Yan Maresz-Manuale Di Orchetsrazione

download Yan Maresz-Manuale Di Orchetsrazione

of 37

description

spectral

Transcript of Yan Maresz-Manuale Di Orchetsrazione

  • Instrumentsliste non exhaustive...

    avec transposition pour leffet des notes crites

    Petite flte (P8) Petite clarinette (sopranino)- en lab (-6)- en mib (-3)- en r (+2)

    Flte Hautbois Clarinette (soprano)- en ut- en sib (+2)- en la (-3)

    Hautbois damour (-3) Clarinette (alto) en mib (+6)

    Flte en sol (P5) Cor anglais (P5) Cor de basset en fa (P5) Basson quinte

    Flte basse (P8) Hautbois baryton (-8) Clarinette basse- en sib (+9)- en la (-10)

    Basson

    Flte contrebasse (P16) Clarinette contrebasse- en sib (+17)

    Contrebasson (P8)

    Petite Trompette suraigueen sib (-7)en la (+6)

    Trompette aigueen fa (P4)en mib (-3)en r (+2)

    Trompetteen ut (=)en si (-2)en sib (+2)

    Trombone piccolo

    Cornet en sib (+2) Trombone soprano

    Cor (double en fa/sib) (P5) Trompette (alto) en fa (P5) Trombone alto

    Trompette basseen mib (-6)en ut (P8)en sib (+9)

    Trombone tenor (tenor/basse)

    Trombone basse

    Trombone contrebasse Tuba

    Timbales percussions hauteurs dfinies percussions hauteur indfinies

    piano celesta (P8)

    harpe

    violon alto violoncelle contrebasse (P8)

    -6-

  • Abbreviations en franais

    -7-

  • FAMILLE DES BOISliste non exhaustive...

    avec transposition pour leffet des notes crites

    Petite flte (P8) Petite clarinette (sopranino)- en lab (-6)- en mib (-3)- en r (+2)

    Flte Hautbois Clarinette (soprano)- en ut- en sib (+2)- en la (-3)

    Hautbois damour (-3) Clarinette (alto) en mib (+6)

    Flte en sol (P5) Cor anglais (P5) Cor de basset en fa (P5) Basson quinte

    Flte basse (P8) Hautbois baryton (-8) Clarinette basse- en sib (+9)- en la (-10)

    Basson

    Flte contrebasse (P16) Clarinette contrebasse- en sib (+17)

    Contrebasson (P8)

    -8-

  • Flte

    tendueen gras, le registre le plus favorable

    (si 2) do 3 - do 6 (do# 6, r 6, r# 6)

    si grave possible laide dune rallongeson est homogne sur toute ltenduedo#, r et r# suraigus plus difficiles mettre (exemple de r# dans jeux de cartes de Stravinsky)

    registres

    grave moyen aigu suraigu

    (si 2) do 3 - la 3 la# 4 - sib 4 si 4 - sib 5 si 5 - do 6 (do#6 , r 6, r# 6)

    chaud, venteux mais intense plein, doux lumineux, puissant forc, incisif

    (si 2) do 3 - do# 4 r 4 - do# 5 r 5 - sol# 5 la 5 - do 6 (do# 6, r 6, r# 6)

    sons fondamentaux (son 1) 1 harmoniques registre grave (son 2)

    2 harmoniques (son 3) des sons fondamentaux sol3 do# 4

    form dharmoniques correspondant aux sons 3, 4 et 5

    spectres

    C3 (261,62 Hz) C4 (523,25 Hz) C5 (1046,50Hz)

    pp

    mf

    ff

    -9-

  • Mise en vidence des pics

    attention ! ne pas comparer ces graphiques entre eux car l'chelle nest pas respecte tant au niveau des amplitudes que des distances entre les partiels. ils sont l pour mettre en vidence les harmoniques caractristiques qui ressortent en plus de la fondamentale.comparer les hauteurs crites la srie harmonique thorique de la note concerne pour avoir le partiel correspondant.

    guide pour identifier le numro de partiel

    pp mf ff

    C3(261,62 Hz)

    C4(523,25 Hz)

