4. Conception et réalisation du dispositif de test.

Le but est de concevoir et de réaliser une diode Schottky dont la tension de

claquage se rapproche le plus possible de celle en volume. Il faut donc définir une

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

protection périphérique de la jonction adéquate. Afin de connaître la répartition réelle du

champ électrique dans la structure il est indispensable de pouvoir extraire le profil de

dopage et l’épaisseur de la couche active des mesures C(V). Ceci suppose donc une

couche fine et faiblement dopée (Tableau 3–1).

4.1. Conception du véhicule–test avec l’outil ISE

L’extension latérale de jonction implantée (JTE) est étudiée au laboratoire

depuis 1995. Son efficacité de protection de la jonction principale pour les dispositifs en

SiC avoisine théoriquement les 95%. C’est pour ces raisons que nous avons choisi ce

type de protection périphérique.

Toutes les simulations ont été réalisées avec une couche d’air en surface du SiC

et une marge latérale de 20 µm. La densité de charge à l’interface air/semi-conducteur

est considérée comme nulle. La tension de claquage VBR des dispositifs simulés est

déterminée à partir du niveau du courant inverse dans la structure. En fait quand

0

I(V)M 100I(V )

= alors on considère que le composant est claqué.

Les profils de dopage adoptés essaient de prendre en compte la canalisation des

dopants implantés dans SiC. Le simulateur (I2SiC) réalisé par E. Morvan nous permet de

prédire assez précisément l’allure du profil de dopage implanté [Morvan’99]. C’est à

partir de résultats obtenus avec le simulateur que nous avons déterminé l’allure des

profils utilisés dans les différentes simulations (Fig. 4–1).

0,00 0,05 0,10 0,15 0,20 0,251013

1014

1015

1016

1017

1018

Profil utilisé en simulat Profil simulateur E.MOR

Profondeur en

Conc

entra

tion

d'az

ote

(cm

-3)

1018

Profil utilisé en simulation Profil simulateur E.MORVAN-3

)

Fig. 4–1 : Comparaison délectriques du véhicu

Aluminium

0,30 0,35 0,40 0,45

ionVAN

µm 0,0

1014

1015

1016

1017

Conc

entra

tion

d'al

umin

ium

(cm

es profils de dopage dele test avec les profils ob

Azote

70

0,1 0,2 0,3 0,4 0,5 0,6 0,7Profondeur en µm

s JTE utilisés pour les simulationstenus par le simulateur I²SiC.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

71

Deux types de structures sont étudiés : la première avec une simple JTE que

l’on nomme JTE1 (Fig. 4–2) et la seconde avec une JTE renforcée par une seconde JTE

(JTE2) plus dopée en périphérie du contact Schottky (Fig. 4–3).

JTE1

Couche d'air

Contact Schottky

Couche épitaxiée

MargelatéraleL1

P1

Substrat

JTE1

Couche d'air

Contact Schottky

Couche épitaxiée

MargelatéraleL1

P1

Substrat

JTE2

L2

P2

Fig. 4–2 : Structure avec Simple JTE. Fig. 4–3 : Structure avec double JTE.

Les deux diodes, Schottky de type N et Schottky de type P sont étudiées en

parallèle. Les caractéristiques des couches épitaxiées utilisées dans les simulations sont

celles indiquées par le fournisseur (Cree Research), elles ont été données dans le

Tableau 3–1.

Dans le cas de la première structure on optimise les paramètres de la JTE1

(dopage, profondeur et longueur), pour obtenir la tension de claquage maximale

(Tableau 4–1). Dans cette configuration le champ électrique maximum se retrouve en

surface en périphérie du contact et de la JTE. (Fig. 4–4).

D1 (cm–3) P1 (µm) L1 (µm) VBR (V) % du VBR en volumeSchottky n 6×1017 0,4 70 606 98,6Schottky p 6×1017 0,3 70 602 98,4

Tableau 4–1 : Caractéristiques de la JTE1 déterminées par simulation.

40 50 60 70 80 90 100 110 120 130 140-1,0x106

-5,0x105

0,0

5,0x105

1,0x106

1,5x106

2,0x106

2,5x106

3,0x106

Schottky n

(D1 = 6.1017 cm3 P1 = 0,4 µm) Schottky p

(D1 = 6.1017 cm3 P1 = 0,3 µm)

Contact Schottky

épitaxie JTE1

X (µm)

Cha

mp

Elec

triq

ue (V

/ cm

)

Fig. 4–4 : Répartition du champ électrique en surface des Schottky N et P au momentdu claquage pour une JTE1 optimisée.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

72

Nous avons donc envisagé une structure avec une seconde JTE (JTE2) plus

dopée qui favoriserait la protection de la métallisation en éloignant le pic de champ

électrique du bord du contact Schottky. Pour éviter la présence d’un pic de champ

électrique en périphérie de la métallisation il faut que la JTE2 ne soit pas totalement

désertée lorsque l’on atteint la tension de claquage. Pour cela le dopage de la JTE2 doit

être supérieur à 1×1018 cm–3. La structure optimale dont les paramètres sont reportés

dans le tableau suivant (Tableau 4–2), claque en périphérie de la JTE2 (Fig. 4–5, Fig. 4–

6), où l’on remarque la présence un champ important.

D1(cm–3)

P1(µm)

L1(µm)

D2(cm–3)

P2(µm)

L2(µm)

VBR(V)

%du VBR en

volumeSchottky n 6×1017 0,4 70 1,6×1018 0,3 20 593 96,6Schottky p 6×1017 0,3 70 1,6×1018 0,25 20 591 96,6

Tableau 4–2 : Caractéristiques des JTE1 et JTE2 pour la structure optimale.

0 20 40 60 80 100 120 140-2,0x105

0,02,0x1054,0x1056,0x1058,0x1051,0x1061,2x1061,4x1061,6x1061,8x1062,0x1062,2x1062,4x1062,6x106

Répartition de E en surface à 0,3 µm

JTE2 JTE1

Contact Schottky

X (µm)

Cham

p El

ectri

que

(V /

cm)

Fig. 4–5 : Répartition du champ électrique à différentes profondeurs pour V = VBRdans la Schottky N avec double JTE optimisée.

0 20 40 60 80 100 120 140-2,0x105

0,02,0x1054,0x1056,0x1058,0x1051,0x1061,2x1061,4x1061,6x1061,8x1062,0x1062,2x1062,4x1062,6x1062,8x106

Répartition de E en surface à 0,25 µm

JTE2 JTE1

Contact Schottky

X (µm)

Cham

p El

ectri

que

(V /

cm)

Fig. 4–6 : Répartition du champ électrique à différentes profondeurs pour V = VBRdans la Schottky P avec double JTE optimisée.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

73

Toutes ces simulations ont été réalisées sans tenir compte des incertitudes sur le

dopage ou la profondeur des couches implantées ou épitaxiées. Les paragraphes suivants

présentent les performances du dispositif optimisé en fonction des variations des

caractéristiques des JTE ou de la couche épitaxiée.

4.1.1. Rôle des paramètres des JTE sur la tenue en tension.

Les paramètres influents sur l’efficacité des terminaisons de jonction implantées

sont le couple dopage, profondeur (D, P) et la longueur (L).

Les longueurs des JTE1 et JTE2 n’ont aucune influence sur le VBR si elles sont

supérieures ou égales à 15 µm. L’erreur sur l’alignement et l’ouverture du masque lors

de l’étape de photolithographie n’excède pas 5 µm. Donc les longueurs choisies pour les

JTE1 et JTE2 (L1 = 70 µm et L2 = 20 µm) n’auront aucune conséquence sur la tenue en

tension expérimentale des Schottky.

Pour le dopage et la profondeur il en est tout autre. Bien que la profondeur

d’implantation soit un paramètre que l’on maîtrise, il reste une incertitude sur la valeur

du dopage des JTE. L’étape d’implantation nécessaire à la création d’une jonction

localisée dans le SiC est suivie d’un recuit à haute température permettant d’activer

électriquement les dopants. Lors des simulations pour optimiser le dopage des JTE nous

avons considéré un taux d’activation électrique de 100 % (le taux d’activation électrique

est défini comme le rapport du nombre d’atomes en sites substitutionels sur le nombre

d’atomes implantés). Or celui-ci peut varier de 30 à 100 % pour l’aluminium

[Ottaviani’99] et de 40 à 100 % pour l’azote. La JTE2 ne servant qu’à éviter le claquage

en périphérie du contact, les variations du dopage de la JTE2 liées au taux d’activation

électrique n’auront donc qu’une faible influence sur la tenue en tension. En revanche,

comme le montre la figure suivante (Fig. 4–7), les variations du dopage de la JTE1 ont

une grande influence sur la tenue en tension. Avec un taux d’activation électrique de

60 % on a pour la Schottky de type N D1 = 3,6×1017 cm–3 et VBR < 500 V, ce qui ne

permet pas de déterminer les coefficients d’ionisation à partir des mesures de M. Pour

cela il faudrait avoir un taux d’activation électrique des dopants ≥ 70 %.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

74

3,50x1017 5,50x1017 7,50x1017 9,50x1017 1,15x101

420

440

460

480

500

520

540

560

580

600

620

Vbr Schottky n Vbr Schottky p

Dopage de la poche (cm-3)

Vbr (

V)

Fig. 4–7 : Variation de VBR en fonction du dopage D1 de la JTE1.

4.1.2. Rôle des caractéristiques de la couche épitaxiée sur latenue en tension.

Les caractéristiques des couches épitaxiées sont données avec une incertitude de

50% sur le dopage (Nd, Na) et de 20 %sur l’épaisseur (e).

Les simulations ont été effectuées avec les caractéristiques des JTE optimisées

(Tableau 4–2). Pour une épaisseur donnée le dopage n’a qu’une faible influence sur la

tenue en tension. Par contre les variations de l’épaisseur de la couche épitaxiée

entraînent une différence non négligeable dans les valeurs de VBR obtenues (Tableau 4–

3).

Schottky N Schottky PNd (cm–3) Na (cm–3)

2,75×1015 5,5×1015 8,25×1015 3,5×1015 7×1015 1,05×1016

2 VBR = 490 V VBR = 489 V VBR = 488 V VBR = 491 V VBR = 490 V VBR = 489 V2,5 VBR = 594 V VBR = 592 V VBR = 590 V VBR = 594 V VBR = 591 V VBR = 586 Ve

(µm) 3 VBR = 695 V VBR = 691 V VBR = 688 V VBR = 695 V VBR = 690 V VBR = 685 V

Tableau 4–3 : Tension de claquage en fonction des variations du dopage et del’épaisseur des couches épitaxiées.

En conclusion on obtient un dispositif ( de type N ou P) protégé par double JTE

permettant une tenue en tension suffisante pour pouvoir mesurer les coefficients

d’ionisation. En effet les paramètres ont été optimisés de telle sorte que les protections

choisies aient une efficacité de 96,5% pour les Schottky N et P et pour éviter le claquage

en bordure de métal. Cependant la principale inconnue reste le taux d’activation

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

75

électrique des dopants implantés qui peut avoir des conséquences catastrophiques sur

l’efficacité des protections périphériques et donc ne pas permettre la mesure des

coefficients d’ionisation.

4.2. Réalisation des diodes Schottky.

Les diodes sont réalisées sur des couches épitaxiées N (5,5×1015 cm–3 – 2,5 µm)

ou P (7×1015 cm–3 – 2,5 µm) de chez Cree Research. Les contacts ont été conçus au

Département d’Ingénierie Electrique et Electronique de l’Université de Newcastle. Une

évaporation de 10 nm de nickel a permis d’élaborer le contact Schottky semi–transparent

sur la couche épitaxiée. Les contacts ohmiques en face arrière sont obtenus par dépôt de

nickel (type N) ou d’aluminium recouvert de titane (type P) recuits à 800 °C. Des

implantations multiples d’azote ou d’aluminium à température ambiante suivies d’un

recuit à 1600 °C pendant 30 minutes permettent d’obtenir les JTE dont les

caractéristiques sont rappelées dans le tableau suivant (Tableau 4–4).

Aluminium AzoteJTE1 JTE2 JTE1 JTE2

Nombre d’implantations 5 9 6 10Energie (keV) 160 à 30 160 à 30 130 à 20 130 à 20

Dose totale (cm–2) 1,2×1013 2,6×1013 1,2×1013 2,5×1013

Profondeur (µm) 0,4 0,4 0,3 0,3Dopage visé (cm–3) 6×1017 1,6×1018 6×1017 1,6×1018

Tableau 4–4 : Paramètres technologiques pour la réalisation des JTE.

La figure ci–dessous (Fig. 4–8) présente le schéma des diodes Schottky : φext est

le diamètre de la métallisation de l'anode, et φint est le diamètre permettant un

éclairement en volume.

L1

L2JTE1 JTE2Contact Schottky Semi-Transparent

fext

fint

Anneaude contact

Fig. 4–8 : Schéma de la diode Schottky.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

76

Les caractéristiques des différentes géométries sont présentées dans le Tableau

4–5.

Nom des diodesS1a S1b S1c S2 S3a S3b

φφφφext (µm) 320 420 520 320 320 420φφφφint (µm) 100 200 300 100 100 200L1 (µm) – – – 70 70 70L2 (µm) – – – – 20 20

Tableau 4–5: Caractéristiques géométriques des diodes Schottky.

5. Mesures.

5.1. Caractérisation des différents paramètres technologiques.

Comme nous l’avons vu précédemment (§ 3.2.2), pour déterminer αn et αp il est

nécessaire de connaître avec précision les différents paramètres de la structure de test.

Les caractéristiques de la Schottky de type N que nous avons extraites de différentes

mesures électriques et analyses physico–chimiques sont présentées dans ce paragraphe.

Des problèmes survenus lors de la réalisation des Schottky de type P ont entraîné un

retard non négligeable dans la caractérisation. Nous ne présenterons donc pas dans cette

partie les résultats électriques de ces dispositifs.

5.1.1. Caractéristiques de la couche épitaxiée.

On peut accéder aux paramètres de la couche épitaxiée à partir des mesures de

la capacité en fonction de la tension inverse appliquée de chaque type de diode (S1, S2

et S3).

Les courbes 1/C2 en fonction de la tension inverse appliquée sont calculées à

partir des mesures C(V) à 300 K et à une fréquence de 100 kHz. On constate que ces

caractéristiques ne sont pas linéaires pour les diodes S2 et S3 (Fig. 5–1). La jonction PN

créée par la JTE vient perturber la mesure : on se retrouve avec deux capacités de

jonction en parallèle.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

77

-40 -35 -30 -25 -20 -15 -10 -5 00

1x1022

2x1022

3x1022

4x1022

5x1022

6x1022

7x1022

8x1022

9x1022

1x1023

Tension (V)

1/C2 (F

- 2)

S1b S1c S1c S2 S3a S3b

Fig. 5–1 : Variation de 1/C2 en fonction de la tension inverse pour différents types dediodes à 300 K.

Le profil de dopage et la profondeur de la couche épitaxiée sont donc extraits

des mesures de S1 (Fig. 5–2). Les résultats obtenus ne correspondent pas exactement

aux valeurs spécifiées par le fournisseur. De plus on a pu constater une dispersion des

résultats (6,5×1015 cm–3 < Nd < 8,5×1015 cm–3 et 2 µm < e < 2,3 µm).

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,41015

1016

1017

S1b S1c S1c

Epaisseur de la couche épitaxiée (µm)

Dopa

ge d

e la

cou

che

épita

xiée

(cm

-3)

Fig. 5–2 : Profil de dopage dans l’épitaxie extrait des mesures C(V) à 300 K.

En introduisant le profil réel du dopage de la couche N dans le simulateur on

détermine ainsi la tension de claquage théorique des Schottky de type N. Etant donné la

dispersion des résultats, nous avons choisi de simuler deux structures dont les profils

sont les cas extrêmes. Pour la première on considère une épaisseur de 2,1 µm et un

dopage de 8×1015 cm–3 et pour la seconde le dopage pris en compte est de 6×1015 cm–3

pour une épaisseur de 2,3 µm. Les tenues en tension respectives obtenues sont de 534 V

et de 574 V.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

78

5.1.2. Paramètres des JTE.

Des analyses SIMS (Secondary Ion Mass Spectroscopy) réalisées sur des

échantillons témoins des étapes d’implantations d’aluminium permettent d’obtenir la

concentration chimique d’aluminium effectivement implanté.

Le niveau obtenu pour la JTE1 est trois fois plus faible que celui visé (Fig. 5–3).

La difficulté à maîtriser les faibles doses lors de l’implantation a induit une

contamination en oxyde de bore non négligeable. En faisant la somme du profil

d’aluminium et de bore on retrouve un profil proche de celui souhaité.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,71014

1015

1016

1017

1018 Profil d'aluminium simulé(I2SiC) Profil SIMS de bore avant recuit Profil SIMS d'aluminium avant recuit ΣΣΣΣ du profil de bore et du profil d'aluminum

Profondeur en µm

Conc

entra

tion

(cm

-3)

Fig. 5–3 : Profils chimique d’impuretés Al et B de la JTE1 obtenus par analyses SIMSd’échantillons témoins d’implantation avant recuit tenant compte d’une gravure de 40

nm en surface du SiC.

Lors des analyses SIMS réalisées après recuit (1600 °C pendant 30 mn dans la

configuration F3) sur des motifs spécifiques présents sur la plaquette (Fig. 5–4), le bore

n’a pu être détecté. Ceci s’explique certainement par une diffusion du bore pendant le

recuit post implantation. Par contre on peut remarquer que le profil d’aluminium est

conservé après recuit. La dose totale implantée après recuit de la JTE1 (2×1012 cm-2) est

bien inférieure à celle visée (1,2×1013 cm-2). Dans ces conditions on peut s’attendre à ce

que la tension de claquage des dispositifs soit affectée.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

79

0,0 0,1 0,2 0,3 0,4 0,5 0,61014

1015

1016

1017

1018

1019

1020

Profil SIMS d'aluminium avant recuit Profil SIMS d'aluminium aprés recuit Profil SIMS d'aluminium aprés recuit

Profondeur en µm

Conc

entra

tion

(cm

-3)

Fig. 5–4 : Profils de dopage de la JTE1 obtenus par analyses SIMS de motif de tests àdifférents endroits sur la plaquette après recuit F3.

La JTE2 est réalisée par une série d’implantation pour obtenir une concentration

de 1×1018 cm-3 sur une profondeur de 0,25 µm complétée par la séquence d’implantation

de la JTE1. On remarque (Fig. 5–5) tout d’abord sur le profil après recuit une

concentration d’aluminium plus élevée que sur l’échantillon témoin sur une profondeur

de 0,1 µm. La concentration diminue ensuite pour rejoindre le profil dû à la séquence

d’implantation de la JTE1.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,71014

1015

1016

1017

1018

1019

Profil calculé (I2SiC)

Profil SIMS avant recuit (échantillon témoin) Profil SIMS après recuit (sur la plaquette)

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 5–5 : Profils d’aluminium de la JTE2 obtenus par analyses SIMS d’échantillonstémoins et de motifs spécifiques présents sur la plaquette.

Bien que la dose de cette poche soit plus faible que prévue (1,7×1013 cm-2) elle

est suffisante pour pallier le déficit de la JTE1. Des simulations effectuées avec les

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

80

différents profils de dopage expérimentaux (épitaxie et JTE) ont montré que dans ces

conditions les poches avaient une efficacité de l’ordre de 90 %.

5.1.3. Caractéristiques électriques.

Toutes les diodes ont été caractérisées en direct (0 à 5 V) et en inverse

(0 à - 110 V) à 300 K. Lors de ces tests on a pu dégager un comportement spécifique

pour chaque type de diode S1, S2 et S3 (Fig. 5–6).

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1110-1010-910-810-710-610-510-410-310-210-1100101102103

Type n S1b S2

S3a S3a S3b S3b

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Type n S1b S2 S3a S3a S3b S3b

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

Fig. 5–6 : Caractéristiques directes et inverses de différentes diodes Schottky N à300 K.

Sous polarisation directe les caractéristiques obtenues ont la même allure : un

seuil en tension vers 0,1 V puis une zone qui s’étend sur 8 à 9 décades où le courant

croît de manière exponentielle (qVnkT

d SJ J exp= ) avec un coefficient d’idéalité n proche de

1,1 avant de s’infléchir à Jd = 1 A /cm2. La hauteur de barrière φb extraite de ces courbes

est de l’ordre de 1,1 eV. Certaines diodes présentent un courant en excès

(10-5 A/cm2 < Jd < 10–4 A/cm2 ) dès 0 V avant de rejoindre une caractéristique typique.

En inverse chaque type de diode a un comportement particulier. Les diodes S1

présentent une caractéristique avec un courant de fuite très faible et qui varie très peu

avec la tension. Les diodes S2 ont une caractéristique similaire mais deux décades

au-dessus en courant. Les S3 quant à elles présentent un courant qui croît de manière

exponentielle avec Jr = 10–6 A/cm2 sous –110 V. Les meilleurs résultats obtenus sont

reportés dans le Tableau 5–1.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

81

Schottky NDiodes S1 S2 S3a S3b

Densité de courant directJd (A/cm²) à 2 V

27 40 45 35

Coefficient d’idéalité n 1,03 1,12 1,09 1,09Densité de courant inverse

Jr (A/cm²) à –110 V1×10–7 7×10–6 1,56×10–6 2,6×10–6

Hauteur de barrièreφφφφb (eV)

1,12 1,07 1,09 1,09

Dopage de l’épitaxieDe (cm–3)

6×1015 à8×1015

Epaisseur de l’épitaxiee (µm)

2,1 à 2,3

Tension de claquageexpérimentale (V)

250 300 400 400

Tableau 5–1 : Caractéristiques des Schottky extraites des mesures I(V) et C(V) à300 K dans l’air.

La faible tenue en tension des dispositifs avec poche est liée à plusieurs

phénomènes. Le dopage des JTE1 n’étant pas celui envisagé seule la JTE2 pouvait

assurer le rôle de protection périphérique. La longueur de cette poche étant relativement

faible (20 µm) il se peut que le claquage prématuré des composants soit en partie lié au

milieu ambiant. D’autre part lors des mesures OBIC de diodes S2 (JTE simple) à faible

tension (200 V) nous n’avons pas détecté de photocourant sur la poche. Il semblerait

donc que le taux d’activation électrique des dopants soit inférieur à 100 % et diminue

encore ainsi les performances des extensions latérales de jonction.

La tenue en tension expérimentale (400 V) des composants avec double JTE

étant inférieure aux prévisions, les mesures du facteur de multiplication n’ont pu être

réalisées. Ce qui a rendu impossible la détermination des coefficients d’ionisation.

6. Conclusion.

La littérature concernant l’extraction des coefficients d’ionisation de différents

matériaux fait état de plusieurs techniques et de plusieurs types de dispositifs. La

technique la plus couramment employée est la création de porteurs en excès engendrée

par un faisceau électronique ou optique dans une diode bipolaire ou Schottky polarisée

en inverse afin de mesurer les variations du facteur de multiplication M en fonction de la

tension appliquée.

CHAPITRE 2Mesure des coefficients d’ionisation du SiC-6H par la technique OBIC.

