Cours TNS En

219
8/13/2019 Cours TNS En http://slidepdf.com/reader/full/cours-tns-en 1/219 Digital Signal Processing Advanced Methods Nicolas Dobigeon University of Toulouse IRIT/INP-ENSEEIHT http://www.enseeiht.fr/~dobigeon [email protected] Nicolas Dobigeon  Digital Signal Processing - Advanced Methods  1  /  205

Transcript of Cours TNS En

Page 1: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 1/219

Digital Signal ProcessingAdvanced Methods

Nicolas Dobigeon

University of ToulouseIRIT/INP-ENSEEIHT

http://www.enseeiht.fr/[email protected]

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   1   /   205

Page 2: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 2/219

Prerequisites

Representation tools 

 Complex variable and  z   transform

  Laplace transform

Digital Signal Processing - Basics (TNS1)

  Discrete Fourier Transform (DFT/TFD)

properties fast algorithm

  Digital filtering

linear filtering (time-invariant, causal) FIR and IIR filters direct synthesis of FIR filters (windowing) synthesis of IIR filters implementation (direct, canonical, serial and parallel structures)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   2   /   205

Page 3: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 3/219

Bibliography

 M. Bellanger,  Traitement Numerique du Signal - Theorie et 

Pratique , Masson, 1994.

 F. Castanie,  Traitement Numerique du Signal - Methodes avancees ,

Polycopie ENSEEIHT, 2002.   B. Porat,  A course in digital signal processing , Wiley, 1997.

 J. G. Proakis and D. Manolakis,  Digital Signal Processing -

Principles, Algorithms and Applications , Pearson, 1996.

  IEEEXplore Digital Library,  http://ieeexplore.ieee.org.

  www...

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   3   /   205

Page 4: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 4/219

Examples of applications

  signal processing

denoising, compression, detection,...

  image processing

edge enhancement, compression, notions of spatial frequency, 2D and 3D processing,...

  array processing

notion of wavefront,

 digital communications (e.g., mobiles)

notions of multipath, equalization...

⇒  Requires to   implement   linear filters!

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   4   /   205

Page 5: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 5/219

Linear and time-invariant filter (LTI)

Properties 

  Linearity:

F [ax 1(n) + bx 2(n)] = aF [x 1(n)] + b F [x 2(n)]

= ay 1(n) + by 2(n).

Necessary and sufficient condition:

∃h(n, k ) = F  [δ (n − k )] such that   y (n) =

+∞k =−∞

x (k )h(n, k )

  Time-invariance:

∀n0,   y (n) = F  [x (n)] ⇔  y (n − n0) = F  [x (n − n0)] .   (1)

Necessary and sufficient condition:∀n, ∀k ,   h(n, k ) = h(n − k ).

⇒  Linear and time-invariant   filter fully characterized by its impulse responseh(k ) (k  ∈  Z) or its transfer function  H (z ) = TZ [h(k )]⇒  Filtering identity becomes  y (n) =

 k  x (k )h(n − k ) = h(n) ∗ x (n) (temporal

convolution) or  Y (z ) = H (Z )X (Z )  (“frequency” product).Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   5   /   205

Page 6: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 6/219

Page 7: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 7/219

Page 8: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 8/219

Linear and time-invariant filter (LTI)

Properties 

  Linearity:

F [ax 1(n) + bx 2(n)] = aF [x 1(n)] + b F [x 2(n)]

= ay 1(n) + by 2(n).

Necessary and sufficient condition:

∃h(n, k ) = F  [δ (n − k )] such that   y (n) =

+∞k =−∞

x (k )h(n, k )

  Time-invariance:

∀n0,   y (n) = F  [x (n)] ⇔  y (n − n0) = F  [x (n − n0)] .   (1)

Necessary and sufficient condition:∀n, ∀k ,   h(n, k ) = h(n − k ).

⇒  Linear and time-invariant   filter fully characterized by its impulse responseh(k ) (k  ∈  Z) or its transfer function  H (z ) = TZ [h(k )]⇒  Filtering identity becomes  y (n) =

 k  x (k )h(n − k ) = h(n) ∗ x (n) (temporal

convolution) or  Y (z ) = H (Z )X (Z )  (“frequency” product).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   5   /   205

Page 9: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 9/219

Outline

OptimizationNon-optimal synthesis of FIR filterNon-optimal synthesis of IIR filterOptimization methodsStabilization of the solutions

Digital effectsSome remindersInput quantizationCoefficient quantizationQuantization in calculations

Non-standard structuresLadder/lattice structuresFraction-based structuresMultirate structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   6   /   205

Optimization

Page 10: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 10/219

Optimization

Outline

OptimizationNon-optimal synthesis of FIR filter

Direct synthesisSampling in the frequency domain

Non-optimal synthesis of IIR filterDirect synthesis

Pade approximantsOptimization methods

Least-square methodRemez algorithmEigenfilters

Stabilization of the solutions

Digital effects

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   7   /   205

Optimization

Page 11: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 11/219

Optimization

Non-optimal synthesis of FIR filter

Outline

OptimizationNon-optimal synthesis of FIR filter

Direct synthesisSampling in the frequency domain

Non-optimal synthesis of IIR filterDirect synthesis

Pade approximantsOptimization methodsLeast-square methodRemez algorithmEigenfilters

Stabilization of the solutions

Digital effects

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   8   /   205

Optimization

Page 12: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 12/219

Optimization

Non-optimal synthesis of FIR filter

Some reminders on FIR

 Characterized by a finite impulse response:

h(k ) =

  b k ,   k  = 0, . . . , M 0,   otherwise.

  Function transfer:

H (z ) =M 

k =0

b k z −k  =M 

k =0

h(k )z −k 

  Properties

non-recursive computation

→   stability, weak digital sensivity linear phase possible if symetry of the IR

h(k ) = ±h(M  − k ),   k  = 0, . . . , M ,   (suivant parite de  M )

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   9   /   205

Optimization

Page 13: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 13/219

Optimization

Non-optimal synthesis of FIR filter

Direct synthesis

Direct synthesis (reminder)

Let H I(z )z =e i 2πf   denote the ideal frequency transfer function.

 Fourier series expansion of  H I

e i 2πf  

 →   RI

H I

e i 2πf  

 =+∞

k =−∞

c k e i 2πf  

with  c k  = hI(k ) ∝ 1/2−1/2

 H I

e i 2πf   e −i 2πf  df 

 Windowed truncation of the IR (filter order fixed to  M  = 2L + 1),

h0(k ) = hI(k )w (k ),   k  = −L, . . . , L

Optional steps:   “Iterations” (order  M  et window  w (·)),  Shift of the IR to make it causal

hN(k ) = h0(k  − k 0) (with  k 0  ≥ L)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   10   /   205

Optimization

Page 14: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 14/219

p

Non-optimal synthesis of FIR filter

Direct synthesis

Direct synthesis (reminder)

Influence of the order (natural window)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   11   /   205

Optimization

Page 15: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 15/219

Non-optimal synthesis of FIR filter

Direct synthesis

Direct synthesis (reminder)

Influence of the order (natural window)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   12   /   205

Optimization

Page 16: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 16/219

Non-optimal synthesis of FIR filter

Direct synthesis

Direct synthesis (reminder)

Influence of the window (order fixed to M  = 22)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   13   /   205

Optimization

Page 17: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 17/219

Non-optimal synthesis of FIR filter

Sampling in the frequency domain

Sampling in the frequency domain

Let a FIR filter whose transfer function  H I (z ) is specified by (M  + 1) pointsz 0, . . . , z M .

  H =  {H I (z 0), . . . , H I (z M )}  is the set of (strong) constraint.

 Let the M-order polynomial approximation

H (z ) =

M n=0

Ln (z ) H I (z n) with   Ln (z m) = δ (m − n)

Remark:  we have  H (z m) = H I (z m) (∀m)

  The (unique) Lagrange polynom is

Ln (z ) =M 

m=n

1 − z −1z m

1 − z −1n   z m

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   14   /   205

Optimization

Page 18: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 18/219

Non-optimal synthesis of FIR filter

Sampling in the frequency domain

Sampling in the frequency domain

  H I(z ) can be rewritten

H (z ) =

  M n=0

1 − z nz −1

  M m=0

Am

1 − z mz −1

with

Am  =

  H I (z m)n=m

1 − z nz −1m

  If the constraints  H  are specified by equidistant points over the unit circlez n  = e i 2π

  nM +1 then we have

H (z ) =1 − z M +1

M  + 1

m=0

H I

e i 2π  mM +1

   

Gain

11 − e i 2π

  mM +1 z −1   

1st-order cell

   

Parallel 1st-order cells

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   15   /   205

Optimization

N i l h i f IIR fil

Page 19: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 19/219

Non-optimal synthesis of IIR filter

Outline

OptimizationNon-optimal synthesis of FIR filter

Direct synthesisSampling in the frequency domain

Non-optimal synthesis of IIR filterDirect synthesis

Pade approximantsOptimization methodsLeast-square methodRemez algorithmEigenfilters

Stabilization of the solutions

Digital effects

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   16   /   205

Optimization

N ti l th i f IIR filt

Page 20: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 20/219

Non-optimal synthesis of IIR filter

Some reminders on IIR

 Characterized by the linear recurrence with constant coefficients:

y (n) = −M 

k =1

ak y (n − k ) +M 

k =1

b k x (n − k )

where ∃ j  ∈ {1, . . . , M }   such that  a j  = 0 (with  a0  = 1),

 Corresponding function transfer:

H (z ) =

M k =0 b k z −k M k =0 ak z −k 

=+∞

k =−∞

h(k )z −k 

  Properties: efficient (  ≈  selective) but (in)stability defined by the pole positions digital sensivity (error propagations) non-constant group delay

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   17   /   205

Optimization

Non optimal synthesis of IIR filter

Page 21: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 21/219

Non-optimal synthesis of IIR filter

Direct synthesis

Direct synthesis (reminder)

Let the ideal transfer function  H I(z )z =e i 2πf  

  Choice of a required feature

Preserving the temporal response

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   18   /   205

Optimization

Non-optimal synthesis of IIR filter

Page 22: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 22/219

Non-optimal synthesis of IIR filter

Direct synthesis

Direct synthesis (reminder)

Let the ideal transfer function  H I(z )z =e 

i 2πf  

  Choice of a required feature

Preserving the temporal response Preserving the harmonic response

 Computing the analog template thanks to the transformation

f A  =   f E 

π  tan

πf N 

  Synthesis of  H A(p ) (p  = i 2πf A) ensuring the analog template (choosing

order, prototype...)