    C5 (1046,50Hz)

    dynamiquesregistre grave jamais vraiment vrai ff, aigu jamais vraiment vrai p

    sons harmoniques (traditionnels)de sol 4 do# 5, obtenus avec les sons 3 au lieu des sons 2. ils sont trs lgrement bas.

    articulationsimple : double croches 138double : double croches 160triple : double croches 160maximum : flatterzunge (tremolo dental)

    -10-

  • noter quil est plus difficile dobtenir un staccato rapide dans le registre grave.dans tous les bois, il est en gnral plus facile de lier les intervalles ascendants que descendants.

    trilles (source : Casella)

    trmolos (source : Casella)

    -11-

  • doigts (source : Piston et divers)ressources supplmentaires : www.wfg.woodwind

    Sites et ressources

    http://www.phys.unsw.edu.au/music/flute/

    -12-

  • Petite flte (piccolo)tenduehauteurs exprims en notes crites. sonne une octave au dessusen gras, le registre le plus favorable

    (do 3) r 3 - do 6

    do 3 possible sur certains instruments ( viter cependant)le si 5 suraigu est difficile mettre

    registres

    grave moyen aigu suraigu

    r 3 - la 3 la 3 - la 4 la 4 - la 5 la 5 - do 6

    fragile, vacillant plus clair, mais pas trs solide brillant, puissant strident, percant

    r 3 - do# 4 r 4 - do# 5 r 5 - sol# 5 la 5 - do 6

    sons fondamentaux (son 1) 1 harmoniques registre grave (son 2)

    2 harmoniques (son 3) des sons fondamentaux sol3 do# 4

    form dharmoniques correspondant aux sons 3, 4 et 5

    spectre

    dynamiquescomme flte

    sons harmoniques (traditionnels)comme flte

    articulationcomme flte

    trilles (source : Casella)

    trmoloscomme flte

    doigtscomme flte

    -13-

  • Flte en soltenduehauteurs exprims en notes crites. sonne une quarte en dessousen gras, le registre le plus favorable

    do 3 - do 6 (...)

    registres

    grave moyen aigu suraigu

    do 3 - do 4 do 4 - do 5 do 5 - la 6 la 6 - do 6

    trs chaud mais faible plus clair moins caractristique strident, peu utilis

    do 3 - do# 4 r 4 - do# 5 r 5 - sol# 5 la 5 - do 6 (...)

    sons fondamentaux (son 1) 1 harmoniques registre grave (son 2)

    2 harmoniques (son 3) des sons fondamentaux sol3 do# 4

    form dharmoniques correspondant aux sons 3, 4 et 5

    spectre

    dynamiquescomme flte

    sons harmoniques (traditionnels)comme flte

    articulationcomme flte

    trillescomme flte

    trmoloscomme flte

    doigtscomme flte

    -14-

  • Hautboistenduesib 2 - fa# 5 (sol 5, sol# 5, la 5)plus caractristique : r 3 - la 4

    registres

    grave moyen aigu suraigu

    sib 2 - fa #3 sol 3 - sol 4 sol 4 - r 5 r# 5 - la 5

    mordant, pais doux, caract. plus fin, on perd le caractre pinc, mince

    sib 2 - do 4 do# 4 - do 5 do# 5 - fa# 5 sol 5 - la 5

    sons fondamentaux (son 1) 1 harmoniques registre grave (son 2)

    form dharmoniques plus aigus

    form dharmoniques plus aigus

    spectre

    C3 (261,62 Hz) C4 (523,25 Hz) C5 (1046,50Hz)

    pp

    mf

    ff

    -15-

  • Mise en vidence des pics

    guide pour identifier le numro de partiel

    pp mf ff

    C3(261,62 Hz)

    C4(523,25 Hz)

    C5 (1046,50Hz)

    dynamiquesgrave dlicat dans le p (de sib 2 mi3 )le caractre du hautbois augmente mesure que lintensit augmente

    sons harmoniques (traditionnels)meilleure tessiture : fa 4 - si 4 (do 5, do# 5)

    articulationarticulation simple seulementstaccato difficile dans les nuances pregistre grave : doubles croches 120 environregistre mdium : doubles croches 132 environ

    trilles (source : Casella)