82

En considérant les spécificités du SiC nous avons donc choisi une structure de

Schottky de type N ou P à contact semi–transparent, protégée par JTE dont la couche

active et relativement fine (2,5 µm) et le dopage est de l’ordre de quelque 1015 cm–3. Les

caractéristiques de la couche épitaxiée de type N ou P permettent ainsi d’obtenir un

profil quasi rectangulaire du champ électrique dans la structure. L’utilisation du banc de

mesures OBIC permet, en sélectionnant la longueur d’onde d’éclairement de se placer

dans le cas d’une injection mixte de porteurs dans la ZCE ou de se rapprocher du cas

d’une injection pure de trous ce qui permet de simplifier considérablement l’expression

de M, d’où on peut extraire αp si l’on néglige l’effet de αn. Cette technique seule

engendre des erreurs non négligeables sur les valeurs obtenues. Nous avons donc choisi

de la compléter par une étape de simulation dont le but est d’affiner les coefficients

obtenus, en faisant varier les différents paramètres afin de faire coïncider la courbe de M

calculée en simulation avec celle mesurée. La prise en compte du profil exact de dopage

de la couche épitaxiée et des conditions réelles d’éclairement lors de la simulation

permet de considérer la répartition réelle du champ électrique dans la structure et la

véritable expression du facteur de multiplication. Ceci diminue considérablement les

erreurs commises sur l’expression de αp. Comme nous avons pu le constater les mesures

expérimentales de M pour une Schottky de type P ne permettent pas l’extraction directe

de αn. L’expression du coefficient d’ionisation des électrons sera déduite des

simulations réalisées pour obtenir les valeurs de αp.

Les tests électriques préliminaires des Schottky à grille semi–transparente ont

révélé une efficacité partielle des protections périphériques. Ce dysfonctionnement des

poches est dû à une trop faible valeur du dopage des JTE engendrée par une trop faible

dose d’aluminium implantée et un mauvais taux d’activation électrique du procédé de

recuit post–implantation utilisé.

Une augmentation de la dose totale implantée des JTE et l’utilisation d’une

autre configuration de recuit post implantation (F4) permettra à l’avenir d’obtenir des

Schottky dont la périphérie sera optimisée pour éviter le claquage prématuré du véhicule

test. Cela permettra de valider expérimentalement la méthode choisie pour déterminer

les coefficients d’ionisation et obtenir ainsi des valeurs αn et αp exploitables dans les

simulateurs.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

83

CHAPITRE 3Caractérisation de la tenue en tension de diodesbipolaires planes 1,5 kV en SiC-6H.1. ETUDE DE DIODES BIPOLAIRES PROTÉGÉES PAR JTE DOPÉE BORE. ......86

1.1. DESCRIPTION DES DISPOSITIFS. ....................................................................................86

1.2. RÔLE DU PROFIL DE L’ÉMETTEUR SUR LA TENUE EN TENSION. ......................................871.2.1. Caractérisations électriques et analyse physico-chimique. ..........................................87

a) Caractéristiques électriques. ........................................................................................... 87

b) Tension de claquage....................................................................................................... 89

1.2.2. Mesures & Simulations OBIC. ...................................................................................91

1.2.3. Discussion. ...............................................................................................................93

1.3. CARACTÉRISATION DES DIODES AVEC JTE. ..................................................................941.3.1. Analyse des caractéristiques directes et inverses à 300 K............................................94

1.3.2. Evolution des caractéristiques avec la température.....................................................97a) Sous polarisation directe. ............................................................................................... 97

b) Sous polarisation inverse. ............................................................................................... 98

1.3.3. Etude de la tenue en tension..................................................................................... 101

1.4. CONCLUSION. ........................................................................................................... 104

2. RÔLE DE LA JTE DOPÉE ALUMINIUM SUR L’ÉVOLUTION DE LA TENSION

DE CLAQUAGE................................................................................................................ 104

2.1. DESCRIPTIONS DES DISPOSITIFS. ................................................................................ 1042.1.1. JTE 99’F3. .............................................................................................................. 105

2.1.2. JTE 99’F4. .............................................................................................................. 105

2.2. COMPARAISON DES PERFORMANCES DES JTE99’F3 ET JTE99’F4. ............................... 1062.2.1. Tests électriques à 300 K. ........................................................................................ 106

2.2.2. Etude des courants de fuite et de la tenue en tension. ................................................ 110

2.2.3. Mesures OBIC et discussion..................................................................................... 115a) Mesures OBIC ............................................................................................................. 115

b) Discussion. .................................................................................................................. 117

3. SYNTHÈSE............................................................................................................ 118

-

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

84

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

85

CHAPITRE 3Caractérisation de la tenue en tension de diodesbipolaires planes 1,5 kV en SiC-6H.

La réalisation et les caractérisations des différentes diodes ont été effectuées

pour valider certaines étapes technologiques comme le recuit post-implantation et

identifier les mécanismes physiques mis en jeu lors du claquage du composant. Ces

mesures permettent aussi d’analyser l’influence de différents paramètres (Dopage JTE,

défauts…) sur la tenue en tension de ces diodes.

Dans ce chapitre nous présenterons donc les résultats des tests électriques (I(V),

C(V)…) et analyses complémentaires, obtenus pour les différents dispositifs étudiés.

Toutes les diodes caractérisées ont été réalisées à partir du même jeu de

masques. Les figures ci-dessous (Fig. I) présentent le schéma des diodes bipolaires, ainsi

que celui des diodes Schottky : φm est le diamètre de la métallisation de l'anode, et φj est

le diamètre de l’émetteur P+. Les caractéristiques des différentes géométries de diodes

sont présentées dans le Tableau I.

Couche P+Poche P Poche P

Couche épitaxiée N

Substrat N+

Lp

φm

φj

Poche P Poche P

Couche épitaxiée N

Substrat N+

Lp

φm

P+

LP+

P+

Fig. I : (a) Schéma de la diode bipolaire, (b) Schéma de la Schottky.

Nom des Schottky Nom des diodes bipolairesS1 S2 S3 D1 D2 D3 D4 D5

ΦΦΦΦj (µm) 160 160 160 250 160ΦΦΦΦm (µm) 160 160 160 120 220 120 210 120Lp (µm) - 50 - - 120 120 120 50LP+ (µm) - - 20

Tableau I : Récapitulatif des grandeurs géométriques (en µm) des différentes diodesbipolaires et Schottky présentes sur un même champ.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

86

1. Etude de diodes bipolaires protégées par JTE dopée bore.

Le but de cette étude est de déterminer l’influence réelle du profil de la jonction

principale et des protections sur la tenue en tension en utilisant divers moyens de

caractérisation ( I(V), C(V), OBIC, SIMS…). Pour cela on s’intéressera tout d’abord à

l’évolution de la tenue en tension des diodes sans JTE, puis aux caractéristiques des

composants avec extension latérale de jonction.

1.1. Description des dispositifs.

Ces diodes ont été réalisées sur un substrat SiC-6H de type N dopé à

1,5×1018 cm-3 sur lequel on a fait croître par épitaxie une couche de type N d’épaisseur

10 µm dopée à 3×1015 cm-3. Deux méthodes ont été employées pour la réalisation de la

jonction principale par implantation d'aluminium : les cinq implantations nécessaires,

d’énergies comprises entre 25 keV et 300 keV, et introduisant une dose cumulée de

1,75x1015 cm-2, sont faites à 300 °C en commençant

• Soit par l’implantation d'énergie la plus forte (i.e. sens énergétique

décroissant, JTE98D),

• Soit par celle d'énergie la plus faible (i.e. sens énergétique croissant, JTE98C).

Une moitié de la plaquette est dédiée à chaque cas.

La protection des diodes de cette plaquette est réalisée par onze implantations

successives de bore (d’énergies comprises entre 20 keV et 340 keV , avec une dose

cumulée de 1,4x1013 cm-2 ). Ces implantations ont été suivies d’un recuit à 1700 °C

pendant 30 mn, dont la configuration nommée F3 (voir annexe C) est décrite plus en

détail dans la thèse de L. Ottaviani [Ottaviani’99]. Les contacts ohmiques sont réalisés

chez Siemens par dépôt de nickel (face arrière) et par empilement de couches

d’aluminium et de titane (face avant).

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

87

1.2. Rôle du profil de l’émetteur sur la tenue en tension.

Pour étudier l’effet du profil de la zone P+ sur la tension de claquage une

trentaine de diodes D1 (Sans JTE) a été caractérisée. A peu prés la moitié de ces

dispositifs sont de type JTE98C.

1.2.1. Caractérisations électriques et analyse physico-chimique.

a) Caractéristiques électriques.

Lors des tests on a pu constater que les diodes présentaient deux types de

comportement électrique que l’on notera B1 et B2 (Fig. 1–1).

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102

Catégorie B1 Catégorie B2 Catégorie B1 trés résistive

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

-500 -450 -400 -350 -300 -250 -200 -150 -100 -50 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dens

ité d

e co

uran

t (A.

cm-2)

Catégorie B1 Catégorie B2 Catégorie B1 trés résistive

Tension (V)

Fig. 1–1: Caractéristiques électriques typiques des diodes D1 à 300 K (lot JTE98).

Sur les caractéristiques directes des diodes de la catégorie B1 on relève un seuil

moyen de 1,6 V. La zone d’idéalité (Jd α exp(qVd/nkT)) s’étend sur 4 décades avec un

facteur n proche de 2 significatif d’un courant de recombinaison. L’inflexion de la

courbe apparaît de manière précoce pour Jd ≈ 10-2 A/cm2 avant d’atteindre une densité

de courant sous 5 V dans la gamme [10, 100 ] A/cm2. Sous polarisation inverse le

courant reste noyé dans le bruit de mesure ou reste faible Jr < 10-6 A/cm2 sous 100 V.

Pour les caractéristiques B2 directes la tension de seuil est variable de 0,5 à 1,5 V, on

observe une première croissance du courant sans dépendance exponentielle ni palier

nets, jusqu'à rejoindre une caractéristique de type B1 pour Jd ≥ 10-4 A/cm2. Le courant

inverse est mesurable dès les faibles valeurs de polarisations, dans la gamme [10-6, 10-5]

A/cm2 sous 100 V.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

88

La majorité des D1 de type JTE98C se placent dans la catégorie B2. Les diodes

JTE98D ont de manière générale un comportement de type B1 mais très résistif limitant

le courant pour V > 2,5 V (Fig. 1–1), surtout si elles se situent en bordure de plaquette.

Ceci est très probablement lié au profil de l’aluminium implanté que nous avons

observé par analyses SIMS à différents endroits sur la plaquette. L’allure de ce profil est

très différente de celle du profil théorique ainsi que de celle du profil obtenu à l’aide du

simulateur I2SiC (Fig. 1–2). Ces analyses mettent en évidence la disparité de la

"gravure" des zones P+ résultant du recuit post-implantation de type F3 selon qu’elles se

situent en périphérie ou vers le centre. On constate aussi une différence entre les profils

des émetteurs des JTE98C et ceux des JTE98D : la consommation de SiC est plus sévère

dans le second cas.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,91015

1016

1017

1018

1019

1020

1021 Profil Simulé Profil avant recuit JTE98D bord plaquette JTE98C bord plaquette JTE98C centre plaquette Profil théorique

Profondeur en µm

Con

cent

ratio

n d'

alum

iniu

m (c

m-3)

Fig. 1–2 : Profils SIMS d’aluminium après recuit F3 à différents endroits sur laplaquette (lot JTE98).

Sur les courbes relevées sous polarisation directe pour des températures allant

de 300 K à 548 K on constate une augmentation du courant avec la température (Fig. 1–

3). Le coefficient d’idéalité n, n’évolue pas et reste proche de 2. La résistance série

dynamique diminue quand la température augmente (34 mΩ.cm2 à 300 K et 9 mΩ.cm2 à

548 K). A partir de T = 348 K un courant de fuite apparaît pour les faibles polarisations

directes. Le courant inverse quant à lui sort totalement du bruit de mesure pour T= 400

K pour atteindre 5×10-4 A/cm² sous 100 V quand T = 548 K.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

89

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102103

Température (K) 300 323 348 373 398 423 448 473 498 523 548

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆∆∆∆T = 25 KT = 548 K

T = 300 K

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Fig. 1–3 : Caractéristiques directes et inverses en température d’une D1 de type B1(lot JTE98).

b) Tension de claquage.

Les tests ont été effectués sur des diodes ne présentant pas de courant de fuite

excessif à 300 K, dans l’air puis dans une huile silicone dont la rigidité diélectrique est

supérieure à celle de l'air (150 kV/cm). Le claquage des dispositifs dans l’air se

manifeste de manière générale par la visualisation d’un flash lumineux accompagné d’un

grésillement donnant lieu à la destruction de la diode et à un noircissement du pourtour

de l’émetteur. Pour quelques diodes le claquage est accompagné de l’apparition d’un

point blanc lumineux en bord de P+ dont l’intensité varie avec le niveau du courant. Lors

des tests dans l’huile le comportement observé est différent. Un arc électrique se forme

entre la pointe de test et la périphérie de la jonction. A noter que les diodes ne sont pas

dégradées après le test dans l’huile. Le Tableau 1–1 présente les valeurs des tenues en

tension obtenues.

Conditions de test Dans l’huile à 300 K Dans l’air à 300 KDiode D1 D1VBR

JTE98D700 V750 V850 V

1200 V

650 V700 V900 V

1100 VVBR

JTE98C1090 V1100 V1140 V

Tableau 1–1 : Valeurs des tensions de claquage testées dans l'air à 300 K et dansl’huile (lot JTE98).

Ce tableau témoigne tout d'abord d'une bonne homogénéité des résultats entre

les diodes D1, surtout pour la demi-plaquette de type JTE98C, pour laquelle les tenues

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

90

en tension obtenues sont groupées dans la gamme [1090 V, 1140 V]. La gamme de

tensions obtenue pour les JTE98D est plus étendue, commençant à 650 V seule une ou

deux diodes ont une tension de claquage supérieure à 1000 V.

Il apparaît clairement que les diodes D1 claquent pour des tensions inverses

appliquées supérieures à la valeur prévue théoriquement (400 V environ). Le dopage de

la couche épitaxiée N (Fig. 1–5) qui a été extrait de mesures C(V) réalisées sur des

Schottky S1 (Fig. 1–4), correspond à la valeur donnée par le fournisseur

(Nd = 3,2×1015 cm-3). L’écart constaté entre la valeur théorique et les valeurs

expérimentales ne peut provenir uniquement des incertitudes sur les paramètres des

calculs, tels que l’épaisseur de l'épitaxie, voire les coefficients d'ionisation. Les profils

d'aluminium expérimentaux, que nous avons vus très différents du profil théorique

considéré (Fig. 1–2), jouent certainement un rôle important sur la répartition du champ

électrique en périphérie de la jonction.

-30 -25 -20 -15 -10 -5 0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

C (p

F)

VR (V)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1/C

2 (1024

F-2)

Fig. 1–4 : Variation de la capacité d’une Schottky S1 et de 1/C2 en fonction de latension de polarisation à 300 K (lot JTE98).

0,5 1,0 1,5 2,0 2,5 3,0 3,51015

3x1015

1016

W (µm)

Dop

age

de la

cou

che

épita

xiée

n (c

m-3)

Fig. 1–5 : Profil de dopage de la couche N extrait des mesures C(V) à 300 K (lotJTE98).

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

91

La technique OBIC n’est pas uniquement employée pour étudier le phénomène

de multiplication par avalanche. Comme pour le silicium, cette méthode de

caractérisation est surtout utilisée pour détecter et identifier les phénomènes contribuant

à l’évolution de la tenue en tension des dispositifs de puissance. Plusieurs auteurs ont pu

ainsi déterminer la répartition et l’influence des charges en surface sur le profil du

champ électrique en périphérie de diodes Schottky ou bipolaires [Frischholtz’93],

[Rottner’96], en étudiant les variations du photocourant et l’étalement de la zone de

charge d’espace. A l’aide de ces mesures on peut facilement localiser le claquage des

composants qui est identifiable par un pic de photocourant du à une multiplication locale

des porteurs sous l’effet d’un champ électrique important [Stengl’87].

Nous nous proposons donc d’étudier à l’aide du banc de mesures OBIC (voir

CHAPITRE 2 § 1) la répartition du champ électrique en périphérie de diodes sans JTE.

1.2.2. Mesures & Simulations OBIC.

Des mesures effectuées sur des diodes de catégorie B1, on a pu dégager deux

comportements bien distincts. La figure suivante (Fig. 1–6 a) présente le signal OBIC

mesuré le long d’un demi-diamètre d’une diode D1 peu résistive. Un photocourant est

induit quand le faisceau U.V. balaie la région de l’émetteur non recouvert par le métal.

Ce signal augmente avec la tension (V ≥ - 250 V) et sature quand la couche épitaxiée est

totalement désertée (V = - 280 V). L’observation d’un fort signal OBIC, décalé de 10 à

15 µm par rapport à la terminaison théorique de la jonction, est révélatrice de la

présence d’un pic de champ électrique qui induit une multiplication locale des porteurs

(essentiellement des trous) [Strengl’87]. Lorsque les porteurs ne sont pas générés dans la

zone de charge d’espace le courant décroît de manière exponentielle en fonction de la

longueur de diffusion. La valeur de la longueur de diffusion des trous extraite des

mesures du photocourant est de 8 à 9 µm. Connaissant la relation liant la longueur de

diffusion des trous (LP) à leur durée de vie (τP) : Pp p

kTLq

µ= ⋅ τ et en supposant leur

mobilité µp= 140 cm² V-1 s-1 (la mobilité horizontale des porteurs est environ deux fois

supérieure à la verticale) on peut ainsi déduire la valeur de la durée de vie des trous :

τp = 2×10-7 s.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

92

60 70 80 90 100 110 120 130 1400,00,51,01,52,02,53,03,54,04,55,05,56,06,57,07,58,0

Sign

al O

BIC

(nA)

Bord du contact

Terminaison théoriquede l'émetteur

V = -400 V V = -300 V V = -200 V V = -100 V V = 0 V

x (µm) 60 70 80 90 100 110 120 130 140

0123456789

10111213141516171819

Sign

al O

BIC

(nA

)

Bord du contact

Terminaison théoriquede l'émetteur

V = -510 V V = -400 V V = -200 V V = -100 V V = 0 V

x (µm)

(a) (b)

Fig. 1–6 : Mesures OBIC à différentes tensions de polarisation, (a) sur une diode D1apeu résistive avec λλλλ = 333,6 nm, (b) sur D1b très résistive avec λλλλ = 351,1 nm.

Popt = 1 W/cm² et φφφφspot = 3,3 µm (lot JTE98).

Les courbes présentées sur la seconde figure (Fig. 1–6 b) sont représentatives

des mesures OBIC réalisées sur des diodes très résistives. On observe bien le

photocourant qui augmente et sature avec la tension lorsqu’on balaie la surface de la

diode. Mais contrairement au cas précédent, pour des tensions jusqu’à 510 V aucune

surintensité n’est encore décelée en périphérie de la jonction. Ceci implique une

répartition différente du champ électrique pour ces deux catégories de diodes.

Le constat est le même lorsque l’on compare les courbes obtenues en simulant

l’éclairement de deux diodes distinctes (Fig. 1–7a et Fig. 1–7b) dont le profil d’émetteur

est différent (Tableau 1–2). Pour la simulation b, le pic de champ apparaît à l’extrémité

de la zone P+ pour V ≥ 500 V alors que pour la diode ayant un profil de jonction

théorique, on visualise la multiplication des porteurs dès que V ≥ 300 V. Les modèles et

paramètres utilisés pour les simulations sont rappelés dans l’annexe B. D’après les

courbes obtenues en simulation (Fig. 1–7a) on trouve une longueur de diffusion pour les

trous (LP) de 4 à 5 µm ce qui est en accord avec les valeurs prises pour la mobilité (le

logiciel ISE ne permettant pas de prendre en compte l’anisotropie de la mobilité la

valeur choisie est celle de la mobilité verticale µp = 70 cm² V-1 s-1) et la durée de vie

(τp = 10-7s).

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

93

Profil émetteur (voir Fig. 1–2) λλλλ (nm) Popt (W/cm²)

Simulation a Profil théorique 351,1 1

Simulation b Profil JTE98D Bord de plaquette 351,1 1

Tableau 1–2 : Paramètres utilisés dans les simulations a et b

60 65 70 75 80 85 90 95 100 105 1100,00,51,01,52,02,53,03,54,04,55,05,56,06,57,07,58,08,59,0

Bord du contact

Terminaison théoriquede l'émetteur

x (µm)

Sign

al O

BIC

(nA

)

V = 0 V V = -100 V V = -200 V V = -300 V V = -360 V

60 65 70 75 80 85 90 95 100 105 1100,00,51,01,52,02,53,03,54,04,55,05,56,06,57,07,58,08,59,0

Terminaison théoriquede l'émetteur

Bord du contact

x (µm)

Sign

al O

BIC

(nA

)

V = 0 V V = -100 V V = -200 V V = -300 V V = -400 V V = -500 V V = -600 V

(a) (b)Fig. 1–7: Signal OBIC simulé pour une diode D1 sous différentes tensions de

polarisation à λλλλ = 351,1 nm,(a) avec un profil théorique pour la zone P+, (b) avec unprofil d’émetteur de type JTE98D en bord de plaquette. Popt = 1 W/cm² et φφφφspot = 3 µm.

1.2.3. Discussion.

La répartition du champ électrique en périphérie pour une tension donnée peut

être affectée par deux causes principales qui sont :

• La présence de charges en surface,

• Un profil d’impuretés différent en périphérie.

Pour avoir un effet sur la répartition du champ électrique en périphérie la

densité de charges négatives en surface doit être supérieure à 1×1011 cm-2. Cette quantité

de charge créerait une zone de charge d’espace en surface où l’on détecterait un signal

OBIC de quelques centaines de pA ( le courant minimum détectable par le banc de

mesures est de 20 à 30 pA ). De plus pour les simulations nous n’avons pas pris en

compte l’effet des charges de surface et nous avons obtenu des résultats comparables à

ceux acquis expérimentalement. Nous pouvons donc éliminer dans notre cas l’hypothèse

de la présence de charge en surface, pour expliquer la forte tenue en tension des

dispositifs sans JTE.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

Comme le montre la figure suivante (Fig. 1–8) issue d’une simulation de diode

dont le profil de l’émetteur est celui des JTE98C, obtenu par analyse SIMS en bord de

plaquette (voir CHAPITRE 3 § 1.2.1) et contrairement à une diode dont la jonction a un

profil théorique, une partie de la zone P+ est désertée sous forte polarisation inverse et

permet ainsi d’étaler les équipotentielles en bordure de jonction. Ceci induit un champ

électrique plus faible à l’extrémité de l’émetteur et conduit à un claquage du dispositif

pour des tensions plus élevées.

F

cara

OB

infl

de j

à 5

Anode

94

ig. 1–8 : Simulation ISE de la répartition des équipotentielles pour une diode D1avec le profil de type JTE98C en bord de plaquette à V= VBR.

Compte tenu des différentes informations obtenues par les diverses

ctérisations et simulations (Profil SIMS, tests de claquage, courbes I(V), mesures

IC…) il apparaît que le profil de dopage de la zone P+ en périphérie à une forte

uence sur la tenue en tension des dispositifs de puissance en SiC.

1.3. Caractérisation des diodes avec JTE.

Dans cette partie nous nous attacherons à évaluer l’influence des terminaisons

onctions sur les caractéristiques directes et inverses des diodes.

1.3.1. Analyse des caractéristiques directes et inverses à 300 K.

Lors des tests effectués sur toutes les diodes D2, D3, D4 et D5 de la plaquette (0

V en direct et 0 à –110 V en inverse) on retrouve outre les catégories B1 et B2

Emetteur

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

95

décrites précédemment (voir CHAPITRE 3 § 1.2.1) deux autres types de comportement

que l’on nomme B3 et B4 (Fig. 1–9) :

• Catégorie B3 :

- en direct : tension de seuil de valeur fixe égale à 0,2 V, ou 0,6 V, ou 1 V selon les

diodes de cette catégorie, une première croissance exponentielle avec n compris entre 1

et 2, puis infléchissement de la courbe avant de rejoindre une caractéristique de type B1

pour une densité de courant variable (au plus égale à 10-1 A/cm2).