 Coming back in the Z-domain by the bilinear transform

p  = 2f E 1 − z −1

1 + z −1

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   18   /   205

Optimization

Non-optimal synthesis of IIR filter

Page 23: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 23/219

Non optimal synthesis of IIR filter

Pade approximants

Pade approximants

 We propose to approximate the ideal transfer functionH I(z ) =

 +∞k =−∞ h(k )z −k  by the the rational approximant

G m,n(z ) =  B m(z )

An(z )  =

mk =0 b k z −k 

nk =0 ak z −k 

 ,   with  u 0  = 1

where  B n(·) et  Am(·) are polynomials of degrees  n  and  m, resp.

  G m,n(z ) is then expanded into the serie

G m,n(z ) =+∞

k =−∞

g (k )z −k 

and we impose

g (k ) =

  h(k ),   for k  = 0, . . . , n + m;any,   for k  ≥ n  + m + 1

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   19   /   205

Optimization

Non-optimal synthesis of IIR filter

Page 24: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 24/219

p y

Pade approximants

Pade approximants

  If we write

G m,n(z ) =

mk =0 b k z −k nk =0 ak z −k 

  =m+nk =0

h(k )z −k  + O 

z −(n+m+1)

then, it comes

mk =0

b k z −k 

   degree  m

=2n+m

k =0

c k z −k 

   degree 2n +  m

+   with   c k  =

inf(k ,n) j =0

a j h(k  − j )

  Necessarilyc k  = 0   ∀k  ∈ {m + 1, . . . , 2n + m} ,

 We cancel all the terms  c k   for k  = m + 1, . . . , 2n + m,

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   20   /   205

Page 25: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 25/219

Optimization

Non-optimal synthesis of IIR filter

Page 26: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 26/219

Pade approximants

Pade approximants

Some remakds    When the orders  n et  m are fixed, if it exists1, the couple {An, B m} is unique2 (with  a0  = 1),

sometimes denoted by [m/n] (but the fraction  B m(z )/An(z ) is not necessarily irreductible ).

  The Pade approximants  G n,m  =  B m/An  are grouped in the Pade table indexed by n  and  m.

  The matrices  H1   and  H2  are Toeplitz et lower triangular Toeplitz for which there are someefficient algorithms to perform inversion and product.

  The approximant  G m,n(z ) and the targeted transfer function  H I(z ) have IRs that coincideon their first (n +  m  + 1) points. Above, nothing is imposed.→   Possible instability of the approximant!

See also:

  C. S. Burrus, T. W. Parks, “Time Domain Design of Recursive Digital Filters”,  IEEE Trans.Audio Electroacoustics , vol. AU-18, no. 2, June 1970.

1Sufficient condition: det H1  = 0.2

Frobenius, 1881.Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   22   /   205

Optimization

Optimization methods

Page 27: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 27/219

Outline

OptimizationNon-optimal synthesis of FIR filter

Direct synthesisSampling in the frequency domain

Non-optimal synthesis of IIR filterDirect synthesisPade approximants

Optimization methodsLeast-square methodRemez algorithmEigenfilters

Stabilization of the solutions

Digital effects

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   23   /   205

Optimization

Optimization methods

Page 28: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 28/219

General principle

Let H I(f  ) the ideal transfer function.

 We introduce a parameter vector  θ  that fully characterizes the  M -order

digital filter  H N(f  ) (FIR or IIR) ,  We define the synthesis error  e (f  ) = H I(f  ) − H N(f  ),

  If the specified constraints are not the same in all the frequency subbands,we introduce a weighting function  P (f  )

e P (f  ) = P (f  ) [H I(f  ) − H N(f  )] ,

and the corresponding “global” error criterion

J e P (θ) = e P (f  ),

 Then we are looking for  θopt that is solution of 

θ

opt

= argminθ∈Θ J e P (θ)Remarks:

H optN   (f  ) may not satisfy the template  →   we iterate on  M , θ  depends in the chosen synthesis structure.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   24   /   205

Optimization

Optimization methods

Page 29: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 29/219

 Direct structure:

H N(z ) = M k =0 b k z −k 

k =0 ak z −k 

,   (with  a0  = 1)

→   θD  = [a1, . . . , aM , b 0, . . . , b M ]T 

 Serial structure (after grouping conjugate complex roots):

H N(z ) = b 0 M k =1(1 − z k z −1)

k =1(1 − p k z −1)

= b 0

k =1

H k (z ),   (with  M 

2

  ≤ K  ≤ M )

where   H k (z ) =  1+b k ,1z −1+b k ,2 z −2

1+ak ,1z −1+ak ,2z −2  are bi-quadratic structures,

→   θS  = {θS,1, . . . , θS,K }  with  θS,k   = [ak ,1, ak ,2, b k ,1, b k ,2]T 

 Parallel structure (with simple pole):

H N(z ) = c  +K 

k =1

H k (z ),

where   H k (z ) =  1+b k ,1z −1

1+ak ,1z −1+ak ,2z −2  are bi-quadratic structures,

→   θP  = {θP,1, . . . , θP,K }  with  θP,k  = [ak ,1, , ak ,2, b k ,1]T 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   25   /   205

Optimization

Optimization methods

Page 30: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 30/219

General principle

Let Soit  H I(f  ) the ideal transfer function.

 We introduce a parameter vector  θ  that fully characterizes the  M -order

digital filter  H N(f  ) (FIR or IIR) ,  We define the synthesis error  e (f  ) = H I(f  ) − H N(f  ),

  If the specified constraints are not the same in all the frequency subbands,we introduce a weighting function  P (f  )

e P (f  ) = P (f  ) [H I(f  ) − H N(f  )] ,

and the corresponding “global” error criterion

J e P (θ) = e P (f  ),

 Then we are looking at  θopt that is solution of 

θ

opt

= argminθ∈Θ J e P (θ)Remarks:

H optN   (f  ) may not satisfy the template  →   we iterate on  M , θ  depends in the chosen synthesis structure.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   26   /   205

Optimization

Optimization methods

Page 31: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 31/219

General principle

Let Soit  H I(f  ) the ideal transfer function.

 We introduce a parameter vector  θ  that fully characterizes the  M -order

digital filter  H N(f  ) (FIR or IIR) ,  We define the synthesis error  e (f  ) = H I(f  ) − H N(f  ),

  If the specified constraints are not the same in all the frequency subbands,we introduce a weighting function  P (f  )

e P (f  ) = P (f  ) [H I(f  ) − H N(f  )] ,

and the corresponding “global” error criterion

J e P (θ) = e P (f  ),

 Then we are looking at  θopt that is solution of 

θ

opt

= argminθ∈Θ J e P (θ)Remarks:

H optN   (f  ) may not satisfy the template  →   we iterate on  M , θ  depends in the chosen synthesis structure.

Which norm? 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   27   /   205

OptimizationOptimization methods

Least square method

Page 32: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 32/219

Least-square method

2-norm: least-square method

 Let the error term defined in  N 0   frequency points

e P (f n) = P (f n) [H I(f n) − H N(f n)] ,   n = 0, . . . , N 0 − 1,

 The criterion can be written

J e P (θ) = eP 2

2  =

N 0−1n=0

P 2

(f n) [H I(f n) − H N(f n)]2

,

where  eP   = [e P (f 0), . . . , e P (f N 0−1)]T ,

  assumption: we have a sub-optimal initial solution  θ(0) →   local

optimization.

  From the initial solution  θ(0), we are looking for the growth ∆θ  such that

∆θ  = argmin∆θ∈Θ

J e P 

θ

(0) + ∆θ

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   28   /   205

OptimizationOptimization methods

Least-square method

Page 33: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 33/219

Least square method

2-norm: least-square method

  We expand the criterion  J e P  θ

(0) + ∆θ

 to the 1-st order

J e P 

θ

(0) + ∆θ

 = J e P 

θ

(0)

+

N −1 j =0

∂ J e P 

∂θ j 

∆θ j 

and all the gradient coordinates  ∇J e P  are set to 0:

∂ J e P 

∂θk 

+N −10=1

∂ 2J e P 

∂θk ∂θ j 

∆θ j  = 0,   k  = 0, . . . , N  − 1

 We obtain the linear system

E1Pe + E

1PET 

1 ∆θ = 0

with

e = [e (f 0), . . . , e (f N 0−1)]T  ,   E1  =

∂ e (f n)

∂θk 

k ,n

et  P =  diag

P 2(f n)

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   29   /   205

OptimizationOptimization methods

Least-square method

Page 34: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 34/219

Least square method

2-norm: least-square method

  The solution is

∆θ  = −

E1PET 1

−1

E1Pe.

Remarks:

 method that relies on the computation of   ∂ e (f  n )∂θ

,

→   explicit for most of the synthesis structures,

  Bellanger3 provides the computation for a  N -order FIR filter with theparameter vector  θ  = [H 1, . . . , H N −1]T  where  H k  = TFD [h(n)],

 no constraints on the stability of the solution,→   stability of the solution not ensures!

3

M. Bellanger,  Traitement Numerique du Signal , Masson, 1994.Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   30   /   205

OptimizationOptimization methods

Least-square method

Page 35: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 35/219

q

2-norm: least-square method

Example of the synthesis of a FIR filter 

→  Flexibility in the attenuated bands not exploited!

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   31   /   205

OptimizationOptimization methods

Least-square method

Page 36: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 36/219

2-norm: least-square method

Example of the synthesis of a FIR filter 

→  Flexibility in the attenuated bands not exploited!

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   31   /   205

Page 37: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 37/219

OptimizationOptimization methods

Remez algorithm

Page 38: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 38/219

∞-norm: Remez algorithm

  If   f 0, . . . , f M  are known then  θ  are computed by matrix inversion:

θ  =  θopt ⇔ {e (f i ) = δ }i 

→   On ne connaıt pas   f 0, . . . , f M −1   !

 New optimization problem:

{δ, f , θ} = argminδ,f ,θ

P (f i ) [H I(f i ) − H N(f i )] − (−1)i δ i =0,...,M 

with f  = (f 0, . . . , f M ),

 Alternating minimization (iterative algorithm):

f (r )   = argminf 

P  (f ) H I (f ) − H (r −1)N   (f ) − (−1)i δ (r −1)

δ (r ), θ(r )

  = argminδ,θ

f  (r )i 

H I

f  (r )i 

− H N

 (r )i 

− (−1)i δ 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   33   /   205

OptimizationOptimization methods

Remez algorithm

Page 39: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 39/219

∞-norm: Remez algorithm

From a sub-otpimal solution  θ(0) et  δ (0), at iteration  r 

  computing the error  e (r −1)

P    (f  ) = P (f  ) H I(f  ) − H (r −1)

N   (f  ),

  localizing the extrema of  e (r −1)P    (f  ), i.e., de

 (r )0   , . . . , f 

 (r )M 

 t.q.

e (r −1)

f  (

r )i 

 > δ (r −1),

  computing  θ(r ) and  δ (r ) by resolution of the (M  + 1) linear equations

f  (r )i 

H I

f  (r )i 

− H 

(r )N

 (r )i 

 = ±δ (r )

i.e., system inversion

H I

f  

 (r )0

...