    -16-

  • trmolos (source : Casella)

    -17-

  • doigts (source : Piston)ressources supplmentaires : www.wfg.woodwind

    -18-

  • Cor Anglais (en fa)tenduehauteurs exprims en notes crites. sonne une quinte en dessoussi 2 - fa 5 (fa# 5, sol 5)on voir aussi sib 2 grave (ex. tableaux dune exposition, mais la note manque sur la plus part des instruments)

    registres

    grave moyen aigu

    si 2 - la 3 la 3 - la 4 la 4 - fa 5...

    pais, mordant, mais relativement doux par rapport au hautbois

    trs doux, caractristique plus fin, on perd le caractre

    si 2 - do 4 do# 4 - do 5 do# 5 - fa# 5

    sons fondamentaux (son 1) 1 harmoniques registre grave (son 2) form dharmoniques plus aigus

    spectre

    dynamiqueshomognes sur toute ltendue. le grave peut tre plus p que le hautbois et est aussi bien plus doux.

    sons harmoniques (traditionnels)comme hautbois

    articulationcomme hautbois

    trillescomme hautbois

    trmoloscomme hautbois

    doigtscomme hautbois

    -19-

  • Clarinette (sib/la)en sib, expressive et lumineuse, plus utilise que celle en la.la clarinette en la est moins brillante, moins douce mais plus veloute. au del de son timbre, elle est surtout utilise pour faciliter le jeu quand il y a prdominance de tons diss, ou si lon a besoin du do# grave.

    tendue hauteurs exprims en notes crites. En sib, sonne une seconde majeure en dessous. En la, une tierce mineure.parfois crite en clef de fa. sonne alors une seconde majeure ou une tierce mineure en dessous.

    (r#2) mi 2 - la 5 (do 6)clef spciale donne la note grave r#

    registres

    grave moyen aigu suraigu

    premier registre second registre suraigu

    mi 2 - mi 3 fa 3 - sib 3 si 4 - do 5 do# 5 - la 5 la# 5 - do 6

    sombre neutre, mat clair strident trs dur

    mi 2 - fa# 3 sol 3 - sib 3 si 4 - fa 5 fa# 5 - do 6

    sons fondamentaux (son 1) 2 harmoniques (son 3) form partir dharmoniques plus aigus (5, 7 et 9)

    chalumeau (gorge, registre ingrat) clarine

    spectre

    C3 (261,62 Hz) C4 (523,25 Hz) C5 (1046,50Hz)

    pp

    mf

    ff

    -20-

  • Mise en vidence des pics

    guide pour identifier le numro de partiel

    pp mf ff

    D2(147 Hz)

    C3(261,62 Hz)

    C4(523,25 Hz)

    C5 (1046,50Hz)

    dynamiquesregistre grave de pppp fffjusqu do 5, on peut encore obtenir des pp

    articulationarticulation simple seulement (double possible par certains solistes...)doubles croches 120 environ

    -21-

  • articulation plus rapide si les notes ne sont pas rptes; 132 environ

    trilles (source : Casella)

    -22-

  • trmolos (source : Casella)

    -23-

  • doigtsressources supplmentaires : www.wfg.woodwind

    Sites et ressources

    http://clarinet-multiphonics.org/index.html

    http://www.phys.unsw.edu.au/music/clarinet/

    http://userpages.umbc.edu/~emrich/clarinet21.html

    -24-

  • Petite Clarinette (mib)plus grle, sonorit un peu moins belle mais utile dans les aigus.

    tenduehauteurs exprims en notes crites. sonne une tierce mineure au dessus

    mi 2 - fa 5 (do 6...)

    registrescomme clarinette sib

    spectre...

    dynamiquescomme clarinette sib

    articulationcomme clarinette sib

    trillescomme clarinette sib

    trmoloscomme clarinette sib

    -25-

  • Clarinette basse (sib/la)tendue hauteurs exprims en notes crites. sonne une neuvime majeure en dessous