- en inverse : présence d’un seuil en tension en dessous duquel le courant inverse n’est

pas mesurable, puis croissance rapide du courant lorsque la polarisation inverse

augmente.

• Catégorie B4 :

- en direct : tension de seuil égale à 0 V (courant supérieur au bruit de mesure dès

0 V), le courant croît jusqu'à ce que la caractéristique rejoigne une caractéristique de

catégorie B1, B2 ou B3 (pour Jd ≈ 10-5 A/cm2).

- en inverse : courant inverse relativement important dès les très faibles polarisations

inverses dans la gamme [10-4, 10-3] en A/cm2 à –100 V.

On notera que dans chaque catégorie il existe des diodes très résistives.

L’existence de la terminaison de jonction semble éviter la présence du courant en excès

observé sur les diodes de catégorie B2.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

Fig. 1–9 : Caractéristiques directes et inverses des différentes catégories de diodesJTE98C et JTE98D à 300 K.

Les diodes D2 (JTE contactée par la métallisation), qu’elles soient de type

JTE98C ou JTE98D, ont les mêmes allures de caractéristiques (Fig. 1–10) et montrent

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

96

un comportement différent de ceux mentionnés auparavant. La croissance du courant

présente une pente unique sur 7 à 8 décades avec un coefficient d’idéalité proche de 1

significatif d’une prédominance du courant de diffusion. Ce courant est dû à la

contribution de la jonction PN (JTE) dont la réalisation semble avoir créé moins de

défauts que la formation de la jonction P+N dans le SiC [Troffer’97]. En inverse, on

observe un seuil compris entre – 5 V et – 40 V à partir duquel le courant émerge du bruit

de mesure et croît rapidement avec la tension. Comme nous le verrons ensuite, cette

tension correspond à la désertion totale des JTE.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102

D2-JTE98D D2-JTE98C

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

D2-JTE98D D2-JTE98C

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

Fig. 1–10 : Caractéristiques I(V) en direct et en inverse de diodes D2 à 300 K (lotJTE98).

Cette participation de la jonction PN à la conduction est également observée sur

les caractéristiques directes à 300 K des diodes JTE98C avec poches non métallisées de

catégorie B1, qui présentent 4 zones distinctes (Fig. 1–11).

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

010

110

2

D1-JTE98C D2-JTE98C D5-JTE98C

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

Fig. 1–11 : Comparaison des caractéristiques I(V) des diodes D1, D2 et D5 de typeJTE98C (lot JTE98).

Ce phénomène avait déjà été constaté sur des études précédentes [Ortolland’97].

Pour la plupart des diodes sous faible polarisation le courant reste noyé dans le bruit. On

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

97

voit par la suite apparaître une double pente dans la zone de variation exponentielle du

courant. La première pente s’étend sur 3 à 4 décades avec un coefficient d’idéalité n

s’approchant de 1 (comportement similaire aux caractéristiques des diodes D2) et la

seconde plus étroite sur 1 à 2 décades dont le coefficient n ≥ 2 (comparable aux D1). Les

valeurs relevées de la résistance série dynamique (27 mΩ.cm2 à 80 mΩ.cm2) sont

largement supérieures à celle de la base N (10 mΩ.cm2), on peut donc penser que les

résistances de contact et celles des couches P+ ne sont pas négligeables. La JTE ne

semble pas avoir d’influence sur la résistance série.

Les caractéristiques relevées pour les diodes JTE98D avec JTE de catégorie B1

sont comparables à celles obtenues pour les D1, c’est à dire qu’elles ne présentent

qu’une seule pente.

1.3.2. Evolution des caractéristiques avec la température.

a) Sous polarisation directe.

Lors de l’étude en température des JTE98C de type B1 (Fig. 1–12) on retrouve

bien la double pente dans la zone d’idéalité due à la mise en parallèle de 2 jonctions

(jonction principale et la jonction JTE). Quand la température augmente le coefficient

d’idéalité de la première pente augmente et tend vers 2 (courant de recombinaison).

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102103

∆T = 25 K

473 K

223 K

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

Fig. 1–12 : Caractéristiques courant tension en direct à différentes températures pourune diode de la catégorie JTE98C.

Pour les diodes JTE98D les caractéristiques (Fig. 1–13) sont comparables à

celles obtenues pour les diodes D1. Comme on l’a remarqué précédemment, (voir

CHAPITRE 3 § 1.2.1) les profils d’aluminium des JTE98C et JTE98D sont quelque peu

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

98

différents. Il semblerait donc que les couches P+ des diodes de type JTE98D ne

permettent pas de voir la contribution de la JTE sur le courant direct.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102

300 K

473 K

77 K

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

Fig. 1–13 : Caractéristiques électriques en direct de diodes avec JTE de type JTE98Den fonction de la température.

b) Sous polarisation inverse.

Les différents types de diodes présentent deux comportements en inverse

spécifiques. Ces comportements ne sont pas liés aux catégories JTE98C et JTE98D

définies préalablement. Le premier (Fig. 1–14a), correspondant à un courant qui émerge

du bruit de mesure pour les températures supérieures à 300 K et augmente avec T pour

atteindre quelques dizaines de µA/cm2 sous 100 V à 473 K (comparable au courant

inverse des D1 sans JTE).

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆T = 25 K 473 K

223 K

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆T = 50 K

623 K

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

(a) (b)Fig. 1–14 : Caractéristiques inverses typiques de diodes avec JTE en fonction de la

température (lot JTE98).

Le second réseau de courbes (Fig. 1–14b) montre que le courant est activé pour

des températures plus élevées, il est détectable quand T > 423 K. Ce courant atteint

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

99

quelques mA/cm² sous 100 V à T = 623 K. Le courant ne variant pas en fonction de V1/2

on ne peut donc pas l’assimiler à un courant de génération dans la ZCE. Des mesures

DLTS effectuées sur des diodes D4 de types JTE98C et JTE98D au IOFFE de Saint

Petersbourg ont permis d’identifier des niveaux de pièges pouvant être à l’origine de ce

courant (Tableau 1–3).

Centres profonds E-Ev (eV) σσσσp , (cm2) Concentration (cm-3)JTE98C JTE98D

Centre - i Ev+0,5 4×10-18 3,3×1014 4,6×1014

Centre - L Ev+0,27 1×10-17 9,1×1014 7,8×1014

Niveau superficiel du B Ev+0,33 6×10-14 2×1014 5,9×1014

Tableau 1–3 : Niveau d’énergie, section de capture et concentration de piègesdéterminés par mesures DLTS (lot JTE98).

Une partie des diodes caractérisées (23 %) présentent un comportement de type

B3. La figure suivante (Fig. 1–15 a) présente les caractéristiques en fonction de la

température d’une diode de catégorie B3. L’allure des courbes obtenues à température

ambiante laisse envisager qu’une diode Schottky parasite en parallèle avec la jonction

P+N, contribue à la conduction.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1110-1010-910-810-710-610-510-410-310-210-1100101102103

Température (K) 223 273 300 323 373 423 473 523

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Tem

péra

ture

(K)

223

273

300

322

373

423

473

523

Tension (V)

Den

site

de

cour

ant (

A.cm

-2)

(a) (b)Fig. 1–15 : Caractéristiques directes et inverses d’une diode D3 de catégorie B3 en

fonction de la température (lot JTE98).

A T = 223 K, à partir d’un seuil de 0,3 V une première croissance exponentielle

du courant apparaît dont le coefficient d’idéalité est égal à 1. Lorsque la température

augmente, le seuil en tension tend à disparaître et la zone d’idéalité diminue fortement.

On observe un point (Vd = 0,7 V – Jd = 10-2 A/cm²) où toutes les courbes se rejoignent

avant de se croiser. En effet on remarque que le courant tend à saturer à partir de ce

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

100

point et décroît lorsque la température augmente. Les courbes se coupent une dernière

fois (Vd =1,8 V – Jd = 10-1 A/cm²) avant de rejoindre un comportement d’une diode de

catégorie B1. Une Schottky S1 dont on a relevé les caractéristiques directes (Fig. 1–

16a), affiche la même évolution en température que la première partie des courbes de la

diode de type B3.

Sous polarisation inverse (Fig. 1–15b) pour T = 223 K le courant augmente

rapidement avec la tension sans dépendance particulière et ceci après avoir émergé du

bruit de mesure pour une tension de 20 V. Ce seuil de tension disparaît avec la montée

en température. Bien que le niveau de courant soit plus important et que le seuil en

tension soit plus faible pour la Schottky (Fig. 1–16b), l’allure des courbes reste

comparable.

0,0 0,5 1,0 1,5 2,0 2,5 3,010-1010-910-810-710-610-510-410-310-210-1100101102103

Temperature (K) 223 273 300 322 373 423 473 523

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Température (K) 223 273 300 322 373 423 473 523

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

(a) (b)Fig. 1–16 : Caractéristiques directes et inverses d’une Schottky S1 en fonction de la

température (lot JTE98).

Il est vraisemblable de considérer qu’une Schottky parasite (appelée Sp) vient

perturber le fonctionnement normal de la diode bipolaire. Si on considère que la

Schottky parasite fournit la même densité de courant que S1 : SpS1

S1 Sp

II JS S

= = , alors en

faisant le rapport des courants mesurés on obtient le rapport de surfaces de ces deux

diodes. Dans notre cas nous trouvons que la surface de la Schottky parasite est de :

6,87×10-7 cm² et si nous considérons que cette diode est circulaire nous obtenons un

diamètre de 10 µm ce qui peut correspondre à la taille d’un défaut structurel du

matériau. On peut envisager que ce comportement spécifique découle de la formation

d’une diode Schottky par le recouvrement d’un défaut structurel du SiC par des résidus

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

101

de masques d’aluminium utilisés pour les étapes de photolithographie, ou de

métallisation pour la prise de contact d’anode. Des comportements analogues

(contribution d’une jonction parasite en parallèle à la jonction principale) ont déjà été

énoncés par certains auteurs [Keskar’00], [Defives’99].

1.3.3. Etude de la tenue en tension.

Les valeurs obtenues lors des tests de claquage des diodes avec JTE dans une

huile silicone ou dans l’air, sont assez dispersées et inférieures aux prévisions (Tableau

1–4).

Conditionsde tests

A 300 K dans l’huile A 300 K dans l’air

Diode D3 D4 D5 D3 D4 D5VBR

JTE98D900 V950 V

1100 V1464 V

600 V1720 V

600 V700 V944 V

1200 V

650 V900 V

1156 V 480 V800 V

1022 V

VBRJTE98C

880 V1000 V1100 V1140 V1200 V

950 V1000 V

900 V1080 V1100 V1100 V1142 V

Tableau 1–4: Valeurs des tensions de claquages testées dans l'air à 300 K et dansl’huile. Les résultats correspondent à des diodes de catégorie B1, ou de catégorie B3.

Comme pour les diodes D1 le claquage survient en périphérie de l’émetteur et

les meilleures performances en terme de tenue en tension sont obtenues pour des diodes

très résistives sous polarisation directe. Toutefois on constate une influence du milieu

ambiant sur la tension de claquage des dispositifs, ce qui laisse penser que les

terminaisons de jonction ont un impact sur le comportement à fortes polarisations

inverses.

Afin d’évaluer l’efficacité des poches (JTE) il est nécessaire de connaître

précisément le lieu de claquage des composants et la répartition du champ électrique

dans la structure. La technique OBIC permet d’obtenir ces informations en étudiant les

variations du signal obtenu en balayant la surface de la protection périphérique

[Rottner’97], [Frischolz’98].

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

102

Les diodes testées en OBIC sont des D2, des D3 et des D5 de catégorie B1

(Tableau I). A partir des mesures effectuées, on peut dégager trois comportements

typiques. Les deux premiers sont décrits dans les paragraphes précédents où aucun

signal n’est détecté sur la JTE, quant au dernier on peut le visualiser sur la figure

suivante (Fig. 1–17).

250 200 150 100 50 010-12

10-11

10-10

10-9

10-8

10-7

Fin Théorique

du p+Fin Théoriquede la JTE

3

2

1

Contact

JTE Emetteur

x (µm)

Sign

al O

BIC

(A)

V = -345 V V = -300 V V = -200 V V = -100 V V = -50 V V = 0 V

Fig. 1–17: Signaux OBIC expérimentaux le long d’un rayon d’une diode D3 protégéepar une JTE de longueur 120 µm, pour différentes polarisations inverses. Diamètre du

spot = 3,3 µm, longueur d’onde du faisceau = 351,1 nm (lot JTE98).

On observe 3 zones distinctes :

• la 1ère où l’on reconnaît le signal obtenu pour la zone P+

• la 2nde où le signal décroît en fonction de la distance avec l’émetteur ; dans

cette zone le signal est dû à l’extension latérale de la ZCE de la jonction P+N

sous la JTE.

• la 3ème où l’on détecte peu de signal correspond à la ZCE due à la jonction PN.

A cet endroit si le signal est aussi faible, alors on peut penser que la JTE est

déjà totalement désertée et donc la ZCE s’étend très peu dans la couche

épitaxiée.

Les courbes montrent un pic de courant en bordure de la zone P+ ce qui

implique que la JTE soit totalement déplétée. On peut déduire de ce comportement et

des valeurs de tenue en tension que la JTE n’a pas un dopage suffisant pour être

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

103

totalement efficace. Ceci est confirmé par les mesures effectuées sur une diode D2

(diode où le métal recouvre 30 µm de JTE). A 0 V aucun signal n’est détectable, par

contre dès les faibles polarisations (V > 5 V) des pics de courant importants émergent en

bordure de métal ce qui est significatif d’un resserrement des équipotentielles (Fig. 1–

18). La JTE est donc bien totalement désertée pour de faibles tensions de polarisation,

ce qui signifie que le dopage réel des protections est bien inférieur à celui souhaité.

0 50 100 150 200 250 300 350 400 450 50005

1015202530354045505560657075

Sign

al O

BIC

(nA

)

V = -5 V V = -10 V V = -15 V

x (µm)

Fig. 1–18: Signaux OBIC expérimentaux le long d’un diamètre, pour différentespolarisations inverses d’une diode D2. Diamètre du spot = 3,3 µm, longueur d’onde du

faisceau = 351,1 nm (lot JTE98).

La faible concentration de bore obtenue pour la JTE peut s’expliquer par une

diffusion du dopant pendant le recuit post-implantation. Cette hypothèse est confirmée

par une analyse SIMS effectuée sur un échantillon témoin d’implantation (Fig. 1–19) où

l’on retrouve un dopage de l’ordre de 1x1016 cm-3 (dopage visé = 2x1017 cm-3 ) sur une

profondeur d’au moins 1,4 µm (profondeur visée = 0,7 µm).

0,00 0,15 0,30 0,45 0,60 0,75 0,90 1,05 1,20 1,35 1,501015

1016

1017

1018 Profil théorique Profil de Bore Non recuit Profil de Bore recuit

Profondeur en µm

Con

cent

ratio

n (c

m-3)

Fig. 1–19 : Profils SIMS du bore dans un échantillon témoin de l’implantation desJTE du lot JTE98.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

104

1.4. Conclusion.

L’analyse des caractéristiques électriques directes et inverses des diodes D1 a

permis de démontrer que la disparité des profils de dopage de l’émetteur avait une

influence non négligeable sur le comportement électrique des dispositifs : diodes plus ou

moins résistives et tenue en tension supérieure à la valeur théorique. Les différents

profils d’émetteur étant liés au recuit post-implantation, on peut donc penser que cette

configuration n’est pas appropriée à la réalisation de composants de puissance en SiC.

L’effet des JTE dopées bore a été observé sur quelques dispositifs autant en direct

(meilleure conduction) que sur le comportement inverse (faible amélioration des

tensions de claquage). Cependant la diffusion du bore pendant le recuit haute

température post-implantation utilisé pour restaurer simultanément les zones d’émetteur

et de poche, est rédhibitoire. Le bore ne semble donc pas être adapté à la réalisation de

JTE performantes. Le bore est à l’heure actuelle employé pour former des jonctions P+N

par co-implantation avec du carbone, mais il n’est plus employé comme dopants pour les

JTE.

2. Rôle de la JTE dopée aluminium sur l’évolution de latension de claquage.

Nous avons vu dans le paragraphe précédent que le bore n’était pas le candidat

idéal pour réaliser des protections efficaces pour nos dispositifs. Il est donc souhaitable

d’étudier l’influence d’une autre espèce chimique (l’aluminium) sur l’efficacité des

terminaisons de jonctions et sur le comportement électrique en direct des composants.

2.1. Descriptions des dispositifs.

Une des principales différences entre les deux lots de diodes présentées dans

cette partie est la modification de la configuration du recuit post-implantation. Nous

nous appliquerons à démontrer les améliorations apportées par ce nouveau recuit sur les

comportements électriques des diodes.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

105

2.1.1. JTE99’F3.

La méthode de réalisation de l’émetteur P+ est la même que pour les JTE98D (la

jonction principale est réalisée par 5 implantations d'aluminium, d’énergies comprises

entre 25 keV et 300 keV, et introduisant une dose cumulée de 1,75x1015 cm-2, à 300 °C,

pour une profondeur visée de 0,5 µm en commençant par l’implantation d'énergie la plus

forte : sens énergétique décroissant). Les caractéristiques de la couche épitaxiée sont :

épaisseur = 10 µm, dopage = 6x1015 cm-3. Les JTE sont réalisées par cinq implantations

successives d’aluminium entre 25 keV et 300 keV, avec une dose cumulée de

1 x 1013 cm-2 à 300 °C. Cette plaquette a été recuite dans les mêmes conditions que les

JTE98 (1700 °C pendant 30 mn configuration F3). Les contacts ohmiques sont réalisés

chez Siemens par dépôt de nickel en face arrière et par empilement de couches de titane

et d’aluminium en face avant le tout recouvert de 50 nm de titane.

2.1.2. JTE99’F4.

Ces diodes ont été réalisées sur une plaquette présentant les mêmes

caractéristiques que celles des JTE99’F3. Les paramètres de l’émetteur et les JTE sont

similaires à ceux du lot précèdent. Les différences notables dans le procédé de

fabrication sont :

• La configuration du four pour le recuit post-implantation que l’on nommera

F4 [Lazar’01] (voir annexe C).

• Les contacts ohmiques réalisés au LAMEL, la métallisation d’anode est un

empilement Al/Ti/Al et la face arrière est recouverte d’une couche de

nickel. Après le recuit des métallisations on a pu observer un étalement non

homogène de celles-ci sur l’émetteur voire sur les JTE ou sur la couche

épitaxiée suivant le type de diodes.

• Une gravure RIE de 27 nm a été effectuée sur une partie de la plaquette

(avant métallisation) introduisant une diminution de la dose totale des

accepteurs dans les JTE.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

106

2.2. Comparaison des performances des JTE99’F3 et JTE99’F4.

Ces deux lots de diodes présentant peu de différences dans leur réalisation nous

nous attacherons notamment à évaluer l’impact du recuit post-implantation sur leurs

performances et surtout en terme de tenue en tension.

2.2.1. Tests électriques à 300 K.

Lors des tests toutes les diodes JTE99’F3 présentent le même type de

caractéristiques (Fig. 2-1). Sous polarisation directe la densité de courant au voisinage

de 0 V est supérieure à 10-4 A/cm-2, puis le courant croît jusqu'à rejoindre une

caractéristique de type B3 avec tension de seuil voisine de 0,2 V. On retrouve ce courant

en excès quand le dispositif est polarisé en inverse. On reconnaît ici le comportement de

type B4 décrit dans le paragraphe précédent (voir CHAPITRE 3 § 1.3.1). Des nettoyages

chimiques de surface (de type TAA, ou HF + TAA, ou CARO) n’affectent pas ces

courants en excès.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.010-10

10-9

10-8

10-7

10-6

10-510-4

10-3

10-210-1100

101102

103

Tension (V)

Dens

ite (A

.cm

-2)

-100 -80 -60 -40 -20 010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Tension (V)

Dens

ite (A

.cm

-2)

Fig. 2–1 : Caractéristiques directes et inverses des diodes JTE99’F3 à 300 K.

La figure suivante (Fig. 2–2) présente des résultats obtenus par caractérisation

OBIC sur une diode D1. Chaque courbe correspond, pour une polarisation donnée de la

diode, au photocourant mesuré en fonction de la position du spot lumineux incident. Au

centre du dispositif (position = 380 µm), le signal OBIC détecté est très faible, car la

métallisation du contact d’anode, présente à cet endroit, ne permet pas la pénétration du

faisceau U.V. dans le semi-conducteur. Une augmentation du signal lorsque le spot

balaie l’extrémité de la zone P+ confirme l’existence de la zone de charge d’espace de la

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

107

jonction P+N. La détection d’un courant lorsque le spot est bien au-delà de cette jonction

ne correspond en revanche pas à une situation normale, et signale l’existence d’une zone

où règne un champ électrique. Cette analyse suggère l’existence de charges en surface

du semi-conducteur capables d’une part de créer une ZCE en surface et d’autre part

d’être à l’origine des courants en excès.

0 100 200 300 400 500 600 700 800 900 10000,0

2,0x10-10

4,0x10-10

6,0x10-10

8,0x10-10

1,0x10-9

1,2x10-9

1,4x10-9

1,6x10-9

1,8x10-9

x (µm)

Phot

ocou

rant

(A)

V = -20 V V = -1 V V = -0.5 V V = 0 V V = 0.5 V V = 1 V

Fig. 2–2: Signaux OBIC lors d’un balayage linéaire du spot U.V. (diamètre 3,3 µm,longueur d’onde 351 nm) au-dessus d’une diode D1 pour différentes valeurs de la

tension appliquée à ces bornes (lot JTE99’F3).

Une analyse de surface (XPS) a permis de mettre en évidence des résidus du

masque d’aluminium et de résine en surface du semi-conducteur. Cette pollution est

certainement à l’origine du courant en excès en direct et en inverse.

Une gravure RIE pleine plaque de 40 nm a été effectuée sur une partie de

plaquette, pour éliminer la cause du dysfonctionnement de ces diodes. Sur ce morceau

on retrouve alors les différents comportements typiques des JTE98 : B1, B2, B3 et B4

(Fig. 2–3). Comme pour le précèdent lot, certains composants présentent des

comportements très résistifs, ils se situent généralement en périphérie de plaquette. On

notera tout de même que la densité de courant des meilleurs dispositifs sous 5 V (10 à

40 A/cm2) est inférieure à celle obtenue pour les JTE98.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

108

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1010-910-810-710-610-510-410-310-210-1100101102

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Fig. 2–3 : Caractéristiques en direct et en inverse des JTE99’F3 à 300 K desdifférentes catégories rencontrées.

Pour les JTE99’F4 on retrouve les différentes catégories (B1, B2, B3, B4) de

comportements constatés sur les JTE99’F3 (Fig. 2–4). Il est important de remarquer

qu’aucune diode n’affiche de caractéristique très résistive contrairement au lot JTE98C,

JTE98D et JTE99’F3.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1110-1010-910-810-710-610-510-410-310-210-1100101102

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Den

site

de

cour

ant (

A.cm

-2)

Fig. 2–4 : Caractéristiques en direct et en inverse des JTE99’F4 à 300 K desdifférentes catégories rencontrées.