H I

f  

 (r )M 

=

1 cos 2πf   (r )0   . . .   cos 2πf   (r )

0   (M − 1)   (−1)0

f   (r )0

.

.

....

.

.

....

1 cos

2πf   (r )M 

  . . .   cos

2πf  

 (r )M 

  (M − 1)

  (−1)M 

f   (r )M 

h(r )0

.

.

.

h(r )M −1

δ(r )

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   34   /   205

OptimizationOptimization methods

Remez algorithm

Page 40: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 40/219

∞-norm: Remez algorithm

Example of the synthesis of a FIR filter (iteration  1)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   35   /   205

OptimizationOptimization methods

Remez algorithm

Page 41: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 41/219

∞-norm: Remez algorithm

Example of the synthesis of a FIR filter (iteration  11)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   36   /   205

OptimizationOptimization methods

Remez algorithm

Page 42: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 42/219

∞-norm: Remez algorithm

Example of the synthesis of a FIR filter (iteration  12)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   37   /   205

OptimizationOptimization methods

Remez algorithm

Page 43: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 43/219

∞-norm: Remez algorithm

Example of the synthesis of a FIR filter (iteration  17)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   38   /   205

OptimizationOptimization methods

Remez algorithm

Page 44: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 44/219

∞-norm: Remez algorithm

Example of the synthesis of a FIR filter (iteration  21)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   39   /   205

OptimizationOptimization methods

Remez algorithm

Page 45: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 45/219

∞-norm: Remez algorithm

Comparison  2/ ∞

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   40   /   205

OptimizationOptimization methods

Remez algorithm

R l i h

Page 46: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 46/219

∞-norm: Remez algorithm

Stopping rule:   iteration number  R ,

  error:e R 

p  (f  ) < seuil,

  error variation:

e R −1

p    (f  )

e R 

p  (f  )

 <  seuil,

Advantages:   optimal method (!),

 constant amplitude fluctuation in the attenuated and non-attenuatedbands,

 minimum filter order,

Drawbacks:

 Computationally intensive (iterative method, matrix inversion),

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   41   /   205

OptimizationOptimization methods

Remez algorithm

R l i h

Page 47: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 47/219

∞-norm: Remez algorithm

Regarding the synthesis method:

 convergence of the algorithm not demonstrated,→  “correct” behavior if “correct” initialization→  non-optimal solution required!

 algorithm implemented with Matlab,

 extension to the synthesis of a IIR filter proposed by Bellanger

4

.Some more general remarks:

  minimization of a  ∞-norm sometimes called Chebyshev approximation,

 minimizing the error max.:   minimax  approximation,

 general polynomial approximation method

→   for DSP,   Parks-McClellan   synthesis algorithm5.

4M. Bellanger,  Traitement Numerique du Signal , Masson, 1994.5T. W. Parks  et al., “Chebyshev approximation for non recursive digital filters with linear

phase”,   IEEE. Trans. Circuit Theory, vol. 19, no. 2, March 1972.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   42   /   205

OptimizationOptimization methods

Eigenfilters

Ei filt (FIR)

Page 48: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 48/219

Eigenfilters (FIR)

 Let consider a FIR filter with linear phase

H N(f  ) =M −1k =0

hk  cos (2πfk ) =  θT c(f  ),   with c(f  ) = [cos (2πfk )]

k ,

  The criterion6 can be written  θ  = [h0, . . . , hM −1]T 

J e (θ) = e (f  )22  =    f  2

f  1

|H I(f  ) − H N(f  )|2 df  ,

  If the ideal filter owns a constant transfer function  H I(f 1) ≈  θT c(f 1) in the

subband [f 1, f 2],  J e (θ) can be rewritten

J e (θ) =    f  2

f  1

θT c(f 1) − θT c(f  )2

df   =  θT Qrif θ

with  Qrif  =

   f  2

f  1

[c (f 1) − c (f  )] [c (f 1) − c (f  )]T  df 

6 · 2   is the  2-norm in the functional space  C0([f  1, f  2])Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   43   /   205

OptimizationOptimization methods

Eigenfilters

Eigenfilters (FIR)

Page 49: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 49/219

Eigenfilters (FIR)

 The synthesis problem consists of looking for

θopt = argmin

θ∈Θ

J e (θ)   ⇔   θopt = argmin

θ∈Θ

θT Qrif θ

→   the solution is given by analyzing the Rayleigh ratio  R Qrif  (·) !

Property:   Let A  an hermitian matrix and  R A (x) =   xT AxxT x

  then

minθ∈Θ

R A (x) = λmin

et xopt = argminθ∈Θ

R A (x)   ⇔   xopt = vmin

where vmin  is the eigenvector associated with the smallest eigenvalue  λmin  of  A.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   44   /   205

OptimizationOptimization methods

Eigenfilters

Eigenfilters (IIR)

Page 50: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 50/219

Eigenfilters (IIR)

 Let consider the IIR filter of transfer function

H N(z ) =

M −1k =0   b k z −k M −1k =0   ak z −k 

,

  If  x (n) = δ (n) is the input, we want  y (n) = hI(n) (ideal IR) at theoutput7:

M −1k =0

b k hI(n − k ) ≈M −1k =0

ak δ (n − k )

  The error8 can be written for  n = 0, . . . , N 0:

e (n) =

M −1k =0

b k hI(n − k ) −

M −1k =0

ak δ (n − k ),

7S.-C. Pei and J.-J. Shyu, “Design of 1-D and 2-D IIR Eigenfilters”,   IEEE Trans. Signal Processing , vol. 42, no. 4, April 1994.

8Warning:   e (n) =  hI(n) − hN(n) !

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   45   /   205

OptimizationOptimization methods

Eigenfilters

Eigenfilters (IIR)

Page 51: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 51/219

Eigenfilters (IIR)

 We define the parameter and error vectors:

θ  = [a0, . . . , aM −1, b 0, . . . , b M −1]T  ,   e = [e (0), . . . , e (N 0)]T 

 Using a matrix formulation:

Hθ  = e   where   H =   H1   −I

H2   0 ,

with

H1   =

hI(0) 0   . . .   0hI(1)   hI(0) 0

.

.

....

. . .   0hI(M − 1)   hI(M − 2)   . . .   hI(0)

,

H2   =

hI(M )   hI(M − 1)   . . .   hI(1)

hI(M  + 1)   hI(M )   hI(2)

.

.

.... 0

hI(N 0)   hI(N 0 − 1)   . . .   hI(N 0 − M  + 1)

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   46   /   205

OptimizationOptimization methods

Eigenfilters

Eigenfilters (IIR)

Page 52: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 52/219

Eigenfilters (IIR)

 The (weighted) quadratic criterion is:

J e P (θ) = eP 

22  =

N 0n=0

P 2(n)e 2(n),

with eP  = [e P (0), . . . , e P (N 0)]T  et  e P (n) = P (n)e (n),

  Or eP 22  = e

Pe with  P =  diag P 2

(n)  (et  e =  Hθ), so

J e P (θ) =  θ

T Qriiθ,

with Qrii  = HPH,

 The synthesis problem consists of looking for

θopt = argmin

θ∈Θ

J e P (θ)   ⇔   θ

opt = argminθ∈Θ

θT Qriiθ

→   The solution is given by analyzing the Rayleigh ratio  R Qrii (·) !

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   47   /   205

OptimizationOptimization methods

Eigenfilters

Optimization methods: summary

Page 53: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 53/219

Optimization methods: summaryLeast-square method 

  θ  depends of the synthesis structure,

  J e P (θ) = eP 22  = n P 

2

(f n) [H I(f n) − H N(f n)]2

,→  optimization by matrix inversion,

Remez algorithm

  θ  = [h0, . . . , hM −1]T  for a FIR with linear phase,

  J e P (θ) = e P (f  )L∞  = supf   P (f  ) [H I(f  ) − H N(f  )] ,→   iterative procedure: optimization by alternate optimization,

Eigenfilters (FIR)

  θ  = [h0, . . . , hM −1]T  pour un FIR a phase lineaire,

  J e (θ) = e (f  )2L2

 =

   |H I(f  ) − H N(f  )|2 df  ,

→   optimization by spectral analysis (SVD of  Qrif ),Eigenfilters (IIR)

  θ  = [a0, . . . , aM −1, b 0, . . . , b M  − 1]T ,

  J e P (θ) = e (f  )2

2  = 

n P 2(n)

k  b k hI(n − k ) − ak δ (n − k )

2,

→   optimization by spectral analysis (SVD of  Qrii),

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   48   /   205

OptimizationStabilization of the solutions

Outline

Page 54: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 54/219

Outline

OptimizationNon-optimal synthesis of FIR filter

Direct synthesisSampling in the frequency domain

Non-optimal synthesis of IIR filterDirect synthesisPade approximants

Optimization methodsLeast-square methodRemez algorithmEigenfilters

Stabilization of the solutions

Digital effects

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   49   /   205

OptimizationStabilization of the solutions

Stabilization of the solutions

Page 55: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 55/219

S

 To ensure the stability of 

H N(z ) =  V (z )M −1

k =0   (1 − p k z −1),

we should solve the constrained optimization problem

minθ∈Θ

J e P (θ) such that

|p k | <  1

M −1

k =0

→   possible with  θ  = [p 0, . . . , p M −1]T  (structure serie/cascade),→   otherwise?

  Alternative:  unconstrained optimization, then stabilization.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   50   /   205

OptimizationStabilization of the solutions

Stabilization of the solutions

Page 56: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 56/219

  Let p 0  a unstable 1-st order, i.e.,  |p 0| >  1,

  The transfer function  H N(z ) can be factorized:

H N(z ) =  1

1 − p 0z −1H N(z ),   with  H N(p 0) = 0

  Let the all-pass filter

G (z ) =  1

p 0

1 − p 0z −1

1 −

  1p ∗0

z −1 ,   with  |G (z )| = 1

  We define

H N(z ) = G (z )H N(z ) =  1

p 0 1 −   1

p ∗0 z −1H N(z ),

p 0   is not an (unstable) pole of  H N(z ), 1/p ∗0   is a stable pole of  H N(z ) car |1/p ∗0 | = 1/|p 0| <  1, and

H N(z )

 =

H N(z )

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   51   /   205

OptimizationStabilization of the solutions

Stabilization of the solutions

Page 57: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 57/219

  Interpretation in the  C  plan:

p 0  = r 0e i θ0

1p ∗0

=   1r 0

e i θ0

  recursively on  H N(z ), each pole  p k   outside C(0, 1) is replaced with 1/p ∗k .