    (do 2) mib 2 - fa 5 (sol 5...do 6)

    registres

    grave moyen aigu suraigu

    premier registre second registre suraigu

    (do 2) r# 2 - mi 3 fa 3 - sib 3 si 4 - do 5 do# 5 - la 5 la# 5 - do 6

    trs riche plein plus clair mais moins caractristique

    blanc, contraint

    sons fondamentaux (son 1) 2 harmoniques (son 3) form partir dharmoniques plus aigus (5, 7 et 9)

    chalumeau registre intermdiaire aigu suraigu

    spectre

    dynamiquesattention au ronflement dans le grave ff. moins puissant que le basson dans ce registre.aigus nont pas la puissance de ceux de la clarinette.

    articulationplus ou moins comme clarinette sib

    trilles (source : Casella)

    trmoloscomme clarinette sib

    -26-

  • Bassontenduesib 0 - mib 4 (fa 4)la 0 sur le basson allemand

    registres

    grave moyen-bas moyen-haut aigu suraigu

    sib 0 - la 1 sib 1 - la 2 sib 2 - la 4 sib 4 - r 4 mib 4 - fa 4

    sonore, plein neutre fin, intense pinc trangl

    grave mdium aigu

    sib 0 - fa 2 fa# 2 - fa 3 fa# 3 - fa 4

    grave mdium aigu

    sib 0 - fa# 1 sol 1 - fa2 fa# 2 - r 3 r# 3 - sol 3 sol# 3 - si 3 do 4 - r# 4 mi 4 - fa 4

    sons fondamentaux premier harmoniqueson 2

    second harmoniqueson 3 (haut)

    troisime harmoniqueson 4 (haut)

    quatrime harmoniqueson 5 (bas)

    cinquime harmoniqueson 6

    spectre

    C1 (65,40 Hz) C2 (130,81 Hz) C3 (261,62 Hz) C4 (523,25 Hz)

    pp

    mf

    ff

    -27-

  • Mise en vidence des pics

    guide pour identifier le numro de partiel

    pp mf ff

    C1(65,40 Hz)

    C2(130,81 Hz)

    C3(261,62 Hz)

    C4(523,25 Hz)

    noter que le timbre du basson est surtout caractristique dans les deux premiers registres (comparer grave et aigu, cest linverse !) de part la forte prsence des harmoniques.

    -28-

  • dynamiquesdifficile dobtenir un p dans le grave.

    articulationdtach simpledoubles croches 138. plus dur dans le grave.li descendant difficile. dtach bien dans les deux sens.

    trilles (source : Casella)

    trmolos (source : Casella)

    doigts (source : Piston)ressources supplmentaires : www.wfg.woodwind

    -29-

  • Contrebassontenduehauteurs exprims en notes crites. sonne une octave en dessous(la 0) sib 0 - sib 4 (r 4)

    registresle meilleur registre est le registre grave.

    grave mdium aigu

    sib 0 - sib 1 si 1 - do 3 do# 3 - r 4

    pais, sombre neutre peu utilis, son peu focalis

    articulationlourd...

    trilles (source : Casella)

    en dessous, trs paresseux

    spectre

    -30-

  • Groupe des BoisEquilibreOn admet le principe dquivalence entre les bois, mais ceci se complique de par les diffrents registres qui nont pas tous la mme intensit.

    intensits (source : Mikiewicz/Rakows)

    -31-

  • Ecriture des accords au boisLcriture harmonique dans les bois est de loin la plus dlicate du fait de la diffrence de timbre et dintensit produite dans les diffrents registres.

    il y a traditionnellement quatre faons de combiner les instruments dans les accords.Les avantages et inconvnients de chaque mthode est voir au cas par cas.