On peut remarquer également une bonne homogénéité des résultats obtenus, en

direct la densité de courant sous 5 Volts est dans la gamme [5, 60] A/cm². On observe

une amélioration des caractéristiques de catégorie B1. Les diodes présentent un seuil de

1,4 V, puis une dépendance de type qVnkTdJ exp≈ avec un coefficient d’idéalité n qui

évolue. Dans la gamme de courant [10-8, 10-4] A/cm², n = 2, on a donc une

prédominance du courant de recombinaison. Pour Jd ≥ 10-4 A/cm² n varie de 1,8 à 1,5

suivant les diodes, le courant devient alors une combinaison de courant de diffusion

(n=1) et de courant de recombinaison (n=2). La courbe s’infléchit ensuite sous l’effet de

la résistance série pour des valeurs [10-1, 1] A/cm², ce qui est environ une décade au-

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

109

dessus par rapport au JTE99’F3. Cette amélioration semble être directement liée au

procédé de recuit post-implantation. A noter que les valeurs des Rspé extraites des

caractéristiques sont très élevées [50, 300] mΩ.cm². Une résistance de contact élevée

peut expliquer une telle limitation du courant dans la partie ohmique de la courbe. On

peut aussi penser que le régime de forte injection n’est pas encore atteint lorsque

l’infléchissement de la courbe intervient. La présence de pièges de type accepteur peut

être à l’origine de ce phénomène. On peut aussi envisager que le dopage de la couche

épitaxiée N soit en partie compensée, ce qui entraînerait une augmentation de la

résistivité de la couche et limiterait ainsi le courant. En inverse les courants de fuite sous

100 V sont de l’ordre de 10-8 A/cm² et le courant est proportionnel à l’étalement de la

ZCE dans le matériau (Jr ≈ Vr1/2).

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1110-1010-910-810-710-610-510-410-310-210-1100101102

D1 type B2 D1 type B3

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

Fig. 2–5 : Caractéristiques directes à 300 K de diodes D1 JTE99’F4 des parties gravéeet non gravée de la plaquette.

Le débordement de la métallisation lors du recuit des contacts perturbe le bon

fonctionnement des diodes D1 (Schottky en parallèle avec une diode bipolaire). Les

diodes de la partie non gravée peuvent être classées dans la catégorie B2 alors que celles

gravées sont plutôt de type B3 (Fig. 2–5). La différence de comportement de ces diodes

est certainement liée à l’état de surface du SiC avant gravure et après gravure. Les

diodes D1 ne se comportent pas comme les autres diodes de la catégorie B3. La

première partie de la caractéristique présente normalement un n < 2 alors que n = 2 pour

les diodes D1 du lot JTE99’F4.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

110

2.2.2. Etude des courants de fuite et de la tenue en tension.

Le tableau ci-dessous présente les valeurs des tenues en tension obtenues pour

les deux lots de diodes. Les mesures ont été effectuées avec une SMU Keithley 237 ou

un traceur de caractéristiques Tektronix 370.

Milieuambiant

Air Huilesilicone

Air Huilesilicone

Air Huile silicone

T (K) 300 300 300 300 300 300Diode D1 D1 D2 D2 D3 D4 D5 D3 D4 D5VBR

JTE99’F3Bord de

plaquette

421 V500 V

1000 V

403 V500 V700 V

1000 V

500 V 190 V200 V422 V500 V700 V719 V800 V

VBRJTE99’F3Centre deplaquette

126 V290 V296 V369 V

125 V178 V190 V200 V305 V428 V

171 V328 V

196 V203 V245 V274 V279 V374 V

VBRJTE99’F4

Nongravée

510 V530 V565 V710 V

390 V380 V

670 V 960 V 765 V780 V975 V

1000 V930 V870 V

1000 V1000 V615 V

660 V680 V890 V

1020 V

850 V730 V

800 V 750 V760 V790 V

VBRJTE99’F4

gravée

540 V520 V440 V

280 V240 V

885 V950 V

930 V 900 V920 V

1000 V

990 V710 V

940 V820 V750 V

710 V850 V

730 V 290 V690 V730 V

Tableau 2–1 : Valeurs des tensions de claquage relevées dans l'air ou dans une huilesilicone à 300 K,(pour les JTE99’F4 les claquages assistés par un défaut sont notés en

italique).

Les valeurs reportées dans ce tableau attestent tout d’abord de l’absence

d’influence des JTE sur la tenue en tension des diodes du lot JTE99’F3. En effet il existe

peu ou pas de différence entre les tensions de claquage des diodes D1 et celles des

autres diodes. Par contre, une certaine efficacité des terminaisons de jonction est

observée lorsqu’on compare la tenue ne tension des diodes JTE99’F4 avec JTE avec

celle des D1 sans JTE.

Les profils de dopage des JTE obtenues par analyses SIMS peuvent expliquer

cette différence. Toutes ces diodes ont vu la même séquence d’implantations pour la

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

111

réalisation des JTE, malgré un profil d’aluminium très différent de celui souhaité, la

dose totale de dopants implantés est bien celle envisagée (Fig. 2–6).

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,11014

1015

1016

1017

1018 Profil simulé Profil implanté avant recuit

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–6 : Comparaison du profils des JTE obtenu avec le logiciel I2SiC et celuiréellement implanté pour les diodes des lots JTE99’F3 ET JTE99’F4.

Après la gravure de 40 nm infligée aux diodes JTE99’F3 la dose restante est de

5,4×1012 cm-2. Comme le montre la figure suivante (Fig. 2–7) on pouvait donc s’attendre

à noter une influence des JTE sur la tenue en tension.

1,0x1012 4,0x1012 7,0x1012 1,0x1013 1,3x1013700800900

100011001200130014001500160017001800

Coefficients de Konstantinovα = 4*105exp(1.67*107/E)

β = 1,63*107exp(1.67*107/E)

Dose totale implantée (cm-2)

Tens

ion

de c

laqu

age

(V)

Fig. 2–7 : Variation de VBR en fonction de la dose totale de la JTE.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

112

Cependant, on remarque que le profil après avoir subi un recuit dans la

configuration F3 est très différent de celui observé initialement (Fig. 2–8), la dose

restante est de 6,8×1011 cm-2, ce qui explique la quasi totale inefficacité des protections.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,11014

1015

1016

1017

1018

Profil après gravure et avant recuit Profil après gravure et recuit

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–8 : Analyse SIMS des profils des JTE ayant subi une gravure de 40 nm avant etaprès recuit de type F3.

Il est tout de même important de noter les différences des valeurs de VBR

mesurées pour les diodes se situant en périphérie ou au centre de la plaquette du lot

JTE99’F3. Les diodes excentrées présentent de manière générale pour une polarisation

de 5 V une faible densité de courant (< 1 A/cm²) et une tenue en tension dans la gamme

[700 V - 800 V]. Alors que les autres diodes moins résistives ont des tensions de

claquage beaucoup plus faibles (300 V). Ces résultats confirment l’influence du profil

de la jonction principale sur le VBR (voir CHAPITRE 3 § 1.2)

Le recuit de type F4 n’introduisant aucune perte de SiC, cela permet donc de

conserver le profil d’aluminium initial et d’observer un effet des JTE sur la tension de

claquage des diodes JTE99’F4. Pourtant, les valeurs expérimentales relevées dans l’air

pour les diodes non gravées sont inférieures à celles prévues théoriquement (1720 V).

Lors du claquage des composants dans l’air on peut observer deux phénomènes

bien distincts. Le premier se traduit par l’apparition d’un arc entre la pointe de test et un

défaut quelconque (en surface ou en volume) situé plus ou moins loin du dispositif, ce

qui révèle un cratère dans le matériau (Fig. 2–9).

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

113

(a) (b)

Fig. 2–9 : Deux types de cratères observés au microscope optique après claquage dansl’air à 300 K.(a) cratère créé par un arc entre ce point et la pointe de test, (b) cratère

où l’on observe un point lumineux blanc pendant le claquage du composant.

(a) (b)

Fig. 2–10 : Observation au microscope à balayage électronique des trous responsablesdu claquage prématuré des diodes dans l’air à 300 K, après une attaque KOH, (a)

défaut ellipsoïdal, (b) défaut circulaire.

Les diodes claquées ont subi une attaque chimique de 10 mn à 15 mn à la

potasse chauffée à 650 °C afin d’observer les cratères au microscope à balayage

électronique (MEB). Un examen précis de la surface des composants détruits ne révèle

pas la présence de micropores. Ces défauts propres au SiC se distinguent par une section

hexagonale parfaite, alors que les cratères visualisés sont soit de forme plutôt

ellipsoïdale (Fig. 2–10 a) soit parfaitement circulaire (Fig. 2–10 b). La taille des défauts

repérés sur la plaquette varie de 2 µm à 10 µm. On peut noter la présence de plusieurs

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

114

défauts circulaires à proximité ou sur le dispositif détruit, alors qu’un seul cratère

ellipsoïdal situé aux abords du composant provoque la destruction de celui-ci. Ces

différentes imperfections provenant du SiC ou des différentes étapes de fabrication sont

surtout visibles sur les champs se situant en bordure de plaquette et occasionnent

généralement une réduction de la tenue en tension des diodes (Tableau 2–2).

La seconde manifestation du claquage visualisée est un arc entre la pointe de

test et le bord de l’émetteur (ou de métal) suivi de l’apparition d’un point blanc lorsque

le courant est important. Ceci est significatif d’un claquage localisé de la diode, dû à un

champ électrique trop important en périphérie de l’émetteur (ou du métal). Ceci

impliquerait une efficacité partielle des protections. Le claquage des dispositifs testés

dans une huile silicone se manifeste par un point blanc lumineux en périphérie de métal

ou de jonction P+N dont l’intensité varie avec le niveau du courant. On peut remarquer

que le claquage intervient pour des tensions légèrement plus faibles que dans l’air.

-1100-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 010-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

D1b D3a D5b D2 D4

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-1100-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 010-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

D1 D3b D5b D2

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

(a) (b)

Fig. 2–11 : Evolution du courant inverse des JTE99’F4 jusqu’à la tension declaquage à 300 K (a) dans l’air (b) dans une huile silicone.

Comme nous pouvons le voir sur les caractéristiques inverses des diodes avec

JTE (D3, D4, D5) relevées lors des tests de claquage dans l’air (Fig. 2–11 a) ou dans

l’huile silicone (Fig. 2–11 b), jusqu'à 500 V environ le courant reste proportionnel à V1/2

ce qui laisse penser qu’il est initié par de la génération de porteurs dans la zone de

charge d’espace. La diode D2 dont le métal vient recouvrir une partie des poches

(30 µm) présente une autre allure de caractéristique dans cette gamme de tension. Dès

les faibles polarisations (150 V) le courant varie exponentiellement. Par la suite pour

toutes les diodes le courant augmente de manière exponentielle en fonction de la tension

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

115

jusqu’à l’apparition du claquage. Ce seuil en tension compris entre 400 V et 600 V

suivant les composants, semble coïncider avec la tension pour laquelle les JTE sont

totalement désertées. Selon les résultats de simulations prenant en compte les profils

réels des dopants (Fig. 2–6), les JTE sont totalement désertées pour une tension

comprise dans la gamme [600 V – 700 V], donc quelque peu supérieure à la valeur

expérimentale. Ce qui tend à confirmer le mauvais fonctionnement des poches.

La technique OBIC peut nous permettre de connaître l’évolution de la ZCE en

fonction de la tension et ainsi confirmer le lieu de claquage du composant en périphérie

de l’émetteur.

2.2.3. Mesures OBIC et discussion.

a) Mesures OBIC

Les mesures obtenues sur une diode D3 (longueur de poche = 120 µm) sont

présentées sur les figures suivantes (Fig. 2–12a et Fig. 2–12b).

0 50 100 150 200 250 300 350 400 450 500 550 600

10-11

10-10

10-9

10-8

Vr = 500 V

Vr = 0 V

JTE JTEP+

x (µm)

Phot

ocou

rant

(A)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

10-9

10-8

10-7

10-6

Vr = 600 V Vr = 650 V

Vr = 570 V

JTE JTEP+

x (µm)

Phot

ocou

rant

(A)

(a) (b)

Fig. 2–12 : Mesures OBIC le long d’un diamètre d’une diode D3b de type JTE99’F4,(a) pour des tensions de polarisation comprises entre 0 et 500 V, (b) pour des tensions

de polarisation comprises entre 570 et 650 V. Diamètre du spot = 3,3 µm, longueurd’onde du faisceau = 351,1 nm.

On observe tout d’abord un signal OBIC qui augmente avec la tension lorsqu’on

balaie la surface des JTE (Fig. 2–12a). Ceci confirme l’existence des poches et explique

la différence de tenue en tension entre les diodes sans JTE (D1) et les autres dispositifs.

Contrairement à ce que nous avons vu précédemment un photocourant est détecté

lorsque le faisceau U.V. est au-dessus du contact. Sur ce lot la métallisation semble être

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

116

semi-transparente malgré les épaisseurs des couches déposées. Sous une polarisation de

500 V on voit apparaître un pic de courant à l’extrémité de la JTE, significatif d’un

resserrement des équipotentielles. La dissymétrie des courbes semble être due d’une part

à un léger désalignement des JTE et d’autre part au débordement du métal qui induisent

une répartition du champ électrique quelque peu différente. Les courbes obtenues pour

des polarisations plus fortes sont présentées sur la figure de droite (Fig. 2–12b). Sous

570 V on remarque un fort signal en périphérie des deux JTE. A cette tension les poches

ne sont pas encore totalement désertées. Pourtant on devrait détecter un signal important

en bordure de l’émetteur révélateur du resserrement des lignes de champ à son

extrémité. L’extension du métal absorbant une partie du faisceau U. V., le signal OBIC

détecté est donc plus faible et ces variations dans la zone (230 µm – 390 µm) ne

traduisent pas la répartition réelle du champ électrique à cet endroit de la structure. Sous

plus forte polarisation (600 V), on voit émerger un pic de photocourant en périphérie de

métal et disparaître le pic à l’extrémité des JTE. Ce qui indique que le champ électrique

devient plus important en bordure du contact, qu’en périphérie de la JTE. Ceci n’est

possible que si la poche est totalement désertée.

0 50 100 150 200 250 300 350 400 450 500 550 60010-12

10-11

10-10

10-9

10-8

10-7

Vr = 650 V Vr = 400 V

Vr = 100 V

JTEJTE P+

x (µm)

Phot

ocou

rant

(A)

Fig. 2–13 : Signaux OBIC expérimentaux le long d’un diamètre d’une diode D2 (lemétal recouvre 30 µm de JTE) de type JTE99’F4 pour différentes tensions de

polarisation. Diamètre du spot = 3,3 µm, longueur d’onde du faisceau = 351,1 nm.

Pour la diode D2 le comportement observé (Fig. 2–13) est quelque peu

différent. Dès 400 V, un pic de signal OBIC émerge à une extrémité du métal. C’est

seulement à partir de 500 V que le photocourant augmente des deux cotés du contact. La

diode D2 ayant un recouvrement des JTE de 30 µm par la métallisation il est donc

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

117

logique de détecter un fort champ électrique en périphérie de l’anode pour des tensions

plus faibles.

b) Discussion.

On a pu constater lors des tests électriques que les tensions de claquage des

dispositifs JTE99’F4 sont inférieures à la valeur théorique (1720 V) et que le milieu

ambiant n’avait pas d’influence. Les résultats obtenus avec la méthode OBIC tendent à

confirmer une certaine inefficacité des protections, notamment en démontrant une

déplétion précoce des terminaisons de jonction. Bien que la dose chimique totale

implantée pour réaliser les JTE soit conforme à la dose d’accepteurs déterminée par

simulation, il apparaît clairement que cette dose n’est pas suffisante pour assurer une

protection maximale.

Les incertitudes sur les paramètres utilisés en simulation ne peuvent être la

seule cause des différences observées entre les valeurs mesurées et calculées. Il apparaît

donc légitime de penser que l’activation électrique des dopants par le recuit F4 n’est pas

celle que l’on supposait (proche des 100 %). Cette hypothèse est confirmée par l’analyse

des tests réalisés sur les diodes JTE99’F4 gravées. Comme il est mentionné

précédemment une partie des composants ont subi une gravure de 27 nm induisant une

diminution de la dose totale des JTE (6,4×1012 cm-2). Pourtant les tensions de claquage

(Tableau 2–1) et les caractéristiques inverses relevées sont peu différentes de celles

obtenues pour les diodes non gravées et ce quel que soit le milieu ambiant. Ceci suggère

que la dose totale implantée pour réaliser les poches n’ait qu’une faible influence sur la

tenue en tension. Si on se réfère à la courbe représentant les variations du VBR en

fonction de la dose d’accepteur de la JTE (Fig. 2–7), pour parvenir à une tension de

claquage de l’ordre de 1000 V il faut implanter une dose de 2 à 3×1012 cm-2. Ce qui

confirme que le taux d’activation électrique des dopants est inférieure à 100 %.

Des simulations prenant en compte les spécificités des diodes du lot JTE99’F4

(profil réel implanté, débordement du métal…) ont été effectuées en faisant varier

l’activation électrique de l’aluminium (Tableau 2–2). On remarque que pour un taux

d’activation électrique de 30 % la différence entre les valeurs de tensions de claquage

théoriques des diodes gravées et non gravées est minime et coïncide avec les résultats

expérimentaux.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

118

JTE99’F4 non gravée JTE99’F4 gravéeVBR simulé

Activation = 100 %1720 V 1300 V

VBR simuléActivation = 50 %

1220 V 996 V

VBR simuléActivation = 30 %

990 V 840 V

VBR mesuré 950 V 900 V

Tableau 2–2 : Comparaison de la tenue en tension théorique et pratique dans l’air à300 K pour différents taux d’activation électrique des accepteurs dans la JTE.

Cependant les incertitudes sur les valeurs des paramètres utilisées dans le

simulateur comme les coefficients d’ionisation ou le dopage et l’épaisseur de la couche

épitaxiée peuvent entraîner des erreurs non négligeables sur les résultats obtenus. On ne

peut donc pas affirmer que le taux d’activation électrique est de 30 %, mais on peut dire

qu’il est situé dans la gamme [20 % - 40 %] et qu’il est largement inférieur à celui

souhaité.

3. Synthèse.

Les fortes valeurs expérimentales de tenue en tension des diodes JTE98C et

JTE98D sans protection périphérique (1000 V) et l’étude de la répartition du champ

électrique par la méthode OBIC dans ces structures ont permis de révéler l’influence du

profil d’émetteur sur la tension de claquage des dispositifs en carbure de silicium. Ces

résultats confortés par ceux obtenus sur le lot JTE99’F3 (diodes résistives et faible tenue

en tension des diodes avec JTE dopée aluminium), ont aussi prouvé que la configuration

de recuit nommée F3 n’est pas adaptée à la réalisation de composants de puissance

performants.

L’étude des diodes avec JTE dopées bore a permis de compléter et de confirmer

les premiers résultats obtenus au laboratoire [Ortolland’97] sur l’utilisation du bore pour

réaliser des poches. En effet la corrélation des mesures OBIC avec les faibles valeurs de

tenue en tension et les analyses SIMS ont permis de vérifier l’effet attendu d’une

diffusion incontrôlée du bore pendant le recuit post-implantation. Ce qui fait de ce

dopant un moins bon candidat que l’aluminium pour la réalisation des JTE.

L’amélioration des caractéristiques directes (zone d’idéalité s’étendant sur 8

décades) et l’effet constaté des JTE sur la tenue en tension des diodes de type JTE99’F4

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

119

suggère un progrès dans la maîtrise du procédé de recuit post-implantation. Malgré ces

évolutions, les tensions de claquage des diodes possédant des terminaisons de jonction

restent inférieures aux valeurs prévues par simulation et surtout le claquage intervient en

périphérie de la jonction principale. L’activation électrique de l’aluminium par le recuit

de type F4 s’avère être inférieure aux prévisions. Cela ne semble pas affecter les

comportements sous polarisation directe, mais l’impact sur la tenue en tension des

dispositifs en SiC n’est pas négligeable. Il apparaît donc nécessaire pour obtenir des

composants de forte tenue en tension de réaliser des lots de diodes en tenant compte du

faible taux d’activation électrique de l’aluminium pendant le recuit de type F4 pour la

réalisation des JTE ou d’améliorer le procédé de recuit.

On a pu aussi constater que certaines étapes du procédé de fabrication étaient à

l’origine de comportements particuliers des composants. L’utilisation de masques en

aluminium lors des étapes de photolithographie semble être la cause de nombreux

dysfonctionnements (diodes de type B3, courant d’excès pour les JTE99’F3). L’emploi

de masques d’oxyde peut être une alternative intéressante pour éviter ce type de

désagrément.

CHAPITRE 3Caractérisation de la tenue en tension de diodes bipolaires planes 1,5 kV en SiC-6H.

120

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

121

CHAPITRE 4Etude du comportement électrique de diodesbipolaires 5 kV en SiC-4H.1. CONCEPTION ET RÉALISATION DES DISPOSITIFS...................................... 123

1.1. CONCEPTION DES DIODES BIPOLAIRES AVEC L’OUTIL MEDICI.................................... 1231.1.1. Tension de claquage en volume. ............................................................................... 124

1.1.2. Etude de la protection périphérique. ........................................................................ 124a) Structure étudiée et définition des paramètres utilisés. ................................................... 125

b) Influence de la dose et de la profondeur de la protection périphérique............................. 126

c) Influence de la longueur de la protection périphérique ................................................... 127

1.2. DESCRIPTION DU JEU DE MASQUES............................................................................. 1281.2.1. Les différents types de diodes................................................................................... 129

1.2.2. Les motifs de tests. .................................................................................................. 129

1.3. PROCÉDÉ DE FABRICATION. ....................................................................................... 130

2. CARACTÉRISTIQUES ÉLECTRIQUES ET ANALYSES PHYSICO-CHIMIQUES

130

2.1. COMPORTEMENTS TYPIQUES...................................................................................... 130

2.2. ANALYSES COMPLÉMENTAIRES.................................................................................. 1332.2.1. Mesures de la résistance de contact d’anode. ........................................................... 133

2.2.2. Mesures capacitives. ............................................................................................... 134

2.2.3. Analyses SIMS......................................................................................................... 136

a) Emetteur...................................................................................................................... 136

b) JTE. ............................................................................................................................ 137

3. CARACTÉRISATION DE LA TENUE EN TENSION À TEMPÉRATURE

AMBIANTE....................................................................................................................... 139

3.1. INFLUENCE DU MILIEU AMBIANT................................................................................ 1413.1.1. Tests dans une huile silicone. ................................................................................... 142

3.1.2. Mesures électriques sous ambiance SF6 en surpression. ............................................ 143

3.2. MESURES OBIC. ....................................................................................................... 145

3.3. DISCUSSION. ............................................................................................................. 148

4. CONCLUSION DU CHAPITRE............................................................................ 149

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

122

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

123

CHAPITRE 4Etude du comportement électrique de diodesbipolaires 5 kV en SiC-4H.

Cette étude se place dans le cadre des recherches sur l’augmentation de la tenue

en tension des dispositifs en carbure de silicium, afin de pouvoir réaliser des

commutateurs de puissance haute tension. L’objectif visé est la réalisation de

démonstrateurs (diodes bipolaires) capables de supporter une tension de 5 kV à l’état

bloqué.

1. Conception et réalisation des dispositifs.

La conception à l’aide de l’outil MEDICI et la réalisation des masques sous

Cadence sont le fruit de l’étude menée par Mr. Dominique PLANSON en collaboration

avec les autres membres de l’équipe.

1.1. Conception des diodes bipolaires avec l’outil MEDICI.

Il s’agit de définir par simulation les caractéristiques géométriques des couches

(épitaxiée et émetteur) et des protections périphériques (JTE) du véhicule test à réaliser

afin d’obtenir la tension de claquage souhaitée.

Les simulations de tenue en tension ont été menées en tenant compte d’une

couche d’air d’une épaisseur de 20 µm à la surface du semi-conducteur et en fixant une

densité de charge à l’interface air/SiC nulle. Signalons en particulier que les coefficients

d'ionisation par impact retenus sont ceux fournis par M. Konstantinov et al.

[Konstantinov’98] donnés dans le CHAPITRE 2 et que le critère retenu pour déterminer

la tension de claquage est celui de l’intégrale d’ionisation (quand I = 1 alors V = VBR).