Remark Same procedure on the numerator  V (z )  ⇒  filter of minimum phase.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   52   /   205

Optimization

Stabilization of the solutions

Stabilization of the solutions

Page 58: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 58/219

  Interpretation in the  C  plan:

p 0  = r 0e i θ0

1p ∗0

=   1r 0

e i θ0

  recursively on  H N(z ), each pole  p k   outside C(0, 1) is replaced with 1/p ∗k .

Remark Same procedure on the numerator  V (z )  ⇒  filter of minimum phase.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   52   /   205

Digital effects

Outline

Page 59: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 59/219

Optimization

Digital effectsSome reminders

Fixed-point representationDigital effects

Input quantizationCoefficient quantizationQuantization in calculations

Constant inputEntrees variables

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   53   /   205

Digital effects

Some reminders

Outline

Page 60: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 60/219

Optimization

Digital effectsSome reminders

Fixed-point representationDigital effects

Input quantizationCoefficient quantizationQuantization in calculations

Constant inputEntrees variables

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   54   /   205

Digital effects

Some reminders

Fixed-point representation

Some reminders

Page 61: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 61/219

Fixed-point representation

  Every number  x   is encoded

x q  = (±)  sign bit

,

integer part   b nE , . . . , b 0, b −1, . . . , b nF   

fractional part

with  b  j  ∈ {0, 1}

  Constraints:

Quantum: ∆q  = 2−nF

Dynamic:   x maxq   =

nE j =−nF

2 j  = 2nE+1 − 2−nF

Example :   nE  = 2,  nF  = 2

x maxq   = 1 × 20 + 1 × 21 + 1 × 22   

=7

+ 1 × 2−1 + 1 × 2−2   =3/4

= 8 − 1/4

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   55   /   205

Digital effects

Some reminders

Fixed-point representation

Some remindersFi d i i

Page 62: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 62/219

Fixed-point representation

  (Un-)biased quantization,

Figure:  Un-biased (left) and biased (right) quantizations.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   56   /   205

Digital effects

Some reminders

Fixed-point representation

Some remindersFi d i i

Page 63: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 63/219

Fixed-point representation

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   57   /   205

Digital effects

Some reminders

Fixed-point representation

Some remindersFi d i t t ti

Page 64: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 64/219

Fixed-point representation

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   58   /   205

Page 65: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 65/219

Digital effects

Some reminders

Digital effects

Some remindersDigital effects

Page 66: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 66/219

Digital effects

Overflow 

  If  x  = x max + ∆q   then

x q  =

  −x max

q   ,   without protection;x maxq   ,   with protection.

Figure:  Overflow without (left) and with (right) protection.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   60   /   205

Digital effects

Input quantization

Outline

Page 67: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 67/219

Optimization

Digital effectsSome reminders

Fixed-point representationDigital effects

Input quantizationCoefficient quantizationQuantization in calculations

Constant inputEntrees variables

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   61   /   205

Digital effects

Input quantization

Input quantization

Page 68: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 68/219

ANC ⇒   input noise  e x (n) that propagates into the filter

x q(n) ≈  x (n) + e x (n) ⇒  y q(n) ≈  y (n) + e y (n)

Deterministic model (x (n) =   constant )

  bounded ouptut error:

|e y (n)|   =

e x (n − k )h(k )

|e x (n − k )h(k )|

≤  ∆q 

2

|h(k )|   (if unbiased quantization)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   62   /   205

Digital effects

Input quantization

Input quantization

Page 69: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 69/219

ANC ⇒   input noise  e x (n) that propagates into the filter

x q(n) ≈  x (n) + e x (n) ⇒  y q(n) ≈  y (n) + e y (n)

Deterministic model (x (n) =   constant )

  bounded ouptut error:

|e y (n)|   =

e x (n − k )h(k )

|e x (n − k )h(k )|

≤   ∆q 2

|h(k )|   (if unbiased quantization)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   62   /   205

Digital effects

Input quantization

Input quantization

Page 70: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 70/219

Random model (x (t ) =   constant )

  White noise as input:

R e x (τ ) =  ∆q 2

12  δ (τ ) ⇔  S e x (f  ) =

  ∆q 2

12

 Power spectral density (Wiener-Lee relation):

S e y (f  ) = |H (f  )|2 ∆q 2

12

  Overall power:

P e y   =

   12

− 12

S e y (f  )df   =  ∆q 2

12

   12

− 12

|H (f  )|2df 

and, from the Parseval identity:

P e y   =  ∆q 2

12

n

|h(n)|2.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   63   /   205

Digital effects

Coefficient quantization

Outline

Page 71: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 71/219

Optimization

Digital effectsSome reminders

Fixed-point representationDigital effects

Input quantizationCoefficient quantizationQuantization in calculations

Constant inputEntrees variables

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   64   /   205

Digital effects

Coefficient quantization

Coefficient quantization

Page 72: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 72/219

θq  =  θ + ∆θ  ⇒  H q(z ) =   B (z )+∆B (z )A(z )+∆A(z )

Sensitivity: moving of the poles (and/or zeros)

  We introduce the polynomial:

A(z ) = k 

ak z −k  = m 1 − p mz −1   We can show that:

∂ p m∂ ak 

=  p M −k 

m

 j =m(p  j  − p m)

→   big displacement if  ∃ j  = m  s.t.   p  j  − p m  ≈ 0

  consequence (for a stable IIR):if  M   ↑ ⇒   in the the circle  C (0, 1), density of the poles  ↑ ⇒  sensivity  ↑  !

→   in practice, implementation with 2nd-order cells (∀  structure)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   65   /   205

Digital effects

Coefficient quantization

Coefficient quantization2nd-order purely recursive filter

Page 73: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 73/219

p y

Aq(z ) = 1 + a1,qz −1 + a2,qz −2 = (1 − p 1,qz −1)(1 − p 2,qz −1)

with  p i ,q  =   12−a1,q ±  a21,q − 4a2,q

Location of the stable poles in the z-space 

 Finite numbers of couples (a1,q, a2,q) such that  p i ,q   in the unity circle.

Figure:  Location of pole and zeros with quantization of quantum∆q  = 2−3 (left) and ∆q  = 2−4 (right).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   66   /   205

Digital effects

Coefficient quantization

Coefficient quantization2nd-order purely recursive filter

Page 74: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 74/219

Location of the stable poles in the space  (a1, a2)

Figure:  Location of stable poles and zeros with quantization of quantum∆q  = 2−2.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   67   /   205

Digital effects

Coefficient quantization

Coefficient quantization2nd-order purely recursive filter

Page 75: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 75/219

Location of the stable poles in the space  (a1, a2)

Figure:  Location of stable poles and zeros with quantization of quantum∆q  = 2−3.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   68   /   205

Digital effects

Quantization in calculations

Outline

Page 76: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 76/219

Optimization

Digital effectsSome reminders

Fixed-point representationDigital effects

Input quantizationCoefficient quantizationQuantization in calculations

Constant inputEntrees variables

Non-standard structures

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   69   /   205

Digital effects

Quantization in calculations

Quantization in calculations

Page 77: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 77/219

Figure:  Position of the quantizers in a D-N structure.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   70   /   205

Digital effects

Quantization in calculations

Quantization in calculations

Page 78: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 78/219

Figure:  Position of the quantizers in a D-N structure.

→   propagated error:   w q(n) = Q

k  Q [ak w q(n − k )] + x (n)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   71   /   205

Digital effects

Quantization in calculationsConstant input

Quantization in calculationsConstant input

Page 79: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 79/219

w q(n) = Q −k  Q [ak w q(n − k )] + x (n)

→   recursive non-linear equation

Several possible behaviors, depending on the initial conditions:

  point attractor (fixed point),→   constant input  ⇒  constant output

  periodic attractor: limit-cycle,→   not satisfying since periodic signal generator!→   oscillation amplitude  Aa  bounded by

Aa  ≤  ∆q 

2 k 

|h(k )|   et   Aa ≤  ∆q 

2

  supf  

|H (f  )|

(for an un-biased quantizer)

  other attractors (strange, periodic-point,...): ...

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   72   /   205

Digital effects

Quantization in calculationsConstant input

Quantization in calculationsConstant input: 2nd-order purely recursive filter

Page 80: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 80/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   73   /   205

Digital effects

Quantization in calculationsConstant input

Quantization in calculationsConstant input: 2nd-order purely recursive filter

Page 81: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 81/219

Figure:  Trajectory of (x 1(n), x 2(n)) with  L = 13.from [Ling  et al ,   Int. J. Bifurcation and Chaos , 2003]

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   74   /   205

Digital effects

Quantization in calculationsConstant input

Quantization in calculationsConstant input: 2nd-order purely recursive filter

Page 82: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 82/219

Figure:  Trajectory of (x 1(n), x 2(n)) with  L = 16.from [Ling  et al ,   Int. J. Bifurcation and Chaos , 2003]

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   75   /   205

Digital effects

Quantization in calculationsConstant input

Quantization in calculationsConstant input: 2nd-order purely recursive filter

Page 83: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 83/219

Figure:  Trajectory of (x 1(n), x 2(n)) with  L = 31.from [Ling  et al ,   Int. J. Bifurcation and Chaos , 2003]

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   76   /   205

Digital effects

Quantization in calculationsEntrees variables

Quantization in calculationsVariable input

Page 84: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 84/219

Random model of the quantization noise

with

  var [e q,x (t )] = M σ2

e   = M  ∆q 2

12

var [e q,y (t )] = (M  + 1)σ2e   = (M  + 1) ∆q 2

12

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   77   /   205

Digital effects

Quantization in calculationsEntrees variables

Quantization in calculationsVariable input

Page 85: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 85/219

 Output quantization noise Bruit:

∆y  = e q,x (t ) ∗ h(t ) + e q,y (t )

 Spectral density of the output quantization noise:

S ∆y (f  ) = |H (f  )|2S e q,x (f  ) + S e q,y (f  )

=   M ∆q 

2

12|H (f  )|2 +  M  + 1M 

 Power of the output quantization noise:

σ2∆y    =  

  12

− 12

S ∆y (f  )df 

=  M ∆q 2

6

   12

0

|H (f  )|2 +

 M  + 1

df 

→   Power linearly  ↑  with M.