    Juxtaposition(superposition)

    Croisement(imbriquement, embotement)

    EnclavementEnveloppement

    Chevauchement

    plus

    solution la souvent utilise de part la scurit quelle offre dans lquilibre de chaque groupe de part la proximit des notes dans un registre donn.

    solution qui lavantage de mlanger plus efficacement les couleurs et donc dobtenir une plus grande fusion et indiffrenciation des timbres individuels.

    solution qui mlange un peu moins les couleurs mais qui permet tout de mme dobtenir une degr de fusion satisfaisant, surtout si la paire extreme est forme de deux instruments diffrents.

    solution trs en vogue lpoque classique et qui favorise lhomognit en vue de limiter la perception des couleurs individuelles.

    moins

    difficile dobtenir un mlange satisfaisant. Les couleurs sont plus identifiables et selon lintervalle et le timbre en question peut ressortir (par exemple 2 hautbois, posant de frquents problmes avec cette disposition)

    se heurte des problmes dquilibre si les registres dune paire dinstrument sont trop loigns.

    se heurte des problmes dquilibre si les registres dune paire dinstrument sont trop loigns.

    dsquilibre des intensits du aux doublures, mais certaines formes sur des accordes de trois notes sont quilibres et trs utilises.

    exemples de ralisation daccords aux bois pas deux (avec cor ajouts)

    en gnral, la mme dynamique peut tre donne tous les instruments. une possible exception concerne les cors, qui tant capables dun f plus robuste que nimporte quel bois, devraient tre nots une dynamique en dessous (mf pour f et f pour ff)

    -32-

  • Groupe des bois, notes en vrac

    les classiques utilisent souvent les vents en favorisant lcriture en tierces, en sixtes et en octaves.

    lors de quintes permises par succession d'accords de sixte doubls loctave, les tierces sont donnes des instruments de mme famille de manire attnuer la prsences de ces quintes.

    ralisation daccord dans les juxtaposition : suivre lordre des tessitures.

    les accords en tenues sont moins frquents dans les symphonies classiques. il ont tendance sonner un peu lourd ou dun mlange pas assez fondu si les dispositions ne sonnent pas assez lgres, douces et transparentes. De plus elles conviennent mieux aux dynamiques forte. On trouve donc plus souvent des accords rptes, des arpges, des batteries, etc...

    dans les dispositions, on loigne toujours le grave pour viter une lourdeur extrme. de mme, il est utile de prendre modle sur la srie des harmoniques naturels pour les espacements selon les registres.

    noter aussi que deux instruments similaires distance dune petite intervalle sortent beaucoup plus dans un accord. le hautbois tant le plus sensible cet effet (ex: une seconde mineure)

    viter les quartes justes avec 2 hautbois car leur couleur accentue le caractre dnud des quartes.

    de manire gnrale, quand une progression harmonique implique des mouvements stationnaires et mobiles, il est bon de donner une couleur aux voix stationnaires et une autre aux voix mobiles.

    -33-

  • doublures au boisle fait de doubler deux ou plusieurs instruments l'unisson, bien qu'offrant plus de rsonance et de puissance la musique la dsavantage de rduire la varit des couleurs et de l'expression. les timbres individuels perdent leur caractristiques et il faut donc les utiliser avec prcaution. La doublure et les mixtures est naturellement plus frquente dans les passages forts l ou l'expression et la couleur est plus large.

    Tableau des doublures 2 bois

    unisson

    octave

    2 octaves

    unisson

    octave

    2 octaves

    unisson

    octave

    2 octaves

    fltehautbois traditionnelun timbre plus plein que celui de la fl, plus doux que

    celui du htb. dans le p, la fl prdomine dans le registre grave, le htb dans le registre aigu.

    - excellent ds la 2 octave du hautbois- grave moins fondu qu' l'aigu mais se compltant- fl adoucit le htb et le htb ajoute un timbre plus cors- aigu : flte domine nettement

    berlioz : le bal (symphonie fantastique)

    excellent lorsque le htb n'est pas dans le registre grave.manque d'homognit jusque : htb sol 3

    flte hautboisclarinette une qualit plus pleine que celle de la flte, plus mat que celle de la clarinette. la flte prdomine

    dans le registre grave. - excellent- peu utilis dans le registre grave- aigu incisif

    do 3 - lab 3 : possible mais un peu neutrela 3 - do 5 : sonore et vibrant. plein et douxdo 5 - sol 5 : possible mais sonne plus durau dessus : flte et petite clar