On considérera par ailleurs un taux d'activation électrique des impuretés dopantes de

100%.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

124

1.1.1. Tension de claquage en volume.

La simulation d’une structure unidimensionnelle P+NN+ dont on a fait varier

l’épaisseur et le dopage de la base N, a permis de tracer un abaque de tenue en tension

(Fig. 1–1).

1015 2x1015 4x1015 6x1015 8x1015 1016103

2x103

3x103

4x103

5x1036x1037x1038x1039x103104

SiC-4H [Konstantinov'98]αααα = 4*105exp(-1.67*107/E)

ββββ = 1.63*107exp(-1.67*107/E)

W = 10 µm W = 20 µm W = 30 µm W = 40 µm W = 50 µm

Dopage de la couche active (cm-3)

Tens

ion

de c

laqu

age

(V)

Fig. 1–1 : Tenue en tension en volume de la structure P+NN+ en fonction du dopagede la couche N, pour différentes valeurs de son épaisseur.

Les caractéristiques des couches épitaxiées commandées chez Cree Research

pour cette étude sont les suivantes :

Numéro de laplaquette

Epaisseur (µm) Dopage (cm-3)

AC0431-10 40 1,2×1015

U0408-09 40 1,1×1015

U0400-06 40 1,1×1015

Tableau 1–1 : caractéristiques des couches épitaxiées SiC-4H disponibles pour laréalisation de diodes 5 kV.

Selon les résultats de l’abaque, une structure possédant ce type de couches a une

tenue en tension de l’ordre de 6300 V.

1.1.2. Etude de la protection périphérique.

Il existe trois paramètres à optimiser pour concevoir une JTE performante :

profondeur, dopage et longueur de la poche.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

125

a) Structure étudiée et définition des paramètres utilisés.

La figure suivante (Fig. 1–2) présente tout d'abord la structure bidimensionnelle

étudiée, et les paramètres géométriques et technologiques nécessaires à sa description

sous MEDICI.

Drain

Type n

Substrat type n+

air

epin

lnu

Cathode

rpi

wafer

Anodeimplantation p

implantation p+

lanode

rpplus

lpi

wppluswpi

dopplus doppi

dopepin

dopwafe r

Fig. 1–2 : définition de la structure 2D de la diode protégée par poche.

Les caractéristiques des épitaxies sont similaires, et on prendra le pire cas vis-à-

vis de la tension de claquage, c’est à dire le dopage maximal (1,2×1015 cm-3).

Pour la jonction principale (P+N) et la poche, nous avons intégré directement

des profils de dopage réalistes issus du simulateur I2SiC (vérifiés par analyse SIMS)

dans le simulateur électrique MEDICI.

La figure suivante (Fig. 1–3) montre le type de résultats obtenus avec I2SiC

pour des séquences d’implantation données dans le Tableau 1–2 et qui sont utilisées

pour les simulations. Ces profils tiennent compte d'une gravure d’épaisseur 40 nm,

effectuée en pratique (après le recuit post-implantation ionique).

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

126

0,0 0,1 0,2 0,3 0,4 0,5 0,61016

1017

1018

1019

1020

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,71014

1015

1016

1017

1018

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

(a) (b)

Fig. 1–3 : Profil d’aluminium implanté calculé par le logiciel I2SiC tenant compte dela gravure de 40 nm : (a) profil utilisé pour l’émetteur, (dose totale :1,75××××1015 cm-2,

énergie maximum : 300 keV) (b) profil utilisé pour la poche (dose totale : 1××××1013 cm-2,énergie max : 300 keV).

EMETTEUR JTEEnergie (keV) Dose (cm-2) Energie (keV) Dose (cm-2)

300 8×1014 300 4,56×1012

190 3,9×1014 190 2,23×1012

115 2,8×1014 115 1,6×1012

60 1,9×1014 60 1,09×1012

25 9×1013 25 5,24×1011

Tableau 1–2 : Caractéristiques (dose et énergie) des implantations nécessaires à laréalisation de la JTE et de l’émetteur.

b) Influence de la dose et de la profondeur de la protectionpériphérique

Afin d’étudier l’influence de la dose sur la tenue en tension, des profils de

dopage de poche ayant des doses totales dans la gamme 6x1012 cm-2 jusqu’à une dose de

1,3×1013 cm-2 ont été calculés. La dose est évaluée en intégrant le profil de dopage de la

poche sur toute la profondeur de la poche. La longueur de la poche est fixée à 200 µm

pour cette étude.

Les résultats en terme de tenue en tension en fonction de la dose dans la poche

(après implantation et gravure superficielle supposée de 40 nm) sont donnés sur la figure

suivante (Fig. 1–4) pour deux profondeurs de poche différentes.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

127

6.0x1012 8.0x1012 1.0x1013 1.2x1013 1.4x10132500

3000

3500

4000

4500

5000

5500

6000

6500

dose (cm-2)

tenu

e en

tens

ion

(V)

4 µm 0.8 µm

Fig. 1–4 : Influence de la dose sur la tenue en tension - comparaison pour deuxprofondeurs de la jonction Poche P/épitaxie N : 4 µm et 0,8 µm.

La valeur du maximum de la tension de claquage est légèrement supérieure

(6200 V) pour la poche plus profonde, mais le principal avantage d’avoir une profondeur

de jonction importante est que la tenue en tension est beaucoup moins sensible à la dose

implantée. Malheureusement d’un point de vue pratique, il n’est pas fréquent de pouvoir

réaliser des implantations canalisées qui nécessitent un réglage préalable de l’orientation

du faisceau d’implantation. Ces résultats montrent que la dose optimale de l'extension

latérale de jonction se situe au voisinage de 1013 cm-2 pour la structure envisagée ici,

devant conduire à une efficacité de protection de l'ordre de 90 %.

c) Influence de la longueur de la protection périphérique

Pour le profil optimal déterminé précédemment, une variation de la longueur de

la poche est effectuée, dans une gamme allant de 40 µm à 200 µm. La dépendance de la

tenue en tension en fonction de ce paramètre montre que l'amélioration apportée par

l'allongement de la protection périphérique s'atténue fortement au-delà de 150 µm. Du

point de vue de la tenue en tension du semi-conducteur seule, il est donc inutile

d'augmenter plus la place à consacrer à la poche. D'un point de vue pratique, en absence

de couche diélectrique en surface des dispositifs, nous avons choisi d'adopter une poche

de longueur totale (y compris recouvrement avec la zone d'émetteur) de 250 µm, afin de

tenter de minimiser les problèmes de claquage dans le milieu ambiant (air).

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

128

1.2. Description du jeu de masques.

Un nouveau jeu de masques a été conçu pour la réalisation des diodes suite aux

résultats des simulations présentées précédemment et aux lacunes (petite surface des

diodes, nombre de diodes insuffisant, manque de motifs de test…) observées lors des

tests électriques des diodes 1,5 kV.

Le jeu de masques qui a été réalisé est constitué de 5 niveaux. Le 1er niveau

permet de graver les croix d'alignement nécessaires pour les étapes de lithographie

suivantes. Ce niveau permet également de dénommer les motifs. Le 2ème niveau permet

de définir les zones à implanter de type P+ - jonction principale. Le 3ème niveau permet

de définir les zones à implanter de type P - poche latérale. Le 4ème niveau permet de

définir les métallisations sur la jonction principale (anode).

Les différents motifs sont groupés par champ. La taille du champ est de

9280 µm x 5870 µm. Un chemin de découpe est prévu entre chaque champ. Chaque

champ est lui-même composé de deux cellules séparées par un chemin de découpe,

comme le montre la figure suivante (Fig. 1–5). La distance minimale entre deux diodes

est au moins de 240 µm. Une distance minimale de 150 µm est respectée entre le bord

du chemin de découpe et les diodes.

Fig. 1–5 : Vue générale du champ répétitif composé de deux cellules

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

129

1.2.1. Les différents types de diodes.

Sur ces masques on retrouve deux types de diodes circulaires (le diamètre de la

jonction (Φj) varie de 250 µm à 1 mm) : les diodes sans protection périphérique et les

diodes avec JTE. Contrairement au jeu de masques précédent il existe une seule

longueur de poche pour tous les dispositifs. Signalons l’introduction d’un type de diode

rectangulaire dont le rayon de courbure aux coins de la jonction principale est de 50 µm.

Les différentes géométries sont notées dans le tableau suivant (Tableau 1–3).

Nom des diodes bipolairesD1 D2 D3 D4 D10

ΦΦΦΦj (si circulaire) oua j x b j (si rectangulaire)

250 400 1000 400400x300

ΦΦΦΦmétal (si circulaire) ouamétal x bmétal (si rectangulaire)

200 350 950 350350x250

Lp 250 250 250 - 250CelluleGauche

3 4 2 2 4Nombre de diodes (voir Fig. 1–5)

CelluleDroite

5 2 1 2 4

Tableau 1–3 : Récapitulatif des grandeurs géométriques (en µm) des différentesdiodes bipolaires 5 kV présentes sur un même champ.

1.2.2. Les motifs de tests.

Un manque d’information sur l’influence de certaines étapes technologiques

importantes (réalisation de contact ohmique, implantation P-…) s’est fait ressentir lors

des tests électriques des diodes 1,5 kV. Sur ce jeu de masques nous avons donc conservé

les motifs de test déjà existants sur le précédent et nous avons inclus de nouvelles

structures notamment pour pouvoir évaluer la valeur de la résistance de contact d’anode

et connaître la concentration d’aluminium pour l’implantation de type P- (poche). Les

détails de ces structures et leurs intérêts sont reportés dans le tableau suivant.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

130

Structure Intérêt de la structureSchottky sans protection

(S1)Obtention du dopage de la couche épitaxiée N par mesure

C(V)Motif Van der Pauw surimplantation de type P+

Obtention de la concentration chimique d’aluminium paranalyse SIMS et évaluation du taux d’activation par

mesure d’effet Hall.Motif Van der Pauw surimplantation de type P-

Obtention de la concentration chimique d’aluminium paranalyse SIMS et évaluation du taux d’activation par

mesure d’effet Hall.Motif TLM (Transmission

Line Method)Détermination de la résistance de contact d’anode et

évaluation de la résistance/ de la couche P+

Schottky latérale sur zone P-

implantéeObtention du dopage de la couche P- par mesure C(V)

Tableau 1–4 : Description des différents motifs de tests et de leurs utilités.

1.3. Procédé de fabrication.

Ce lot de diodes que l’on nommera JTE00’F4 a été effectué sur un substrat de

type SiC-4H dont la couche épitaxiée a une épaisseur de 40 µm et un dopage de

1,1×1015 cm-3. La jonction P+N est réalisée par cinq implantations successives de

300 keV à 25 keV pour une dose totale de 1,75×1015 cm-2. Comme pour l’émetteur la

JTE est formée par une série d’implantations à température ambiante (300 keV à 25 keV

pour une dose visée de 1,1×1013 cm-2). Le tout est ensuite recuit à 1700 °C pendant 30

mn dans la configuration F4 (voir annexe C). Une couche de nickel recuite constitue le

contact face arrière. La métallisation d’anode est réalisée par des dépôts successifs

d’aluminium et de titane.

2. Caractéristiques électriques et analyses physico-chimiques

2.1. Comportements typiques.

Lors des tests préliminaires en direct (0 V à 5 V) et en inverse (0 V à –110 V) à

300 K sur un nombre conséquent de diodes, on a pu retrouver des comportements

typiques (B1, B2, B3, B4) déjà observés sur les lots précédents (Fig. 2–1).

On remarque pour les diodes de catégorie B1 un bon comportement redresseur

montrant à partir de 1,7 V une croissance exponentielle du courant sous polarisation

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

131

directe sur neuf décades jusqu’à 1 A/cm², avec un coefficient d’idéalité (n) de 1,8. Les

densités de courant mesurées sous 5 V sont comprises dans la gamme [10 – 65] A/cm².

Sous polarisation inverse la densité de courant varie proportionnellement à la racine

carrée de la tension appliquée pour atteindre 10-9 à 10-8 A/cm² sous – 110 V. Comme

pour les JTE99’F4 (voir CHAPITRE 3§ 2.2.1), aucun comportement très résistif n’est à

signaler.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,010-1110-1010-910-810-710-610-510-410-310-210-1100101102

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 010-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Catégorie B1 Catégorie B2 Catégorie B3 Catégorie B4

Tension (V)

Dens

ité d

e co

uran

t (A.

cm-2)

Fig. 2–1 : Caractéristiques typiques sous polarisation directe et inverse des JTE00’F4à 300 K.

Le tableau suivant répartit les diodes de différentes tailles selon les diverses

catégories de comportements électriques typiques. Ce tableau est dressé à partir de

l’examen de l’allure de toutes les courbes mesurées.

CatégorieB1

CatégorieB2

CatégorieB3

CatégorieB4

D1 (φφφφ = 250 µm)Nbre diodes : 44

79 % 9 % 8 % 4 %

D2 (φφφφ = 400 µm)Nbre diodes : 35

69 % 11 % 11 % 9 %

D10 (axb = 300x400 µm²)Nbre diodes : 46

57 % 17 % 15 % 11 %

D3 (φφφφ = 1000 µm)Nbre diodes : 17

24 % 17 % 41 % 18 %

D4 (φφφφ = 400 µm) Sans JTENbre diodes : 22

41 % 27 % 14 % 18 %

Total :Nbre diodes : 163

61 % 16 % 13 % 16 %

Tableau 2–1 : Nombre total des diodes bipolaires JTE00’F4 testées et leur classementselon les différentes catégories de comportements électriques typiques observés

(présentés sur la Fig. 2–1).

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

132

De ces statistiques on peut noter plusieurs indications non négligeables. On

remarque tout d’abord, que l’absence de JTE semble favoriser un comportement de type

B2. Un grand nombre de diodes D4 (27 %) sont classées dans la catégorie B2 alors que

le pourcentage de diodes avec poches de type B2 est inférieur à 20. Il apparaît que le

nombre de diodes ayant une caractéristique d’allure B3 augmente lorsque les dispositifs

sont de plus grande taille. C’est flagrant pour les diodes D3, 41 % de celles-ci sont

rangées dans la catégorie B3. Rappelons que nous avons attribué l’origine des

surcourants à faible tension directe des diodes de catégorie B3 à l’existence de défauts

se comportant comme une Schottky en parallèle avec la jonction principale. Cette

tendance s’observe aussi pour les diodes de type B4, mais de manière plus nuancée (4 %

de diodes D1 sont de type B4 contre 18 % pour les diodes D3). L’observation au

microscope optique des différentes diodes a permis de révéler qu’un certain nombre de

diodes appartenant à la catégorie B4 présentent des lésions de l’émetteur (Fig. 2–2). Ces

défauts sont apparus après le recuit post-implantation. Il semble que ces fissures se

propagent le long des axes cristallographiques. Des contraintes mécaniques ou des

défauts préalablement existants dans le matériau peuvent être à l’origine de ces fêlures.

Fig. 2–2 : Observation au microscope optique d’une diode D2 après recuit et avantmétallisation, présentant des fissures se propageant le long des axes

cristallographiques (lot JTE00’F4).

Les enseignements majeurs à retirer de l’étude de ce tableau sont :

• La qualité du matériau (diode de type B3 et B4) est souvent à l’origine du

dysfonctionnement des dispositifs. Elle freine notamment le développement

des composants de grande taille.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

133

• Un rendement très proche de celui du lot JTE99’F4 pour les diodes de petite

surface ce qui suppose une bonne reproductibilité dans le procédé de

fabrication et plus particulièrement du recuit post-implantation ionique.

2.2. Analyses complémentaires.

Comme il est mentionné dans un des paragraphes précédents il existe un certain

nombre de motifs de tests permettant de vérifier certains paramètres technologiques

(dopage, résistance de contact…). Ces résultats peuvent permettre de corréler des

comportements spécifiques aux différentes étapes technologiques réalisées pendant la

fabrication des dispositifs.

2.2.1. Mesures de la résistance de contact d’anode.

La résistance du contact ohmique d’anode est extraite de mesures courant

tension sur des motifs TLM. Cette structure n’est présente que sur la moitié des cellules

de la plaquette. La méthode utilisée consiste à mesurer le courant en fonction de la

tension de polarisation entre deux plots successifs dont la distance d’espacement varie

de 5 à 55 µm (par pas de 10 µm). Si le contact est ohmique alors le courant varie

linéairement en fonction de la tension de polarisation. On peut donc modéliser les deux

contacts ainsi que la couche p+ par des résistances (Fig. 2–3).

Fig. 2–3 : Modélisation des contacts et de la couche P+ par des résistances.

Le courant mesuré peut donc s’exprimer sous la forme suivante :

2 C P

V VIR R R +

= =+

(51)

Lorsque la distance entre les plots de contact se réduit alors la résistance totale

diminue car la résistance de la couche P+ décroît. Des variations de R en fonction de d,

la distance inter-contact (Fig. 2–4), on déduit les valeurs de la résistance de contact RC,

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

134

de la résistance spécifique du contact RSpéC et de la résistance par carré de la couche P+

implantée Rsh [Schroder’90].

Les valeurs des résistances spécifiques du contact d’anode extraites des mesures

(effectuées en collaboration avec M. Lazar) sur les différents motifs de la plaquette sont

comprises dans la gamme [0,3-1,9] mΩ.cm². Compte tenu des métaux utilisés et du

recuit réalisé, ces valeurs sont en accord avec l’état de l’art sur SiC [Nakashima’00],

[Luo’00], [Porter’95]. Il apparaît également que l’émetteur a une influence sur la qualité

du contact ohmique. Lorsque la résistance par carré de la couche P+ est élevée

(Rsh ≈ 15 kΩ/ ) alors le contact est de moins bonne qualité (RSpéC ≥ 1×10-3 Ω.cm²).

Signalons que l’on observe ce phénomène sur les motifs se situant plutôt au centre de la

plaquette. Une activation électrique des dopants différentes au bord et au centre de la

plaquette, peut être une cause de ce résultat. Dans ce cas, une inhomogénéité en terme

d’activation électrique des dopants devrait avoir une influence sur l’efficacité des JTE et

donc sur les valeurs de tenue en tension relevées au centre ou en bordure de plaquette.

L’obtention de la cartographie complète de VBR (en testant toutes les diodes de la

plaquette) sera donc un complément d’information intéressant.

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60-1000

0

1000

2000

3000

4000

5000

6000

7000

2LT

2RC = 513 Ω2LT = 4.65 µmρC = RC.LT.L = 5.96e-4 Ω.cm²Rsh = b.L = 11000 Ω/

2RC

distance inter plot, d (µm)

R (Ω ΩΩΩ

)

R mesurée R mesurée R fit

Fig. 2–4 : Variation de la résistance totale (RP+ + 2RC) à 300 K en fonction de ladistance inter plots du motif TLM (lot JTE00’F4)

2.2.2. Mesures capacitives.

La technique utilisée est la technique classique par C-V, qui consiste à mesurer

l’évolution de la capacité d’une jonction en fonction de la polarisation inverse qui lui est

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

135

appliquée. Le dopage moyen est extrait à partir de la pente de la courbe 1/C2(V). Afin

d’évaluer le dopage net de l’épitaxie de type N, nous avons caractérisé des contacts

métalliques déposés à même l’épitaxie formant une barrière de type Schottky avec le

semi-conducteur SiC.

-40 -30 -20 -10 00

2

4

6

8

10

12

C

(pF)

VR (V)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

1/C

2 (1024

F-2)

Fig. 2–5 : Caractéristiques C(V) et 1/C²(V) à 23 °C et à 100 kHz d’une diode Schottkyde diamètre 400 µm (lot JTE00’F4).

Les caractéristiques C(V) et 1/C2(V) mesurées à 23 °C et à 100 kHz sont

présentées sur la figure ci-dessus (Fig. 2–5). Le profil de dopage qui en est extrait

jusqu’à une profondeur de l’épitaxie de 6 µm est représenté ci-dessous (Fig. 2–6).

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,59x1014

1015

2x1015

W (µm)

Dopa

ge d

e la

cou

che

n (c

m-3)

Fig. 2–6 : Profil de dopage net de l’épitaxie (épaisseur totale : 40 µm) extrait demesures capacitives d’une Schottky S1 à température ambiante (lot JTE00’F4).

Nous avons pu observer un bon accord entre nos résultats (pour les premiers µm

à partir de la surface de l’épitaxie) et la valeur spécifiée, à la livraison, par le fournisseur

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

136

des plaquettes. Une légère augmentation du dopage en fonction de la profondeur est

néanmoins à noter.

2.2.3. Analyses SIMS.

Cette série d’analyses a pour but dans un premier temps de vérifier que les

concentrations chimiques des dopants implantés et les profondeurs de jonctions sont

bien équivalentes à celles souhaitées. Dans un second temps elles permettent de

constater l’influence des différentes étapes technologiques (photolithographie, recuit

post-implantation) sur le profil des atomes d’aluminium.

a) Emetteur.

Comme on le remarque sur la figure suivante (Fig. 2–7), les différents profils

d’aluminium obtenus par analyses SIMS sur des échantillons témoins d’implantation

non recuits coïncident avec le profil calculé par le logiciel I2SiC. On distingue même les

pics de concentration de dopants correspondant aux profondeurs des différentes énergies

d’implantation.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,01015

1016

1017

1018

1019

1020

Profil Simulé (I2SiC) Profil SIMS Profil SIMS

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–7 : Comparaison du profil d’aluminium simulé avec ceux obtenus par analysesSIMS sur des échantillons témoins d’implantation de l’émetteur (lot JTE00’F4).

Le profil d’émetteur sur la plaquette est quelque peu différent. Signalons tout

d’abord un pic conséquent de concentration de dopants en surface du semi-conducteur.

On peut aussi noter que les différents pics d’implantation n’apparaissent plus. Malgré

ces petites imperfections le profil expérimental est très proche de celui souhaité.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

137

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,71016

1017

1018

1019

1020

Profil simulé (I2SiC) Profil SIMS

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–8 : Profil SIMS d’aluminium de l’émetteur sur la plaquette après recuit F4 (lotJTE00’F4).

b) JTE.

Le profil SIMS de l’échantillon témoin d’implantation non recuit (Fig. 2–9)

présente une concentration en excès d’aluminium sur une épaisseur de 0,1 µm avant de

rejoindre le profil simulé. Il semblerait qu’une pollution de surface soit à l’origine de ce

phénomène.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,01014

1015

1016

1017

1018

1019

Profil simulé (I2SiC) Profil SIMS

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–9 : Comparaison du profil d’aluminium simulé pour une JTE optimisée aveccelui obtenu par analyse SIMS d’un échantillon témoin d’implantation des poches (lot

JTE00’F4).

Les profils expérimentaux relevés à différents endroits sur la plaquette (Fig. 2–

10) présentent un pic de concentration en surface identique à celui observé sur le profil

de l’émetteur. On remarque aussi que la profondeur de jonction n’est pas celle attendue.

Il existe suivant les profils un décalage vers la surface de 0,1 µm à 0,25 µm avec le

profil simulé. Les analyses de l’échantillon témoin ayant montré que la dose implantée

est bien celle souhaitée et l’aluminium n’étant pas un dopant sujet à la diffusion dans le

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

138

celle souhaitée et l’aluminium n’étant pas un dopant sujet à la diffusion dans le SiC

pendant le recuit post-implantation, ce décalage ne peut être dû qu’à un problème

survenu pendant les étapes de photolithographie. Une mauvaise ouverture du masque

avant l’implantation peut être à l’origine de ce retrait du profil.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,01014

1015

1016

1017

1018

1019

1020

1021

Profil simulé (I2SiC) Profil SIMS Profil SIMS Profil SIMS Profil SIMS

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–10 : Différents profils SIMS d’aluminium des JTE, obtenus à différentsendroits sur la plaquette.