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 78   / 205

Page 86: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 86/219

Digital effects

Quantization in calculationsEntrees variables

Quantization in calculationsVariable input

Page 87: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 87/219

Case of a serial structure (e.g.,  2-order DN cells)

S (M )∆y   (f  ) =

M  j =1

S e  j (f  )|T  j (f  )|2 =

M  j =1

S e  j 

(f  )M 

k = j 

|H k (f  )|2

To minimize the overall quantization noise:

1.   Minimization of  |T  j (f  )| = M 

k = j  |H k (f  )|, i.e., supf    |H k (f  )|

→   judicious matching between poles and zeros of  T  j (f  ), i.e., the couples{Ak (·), B k (·)}

2.  Optimizing the arrangement of  H k (f  ):   H M (f  ) filters  M   noises

→  ordering the cells such that supf    |H 1(f  )| ≥ . . . ≥  supf    |H M (f  )|

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 80 / 205

Non-standard structures

Outline

Page 88: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 88/219

Optimization

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundationsApplication to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bankGeneralization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 81 / 205

Non-standard structures

Non-standard structures

Page 89: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 89/219

Non-standard?...

..., i.e., that are not  direct (Direct Form 1),

Y (z ) =  B (z )

A(z )X (z )

thus

y (n) = −

ak y (n−k )+

b k x (n−k )

⇒  (2M  + 1) additions/multiplications + 2 lines of delay elements

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 82 / 205

Non-standard structures

Non-standard structures

Non-standard?...i h

Page 90: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 90/219

..., i.e., that are not

 direct (Direct Form 1),  canonical (Direct Form 2),

Y (z ) =  B (z )

A(z )

X (z ) = X (z )

A(z )   W (Z )

B (z )

thus

  y (n) =

  k  b k w (n − k )w (n) =   −k 

 ak w (n − k ) + x (n)

⇒  (2M  + 1) additions/multiplications + 1 line of delay elements

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 83 / 205

Non-standard structures

Non-standard structures

Non-standard?...i th t t

Page 91: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 91/219

..., i.e., that are not

 direct (Direct Form 1),  canonical (Direct Form 2),

  decomposed : series/cascade or parallel.

Factorization w.r.t. poles/zeros

H (z ) = G 

H k (z )

Partial fraction decomposition

H (z ) = C  + k 

H k (z )

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 84 / 205

Non-standard structures

Non-standard structures

Page 92: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 92/219

Non-standard?...

..., i.e., that are not  direct (Direct Form 1),

 canonical (Direct Form 2),

  decomposed : series/cascade or parallel.

Motivations 

 weaker sensitivity face to digital errors/effects,same objective as in the cascade structure: matching the poles/zeros10

  algorithm-architecture matching (AAM),

 more “physical” interpretation of the parameters  θ.

10M. Bellanger,  Traitement Numerique du Signal , Masson, 1994.

Nicolas Dobigeon Digital Signal Processing - Advanced Methods 85 / 205

Non-standard structures

Ladder/lattice structures

Outline

Page 93: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 93/219

Optimization

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundationsApplication to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bank

Generalization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon Digital Signal Processing Advanced Methods 86 / 205

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

Let P m(z ) denote the  z -polynomial defined by (m = 1, . . . , M )

Page 94: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 94/219

P m(z ) =

mk =0

p m,k z −k  with  p m,0  = 1.

We introduce the associated reciprocal polynomial

P m(z ) = z −mP m 1

z =

mk =0

p m,m−k z −k 

Example (m = 3):

P 3(z ) = p 3,0 + p 3,1z −1 + p 3,2z −2 + p 3,3z −3

P 3(z ) = p 3,3 + p 3,2z −1 + p 3,1z −2 + p 3,0z −3

Nicolas Dobigeon Digital Signal Processing Advanced Methods 87 / 205

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

W i t d th i d t b t 2 l i l

Page 95: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 95/219

We introduce the inner product between 2 polynomials:

F (z ), G (z ) =  1

2π j 

 C(0,1)

R M (z )F (z )G †(z )z −1dz 

where

  G (z ) = k  g k z −k  ⇔ G †(z ) = k  g ∗k  z k  (= G (1/z ) dans le cas de

coefficients reels)   C(0, 1) est le cercle unite

  R M (z ) =

P M  (z ) P M 

z −1

−1

It can be also written

F  (z ) , G  (z ) =   12π

   π−π

R M e  j θ F e  j θG ∗ e  j θ d θ

Nicolas Dobigeon Digital Signal Processing Advanced Methods 88 / 205

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

Let {P0(z) PM (z)} and P0(z)  PM (z) denote 2 families of

Page 96: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 96/219

Let {P 0(z ), . . . , P M (z )}  and

P 0(z ), . . . , P M (z )

 denote 2 families of 

reciprocal polynomial generated as follows  P m(z ) = P m−1(z ) + k mz −1P m−1(z )

P m(z ) = k mP m−1(z ) + z −1P m−1(z )

with  m = 1, . . . , M   and  P 0(z ) = P 0(z ) = 1.

A matrix formulation of this  forward recursive scheme is  P m(z )

P m(z )

 =

  1   k mz −1

k m   z −1

  P m−1(z )

P m−1(z )

or, equivalently, (|k m| = 1), the backward recursive scheme is

  P m−1(z )P m−1(z )

 =   1

1 − k 2m

  1   −k m−k mz z 

  P m(z )P m(z )

Nicolas Dobigeon Digital Signal Processing Advanced Methods 89 / 205

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

Let {P0(z), . . . , PM (z)} and P0(z), . . . , PM (z) denote 2 families of

Page 97: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 97/219

Let {P 0(z ), . . . , P M (z )}  and

P 0(z ), . . . , P M (z )

 denote 2 families of 

reciprocal polynomial generated as follows  P m(z ) = P m−1(z ) + k mz −1P m−1(z )

P m(z ) = k mP m−1(z ) + z −1P m−1(z )

with  m = 1, . . . , M   and  P 0(z ) = P 0(z ) = 1.

A matrix formulation of this  forward recursive scheme is  P m(z )

P m(z )

 =

  1   k mz −1

k m   z −1

  P m−1(z )

P m−1(z )

or, equivalently, (|k m| = 1), the backward recursive scheme is

  P m−1(z )P m−1(z )

 =   1

1 − k 2m

  1   −k m−k mz z 

  P m(z )P m(z )

Nicolas Dobigeon Digital Signal Processing Advanced Methods 89 / 205

Page 98: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 98/219

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

Then the following properties hold11,12:

Page 99: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 99/219

  the polynomial series  {P 0(z ), . . . , P M (z )}  and P 0(z ), . . . , P M (z )  areorthogonal to the canonical basis, i.e.,

P m(z ), z −k 

  = 0,   k  = 1, . . . , m

P m(z ), z −k 

  = 0,   k  = 1, . . . , m

  the polynomial series

P 0(z ), . . . , P M (z )

  is an orthogonal basis, i.e.,

P  j (z ), P k (z )

 = α j δ ( j  − k ) =

  α j ,   si  j  = k ;0,   otherwise.

11A. H. Gray, Jr. and J. D. Markel, “Digital Lattice and Ladder Filter Synthesis,”   IEEE Trans.Audio. Electroacoust., vol. 21, no. 6, pp. 491-500, Dec. 1973.

12A. H. Gray, Jr., and J. D. Markel, “On Autocorrelation Equations as Applied to SpeechAnalysis,”   IEEE Trans. Audio. Electroacoust., vol. 21, no. 2, pp. 69-79, April 1973.

Ni l s D big n Digit l Sign l P ssing Ad n d M th ds 90 / 205

Non-standard structures

Ladder/lattice structuresTheoretical foundations

Some ideas drawn from linear prediction

Moreover,

Page 100: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 100/219

Moreover,

  If  |k m| = 1 (m = 1, . . . , M ), the series  {k 0, . . . , k M }  is fully defined by theseries {p M ,0, . . . , p M ,M }

⇒  Any polynomial  P M (z ) is uniquely represented by  {p M ,0, . . . , p M ,M }ou {k 1, . . . , k M }  !

  The roots  z 1, . . . , z M   of  P M (z ) are in the unit circle under the following

necessary and sufficient condition:∀m ∈ {1, . . . , M } ,   |z m| <  1  ⇔ ∀m ∈ {1, . . . , M } ,   |k m| <  1

  Computation of the  k m: Levinson-Durbin recursion

  p m−1, j    =   1

1−k 

2m

(p m, j  − k mp m,m− j ) ,   ∀ j  ∈ {1, . . . , m − 1}

k m   =   p m,m,   ∀m ∈ {1, . . . , M }

Ni l D bi Di it l Si l P i Ad d M th d 91 / 205

Non-standard structures

Ladder/lattice structuresApplication to the synthesis of FIR filters

Application to the synthesis of FIR filters

Let the FIR filter to be implemented with transfer function  H (z ) = P M (z ) and˜ ˜ ˜

Page 101: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 101/219

the reciprocal transfer function  H (z ) = P M (z ). The outputs  Y M (z ) and  Y M (z )of filters with input  X (z ) are

  Y M (z ) = P M (z )X (z )

Y M (z ) = P M (z )X (z )

The forward recursion is written Y M (z ) =

P M −1(z ) + k M z −1P M −1(z )

X (z )

Y M (z ) =

k M P M −1(z ) + z −1P M −1(z )

X (z )

thus

    Y M (z ) = Y M −1 + k M z −1Y M −1(z )

Y M (z ) = k M Y M −1 + z −1Y M −1(z )

with  Y M −1(z ) = P M −1(z )X (z ) and  Y M −1(z ) = P M −1(z )X (z ).

Ni l D bi Di it l Si l P i Ad d M th d 92  /

205

Non-standard structures

Ladder/lattice structuresApplication to the synthesis of FIR filters

Application to the synthesis of FIR filters

Let the FIR filter to be implemented with transfer function  H (z ) = P M (z ) and˜ ˜ ˜

Page 102: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 102/219

the reciprocal transfer function  H (z ) = P M (z ). The outputs  Y M (z ) and  Y M (z )of filters with input  X (z ) are

  Y M (z ) = P M (z )X (z )

Y M (z ) = P M (z )X (z )

The forward recursion is written Y M (z ) =

P M −1(z ) + k M z −1P M −1(z )

X (z )

Y M (z ) =

k M P M −1(z ) + z −1P M −1(z )

X (z )

thus

    Y M (z ) = Y M −1 + k M z −1Y M −1(z )

Y M (z ) = k M Y M −1 + z −1Y M −1(z )

with  Y M −1(z ) = P M −1(z )X (z ) and  Y M −1(z ) = P M −1(z )X (z ).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   92   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of FIR filters

Application to the synthesis of FIR filters

Page 103: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 103/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   93   /   205

Page 104: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 104/219

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filtersPurely recursive filters

Page 105: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 105/219

Let the IIR filter of transfer function  H (z ) =   1AM (z )

  to be implemented.