Revenons maintenant à la concentration en excès d’aluminium observée en

surface de la plaquette pour l’émetteur et les JTE. Une analyse sur la plaquette d’une

zone non implantée (entre deux diodes) a permis de mettre en évidence la présence

d’aluminium en surface du SiC (Fig. 2–11). Cette concentration superficielle semble

correspondre à celle observée sur les profils expérimentaux précédents.

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,351016

1017

1018

1019

1020 Profil SIMS

Profondeur (µm)

Conc

entra

tion

d'al

umin

ium

(cm

-3)

Fig. 2–11 : Profil SIMS d’aluminium d’une zone non implantée de la plaquette.

L’origine de la présence d’aluminium en surface du SiC reste incertaine. Elle a

pu être causée par un mauvais nettoyage de la plaquette lors des différentes étapes

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

139

technologiques (photolithographie, réalisation des contacts). On peut aussi envisager

qu’elle provienne de l’étape de croissance de la couche épitaxiée en SiC-4H.

Si on tient compte de ce pic de concentration d’aluminium en surface alors la

dose totale des JTE varie dans la gamme [1,7×1014 cm-2 - 3×1014 cm-2], c’est à dire 17 à

30 fois supérieure à la dose visée. Par contre en faisant abstraction de cette

surconcentration on observe une diminution de la dose de 2×1012 cm-2 à 5×1012 cm-2 par

rapport à la dose optimale (1×1013 cm-2), due au décalage du profil vers la surface.

Il reste à savoir si l’aluminium présent en surface est électriquement actif et

peut modifier les caractéristiques électriques des composants notamment en terme de

tenue en tension.

3. Caractérisation de la tenue en tension à températureambiante.

Les tests de tenue en tension ont été effectués dans un premier temps dans l’air

à température ambiante. Différentes sources de tension sont utilisées suivant la gamme

de polarisation :

• la SMU237 pour la gamme [0 – 1100] V,

• le traceur de caractéristiques Tektronix 370 pour la gamme [0 – 2000] V,

• le traceur de caractéristiques Tektronix 371A pour la gamme [0 – 3000] V.

Le claquage est observé à l’aide d’une binoculaire Leica et d’un système de

visualisation comprenant une caméra mono CCD et un moniteur vidéo.

La plupart des diodes ayant une JTE se comportent de la même manière (Fig. 3–

1). Sous faible polarisation (VR < 200 V) le courant reste faible (JR < 10-8 A/cm²) puis

on observe un changement de loi de variation avec une croissance plus rapide de JR(VR)

jusqu'à 400 V. Au-delà de cette tension le courant tend à saturer dans la gamme [10-4 –

10-3] A/cm². Vers 800 V quelques arcs commencent à apparaître entre le métal de la

diode et différents motifs tels que les motifs gravés ou métallisés situés bien au-delà de

la limite des JTE (chemin de découpe, intitulé de la diode, diodes mitoyennes). Ces arcs

s’accompagnent généralement de crépitements et provoquent une augmentation du

courant mais ne détruisent pas le dispositif. Cette deuxième partie de la caractéristique

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

140

inverse est généralement non reproductible. Plusieurs balayages en tension conduisent à

différentes courbes, montrant généralement une augmentation du courant de fuite dans la

première partie de la courbe. On constate ensuite une diminution du courant pour une

même polarisation et des arcs qui apparaissent à des tensions variables. Des tests au-delà

de 1200 V sont impossibles dans ces conditions, les arcs devenant de plus en plus

intenses et fréquents, s’accompagnant d’un noircissement d’une partie du métal, sans

détruire pour autant la diode sous test. Il semblerait que ces phénomènes traduisent le

claquage du milieu ambiant (air) et non celui du SiC.

Des tests de tenue en tension dans différents milieux ambiants dont la rigidité

diélectrique est supérieure à celle de l’air sont donc nécessaires pour évaluer la tension

claquage des diodes avec JTE.

-1050 -900 -750 -600 -450 -300 -150 010-1010-910-810-710-610-510-410-310-210-1100101102

D1e

-C2

D1e

-C2

D1f

-C2

D1f

-C2

D1f

-C2

D1f

-C2

D2e

-C2

D2e

-C2

D2g

-C2

D2g

-C2

D2g

-C2

D2g

-C2

D1d

-C2

D1d

-C2

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Fig. 3–1 : Caractéristiques électriques inverses à 300 K dans l’air de diodes avec JTEdu lot JTE00’F4. Plusieurs balayages en tension sont représentés pour chaque diode.

L’ordre d’apparition dans la légende correspond à l’ordre dans lequel ont étéeffectuées les mesures sur une même diode. Les mesures ont été effectuées avec la

SMU237 (lot JTE00’F4).

Pour les diodes D4 (diodes sans JTE) on retrouve bien les deux parties de la

courbe décrites précédemment (Fig. 3–2). Le claquage du dispositif intervient

généralement pour des tensions comprises entre 700 V et 1000 V. Comme pour les

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

141

diodes avec poche, pour certains composants on observe une évolution de la

caractéristique inverse et de la tenue en tension après plusieurs mesures. On peut aussi

noter que le claquage peut être destructif. Dans tous les cas, il se manifeste par un arc

entre la pointe de test et la périphérie de l’émetteur. Les valeurs de tension de claquage

expérimentales sont assez proches de la tenue en tension théorique d’une diode D4

(VBRTH = 950 V).

-1050 -900 -750 -600 -450 -300 -150 010-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

D4c

-D2

D4c

-D2

D4d

-D2

D4d

-D2

D4a

-D3

D4a

-D3

D4a

-E3

D4a

-E3

D4c

-C4

D4c

-C4

D4d

-C4

D4d

-C4

D4d

-C2

D4d

-C2

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Fig. 3–2 : Caractéristiques inverses à température ambiante dans l’air de diodes D4.Deux balayages en tension sont représentés pour chaque diode. L’ordre d’apparitiondans la légende correspond à l’ordre dans lequel ont été effectuées les mesures sur

une même diode. Les mesures ont été effectuées avec la SMU237.

3.1. Influence du milieu ambiant.

Pour déterminer la tenue en tension des diodes SiC, nous avons effectué des

mesures dans deux milieux ambiants distincts. Les premières mesures sont réalisées

dans une huile silicone de type Rhodorsil 604 V 50 dont la rigidité diélectrique

minimum est de 50 kV pour un test effectué avec deux électrodes sphériques espacées

de 2,5 mm (200 kV/cm). La seconde série de tests s’effectue sous gaz SF6 en légère

surpression. La rigidité diélectrique de ce gaz est donnée en fonction de la pression et de

la distance inter-électrodes (Fig. 3–3).

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

Fig. 3–3 :distance i

3.

A

constate u

accompagn

phénomène

Fig. 3–4 : diodes JTE

La

présence d

phénomène

)

V (kV

142

Rigidité diélectrique du SF6 en fonction de la pression d’utilisation et de lanter-électrodes, mesurée pour des électrodes sphériques dont le diamètre est

de 5 cm.

1.1. Tests dans une huile silicone.

partir de 700 V et plus généralement pour des tensions proches de 900 V on

ne augmentation du courant (Fig. 3–4). Cet accroissement est souvent

é de l’apparition de points blancs lumineux en périphérie de l’émetteur. Ces

s s’observent autant pour les dispositifs avec JTE que pour les diodes D4.

0 100 200 300 400 500 600 700 800 900 10000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8 D1f-C4 D1g-C4 D1g-C4 D2f-C4 D3c-C4 D4a-C3 D10c-C3 D10d-C3

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Caractéristiques inverses à température ambiante dans une huile silicone de00’F4. Mesures réalisées avec le traceur de caractéristiques Tektronix 370.

visualisation de ce point en bordure de la jonction est significative de la

’un fort champ électrique à cet endroit. La tension à laquelle se produisent ces

s correspond à la tenue en tension d’une diode sans JTE. Aux vues de ces

P (kg.cm-2)×d (mm)

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

143

résultats il semblerait que les poches n’aient aucune influence sur la tension de claquage

des dispositifs.

3.1.2. Mesures électriques sous ambiance SF6 en surpression.

Comme pour les mesures dans l’air jusqu’à 200 V, le courant reste faible voire

noyé dans le bruit. Puis on remarque une croissance plus rapide de ce courant avant de

voir apparaître les premiers arcs entre le bord du métal et la périphérie de l’émetteur dès

450 V et plus généralement vers 700 V. Ils se manifestent sur les courbes par des

instabilités du courant inverse et de brusques augmentations. Ces arcs sont souvent

accompagnés de l’apparition de points blancs lumineux intermittents, localisés en

bordure de P+. Le courant tend ensuite vers une valeur limite autour de 10-3 A/cm² sous

1100 V. Lors du second balayage en tension contrairement à ce qui a été observé dans

l’air, le courant n’augmente pas dans la première partie de la courbe. On remarque

ensuite une très nette diminution du courant de fuite de une à deux décades. Cependant

la densité de courant atteinte à 1100 V reste la même que pour la mesure antérieure. Ce

comportement s’applique autant aux diodes avec poches qu’à certains composants sans

JTE.

-1050 -900 -750 -600 -450 -300 -150 010-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

D1d

D1d

D1f

D1f

D1f

D2e

D2e

D4c

D4c

Champ E2

Tension (V)

Dens

ite d

e co

uran

t (A.

cm-2)

Fig. 3–5 : Caractéristiques électriques inverses de diodes JTE00’F4 à températureambiante sous SF6 en surpression. Plusieurs balayages en tensions sont représentés

pour chaque diode. Mesures avec la SMU237.

Comme en témoignent les courbes suivantes (Fig. 3–6), à plus haute tension le

comportement est identique à celui décrit précédemment. Un maintien de la tension aux

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

144

bornes du dispositif ou une seconde mesure permettent de voir disparaître les points

lumineux en périphérie de la jonction P+N et d’augmenter la tension progressivement.

Toutefois vers 2000 V, la fréquence des amorçages est telle qu’elle finit par provoquer

la destruction des diodes avec protection. En revanche la tenue en tension maximum

relevée pour une D4 (sans protection) est de 1400 V.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0,0

1,0x10-2

2,0x10-2

3,0x10-2

4,0x10-2

5,0x10-2

6,0x10-2

7,0x10-2

Tension (V)

Den

site

de

cour

ant (

A.c

m-2)

Fig. 3–6 : Evolution de la caractéristique électrique inverse d’une diode avec JTE dulot JTE00’F4 à 300 K sous SF6 en légère surpression, lorsque l’amplitude de la

polarisation inverse est augmentée progressivement (courbes 1 à 3).

Dans le lot des diodes testées on a pu noter que certains composants ne

présentent pas d’instabilité lors de la montée en tension. Ces dispositifs ont une tension

de claquage plus élevée que les autres, 2300 V au maximum pour les diodes avec JTE.

Les résultats obtenus sous SF6 semblent confirmer la présence d’un fort champ

électrique en bord d’anode. Bien que les tensions de claquage mesurées soient

supérieures à celles relevées lors des tests dans l’huile silicone, elles sont encore très

inférieures à la tension de claquage théorique (VBRTH = 6000 V). Le profil d’aluminium

des JTE que nous avons vu différent de celui visé ne peut à lui seul expliquer le mauvais

fonctionnement des poches. Les variations du courant pour une même polarisation et les

arcs successifs observés pendant les mesures paraissent révéler des problèmes liés à la

nature ou la qualité de la surface du semi-conducteur. Signalons que les courants de

fuite mesurés sous SF6 sont 10 à 100 fois inférieurs à ceux obtenus dans l’air.

1

2

3

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

145

3.2. Mesures OBIC.

Le banc de mesures n’étant pas adapté pour effectuer des tests dans différents

milieux ambiants, la caractérisation des diodes JTE00’F4 par la méthode OBIC s’est

faite à température ambiante dans l’air.

Les différentes courbes présentées ci-dessous (Fig. 3–7) montrent l’évolution du

signal OBIC le long d’un diamètre d’une diode D4 (sans JTE) pour différentes tensions

inverses. Un très faible photocourant est détecté lorsque le faisceau U.V. balaye la zone

du contact d’anode (190 µm – 540 µm) car le métal absorbe la quasi-totalité des

photons. De part et d’autre de la métallisation on remarque une augmentation du courant

photogénéré lorsqu’on éclaire la partie de l’émetteur non recouverte par le contact

ohmique (25 µm). Ce signal varie avec la tension : ceci confirme l’existence et

l’étalement dans la couche N de la zone de charge d’espace due à la jonction P+N. Le

photocourant décroît ensuite jusqu’à devenir nul lorsqu’on s’éloigne de l’extrémité de la

région P+. Dès 200 V le courant de fuite s’accroît considérablement (Ir ≥ 10-6 A) et vient

dégrader le rapport signal sur bruit. La mesure du photocourant de faible amplitude

(≤ 5×10-10 A ) s’en trouve perturbée. Toutefois à 300 V un pic de courant apparaît en

périphérie de l’émetteur, ce qui traduit une augmentation du champ électrique en ce lieu.

0 100 200 300 400 500 600 700-1,0x10-9

0,0

1,0x10-9

2,0x10-9

3,0x10-9

4,0x10-9

Contact d'anode NP+

x (µm)

Phot

ocou

rant

(A)

V = 0 V V = - 100 V V = - 200 V V = - 300 V

Fig. 3–7 : Mesures OBIC le long d’un diamètre d’une diode D4 sous différentespolarisations inverses. λλλλ = 363,8 nm, φφφφspot = 3,3 µm et PTransmise = 2 W/cm².

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

146

L’instabilité des courants inverses des dispositifs et la formation d’arcs

électriques pour des tensions relativement faibles (400 V) n’ont pas autorisé des mesures

à plus hautes tensions. Il en est de même pour la caractérisation des diodes avec poches.

0 100 200 300 400 500 600 700 800 900 1000-5,0x10-10

0,0

5,0x10-10

1,0x10-9

1,5x10-9

2,0x10-9

2,5x10-9

JTE JTEP+

x (µm)

Phot

ocou

rant

(A)

V = 0 V V = - 50 V V = - 100 V V = - 200 V V = - 300 V

Fig. 3–8 : Photocourant mesuré à différentes tensions inverses en balayant la surfaced’une diode D2. λλλλ = 363,8 nm, φφφφspot = 3,3 µm et PTransmise = 2 W/cm².

Le signal OBIC mesuré sous différentes polarisations inverses, en parcourant un

diamètre d’une diode JTE00’F4 avec JTE est semblable à celui obtenu pour un dispositif

sans protection (Fig. 3–8). On retrouve le signal OBIC variant avec la tension de

polarisation quand on illumine la zone P+, mais aucun photocourant n’est détecté lorsque

le faisceau se trouve au-dessus des poches. Ceci dit, à 300 V, on distingue une

augmentation de l’intensité du signal sur une partie de la JTE, alors qu’un pic de signal

émerge en bordure de l’émetteur. Ce type de mesure avait déjà été observé sur les diodes

du lot JTE98’F3 (voir CHAPITRE 3 § 1.3.3.). Le dopage de la poche étant très faible la

zone de charge sous la JTE ne s’étend que très peu dans la couche épitaxiée donc

l’éclairement de cette zone ne génère qu’un faible photocourant. On avait toutefois

remarqué une extension latérale de la ZCE due à la jonction P+N avec la tension.

On sait que pour λ = 351,1 nm la longueur de pénétration dans le SiC-4H est de

35 µm [Sridhara’99]. Comme la longueur d’onde utilisée pour ces mesures est de

363,8 nm, alors Lp > 35 µm. Peu de photons sont donc absorbés en surface du

semi-conducteur. Le signal généré par une ZCE de quelques microns proche de la

surface est donc très faible et peut ne pas être détecté. Des mesures complémentaires

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

147

sont donc réalisées à une longueur d’onde plus courte (300 nm) dont la longueur de

pénétration est inférieure à 7 µm et ce pour tenter de repérer la ZCE créée par la JTE.

0 100 200 300 400 500 600 700 800 900 1000

10-11

10-10

10-9

10-8

Etalement latéral de la ZCE

sous la JTE

JTE JTEP+

Contact

x (µm)

Phot

ocou

rant

(A)

V = 0 V V = - 50 V V = - 100 V V = - 200 V V = - 300 V

Fig. 3–9 : Mesure OBIC le long d’un diamètre d’une diode D2 sous différentespolarisations inverses. λλλλ = 300 nm, φφφφspot = 3,3 µm et PTransmise = 2 W/cm².

La figure précédente (Fig. 3–9) représente les variations de Log (Iph) en fonction

de la position du faisceau de longueur d’onde λ = 300 nm. Contrairement aux

précédentes mesures on détecte un signal OBIC sur une partie de JTE (environ 60 µm)

dès 0 V. Le niveau de ce courant croît avec la tension. Il apparaît aussi que la zone où le

courant est mesuré s’étale lorsque la tension inverse augmente pour atteindre 150 µm

environ à 300 V. Les variations de ce signal ne semblent donc pas représenter la ZCE

induite par la JTE mais l’étalement latéral de la ZCE due à la jonction principale sous la

poche. L’absence de courant photogénéré correspondant à la ZCE de la jonction PN et

l’apparition du pic de courant en périphérie de l’émetteur dès 300 V semblent bien

indiquer un trop faible dopage de l’extension latérale de jonction.

La figure suivante (Fig. 3–10) représente les évolutions du courant photogénéré

d’une diode bipolaire en SiC-4H fournie par Siemens. Les paramètres de la protection

périphérique et de la couche épitaxiée de ce composant ont été optimisés pour que la

tension de claquage soit de 5 kV. Si l’on compare ces résultats à ceux obtenus sur la

diode D2 du lot JTE00’F4, on constate qu’ils sont très différents. On peut remarquer

notamment qu’un signal OBIC constant sur 300 µm variant avec la tension est mesuré

lorsqu’on illumine la surface de la JTE. On notera aussi l’absence de pic de courant en

bordure de région P+ témoignant d’une certaine efficacité la protection périphérique.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

148

0 300 600 900 1200 1500 1800 2100 2400-2,0x10-9

0,0

2,0x10-9

4,0x10-9

6,0x10-9

8,0x10-9

1,0x10-8

1,2x10-8

P+JTE JTE

X (µm)

Phot

ocou

rant

(A)

V = 0 V V = - 50 V V = - 100 V V = - 200 V V = - 300 V

Fig. 3–10 : Mesure OBIC d’une diode bipolaire en SiC-4H fournie par Siemensdimensionnée pour tenir une tension de 5 kV. λλλλ = 300 nm, φφφφspot = 3,3 µm et

PTransmise = 1 W/cm².

3.3. Discussion.

La tenue en tension des diodes sans protection (entre 700 V et 1000 V) et

l’absence d’étalement de la ZCE en surface de la couche N notifiée par les mesures

OBIC des diodes D4, indiquent clairement que la couche d’aluminium détectée en

surface du semi-conducteur n’est pas électriquement active.

La visualisation de points lumineux en périphérie de zone P+ lors des tests de

claquage dans différents milieux et l’absence de signal OBIC lorsqu’on éclaire la JTE

désignent explicitement un dysfonctionnement de l’extension latérale de jonction. Certes

le profil de dopage de la JTE ne correspond pas à celui envisagé mais le retrait du profil

n’a pas engendré une grande perte de dopants (2×1012 cm-2 à 5×1012 cm-2). Dans ces

conditions si l’on considère un taux d’activation électrique unitaire la tenue en tension

des dispositifs devrait être au minimum de 3 kV. Or les tensions de claquage relevées

pour ce lot de diodes avoisinent 2 kV. Il semblerait donc comme pour le lot de diodes

JTE99’F4 que le taux d’activation électrique de l’aluminium soit inférieur à 100 %.

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

149

Une autre hypothèse peut être envisagée pour contribuer à expliquer ces faibles

valeurs de tensions de claquage des dispositifs. Lors des mesures OBIC on a pu

constater l’apparition d’un pic de photocourant en périphérie de l’émetteur pour des

tensions relativement faibles (autour de 300 V). La présence de charges positives à la

surface de la diode pourrait entraîner le resserrement précoce des équipotentielles. Dans

ces conditions les performances de la JTE se trouvent dégradées. Si on considère une

densité de charges positives de surface non nulle, alors pour assurer une tenue en tension

minimum de 5 kV on devrait sensiblement augmenter la dose d’aluminium implantée

des JTE. Les instabilités et la diminution du courant inverse dans les différents milieux

ambiants semblent aller dans le sens de cette dernière hypothèse.

Aux vus des résultats OBIC obtenus, il paraît difficile d’exclure l’effet de

l’activation électrique trop faible des dopants sur la tenue en tension. Le claquage

prématuré des composants peut donc être induit par une action combinée de ces deux

phénomènes (présence de charges positives en surface et mauvaise activation électrique

des dopants).

4. Conclusion du chapitre.

La réalisation de ce premier lot de diodes haute tension (5 kV) sur SiC-4H a

permis de confirmer certains résultats déjà observés sur les lots précédents.

Les caractéristiques électriques directes à température ambiante de ce lot de

diodes attestent des améliorations apportées par le recuit post-implantation de type F4.

Cela se traduit par une conservation du profil de dopage implanté (pas de gravure du

semi-conducteur), des résistances de contact ohmique relativement faibles (≤ 1 mΩ.cm²)

et une extension de la zone de croissance exponentielle du courant (9 décades) avec un

coefficient d’idéalité n ≈ 1,8.

En terme de tenue en tension le bilan est plus mitigé. Bien que la tenue en

tension des dispositifs protégés soit 1,6 fois plus élevée que celle des structures sans

JTE, les mesures OBIC et les observations des manifestations du claquage à température

ambiante ont révélé une défaillance évidente des terminaisons de jonction. Cette

faiblesse peut être reliée notamment à l’étape du recuit post-implantation, dont le

rendement en terme d’activation électrique des accepteurs reste inférieur à celui

CHAPITRE 4Etude du comportement électrique de diodes bipolaires 5 kV en SiC-4H.

150

souhaité. Les différentes étapes technologiques (photolithographie) ont eu aussi un effet

non négligeable sur le dysfonctionnement des JTE, notamment en étant à l’origine de la

modification du profil de dopants implantés. La présence supposée de charges positives

à la surface du SiC est certainement aussi un effet direct du procédé de fabrication des

dispositifs.

Cette étude a aussi mis en évidence la relation entre certains défauts du matériau

et certains comportements typiques (B3 ou B4) démontrant ainsi la difficulté persistante

à réaliser des dispositifs de grande taille.

En conclusion il serait souhaitable de réaliser une série de mesures permettant

de connaître avec exactitude le rendement effectif du recuit de type F4 pour des doses

implantées de l’ordre de 1013 cm-2. En attendant une amélioration du procédé de recuit

post-implantation en terme d’activation électrique, une alternative serait de réaliser un

lot de diodes dont la dose implantée serait supérieure à la dose optimale déterminée par

simulation, pour obtenir des composants capables de tenir une tension avoisinant les

5 kV.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

151

Conclusion Générale.

Cette étude en vue de l’augmentation de la tenue en tension des composants de

puissance en SiC s’est placée dans la continuité des travaux déjà réalisés au laboratoire.

Elle a porté à la fois sur la détermination de paramètres physiques du matériau

(coefficients d’ionisation des électrons et des trous) et sur l’analyse du comportement

sous polarisation inverse de diodes bipolaires planes, en complétant les caractérisations

électriques grâce à la mise en œuvre d’un banc expérimental de mesures de courants

induits dans les dispositifs par excitation lumineuse.

Pour atteindre ces objectifs, un banc de caractérisation des courants induits par

faisceau optique ('OBIC'), a tout d'abord été mis en place, convenant notamment à

l'étude de la répartition du champ électrique dans les composants de puissance en SiC.

La prise en compte des spécificités du matériau (Eg = 3 eV pour SiC–6H et 3,2 eV pour

SiC-4H) et des structures de tests (jonction peu profonde, épaisseur de couches

épitaxiées variant de 2 µm à 40 µm) ont conduit à la mise au point d'un système

expérimental capable de générer un faisceau lumineux dont la longueur d’onde varie de

300 nm à 363,8 nm pour une taille minimum de 3,3 µm.

En parallèle, l’étude des résultats bibliographiques concernant l’extraction des

coefficients d’ionisation de différents matériaux à partir de différentes techniques et une

étude par simulation avec le logiciel ISE ont permis d'envisager une structure de test et

une technique d'extraction des paramètres adaptées à la détermination des coefficients

d’ionisation des porteurs dans SiC par mesures OBIC.

Classiquement basée sur l'exploitation de la mesure préalable du facteur de

multiplication des porteurs en fonction de la tension inverse appliquée à la jonction, la

méthode proposée a pour volonté de réduire le nombre d'hypothèses simplificatrices

généralement utilisées. Les simulations effectuées montrent en effet que ces dernières

affectent de façon non négligeable la qualité du résultat, à savoir la dépendance des

coefficients d'ionisation en fonction du champ électrique. Un dispositif de type Schottky

à contact d'anode semi-transparent, déposé sur une couche épitaxiée de type N ou P

(pour mesurer respectivement αp et αn), d'épaisseur et de dopage tels que ces paramètres

puissent être déterminés expérimentalement (par mesures C(V)), a été choisi et conçu.

Ainsi le profil réel du champ électrique dans la structure éclairée par un faisceau de

Conclusion Générale

152

longueur d’onde donnée, peut être pris en compte, et l’erreur commise sur les calculs

des variations du facteur de multiplication en fonction de la tension appliquée est

minimisée. Ces calculs sont effectués numériquement à l'aide du simulateur ISE. La

technique itérative employée pour faire coïncider la courbe expérimentale de

dépendance du facteur de multiplication M en fonction de la tension appliquée avec la

courbe simulée permet de converger vers les valeurs des paramètres du modèle retenu

pour décrire les coefficients d'ionisation (sous la forme :pb

Ep pa .exp

α = ). Grâce aux

calculs numériques, la solution finale ne découle d'aucune hypothèse sur le type et la

provenance des porteurs ionisants. Il est établi dans la littérature que le coefficient des

électrons est négligeable devant celui des trous. Les différentes simulations que nous

avons réalisées ont démontré qu’il était impossible dans ces conditions d’extraire αn

directement des valeurs de M mesurées. La méthode proposée permet d’obtenir des

valeurs approchées de celui-ci.

En pratique, les tests électriques de type I(V) en inverse des Schottky à métallisation

semi-transparente, réalisées en collaboration avec l’université de Newcastle ont révélé

une efficacité partielle des protections périphériques, entraînant un claquage sous faible

tension, localisé en périphérie de la jonction, n'ayant pas permis la détermination

expérimentale du facteur de multiplication en volume M. Ce dysfonctionnement des

poches est dû à une trop faible valeur du dopage des JTE engendrée par une trop faible

dose d’aluminium effectivement implantée et un mauvais taux d’activation électrique du

recuit post-implantation de type F3.

Concernant l’étude de l’influence de la périphérie des composants sur la tension

de claquage, l’exploitation de la technique OBIC a permis de compléter utilement la

caractérisation électrique de différents lots de diodes (1,5 kV) pour confirmer certains

résultats et faire ressortir des particularités de plusieurs procédés utilisés lors des étapes

technologiques.

Ainsi les effets du recuit post-implantation ionique de type F3 sur les profils de

dopants, les résultats de tenue en tension des diodes sans protection des lots JTE98C et

JTE98D et les mesures OBIC associées, ont montré que le profil d’émetteur avait un

rôle non négligeable sur la tension de claquage des composants. Cette observation vaut

encore pour les dispositifs avec protection JTE dopée bore. L'effet de la diffusion très

Conclusion Générale

153

importante du bore durant le recuit post-implantation ionique à 1700 °C pendant 30 mn

sur la répartition du champ électrique en périphérie de jonction est vérifié par les

mesures OBIC. Ces résultats confirment que le bore n’est pas un dopant adapté à la

réalisation de terminaisons de jonction performantes, malgré sa contribution au bon

fonctionnement en direct des composants.

Les densités de courant obtenues sous 5 V (60 A/cm²) pour les diodes de type JTE99’F4

et surtout l’augmentation de la zone de croissance exponentielle (7 à 8 décades) du

courant en direct démontre les améliorations apportées par la nouvelle configuration de

type F4 du recuit post implantation ionique.

Bien que l’on observe un effet des JTE dopées aluminium sur la tenue en tension des

composants (VBR = 500 V pour les diodes sans poche et VBR = 1000 V pour les

dispositifs protégés) les mesures OBIC révèlent un pic de champ électrique en

périphérie de l’émetteur responsable du claquage prématuré. La dose implantée étant

relativement proche de la dose optimale déterminée par simulation et le milieu ambiant

n’ayant pas de réelle influence sur la tension de claquage de ces diodes on peut donc

mettre en cause le taux d’activation électrique des accepteurs lors du recuit de type F4.

L’objectif de ces travaux étant l’augmentation de la tension de claquage, nous

avons donc caractérisé un lot de diodes dont la structure a été optimisée par simulation

pour tenir une tension de 5 kV. Les résultats des caractérisations OBIC et électriques ont

démontré le claquage précoce des composants (2300 V sous SF6 et 1200 V dans l’air),

localisé en bordure de zone P+. En plus du problème évoqué d'une activation électrique

des dopants de la JTE, l’effet des différentes étapes technologiques sur l’état de surface

du matériau (présence de charges à l’interface air/semi-conducteur) confirment ainsi la

difficulté à réaliser des extensions latérales de jonction implantées performantes.

Pour résumer ces travaux nous pouvons dire que l’étude des différents lots de

diodes a permis d’évaluer l’impact du recuit post-implantation ionique autant sur les

performances en direct qu’en inverse des composants. Des comportements particuliers

ont pu être reliés à la qualité cristalline du matériau SiC-4H et SiC-6H et aux

conséquences de différentes étapes technologiques (photolithographie, recuit post

implantation) sur l’état de surface du matériau. Le banc de mesures OBIC s’est avéré

efficace dans l’étude de la répartition du champ électrique des structures étudiées.

Notamment il a révélé le claquage prématuré des composants en périphérie de

Conclusion Générale

154

l’émetteur, malgré une amélioration des performances des JTE. L’intérêt de la méthode

proposée pour déterminer αn et αp, a été validé par simulation, mais n’a pu être

démontré expérimentalement.

A l’avenir, que ce soit pour la validation expérimentale des coefficients

d'ionisation des électrons et des trous, que pour l'obtention de composants de puissance

haute tension, des améliorations technologiques restent à apporter (comme palier ou

augmenter le faible taux d’activation électrique des accepteurs Al, ou améliorer la

propreté de surface durant la fabrication et passiver la surface…), tout en conservant

pour l'instant les types de structures considérées au cours de ces travaux (la protection

périphérique par JTE pour les diodes haute tension, et la structure spécifique dédiée aux

mesures de αn et αp). La technique de mesure des coefficients d’ionisation pourra être

ultérieurement appliquée à d’autres polytypes comme SiC-4H. Une adaptation du banc

expérimental OBIC devra être envisagée pour les caractérisations en température. Il est

envisageable d’utiliser la méthode OBIC pour étudier les effets des passivations sur le

comportements électriques des dispositifs de puissance SiC.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisation OBIC et électriques.

155

Bibliographie.

[Isoird’01], K. Isoird, M. Lazar, L. Ottaviani, M.L. Locatelli, D. Planson, C. Raynaud,

J.P. Chante. Study of 6H-SiC high voltage bipolar diodes under reverse biases. Applied

Surface Science, à paraître.

[Isoird’00], K. Isoird, L. Ottaviani, M.L. Locatelli, D. Planson, C. Raynaud, P.

Bevilacqua, J.P. Chante. Study of the breakdown voltage of 6H-SiC bipolar diodes

protected and non-protected by JTE using OBIC characterization. Material Science

Forum, 2000, Vols. 338-342, p 1363-1366.

[Lazar’01a], M. Lazar, K. Isoird, L. Ottaviani, M.L. Locatelli, C. Raynaud, D. Planson,

J.P. Chante. Bipolar Silicon Carbide Power Diodes Realized by Aluminum Implantation

and High Temperature rf-Annealing. Proc. Electronic Materials Conference, Notre

Dame (USA), 27-29 Juin 2001, à paraître.

[Nallet’99], F. Nallet, D. Planson, K. Isoird, M.L. Locatelli, J.P. Chante. Comparison of

static, switching and thermal behavior between a 1500 V Silicon and Silicon Carbide

bipolar diodes. Proc. CAS’99 22nd International Semiconductor Conference, Sinaia,

Roumanie, 5-9 Octobre 1999.

[Ottaviani’99a], L. Ottaviani, M.L. Locatelli, D. Planson, K. Isoird, J.P. Chante, E.

Morvan, P. Godignon. P-N Junction Creation in 6H-SiC by Aluminum Implantation.

Materials Sciences and Engineering B, 1999, Vol. 56, p 424-428.

[Chante’99], J.P. Chante, M.L. Locatelli, D. Planson, L. Ottaviani, E. Morvan, K.

Isoird, F. Nallet. Silicon Carbide Power Devices. Romanian Journal of Information

Science & Technology, 1999, Vol. 2, n°1-2, p 19-34.

[Alok’96], D. Alok et al. Planar Edge termination for 4H-Silicon Carbide Devices.

IEEE Trans. on Electron Devices, 1996, vol. 43, n° 8, p 1315-1317.

Bibliographie

156

[Baliga’87], B. J. Baliga. Junction termination. Modern power devices. New York:

Wiley & Sons, 1987, p 79-118.

[Baraff’62], G.A Baraff et al. Distribution functions and ionization rates for hot

electrons in semi-conductors. Phys. Rev., 1962, Vol. 28, n° 6, p 2507-2517.

[Canali’75], C. Canali et al. Electron and hole drift velocity measurements in silicon

and their empirical relation to electric field and temperature. IEEE Trans. on Electron

Devices, 1975, Vol. 22, p 1045-1047.

[Cassanhiol’72], B. Cassanhiol. Etude de la multiplication et des sources de bruit dans

une diode métal-semiconducteur. Thèse Doc. Ing. : Université Paul Sabatier de

Toulouse, 1972, 176 p.

[Choyke’68], W. J. Choyke et L. Patrick. Higher Absorption Edges in 6H-SIC. Phys.

Rev., 1968, Vol. 172, n° 3, p 769-772.

[Chynoweth’58], A.G. Chynoweth. Ionization Rates for Electrons and Holes in Silicon.

Phys. Rev., 1958, Vol. 109, p 1537-1540.

[Crowell’66], C. R Crowell et al. Temperature dependence of avalanche multiplication

in Semiconductors. Appl. Phys. Lett, 1966, Vol. 9, n° 6, p 242-244.

[Dahlquist’00], F. Dahlquist et al. A 2.8 kV, Forward Drop JBS Diode with Low

Leakage. Material Science Forum, 2000, Vols. 338-342, p 1179-1182.

[Defives’99], D. Defives et al. Barrier Inhomogeneities and Electrical Characteristics

of Ti/4H-SiC Schottky Rectifiers. IEEE Trans. on Electron Devices, 1999, Vol. 46, n° 3,

p 449-455.

[Edmond’91], J. A. Edmond et al. High temperature rectifiers in 6H-silicon carbide.

Proc. 1st Int. High Temperature Electronics Conference (HiTEC), Albuquerque, New

Mexico, 1991, p 499-505.

[Flohr’89], Th. Flohr, R. Helbig. Determination of minority-carrier lifetime and surface

recombination velocity by optical beam induced current measurements at different light

wavelengths. J. Appl. Phys., 1989, Vol. 66, n° 7, p 3060-3065.

Bibliographie

157

[Frischholtz’93], M. Frischholtz et al. OBIC measurements on planar high voltage p+-n

junctions with diamond-like carbon films as passivation layer. Diamond and Related

Materials, 1993, Vol. 2, p 778-781.

[Frischholz’98], M. Frischholz, J. Seidel, U. Gustafsson et al. JTE concept evaluation

and failure analysis: OBIC measurements on 4H-SiC p+-n diodes. IEEE Int. Symp. on

Power Semiconductor and Devices and ICs (ISPSD’98), Kyoto (Japon), mai 1998,

p 391-394.

[Garrett’56], C. G. B. Garett, W. H. Bratttain. Some Experiments on, and a Theory of,

Surface Breakdown. J. Appl. Phys., 1956, Vol. 80, n° 9, p 5464-5468.

[Gärtner’59], W. W. Gärtner. Depletion-Layer Photoeffects in semiconductors. Phys.

Rev., 1959, Vol. 16, n° 1, p 84-87.

[Keskar’00], N. Keskar et al. Defect Modeling and simulation of 4H-SiC P-N Diode.

Material Science Forum, 2000, Vols. 338-342, p 1351-1354.

[Khan’00], I. A. Khan, J. A. Cooper. Measurement of high-field electron transport in

silicon carbide. IEEE Trans. on Electron Devices, 2000, Vol. 47, n° 2, p 269-273.

[Konstantinov’89a], A. O. Konstantinov. Avalanche Breakdown filamentation in

Silicon Carbide. Sov. Phys. Semicond., 1989, Vol. 23, n° 6, p 617-620.

[Konstantinov’89b], A. O. Konstantinov. Influence of temperature on impact ionization

and avalanche breakdown in Silicon Carbide. Sov. Phys. Semicond., 1989, Vol. 23,

n° 1, p 31-34.

[Konstantinov’92], A. O. Konstantinov. The temperature dependence of impact

ionization in Silicon Carbide and related effects. Proc. Amorphous and crystalline SiC

III, Berlin: Springer, 1992, Vol. 56, p 213-219.

[Konstantinov’94], A. O. Konstantinov et al. Plasma passivation of crystalline silicon

carbide. Institute of Physics Conference Series, n°137, Silicon Carbide and Related

Material: Proc. of the Fifth Int. Conf., Bristol, U.K., IOP publishing, 1994, p 275-277.

[Konstantinov’98], A. O. Konstantinov et al. Study of Avalanche Breakdown and

Impact Ionization in 4H Silicon Carbide. Journal of Electronic Materials, 1998, Vol. 27,

n° 4, p 335-339.

Bibliographie

158

[Kordina’95], O. Kordina et al. A 4.5 kV Silicon Carbide rectifier. Appl. Phys. Lett.,

1995, vol. 67, n° 11, p 1561-1563.

[Lanois’97], F. Lanois. Etude de la gravure du carbure de silicium Application à la

réalisation de composants de puissance. Thèse Doct. Ing. : Institut National des

Sciences Appliquées de Lyon, 1997, 241 p.

[Lapuyade’96], H. Lapuyade. Analyse physique et modélisation de l’interaction

LASER-silicium. Application à la conception de cellules activées par faisceau LASER en

vue du test interne des circuits intégrés. Thèse : Université de Bordeaux 1, 1996, 220 p.

[Lazar’01, M. Lazar et al. High Electrical Activation of Aluminum and Nitrogen

Implanted in 6H-SiC at Room Temperature by RF annealing. Materials Science Forum,

2001, Vols. 353-356, p 571-574.

[Lebedev’97], A. A. Lebedev et al. Deep centers and negative temperature coefficient

of breakdown voltage of SiC p-n structures. Semiconductors, 1997, Vol. 31, n° 7,

p 735-737.

[Leguerre’76], J. R. Leguerre. Etude du comportement des jonctions pn a

semiconducteurs en régime de multiplication par avalanche. Thèse Sci. : Université

Paul Sabatier de Toulouse, 1976, 178 p.

[Lendenmann’00], H. Lendenmann et al. Operation of a 2500 V 150 A Si-IGBT /

SiCDiode Module. Materials Science Forum, 2000, Vols. 338-342, p 1423-1426.

[Lendenmann’01], H. Lendenmann et al. Long Term Operation of 4.5 kV PiN and 2.5

kV JBS Diodes. Materials Science Forum, 2001, Vols. 353-356, p 727-730.

[Luo’00], Y. Luo et al. Searching for Device Processing Compatible Ohmic Contacts to

Implanted p-Type 4H-SiC. Materials Science Forum, 2000, Vols. 338-342, p 1013-1016.

[Maes’90], W. Maes, K De Meyer, R. Van Overstraeten. Impact Ionization in Silicon: a

review and update. Solid-State Electronics, 1990, Vol. 33, n° 6, p 705-718.

[Matus’91], L. G. Matus et al. High voltage 6H-SiC pn junction diodes. Appl. Phys.

Lett., 1991, Vol. 59, n° 14, p1770-1772.

[Mc Kay’53], K. G. Mc Kay and K. B. Mc Afee. Electron Multiplication in Silicon and

Germanium. Phys. Rev., 1953, Vol. 91, n° 5, p 1079-1084.

Bibliographie

159

[Mönch’69], W. Mönch. On the Physics of Avalanche Breakdown in Semiconductors.

Phys. Stat. Sol., 1969, Vol. 36, n° 9, p 9-45.

[Morvan’99], E. Morvan. Modélisation de l’implantation ionique dans α-SiC et

application à la conception des composants de puissance. Thèse Doct. Ing. : Institut

National des Sciences Appliquées de Lyon, 1999, 298 p.

[Nakashima’00], K. Nakashima et al. Improved Ohmic Contacts to 6H-SiC by pulsed

Laser Processing. . Materials Science Forum, 2000, Vols. 338-342, p 1005-1008.

[Neudeck’94], P. G. Neudeck et al. 2000 V 6H-SiC pn junction diodes. Institute of

Physics Conference Series, n°137, Silicon Carbide and Related Material: Proc. of the

Fifth Int. Conf., Bristol, U.K.: IOP publishing, 1994, p 475-478.

[Neudeck’94], P. G. Neudeck et al. Electrical properties of Epitaxial 3C and 6H-SiC pn

Junction Diodes produced side-by-side on 6H-SiC substrates. IEEE Trans. on Electron

Devices, 1994, Vol. 41, n° 5, p 826-835.

[Neudeck’96], P. G. Neudeck, C. Fazi. High-field fast-risetime pulse failures in 4H- and

6H-SiC pn junction diodes. J. Appl. Phys., 1996, Vol. 80, n° 2, p 1219-1225.

[Neudeck’97], P. G. Neudeck, C. Fazi. Positive Temperature Coefficient of Breakdown

Voltage in 4H-SiC pn Junction Rectifiers. IEEE Trans. on Electron Devices, 1997,

Vol. 18, n° 3, p 96-98.

[Neudeck’00], P. G. Neudeck. Electrical Impact of SiC Structural Crystal Defects on

High Electric Field Devices. Materials Science Forum, 2000, Vols. 338-342,

p 1161-1166.

[Okuto’75], Y. Okuto, C. R. Crowell. Threshold energy effect on avalanche breakdown

voltage in semiconductor junctions. Solid-State Electronics, 1975, Vol. 18, p 161-168.

[Ortolland’96a], S. Ortolland et al. Study of Planar 6H-SiC High Voltage Rectifiers

(up to 1.7 kV). Proc. 9th Int. Conf. EDPE (EPE association), Dubrovnik (Croatie), 9-11

octobre 1996, p 68-71.

[Ortolland’96b], S. Ortolland et al. Effect of boron diffusion on the high voltage

behavior of 6H-SiC p+nn+ structures. J. Appl. Phys., 1996, Vol. 27, n° 3, p 299-306.

Bibliographie

160

[Ortolland’97], S. Ortolland. Etude de la tenue en tension de composants de puissance

en carbure de silicium. Thèse Doct. Ing. : Institut National des Sciences Appliquées de

Lyon, 1997, 249 p.

[Ortolland’97a], S. Ortolland. Study of different junction terminations for 6H-SiC

power diodes. J. Phys. III France, 1997, Vol. 7, n°4, p 809-818.

[Ottaviani’99], L. Ottaviani. Réalisation de jonctions pn dans le carbure de silicium 6H

par implantation ionique d’aluminium. Thèse Doct. Ing. : Institut National des Sciences

Appliquées de Lyon, 1999, 241 p.

[Palmour’97], J. W. Palmour et al. SiC device technology : Remaining issues. Diamond

and Related Materials, 1997, Vol. 6, n°10, p 1400-1404.

[Palmour’97a], J. W. Palmour et al. Silicon carbide for power devices. IEEE Int. Symp.

On Power Semiconductors Devices and ICs (ISPSD’97), Weimar (Allemagne), mai

1997, p 25-32.

[Patrick’59], L. Patrick et al. Electron emission from breakdown regions in Silicon

Carbide pn junctions. Phys. Rev. Lett., 1959, Vol. 2, n° 2, p 48-50.

[Peters’00], D. Peters et al. Characterisation of fast 4.5 kV SiC P-N diodes. IEEE Int.

Symp. on Power Semiconductor and Devices and ICs (ISPSD’2000), Toulouse (France),

mai 2000, p 241-244.

[Peters’01], D. Peters et al. 1700 V SiC Schottky Diodes Scaled to 25 A. Material

Science Forum, 2001, Vols. 353-356, p 675-678.

[Planson’94], D. Planson. Contribution à l’étude de composants de puissance haute

température en carbure de silicium. Thèse Doct. Ing. : Institut National des Sciences

Appliquées de Lyon, 1994, 152 p.

[Porter’95], L. M. Porter and R. F. Davis. A critical review of ohmic and rectifying

contacts for silicon carbide. Materials Science & Engineering B, 1995, Vol. B34, n° 2-3,

p 83-105.

Bibliographie

161

[Raghunathan’96], R. Raghunathan et B. J. Baliga. EBIC Investigation of edge

termination techniques for silicon carbide power devices. IEEE Int. Symp. on Power

Semiconductor and Devices and ICs (ISPSD’96), New York (USA), mai 1996,

p 111-114.

[Raghunathan’97], R. Raghunathan et B. J. Baliga. Measurement of Electron and Hole

Impact Ionization Coefficients for SiC. IEEE Int. Symp. on Power Semiconductor and

Devices and ICs (ISPSD’97), Weimar (Allemagne), mai 1997, p 173-176.

[Raghunathan’99], R. Raghunathan et B. J. Baliga. Temperature dependence of hole

impact ionization coefficients in 4H and 6H-SiC. Solid-State Electronics, 1999, Vol. 43,

p 199-211.

[Rottner’96], K. H. Rottner et al. OBIC measurements on 6H-SiC p+-n- mesa diodes

with floating field rings. Silicon Carbide and Related Materials: Proc. of the Sixth Int.

Conf., Bristol, U.K., IOP Publishing; 1996; p 721-724.

[Rottner’97], K. H. Rottner et al. 2.5 kV Ion-Implanted p+n Diodes in 6H-SiC. Diamond

and Related Materials, 1997, Vol. 6, p 1485-1488

[Ruff’94], M. Ruff et al. SiC devices : Physics and numerical simulations. IEEE Trans.

on Electron Devices, 1994, Vol. 41, n° 6, p 1040-1054.

[Sayle’71], W Sayle and P. Lauritzen. Avalanche Ionization rates measured in silicon

and germanium at low electric fields. IEEE Trans. on Electron Devices, 1971, Vol. 18,

n° 1, p 58-66.

[Schroder’90], D. K.Schroder. Contact resistance and Schottky barrier height.

Semiconductor Material and Device Characterization, New York: J. Wiley & Sons, Inc.,

1990. p 109-130.

[Sheridan’01], D. C. Sheridan et al. Design and Characterization of 2.5 kV 4H-SiC JBS

Rectifiers with Self-Aligned Guard Ring Termination. Material Science Forum, 2001,

Vols. 353-356, p 687-690.