We generate the polynomial orthogonal basis

A0(z ), . . . , AM (z )

 and the

initial forward recurstion system

  Am(z ) = Am−1(z ) + k mz −1

Am−1(z )Am(z ) = k mAm−1(z ) + z −1Am−1(z )

is rewritten as     Am−1(z ) = Am(z ) − k mz −1Am−1(z )

Am(z ) = k mAm−1(z ) + z −1Am−1(z )

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   95   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filtersPurely recursive filters

Page 106: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 106/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   96   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filters

Let the IIR filter of transfer function  H (z ) =   P M (z )AM (z )

  to be implemented.

Page 107: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 107/219

M ( )

We generate the polynomial orthogonal basis A0(z ), . . . , AM (z )  and wedecompose P M (z ) on this basis

P M (z ) =M 

m=0

ν mAm(z )   ⇒   H (z ) =M 

m=0

ν mAm(z )

AM (z ).

where the initial forward recurstion system  Am(z ) = Am−1(z ) + k mz −1Am−1(z )

Am(z ) = k mAm−1(z ) + z −1Am−1(z )

is rewritten as     Am−1(z ) = Am(z ) − k mz −1Am−1(z )Am(z ) = k mAm−1(z ) + z −1Am−1(z )

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   97   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filters

Page 108: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 108/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   98   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filters

Page 109: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 109/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   99   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filters

Page 110: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 110/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   100   /   205

Non-standard structures

Ladder/lattice structures

Application to the synthesis of IIR filters

Application to the synthesis of IIR filters

Page 111: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 111/219

In the decomposition on the basis

P M (z ) =M 

m=0

ν mAm(z )

the coefficients {ν 0, . . . , ν  M }  are computed thanks to the the backward

recursion (m = M , . . . , 2)  P m−1(z ) =   P m(z ) − ν mP m−1(z )ν m−1,m−1   =   p m−1,m−1.

where  P m(z ) = mk =0 p m,k z −k  and  ν 0  = p 0,0.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   101   /   205

Non-standard structures

Fraction-based structures

Outline

Optimization

Page 112: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 112/219

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundationsApplication to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bank

Generalization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   102   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

Let the filter of transfer function

Page 113: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 113/219

H (z ) =M k =0 b k z k M 

k =0 ak z k 

to be implemented.We want to write  H (z ) as a continued fraction expansion...Several solutions exist13, for example

H (z ) = A0 + 1

B 1z  + 1

A1 + 1...

B M z  +   1AM 

13See the conditions stated by Mitra & Sherwood (1972).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   103   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

We introduce the elementary sections

  U k (z ) =   1B k z +T k (z )

  (k  = 1, . . . , M )

Page 114: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 114/219

k  + k ( )

  T k (z ) =   1Ak +U k +1(z )

, (k  = 1, . . . , M  − 1) with  T M (z ) =   1AM 

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   104   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

The transfer function

H (z ) = A0 + 1

Page 115: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 115/219

B 1z  + 1A1 + 1

...B M z  +   1

AM 

can be rewrittenH (z ) = A0 + U 1(z )

with

  U 1(z ) =   1B 1z +T 1(z )

,

  T 1(z ) =   1A1+U 2(z )

,

  U 2(z ) =   1B 2z +T 2(z )

,

  . . .

  T M (z ) =   1AM 

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   105   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

This results in the following ladder structure with  U 1(z ) =   1B 1z +T 1(z )

Page 116: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 116/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   106   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

This results in the following ladder structure with  T 1(z ) =   1A1 +U 2(z )

Page 117: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 117/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   107   /   205

Page 118: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 118/219

Non-standard structures

Fraction-based structures

Continued fraction expansion

This results in the following ladder structure with  T 2(z ) =   1A2 +U 3(z )

Page 119: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 119/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   109   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

This results in the following ladder structure

Page 120: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 120/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   110   /   205

Non-standard structures

Fraction-based structures

Continued fraction expansion

Computing the  {A0, . . . , AM }  and  {B 1, . . . , B M }Recursive Euclide algorithm: Euclidean division + remainder inversion.

Page 121: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 121/219

Exemples 

H (z ) =  72z 2 + 78z  + 9

24z 2 + 18z 2 + 1

= 3 +

  1

z  +   12+   1

3z + 14

H (z ) =  720z 2 + 240z  + 12

720z 3 + 600z 2 + 72z  + 1

=   1z  +   1

2+   1

3z +   14+   1

5z + 16

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   111   /   205

Non-standard structures

Multirate structures

Outline

Optimization

Page 122: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 122/219

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundations

Application to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bank

Generalization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   112   /   205

Non-standard structures

Multirate structures

Multirate systems?

Page 123: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 123/219

Monorate system

  amplifier (×),

  summation (+),

  delay (×z −1).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   113   /   205

Non-standard structures

Multirate structures

Multirate systems?

M

Page 124: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 124/219

Monorate system

  amplifier (×),

  summation (+),

  delay (×z −1).

Multirate systemAdditional operations:

  downsampling (decimation),

 upsampling (stretch).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   113   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Down-sampling (decimation)

Let y D (n) denote a down-sampled version of the signal  x (n) by a factor  M :

y D (n) = x (nM ),   n ∈  Z.

I h h d l d i l i d b

Page 125: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 125/219

In the  z -space, the down-sampled signal is represented by

Y D (z ) =  1

M −1k =0

z   1M  ωk 

where  ωM  = e  j 2π

M  .

Proof 

  We introduce  x M (n) = x (n)u M (n) where

u M (n) =

  1,   if  n  divisible by  M ;0,   otherwise.

  =  1

M −1

k =0

ω−knM 

  Then  Y D (z ) = X M 

  1M 

,

  We can show that  X M (z ) =   1M 

M −1k =0   X 

ωk 

M z 

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   114   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Down-sampling (decimation)

Let y D (n) denote a down-sampled version of the signal  x (n) by a factor  M :

y D (n) = x (nM ),   n ∈  Z.

I th th d l d i l i t d b

Page 126: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 126/219

In the  z -space, the down-sampled signal is represented by

Y D (z ) =  1

M −1k =0

z   1M  ωk 

where  ωM  = e  j 2π

M  .

Proof 

  We introduce  x M (n) = x (n)u M (n) where

u M (n) =

  1,   if  n  divisible by  M ;0,   otherwise.

  =  1

M −1

k =0

ω−knM 

  Then  Y D (z ) = X M 

  1M 

,

  We can show that  X M (z ) =   1M 

M −1k =0   X 

ωk 

M z 

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   114   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Down-sampling (decimation)

Page 127: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 127/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   115   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Up-sampling (stretch)

Page 128: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 128/219

Similarly, let  y E (n) denote a up-sampled version of the signal  x (n) by a factor  L(interpolation by zero insertion):

y E (n) =   x  n

L ,   if  n   is divisible par  L;0,   otherwise.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   116   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Up-sampling (stretch)

Page 129: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 129/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   117   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Up-sampling (stretch)

Page 130: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 130/219

Similarly, let  y E (n) denote a up-sampled version of the signal  x (n) by a factor  L(interpolation by zero insertion):

y E (n) =   x  n

L ,   si  n  est divisible par  L;0,   otherwise.

In the  z -space, the up-sampled signal is represented by

Y E (z ) = X 

z L

.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   118   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Noble identities14

Page 131: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 131/219

14P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, andapplications: a tutorial,” Proc. of the IEEE , vol. 78, no. 1, pp. 56-93, Jan. 1990.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   119   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Polyphase representation15

We decompose the impulse response into two sub-series of samples with oddand even indexes:

{h(n)}n∈Z = {h(2m)}m∈Z ∪ {h(2m + 1)}n∈Z

Page 132: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 132/219

{h(n)} ∈  = {h(2m)} ∈  ∪ {h(2m + 1)} ∈

The resulting transfer function is

H (z ) =n∈Z

h(n)z −n

= m

h(2m)z −2m   E 0(z 2)

+m

h(2m + 1)z −(2m+1)   z −1E 1(z 2)

with the two sub-series

E 0(z ) = TZ [e 0(n)] = TZ [h(2m)]

E 1(z ) = TZ [e 1(n)] = TZ [h(2m + 1)]

15M. Bellanger,  Traitement Numerique du Signal , Masson, 1994.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   120   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Polyphase representation

To generalize, we decompose the IR onto the  M  (polyphase) sub-series comingfrom down-sampling of order  M :

{h(n)} =M −1

{h (Mm + )}

Page 133: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 133/219

{h(n)}n∈Z  =

=0

{h (Mm + )}m∈Z

The resulting transfer function is

H (z ) = n∈Z h(n)z −n

=   E 0

z M 

+ z −1E 1

z M 

+ . . . + z −(M −1)E M −1

z M 

=M −1=0

z −E 

z M 

with the  M  sub-series ( = 1, . . . , M  − 1):

E (z ) = TZ [e (m)] with   e (m) = h(Mm + ).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   121   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Polyphase representation

Example M  = 4

Let consider a FIR filter of order 11

Page 134: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 134/219

Let consider a FIR filter of order 11

H (z ) =10

n=0

b k z −n

=   E 0(z 4) + z −1E 1(z 4)

+   z −2E 2

(z 4) + z −3E 3

(z 4)

with

E 0(z ) =   b 0 + b 4z −1 + b 8z −2

E 1(z ) =   b 1 + b 5z −1 + b 9z −2

E 2(z ) =   b 2 + b 6z −1

+ b 10z −2

E 3(z ) =   b 3 + b 7z −1

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   122   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Polyphase representation

Page 135: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 135/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   123   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Outline

Optimization

Di it l ff t

Page 136: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 136/219

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundations

Application to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bank

Generalization to M 

  subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   124   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banks

Page 137: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 137/219

Filter-banks: analysis 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   125   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banks

Page 138: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 138/219

Vocoder LPC (Lecture “Compression parole et musique”, Corinne Mailhes)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   126   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banks

  Issue no. 1: computational complexity

Page 139: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 139/219

Filter-banks: analysis 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   127   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banks

  Issue no. 1: computational complexity⇒  decrease the rate (down-sampling)

Page 140: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 140/219

Filter-banks: analysis 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   128   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banks

  Issue no. 1: computational complexity⇒  decrease the rate (down-sampling)

  Issue no. 2: reconstruction (⇔  synthesis))

Page 141: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 141/219

( ))

Filter-banks: analysis/synthesis 

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   129   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Multirate and filter banksApplications

  Vocoders16

,Ici, slide 43

Page 142: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 142/219

Ici, slide 27-28

  Decomposition into subbands: lossy coding17,Ici, slide 39

 Decomposition into subbands: multi-resolution analysis18

,Ici

  Decomposition into subbands: spectral estimation,Bonacci  et al., ICASSP 2002.

Bonacci  et al., EUSIPCO 2002.