[Shockley’61], W. Shockley. Problems related to p-n junctions in silicon. Solid State

Electronics, 1961, Vol. 2, n° 1, p 35-67.

Bibliographie

162

[Singh’00], R. Singh et al. 1500 V, 4 A 4H-SiC JBS Diodes. IEEE Int. Symp. on Power

Semiconductor and Devices and ICs (ISPSD’2000), Toulouse (France), mai 2000,

p 101-104.

[Sridhara’99], S. G. Sridhara et al. Penetration depths in the ultraviolet for 4H, 6H and

3C silicon carbide at seven common laser pumping wavelengths. Materials Science and

Engineering, 1999, Vol. B61-62, p 229-233.

[Stengl’87], R. Stengl. High-Voltage Planar Junctions Investigated by the OBIC

Method. IEEE Trans. on Electron Devices, 1987, Vol. 34, n° 4, p 911-919.

[Sugawara’00], Y. Sugawara et al. 6.2 kV 4H-SiC pin Diodes with Low Forward

Voltage Drop. Materials Science Forum, 2000, Vols. 338-342, p 1371-1374.

[Sugawara’00a], Y. Sugawara et al. 3.6 kV 4H-SiC JBS Diodes with Low Ron. Materials

Science Forum, 2000, Vols. 338-342, p 1183-1186.

[Sze’66], S. M. Sze et al. Avalanche breakdown of abrupt and linearly graded pn

junctions in Ge, Si, GaAs and GaP. Appl. Phys. Lett., 1966; Vol. 8, n° 5, p 111-113.

[Sze’81], S. M. Sze. Physics of semiconductor devices .2nd ed. New York : Wiley &

Sons 1981, 831 p.

[Tone’00], K. Tone et al. Fabrication and testing of 1,000 V-60 A 4H SiC MPS Diodes

in an Inductive Half-Bridge Circuit. Materials Science Forum, 2000, Vols. 338-342,

p 1187-1190.

[Troffer’97], T. Troffer et al. Doping of SiC by Implantation of Boron and Aluminum.

Phys. Stat. Sol., 1997,Vol. 162, p 277-298.

[Tsuji’00], T. Tsuji, R.Asai, K. Ueno et al. Optical Beam Induced Current Analysis of

high-voltage 4H-SiC Schottky Rectifiers. Materials Science Forum, 2000, Vols. 338-342,

p 1195-1198.

[Van Overstraeten’70], R. Van Overstraeten et al. Measurement of the ionization rates

in diffused silicon pn junction. Solid-State electronics, 1970, Vol. 13, p 583-608.

[Wahab’00], Q. Wahab et al. Designing, Physical Simulation and Fabrication of High-

Voltage (3.85 kV) 4H-SiC Schottky Rectifiers processed on Hat-Wall and Chimney CVD

Films. Materials Science Forum, 2000, Vols. 338-342, p 1171-1174.

Bibliographie

163

[Wilson’86], T. Wilson, E. M. McCabe. Distribution of charge carriers generated in a

semiconductor by a focused convergent light beam. J. Appl. Phys., 1986, Vol. 59, n° 8,

p 2638-2642.

[Wolff’54], P. A. Wolff. Theory of Electron Multiplication in Silicon and Germanium.

Phys. Rev., 1954, Vol. 95, n° 6, p 1415-1420.

[Woods’73], M. H. Woods et al. Use of Schottky barrier to measure impact ionization

coefficients in semiconductors. Solid-State Electronics, 1973, Vol. 16, n° 3, p 381-394.

Bibliographie

164

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

165

ANNEXE1. ANNEXE A : LE BANC DE MESURES OBIC...................................................... 167

1.1. LE LASER................................................................................................................ 167

1.2. LE BANC OPTIQUE. .................................................................................................... 167

1.3. LES APPAREILS DE TESTS ET DE MESURES................................................................... 170

1.4. LE PILOTAGE DU BANC ET LE TRAITEMENT DES MESURES. .......................................... 171

2. ANNEXE B : MODÈLES ET PARAMÈTRES UTILISÉS DANS LE LOGICIEL DE

SIMULATION ISE............................................................................................................ 172

2.1. MODÈLES DE BANDE INTERDITE ET MASSE EFFECTIVE ................................................ 172

2.2. CONCENTRATIONS D'ÉLECTRONS ET DE TROUS ........................................................... 173

2.3. MOBILITÉ ................................................................................................................. 173

2.4. MOBILITÉ À FORT CHAMP ÉLECTRIQUE ...................................................................... 173

2.5. IONISATION PAR IMPACT ET CLAQUAGE PAR AVALANCHE ........................................... 174

2.6. MODULE "OPTIK"...................................................................................................... 1742.6.1. Définition du faisceau optique. ................................................................................ 174

a) La direction ................................................................................................................. 174

b) La longueur d’onde et intensité. .................................................................................... 175

2.6.2. Caractéristique du matériau éclairé. ........................................................................ 175

3. ANNEXE C : CONFIGURATION DU FOUR DE RECUIT POST-

IMPLANTATION. ............................................................................................................ 176

3.1. CONFIGURATION POUR LE RECUIT DE TYPE F3 [OTTAVIANI’99]. ................................. 176

3.2. CONFIGURATION POUR LE RECUIT DE TYPE F4 [LAZAR’01]......................................... 176

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

166

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

167

ANNEXE

1. Annexe A : Le Banc de mesures OBIC.

1.1. Le LASER

Le modèle 2025-05 de Spectra Physics est un laser argon doublement ionisé. Ce

laser peut fonctionner en visible (457,9 nm< λ <514,5 nm), en ultra violet (333,6 nm < λ

< 363,8 nm) en toutes raies ou en monoraie. Le laser permet également d’obtenir un

groupement de 3 raies autour de 300 nm (U.V. profond). L’alimentation du laser permet

une régulation en courant et comporte un système de purge de la cavité laser sous air

filtré pour l’U.V. ou sous azote pour l’U.V. profond, ce qui permet d’obtenir une

meilleure stabilité du faisceau dans le temps. Etant donné la sensibilité du SiC seules les

raies U.V. et U.V. profondes sont utilisées. La puissance du faisceau laser varie de 10

mW à 300 mW. Pour toutes les mesures la puissance sera fixée au minimum à 10 mW.

1.2. Le banc optique.

Les différents éléments qui composent le banc optique (Fig. 1–1) sont :

Un chopper Standford Research Systems SR 540 dont la fréquencevarie de 4 à 400 Hz avec le disque à 6 bandes et de 400 Hz à 3,7 kHzavec le disque à 30 bandes.

Un polariseur à prisme d’atténuation 105 traité antireflet U.V.

Une lentille L1 LLU-13-20 de focale 20 mm.

Trois trous sources de taille 10 µm, 30 µm et 100 µm.

Une lentille L2 LLU-25-63 de focale 63 mm.

Une lame séparatrice traitée antireflet U.V. sur la face supérieure etavec un coefficient de réflexion pour la face inférieure de 50 %.

Une lentille L3 LLU-13-20 de focale 20 mm.

Des platines tangentes croisées.

Des platines XY motorisées PI M125.11 pilotables ayant une course de25 mm avec un pas minimum de 0,2 µm.

Une platine Z manuelle dont une graduation correspond à 10 µm et lacourse maximale est de 20 mm.

Annexe

168

Une lentille L4 LLU-25-300 de focale 300 mm.

Une mire graduée, dans le plan de l’échantillon (une graduation =3,3 µm).

Un objectif pour la caméra composé de 2 lentilles :

- Une lentille L51 LLU-13-20 de focale 20 mm.

- Une lentille L52 LLU-25-63 de focale 63 mm.

Une caméra CCD Cohu ayant un domaine de sensibilité de 200 nm à800 nm.

Un moniteur vidéo PHILIPS.

Pour utiliser la raie à 300 nm il est préférable d’utiliser le filtre interférentiel

centré sur 300 nm.

Le polariseur, le support du trou source, les lentilles L1, L2 , L3, L4 et la lame

séparatrice sont montés sur un même support fixé par deux vis sur l’armature métallique

sur laquelle sont fixés la potence soutenant la caméra, les platines (tangentes , XYZ), le

support de l’échantillon, le chopper et le laser.

Le faisceau laser échantillonné à une fréquence donnée passe d’abord dans le

polariseur de manière à être atténué puis il entre en rayon parallèle dans L1 pour en

ressortir en rayon convergent vers le foyer de L1 qui est celui de L2. Au voisinage du

point de focalisation de L1 et L2 est positionné le trou source qui permet d’obtenir la

taille du faisceau voulue en surface de l’échantillon. En sortie de L2 on retrouve un

faisceau parallèle, car toutes les lentilles utilisées travaillent entre leur foyer et l’infini.

Le faisceau est ainsi envoyé sur la lame séparatrice, là une partie est transmise (50 %) et

va se perdre, l’autre partie est réfléchie et envoyée vers L3. Le rôle de L3 est de

focaliser le faisceau sur l’échantillon dans le plan S. Le rapport des focales de L2 et L3

est de 1/3 ce qui permet d’obtenir respectivement un spot de 3 µm, 10µm, 30µm pour

des trous source de 10 µm, 30 µm, 100 µm. Une partie du faisceau reçu par l’échantillon

est réfléchie et renvoyée vers L3 et la lame séparatrice, la partie du faisceau qui est

transmise par la séparatrice est focalisée par L4 en un point qui est situé dans le plan

focal Image, ce point est également le point de focalisation de l’objectif de la caméra ce

qui nous permet de visualiser le spot obtenu sur l’échantillon avec un grandissement de

45 = (f4/f3)*(f52/f51) ou un grandissement de 5 = (f4/f3)*(f51/f52). Les différentes

lentilles ont un coefficient de transmission de 80 %, et la lame séparatrice transmet 50 %

Annexe

169

de la puissance du faisceau, donc si le faisceau de puissance 10 mW est atténué au

maximum par le polariseur (105), la puissance transmise est :5 9

incidente laserP 10 0,8 0,8 0,5 0,8 P 25,6 10 W− −= × × × × × = ×

Transmise incidenteP (1 R).P= −

Où R est le coefficient de réflexion du SiC

21 nR1 n

− = + (52)

avec n : indice de réfraction du SiC qui varie très peu pour le polytype SiC-6H

dans la gamme de longueurs d’onde utilisées (2,831< n < 2,902 ce qui donne 0,2284< R

< 0,2376).

La valeur de la puissance optique incidente calculée n’est vrai que si on néglige

la puissance des anneaux de diffraction et sans la présence d’un trou source.

Les différences entre les valeurs théoriques et expérimentales sont dues d’une

part au positionnement du trou source et d’autre part aux incertitudes sur les valeurs des

coefficients de transmission et d’atténuation des différentes optiques.

Fig. 1–1 : Schéma du banc optique et trajet du faisceau Laser.

Annexe

170

1.3. Les appareils de tests et de mesures.

L’échantillon de carbure de silicium où se trouvent les dispositifs (diodes JTE,

diodes MESA…) est collé sur un support conducteur pour prendre le contact en face

arrière. Le contact face avant est pris en effectuant une soudure avec un fil d’or ou

d’aluminium dont le diamètre est d ≤ 33 µm. Le dispositif à caractériser (Fig. 1–2) est

mis en série avec une résistance, le courant photogénéré est mesuré aux bornes de celle-

ci à l’aide d’une détection synchrone (STANFORD RESEARCH SYSTEMS SR 830).

Ce circuit est polarisé par une source de tension (S.M.U. Keithley K237).

La tension maximale délivrée par la K237 est de 1100 V. Lors des mesures

OBIC elle est pilotée par le P.C. pour appliquer une tension continue que l’on définit

préalablement. La K237 peut aussi mesurer le courant qui circule dans le circuit (courant

d’obscurité + courant photogénéré) ce qui permet de vérifier le bon fonctionnement du

circuit de mesure (qualité des connexions, claquage de la diode ...), pour éviter la

détérioration de la diode on peut fixer un courant limite (compliance). La détection

synchrone est utilisée pour détecter et mesurer un signal alternatif très faible. Souvent

les signaux de faible amplitude sont noyés dans le bruit, il est donc très difficile de les

détecter et de donner une valeur de l'amplitude fiable.

D.S.

S.M.U.Keithley 237

Détection SynchroneSR 830

DST

Dispositif sous test

Fig. 1–2 : Schéma du circuit de mesure.

Principe : D’après le théorème de Fourier tout signal peut être décomposé en

plusieurs composantes sinusoïdales d’amplitude, de fréquence et de phase différentes.

C’est la représentation du signal dans le domaine fréquentiel. Toutes les composantes

du signal reçu par la détection synchrone sont multipliées par un sinus à la fréquence

Annexe

171

de référence. Le produit de ces deux signaux donne un signal de sortie dont la

composante continue est proportionnelle au signal de référence. Les autres composantes

multipliées par le signal de référence sont rejetées par le filtre passe bas qui suit le

multiplieur.

Un disque perforé éclairé par le faisceau LASER tournant à une vitesse

constante permet de générer des impulsions lumineuses à la fréquence f = 70 Hz. Le

courant reçu par la détection synchrone (DS) est la somme du courant d’obscurité (Iobs

qui est le courant inverse du DST non éclairé) et du courant photogénéré (Iph qui est le

courant inverse du DST soumis à un éclairement localisé périodique). Le signal de sortie

de la DS sera donc Iph.

1.4. Le pilotage du banc et le traitement des mesures.

Ce programme développé à l’aide du logiciel TESTPOINT commercialisé par

KEITHLEY permet dans un premier temps d’initialiser tous les appareils de mesure et

de polarisation. Le circuit est ensuite polarisé à une tension déterminée par l’utilisateur.

Le balayage de la surface de la diode ou d’un diamètre s’effectue à pas constant

préalablement défini. Pour chaque position du faisceau, un nombre donné X de mesures

sont effectuées aux bornes de la résistance. La moyenne de celles-ci est réalisée et

stockée dans un fichier en fonction des coordonnées du point d’injection des photons.

Lors du parcours d’un diamètre du composant la courbe des variations du courant

photogénéré s’affiche point par point à l’écran. La cartographie nécessite un traitement

spécifique (fausses couleurs….) pour pouvoir visualiser l’étalement de la ZCE ainsi que

la distribution du champ électrique en surface du dispositif testé.

Etude de la tenue en tension des dispositifs de puissance en carbure de silicium parcaractérisations OBIC et électriques.

172

2. Annexe B : Modèles et paramètres utilisés dans le logicielde simulation ISE.

Le logiciel de simulation ISE comporte un ensemble d'outils permettant de faire

de la simulation 2D et 3D par éléments finis de composants à base de semi-conducteurs.

Une structure est décrite en terme de régions (oxyde, métal, semi-conducteur) et de

profils de dopage. Les équations de la physique des semi-conducteur sont résolues

(équation de continuité et de Poisson) à chaque nœud du maillage.

2.1. Modèles de bande interdite et masse effective

Le modèle de variation de la bande interdite, EG, en fonction de la température

est décrit par l'équation suivante:

( ) ( )0G GE T E Tα= − (53)

avec:

polytypes Eg(0) [eV] α [eV.K-1]4H 3,26 -3,3¥10-4

6H 3,02 -3,3¥10-4

[Ruff'94]

6H 4Hmt ml mt mlMasses effectives des électrons

[¥m0] 0,42 2 0,42 0,33

( )1

2 2 3,d e t lm r m m= [¥m0]

r=6md,e=2,33

r=3md,e=0,80

md,h [¥m0] md,h =1 md,h =1,232

,2

22 d e B

C

m k TN

hπ =

[cm-3]

T=300 K9,04¥1019

T=300 K1,84¥1019

32

,2

22 d h B

V

m k TN

hπ =

[cm-3]

T=300 K2,54¥1019

T=300 K3,34¥1019

k=1,380658¥10-23

J.K-1

q=1,6¥10-19 CkB=k/q=8,63¥10-3

eV.K-1

h=6,626¥10-34

m0=9,1¥10-31

3 32 2, ,19

,0

2,5409 10300

d e hC V

m TNm

= × [cm-3]

Annexe

173

2.2. Concentrations d'électrons et de trous

La concentration de porteur intrinsèque d'un semi-conducteur est donnée par:

( ) ( ) ( ) ( )exp2

Gi C V

B

E Tn T N T N T

k T

= −

(54)

2.3. Mobilité

max min 2

, min1300

1n p

i

r

Tµ µµ µ

NC

ξ

α

− − = +

+

(55)

avec Ni = Na-+Nd

+, concentration totale de dopant ionisés.

6HParamètresµn µp

µmax [cm2.V-1.s-1] 150 70µmin1 [cm2.V-1.s-1] 20 5µmin2 [cm2.V-1.s-1] 0 0

Cr [cm-3] 4,5¥1017 1¥1019

α 0,5 0,3ξ 3 3

2.4. Mobilité à fort champ électrique

La vitesse des porteurs dans un semi-conducteur est proportionnelle au champ

électrique de conduction, v µE= . La vitesse de transport des porteurs augmente avec le

champ électrique jusqu'à un maximum appelé vitesse de saturation, Vsat.

Une formulation analytique proposée par Canali [Canali'75] est:

,, 1

,

( )

1

n pn p

n p

sat

µµ E

µ Ev

α α

= +

(56)

avec vsat=2¥107 cm.s-1 et α=2.

Annexe

174

2.5. Ionisation par impact et claquage par avalanche

Une formulation analytique des coefficients d'ionisations, αn,p, en fonction du

champ électrique E est proposée par Chynoweth [Chynoweth’58].

( ),

, ,

n pbE

n p n pE a eγ

α γ−

= (57)

avec γ : coefficient tenant compte de la variation des coefficients d'ionisation en

fonction de la température.

tanh600

tanh2

op

op

hk

hkT

ω

γω

=

(58)

an[cm-1]

bn[V.cm-1]

ap[cm-1]

bp[V.cm-1]

[Raghunathan’97] 2,5¥106 1,48¥107 2,5¥106 1,48¥107

[Konstantinov'98] 0,4¥106 1,67¥107 16,3¥106 1,67¥107

2.6. Module "Optik".

Ce module permet de simuler l’éclairement d’un dispositif à semi-conducteur.

Nous l’avons utilisé pour réaliser les simulations de mesures OBIC notamment pour

démontrer la validité de la méthode d’extraction des coefficients d’ionisation. Pour

simuler l’éclairement d’un dispositif par un faisceau lumineux il faut définir les

paramètres du faisceau optique et les paramètres du matériau éclairé.

2.6.1. Définition du faisceau optique.

Le faisceau lumineux est défini par sa direction, sa longueur d’onde et son

intensité.

a) La direction

Elle est définie par un vecteur noté [x, y] qui indique si l’éclairement est latéral

ou perpendiculaire à la surface du composant.

Valeurs utilisées dans nos simulations : [0, 1]

Annexe

175

b) La longueur d’onde et intensité.

La longueur d’onde est associée à un indice complexe de réfraction N=n+ik.

n est l’indice de réfraction du matériau et permet de calculé le coefficient de

réflexion R :

21 nR1 n

− = + (59)

k est l’indice d’absorption du matériau et permet de calculé le coefficient

d’absorption α :

4 kπαλ

= (60)

N = n+ikLongueur d'ondeλ (nm) n k

300 2,9 0,015333,6 2,877 0,0046351,1 2,836 0,0031364,7 2,817 0,0020

[Patrick’59], [Sridhara’99]

Dans les simulations l’intensité du faisceau est fixée à 1 W/cm2.

2.6.2. Caractéristique du matériau éclairé.

Dans cette partie, on détaille l’épaisseur et le matériau de chaque couche

traversée afin de prendre en compte l’atténuation du faisceau et les différents

changements d’indice donnant lieu à une modification de la puissance du faisceau. On

définit ensuite la taille et le lieu de la zone d’illumination. Dans notre cas elle est

généralement fixé à 3 µm en surface du composant.

Toutes ces informations sur le matériau et sur le faisceau optique sont

indispensables aux calculs du taux de génération optique donné par la relation :

0exp Z ZoptG J αα − −= (61)

où α est le coefficient d’absorption du matériau, J l’intensité du faisceau

lumineux et Z0 est une des coordonnées du point d’éclairement.

Annexe

176

3. Annexe C : Configuration du four de recuit post-implantation.

Le four utilisé pour les recuits post-implantation est un four à induction

JIPELEC. Les recuits sont effectués à 1700 °C pendant 30 mn sous flux d’argon à

pression atmosphérique.

45 mm

38 mm

Plaquettede SiC Couvercle

SuscepteurTube deQuartz

Capot

Fig. 3–1 : Schéma du four à induction JIPELEC utilisé pour les recuits post-implantation

3.1. Configuration pour le recuit de type F3 [Ottaviani’99].

Lors de ce recuit la face implantée de la plaquette est exposée c’est à dire située

à 1 mm du couvercle.

3.2. Configuration pour le recuit de type F4 [Lazar’01].

Lors de ce recuit la face implantée de la plaquette est positionnée contre le

suscepteur.

FOLIO ADMINISTRATIF

THESE SOUTENUE DEVANT L’INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

NOM : ISOIRD DATE de SOUTENANCE :13 Juin 2001

Prénoms : Karine

TITRE :Etude de la tenue en tension des dispositifs de puissance en carbure de silicium par caractérisations OBIC etélectriquesNATURE : Doctorat Numéro d’ordre : 01 ISAL 0018

Formation Doctorale : Génie Electrique

Cote B.I.U. – Lyon : / et bis CLASSE :

RESUME :Cette étude en vue de l’augmentation de la tenue en tension des composants de puissance en carburede silicium a porté à la fois sur la détermination de certains paramètres physiques du matériau(coefficients d’ionisation des électrons et des trous) et sur l’analyse du comportement souspolarisation inverse de diodes bipolaires. Les caractérisations électriques ont été complétées par desmesures OBIC (Optical Beam Induced Current). Le début de ces travaux de thèse a été consacré à lamise en place du banc de mesures expérimental OBIC en tenant compte des spécificités du matériau.L’étude bibliographique de différentes méthodes d’extraction des coefficients d’ionisation dans d’autresmatériaux a conduit à envisager une procédure adaptée au SiC et visant à minimiser les erreurs engendréespar les hypothèses simplificatrices. Pour cela nous avons conçu et réalisé un composant spécifique (diodeSchottky à grille semi-transparente) qui permet d’évaluer les coefficients d’ionisation à partir des variationsdu facteur de multiplication (M) en fonction de la tension inverse appliquée, obtenues par mesures OBIC.Les paramètres de ce dispositif protégé par extension latérale de jonction implantée ont été optimisés parsimulation à l’aide du logiciel ISE.L’étude des comportements électriques de plusieurs lots de diodes 1,5 kV dont les protections (JTE) ont étéréalisées avec des dopants différents (Bore ou Aluminium) a révélé l’impact de différentes configurations derecuit post-implantation ionique sur la tenue en tension et sur le comportement en direct. Le banc de mesuresOBIC s’est avéré efficace dans l’étude de la répartition du champ électrique des structures étudiées, il anotamment révélé l’influence de divers paramètres (profil de dopage de l’émetteur, dopage de la JTE…) surle claquage des composants en SiC. La dernière étape de ces travaux de thèse visant à l’augmentation de latenue en tension a été la réalisation et la caractérisation de diodes conçues pour tenir une tension de 5 kV.

MOTS-CLES : carbure de silicium, SiC-4H, SiC-6H, tension de claquage, OBIC, JTE, coefficientd’ionisation, diodes bipolaires, composants de puissance.

Laboratoire (s) de recherches : Centre de Génie Electrique de Lyon (CEGELY)

Directeur de thèse : Marie-Laure LOCATELLI

Président du jury : J. CAMASSEL

Composition du jury :M. AMIET, J. CAMASSEL, J.P. CHANTE, M. L. LOCATELLI,M. JOHNSON, P. MERLE, F.MISEREY, R. NIPOTI