16Lecture “Compression parole et musique”, Corinne Mailhes.17Lecture “Compression”, Corinne Mailhes.18Lecture “Representation et analyse des signaux”, Marie Chabert.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   130   /   205

Non-standard structures

Multirate structures

Some theoretical notions

Outline

Optimization

Digital effects

Page 143: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 143/219

g

Non-standard structuresLadder/lattice structures

Theoretical foundations

Application to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bankGeneralization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   131   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

Let consider the general problem of analysis/synthesis  X (z ) →  X (z ) defined by

Page 144: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 144/219

From above (up/down-sampling):

  Y m(z ) =   1

2 X m z 1/2 + X m −z 1/2Z m(z ) =   Y m

z 2

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   132   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

With  X m(z ) = H m(z )X (z ) and  X (z ) = F 0(z )Z 0(z ) + F 1(z )Z 1(z ), it follows:

X (z ) =  1

2 [H 0(z )F 0(z ) + H 1(z )F 1(z )] X (z )

+ 12

 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] X (−z )

Page 145: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 145/219

2=   T (z )X (z ) + A(z )X (−Z )

where

  T (z ) =   12

 [H 0(z )F 0(z ) + H 1(z )F 1(z )] is the distorsion function

A(z ) =   12 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] is the  aliasing   function

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   133   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

With  X m(z ) = H m(z )X (z ) and  X (z ) = F 0(z )Z 0(z ) + F 1(z )Z 1(z ), it follows:

X (z ) =  1

2 [H 0(z )F 0(z ) + H 1(z )F 1(z )] X (z )

+ 12

 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] X (−z )

Page 146: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 146/219

2=   T (z )X (z ) + A(z )X (−Z )

where

  T (z ) =   12

 [H 0(z )F 0(z ) + H 1(z )F 1(z )] is the distorsion function

A(z ) =   12 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] is the  aliasing   function

But the operator  R :  X (z ) →  X (−Z ) is not a LTI filter, thus:

It does not exist   {t (n)}n∈Z   such that x (n) = t (n) ∗ x (n)...

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   134   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

With  X m(z ) = H m(z )X (z ) and  X (z ) = F 0(z )Z 0(z ) + F 1(z )Z 1(z ), it follows:

X (z ) =  1

2 [H 0(z )F 0(z ) + H 1(z )F 1(z )] X (z )

+ 12

 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] X (−z )

Page 147: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 147/219

2=   T (z )X (z ) + A(z )X (−Z )

where

  T (z ) =   12

 [H 0(z )F 0(z ) + H 1(z )F 1(z )] is the distorsion function

A(z ) =  1

2 [H 0(−z )F 0(z ) + H 1(−z )F 1(z )] is the  aliasing   function

But the operator  R :  X (z ) →  X (−Z ) is not a LTI filter, thus:

It does not exist   {t (n)}n∈Z   such that x (n) = t (n) ∗ x (n)...

... except if the anti-aliasing condition is fulfilled:

A(z ) = H 0(−z )F 0(z ) + H 1(−z )F 1(z ) = 0

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   135   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

The anti-aliasing condition is:

F 0(z )

H 1(−z )  = −

  F 1(z )

H 0(−z )  = C (z )

Page 148: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 148/219

At the end of the analysis/synthesis chain

X (z ) =  1

2

H 0(z )H 1(−z )   

V (z )

− H 1(z )H 0(−z )   V (−z )

C (z )X (z )

=   T (z )X (z )

with  T (z ) =   12

 [V (z ) − V (−z )] C (z ).A sufficient condition (but not necessary) is  C (z ) = 1, then

  F 0(z ) =   H 1(−z )F 1(z ) =   −H 0(−z )

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   136   /   205

Page 149: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 149/219

Non-standard structures

Multirate structures

2-channel filter bank

Quadrature Mirror Filters (QMF)

Page 150: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 150/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   138   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Quadrature Mirror Filters (QMF)Polyphase representation

With  H 1(z ) = H 0(−z ):

ˆ 1 2 2

Page 151: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 151/219

X (z ) =  1

2

H 0(z )2 − H 0(−z )2

X (z )

H 0(z ) is decomposed with respect to its 2 polyphase terms:

H 0(z ) = E 0(z 2) + z −1E 1 z 2 .

The analysis filters are written:  H 0(z )H 1(z )

 =

  1 11   −1

  E 0(z 2)z −1E 1 z 2

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   139   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Quadrature Mirror Filters (QMF)Polyphase representation

Problem of analysis/synthesis:

Page 152: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 152/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   140   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Quadrature Mirror Filters (QMF)Polyphase representation

Non-aliasing condition and polyphase decomposition:

Page 153: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 153/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   141   /   205

Page 154: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 154/219

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

On the circle  C (0, 1), we write  T 

e 2i πf  

 =

e 2i πf  

e i φ(2πf   )

Several possible interesting cases:

  If  T (z ) is a all-pass, i.e,T 

e 2i πf  

 =  d , then

Page 155: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 155/219

e 2i πf   =  d 

e 2i πf  

−→  Amplitude preserving filters (but phase distorsion).

  If  T (z ) is a linear phase filter, i.e,  φ(2πf  ) = α2πf   + β , then

arg

e 2i πf  

  = arg

e 2i πf  

+ arg

e 2i πf  

= α2πf   + β  +  arg

e 2i πf  

−→  Phase preserving filters (but amplitude distorsion).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   143   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Problem of  2-channel analysis/synthesis

  If there is no amplitude distorsion and no phase distorsion

∃L ≥ 1 T ( ) K −L

Page 156: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 156/219

∃L ≥  1,   T (z ) = Kz 

Then, at the ouput

ˆX e 

2i πf     = K  X e 

2i πf  arg

e 2i πf  

  = arg

e 2i πf  

− L2πf 

−→  Output delayed and amplified/attenuated.−→  Perfect reconstruction filter bank.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   144   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Perfect reconstruction filter bank

We introduce the product filter  V (z ) = H 0(z )H 1(−z )

X (z ) =  1

2

H 0(z )H 1(−z ) − H 1(z )H 0(−z ) X (z )

Page 157: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 157/219

2

   V (z )

   V (−z )

To obtain  T (z ) = Kz −L in the analysis/synthesis chain (L  odd):

T (z ) =   12 [V (z ) − V (−z )] = Kz −L

⇔   v (2n + 1) = K δ (2n + 1 − L)v (2n) any

⇔V (z ) = Kz −L + n

 v (2n)z −2n.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   145   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Perfect reconstruction filter bank

3 synthesis methods:

1.   We build  V (z ) such that K δ( L) if dd

Page 158: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 158/219

v (n) =

  K δ (n − L) if  n  oddany si  n  even

then we factorize  V (z ) = H 0(z )H 1(z ).

2.   We fix  H 0(z ) and we solve (matrix computation)

H 0(z )H 1(−z ) − H 0(−z )H 1(z ) = Kz −L

3.   We choose  {H 0(z ), H 1(z )}  in appropriate filter families→  CQF...

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   146   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

We choose  H 0   and  H 1  such that

0(z )H 

0(z −1) + H 

0(−

z )H 0

(−

z −1) = 1 (a)H 1(z )H 1(z −1) + H 1(−z )H 1(−z −1) = 1 (b)H0(z)H1(z−1) + H0(−z)H1(−z−1) = 0 (c)

Page 159: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 159/219

H 0(z )H 1(z  ) + H 0( z )H 1( z  ) 0 (c)

Properties Let H 0(z ) a FIR filter that follows (a). Then19

  H 0(z ) is of even length (odd order),

 A NSC for having  H 1(z ) a FIR that follows (b) and (c) is

H 1(z ) = ±z −LH 0(−z −1),   L  odd

In this case,  T (z ) = z 

−L

.

19Vetterli,  IEEE Trans. SP , 1992.Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   147   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

“Classical” solution from Smith and Barnwell (for  L  odd and  z  = e 2i πf  ):

H 1(z ) = −z −L

H 0 (−z ) with   H 0 (z ) = H 0 1

Page 160: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 160/219

Then we have

  symmetry with respect to the power

H 0 e  j 2πf  2

+ H 0 e  j (2πf   +π)2

= 1.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   148   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

Page 161: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 161/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   149   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

“Classical” solution from Smith and Barnwell (for  L  odd and  z  = e 2i πf  ):

H 1(z ) = −z −LH 0 (−z ) with   H 0 (z ) = H 0 1

Page 162: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 162/219

Then we have

  symmetry with respect to the power

H 0e  j 2πf  2 + H 0

e  j (2πf   +π)2 = 1.

 complementariry with respect to the power

H 0 e  j 2πf  

2

+ H 1 e  j 2πf  

2

= 1.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   150   /   205

Page 163: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 163/219

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

Filter bank fully defined by  H 0(z ):

h0(n) fixedh1(n) = (−1)nh0(L − n)f0(n) = h0(L − n)

Page 164: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 164/219

f 0(n)  h0(L n)f 1(n) = −(−1)nh0(n)

Remarks 

  If  H 0(z ) is a stable IIR,  H 1 (z ) is unstable!→  can not be implemented with IIR...→   implemented with FIR.

  If  H 0(z ) is a causal filter,  H 0

− 1

 is anti-causal. Thus, there is delay

introduced  z −L ! (H 1(z ) becomes causal if  L ≥order of the FIR  H 0(z )).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   152   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)Spectral factorization synthesis

We set  P (z ) = H 0(z )H 0(−z ) (half-band filter). Then, it comes:

P (z ) + P (−z ) = 1,   i.e.,  P (z ) =   12

 + k 

p (2k  + 1)z −(2k +1).

Page 165: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 165/219

1.  Synthesis of a zero-phase half-band filter  Q (z ) such that

Q (e 

 j 2πf  

) + Q (e 

 j (2πf   +π)

) = 1.   (3)

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   153   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)Spectral factorization synthesis

Page 166: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 166/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   154   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)Spectral factorization synthesis

We set  P (z ) = H 0(z )H 0(−z ) (half-band filter). Then, it comes:

P (z ) + P (−z ) = 1,   i.e.,  P (z ) =   12

 +

p (2k  + 1)z −(2k +1).

Page 167: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 167/219

1.  Synthesis of a zero-phase half-band filter  Q (z ) such that

Q (e  j 2πf  ) + Q (e  j (2πf   +π)) = 1.   (4)

2.   We set  q (n) = q (n) + δ (n) such that  Q (e  j 2πf  ) = |H 0(e  j 2πf  )|2 ≥ 0.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   155   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)Spectral factorization synthesis

Page 168: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 168/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   156   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)Spectral factorization synthesis

We set  P (z ) = H 0(z )H 0(−z ) (half-band filter). Then, it comes:

P (z ) + P (−z ) = 1,   i.e.,  P (z ) =   12

 +

p (2k  + 1)z −(2k +1).

Page 169: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 169/219

1.  Synthesis of a zero-phase half-band filter  Q (z ) such that

Q (e  j 2πf  ) + Q (e  j (2πf   +π)) = 1.   (5)

2.   We set  q (n) = q (n) + δ (n) such that  Q (e  j 2πf  ) = |H 0(e  j 2πf  )|2 ≥ 0.

3.   We factorize  Q (z ) = A

i (1 − ai z −1)(1 − a−1i    z −1) (with  |ai | ≤ 1)

4.  We define the minimum phase spectral factor

H 0(z ) =    A1+2

i (1 − ai z −1).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   157   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Conjugate quadrature filters (CQF)

Other method proposed by Daubechies20:

P (z ) = (1 + z −1)k (1 + z )k R (z )

under the constraints

R(z) symetric (R(z−1) R (z))

Page 170: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 170/219

  R (z ) symetric (R (z  1) = R (z )),

  R (z ) positive for  z  = e  j 2πf  

  R (z ) of minimal degree.

Then factorization of  P (z ) with zeros inside  C (0, 1)→  Family of Daubechies’ minimym phase filters.

Drawbacks of the CQF:

 only 1 degree of freedom for the analysis/synthesis:   H 0(z ),

 no filter bank with linear phase analysis and synthesis filters.

20Daubechies,   Comm. Pure Appl. Math., 1998.Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   158   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Bi-orthogonal filter bank

We choose  H 0   and  H 1  such that  C (z ) = −z −L and

H 0(z )F 0(z ) + H 0(−z )F 0(−z ) = 2H 1(z ) = −z LF 0(z −1),   L   impair

F 1(z ) = z −LH 0(−z )

Page 171: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 171/219

In this case,  T (z ) = z L. We set  P (z ) = H 0(z )F 0(z ) and it comes:

P (z ) + P (−z ) = 2

Synthesis method:

1.   We choose  P (z ) (half-band, zero phase, real coefficients)

2.   We factorize  P (z ) = H 0(z )F 0(z )

→  2 degrees of freedom.→   linear phase filter bank possible.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   159   /   205

Non-standard structures

Multirate structures

2-channel filter bank

Outline

Optimization

Digital effects

N t d d t t

Page 172: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 172/219

Non-standard structuresLadder/lattice structures

Theoretical foundationsApplication to the synthesis of FIR filtersApplication to the synthesis of IIR filters

Fraction-based structuresMultirate structures

Some theoretical notions2-channel filter bankGeneralization to  M   subbands

And the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   160   /   205

Page 173: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 173/219

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 174: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 174/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   162   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 175: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 175/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   163   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 176: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 176/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   164   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 177: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 177/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   165   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 178: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 178/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   166   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Full tree decomposition

(Wave packet decomposition)

Page 179: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 179/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   167   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 180: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 180/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   168   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 181: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 181/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   169   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 182: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 182/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   170   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 183: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 183/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   171   /   205

Page 184: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 184/219

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 185: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 185/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   173   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Dyadic decomposition

(Dyadic discrete wavelet decomposition)

Page 186: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 186/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   174   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 187: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 187/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   175   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 188: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 188/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   176   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 189: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 189/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   177   /   205

Page 190: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 190/219

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 191: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 191/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   179   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 192: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 192/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   180   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Optimal subband decomposition

Page 193: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 193/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   181   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decomposition

The parts “analysis” and “synthesis” own  M  filters in parallel.

Page 194: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 194/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   182   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decomposition

As previously, the properties of down/up-sampling lead to:

X (z ) =  1

M −1m=0

X  (ωm

M z )M −1k=0

H k (ωmM z )F k (z )

Page 195: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 195/219

m=0

k =0

=M −1

m=0

X  (ωm

M z ) Am(z )

with  Am(z ) =   1M 

M −1k =0   H k (ωm

M z )F k (z ).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   183   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decomposition

With matrix notations:

X (z ) = a(z )T x(z ) =  1

f (z )T H(z )T x(z )

with A0(z )

A1(z )

  1

h(z )T 

h(ωmz )T 

F 0(z )

F 1(z )

Page 196: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 196/219

...

AM −1(z )    a(z )

=M 

...

h(ωM −1

m   z )T     

H(z )

...

F M −1(z )    f (z )

and

h(z ) =

H 0(z )...

H M −1(z )

  and   x(z ) =

X (z )...

X (ωM −1M    z )

..

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   184   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decomposition

However, the operatorsRm   : X (z ) →  X  (ωm

M z )

are not LTI filters (except for  m = 0). The anti-aliasing conditions are:

Am(z ) = 0,   pour  m = 0

If h th l i filt (i H( )) th bl i t f l i

Page 197: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 197/219

If we choose the analysis filter (i.e.,  H(z )), the problem consists of solving

1

M f (z ) = H(z )−1a(z ) with   a(z ) =

T (z )0

...0

In the perfect reconstruction problem,  T (z ) ∝  z −N .

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   185   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decompositionPolyphase representation

The polyphase representation of the synthesis and analysis filters are

H k (z ) = m−1

m=0 z 

−m

E k ,m z 

M F k (z ) =

 m−1m=0 z −mE k ,m

z M 

 

m−1m=0

z −M −1−mR k ,m

z M 

Page 198: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 198/219

We define the polyphase matrices

E

z M 

  tel que

E

z M 

k ,m= E k ,m

z M 

R

z M 

  tel que

R

z M 

k ,m= R k ,m

z M 

andP(z ) = R (z ) E (z ) .

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   186   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decompositionPolyphase representation

Page 199: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 199/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   187   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decompositionPolyphase representation

Page 200: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 200/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   188   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decompositionPolyphase representation

Page 201: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 201/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   189   /   205

Non-standard structures

Multirate structures

Generalization to  M  subbands

Direct  M -channel decompositionPolyphase representation

Vaidyanathan enounced numerous properties21,22.

Necessary and sufficient condition for anti-aliasing P(z ) is pseudo-circulant, i.e.,

  P(z ) is Toeplitz,

  P k ,0(z ) = z −1P 0,M −k (z ),  k  = 1, . . . , M  − 1P 0(z )   P 1(z )   . . .   P M −1(z )

1

Page 202: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 202/219

P (z ) = [P k ,m(z )]k ,m

  =

z −1P M −1(z )   P 0(z )   . . .   P M −2(z )

.

.

.

.

.

.

. ..

.

.

.z −1P 1(z )   . . .   z −1P M −1(z )   P 0(z )

In this case, the transfer function  T (z ) is

T (z ) = z −(M −1)M −1

k =0

z −k P 0,k z M 

.

21Vaidyanathan,  IEEE Trans. ASSP , 1987.22Vaidyanathan and Mitra,   IEEE Trans. ASSP , 1988.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   190   /   205

Page 203: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 203/219

Non-standard structures

Multirate structures

Generalization to  M  subbands

Outline

Optimization

Digital effects

Non-standard structuresLadder/lattice structures

Theoretical foundations

Page 204: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 204/219

Theoretical foundationsApplication to the synthesis of FIR filters

Application to the synthesis of IIR filtersFraction-based structuresMultirate structures

Some theoretical notions2-channel filter bankGeneralization to  M   subbandsAnd the discrete wavelet transform?

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   192   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bank

We remind that  C (z ) = 1, i.e.,

  F 0(z ) =   H 1(−z )F 1(z ) =   −H 0(−z )

Orthogonal filter bank ( 2  channels)H 0(z )H 0(z −1) + H 0(−z )H 0(−z −1) = 2 (a)

Page 205: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 205/219

0( ) 0( ) + 0( ) 0( ) ( )H 1(z )H 1(z −1) + H 1(−z )H 1(−z −1) = 2 (b)

H 0(z )H 1(z −1

) + H 0(−z )H 1(−z −1

) = 0 (c)is equivalent to

h0(n), h0(n − 2k )   = δ (k ) (a’)h1(n), h1(n − 2k )   = δ (k ) (b’)h0(n), h1(n − 2k )   = 0 (c’)

with a(n), b (n) = 

n a(n)b (n) (a  and  b   real).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   193   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bank

We introducex = [. . . , x (−1), x (0), x (1), . . .]T 

and the matrix

H0  =

.

.

....

.

.

....

.

.

....

.

.

....

. . .   0   h0(M − 1)   h0(M − 2)   h0(M − 3)   . . .   h(0) 0 0 0   . . .

. . .   0 0 0   h0(M − 1)   . . .   h(2)   h(1)   h(0) 0   . . .

. . . . . . . .

Page 206: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 206/219

..

.

...

.

...

.

...

.

.

then

with h0(n) = h0(M  − 1 − n) = f  0(n) (M   odd).

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   194   /   205

Page 207: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 207/219

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bank

What is the operator  PH0   = H∗0 H0? 

  From (a), we have  H0H∗0   = I,

  →  Orthogonal projection onto the space  V 0   H∗0  spanned by thecolumns of  H∗

0 , i.e., the rows of  H0.

Can we complete the space V0 in L2(Z) x(n), n ∈ Z/ x2 < ∞ ?

Page 208: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 208/219

Can we complete the space  V 0   in  L (Z)

x (n), n ∈  Z/ x2  < ∞

  From (c), we have  H0H

1   = 0,   → H∗

0 ⊥ H∗1

  → V 0  and  W 0   H∗1  are in orthogonal direct sum

Corollary 

H

0 H0 + H

1 H1  = I.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   195   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bank

InterpretationThe CQF filter bank define a decomposition into sub-spaces of  L2(Z).

L2(Z) = V 0 ⊕

⊥W 0

Page 209: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 209/219

We iterate:

L2(Z) = V 0 ⊕⊥ W 0

V 0   =

V 1

⊕⊥ W 1

V 1   = V 2 ⊕⊥ W 2

. . .

⇔ L2(Z) =

M i =0

W i   details

⊕⊥ V M   approx.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   196   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bank

InterpretationThe CQF filter bank define a decomposition into sub-spaces of  L2(Z).

L2(Z) = V 0 ⊕

⊥W 0

Page 210: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 210/219

We iterate:

L2(Z) = V 0 ⊕⊥ W 0

V 0   =

V 1

⊕⊥ W 1

V 1   = V 2 ⊕⊥ W 2

. . .

⇔ L2(Z) =

M i =0

W i   details

⊕⊥ V M   approx.

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   196   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 211: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 211/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   197   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 212: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 212/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   198   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 213: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 213/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   199   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 214: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 214/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   200   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 215: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 215/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   201   /   205

Page 216: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 216/219

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 217: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 217/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   203   /   205

Non-standard structures

Multirate structures

And the discrete wavelet transform?

Case of the CQF filter bankDyadic decomposition

Page 218: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 218/219

Nicolas Dobigeon   Digital Signal Processing - Advanced Methods   204   /   205

Page 219: Cours TNS En

8/13/2019 Cours TNS En

http://slidepdf.com/reader/full/cours-tns-en 219/219