    Une qualit plus pleine que celle de chaque instrument entendu sparment. Le cot sombre et nasal du hautbois sera prdominant dans le registre grave et celui brillant de la clarinette dans le registre aigu.- assez rare autrefois sauf chez Gluck. peu chez mozart. surtout dans traits mlodiques harmoniss (sur 1 cl)- trs frquent chez Brahms, Wagner, Mahler, Strauss- grave et mdium : donne un son lourd, cornemuse. de sib 2 mib 3 le htb ramollit la clar.

    parfait, traditionnel, classique de tout repos (K)- bon sur toute l'tendue (dans le grave clar. domine)r 2 + r 3 sib 4 + sib 5

    classique avec htb au dessus

    flte hautbois clarinettebasson possible mme si peu utilis. assez rare mais possible. basson plus pale que htb (ressemble bn+vns ou altos)

    bien de sib 2 do# 4

    ex : kosakov shhrazade

    qualit trs pleine. le cot tnbreux de la clarinette prvaut dans le registre grave et le cot dsespr du basson dans laigu.- dans le grave clarinette plus fine. plus riche que 2 bassons de r 2 r 3. au dessus plus de fusions jusque lab 3. au del, plus rare (intressant pp)

    bien mais moins usuel bien mais un peu lourd au grave du htb mais bien partir de bn mi 3

    trs frquent dans les symphonies classiques surtout dans le mdium de la clarinette.-octave renverse possible avec bn r 3 do 4

    traditionnel oui, trs frquent dans l'aigu du htb

    commentaires combinaisons lunisson

    Flte + Hautbois + Clarinette

    Qualit trs peine. La flte prdomine dans le registre grave, le hautbois dans celui du milieu et la clarinette dans laigu.

    Basson + HautboisBasson + FlteBasson + Clarinette + HautboisBasson + Clarinette + Flte

    combinaisons plus rares sauf dans les tutti, ou elles produisent une rsonance accrue sans amener d'atmosphre frache. dans ces combinaisons, les tessitures sont rduites. la clarinette au centre est plutt faible dans son registre mdium et ne sortira pas vraiment.

    doublures en octaves.

    2 vents en octaves pour passages mlodiques : dispositions standard (production de rsonance naturelle)

    -34-

  • fl fl fl htb htb cl

    + + + + + +

    ob cl bn cl bn bn

    La combinaison de fl et bn en octave est rare. la dviation de lordre naturel (inversions) cre une rsonance peu naturelle occasionne par la confusion des registres. le manque de relation entre les diffrentes couleurs devient apparent. il vaut mieux viter au dbut.

    bn et fl deux octaves de distance est une des doublures favorites de Mozart.

    deux instruments de mme couleur en octave nest en fait pas recommand du fait de la diffrence des registres qui vont induire des variations difficiles contrler. cependant, cela marche bien quand il s'agit dune mlodie situe trs haut ou trs basse. cela est du la difficult de perception du la hauteur.

    pt.fl pt.fl pt.fl

    + + +

    fl htb cl

    bsn cl.b cl cl bsn bsn

    + + + + + +

    cbsn bsn bsn cl.b. bsn cl.b.

    doublures en deux, trois et quatre octaves.

    dans ce cas, suivre les rgles mentionnes prcdemment. ces exemples illustrent les vents comme un choeur. se rappeler que plus les couleurs sont combines en mme temps, le moins deffet ils auront ensuite. avant un solo, par exemple ne pas utiliser linstrument pour un temps. couleur frache. pour une utilisation magistrale des vents htrognes voir Wagner.

    fl ob fl fl

    + + + +

    ob cl cl ob

    + + + +

    cl bn bn bn

    Flute + hautbois + clarinette + bassoncombinaison rare. la couleur est trs riche.

    -35-

  • Volume et intensit (source : Koechlin)

    -52-

  • -53-

  • Loudness level versus sound-pressure level: A comparison of musical instruments a)

    Andrzej Mikiewicz and Andrzej Rakowski Laboratory of Musical Acoustics, Department of Sound Engineering, Chopin Academy of Music, Oklnik 2, 00-368 Warszawa, Poland

    (Received 19 January 1994; accepted for publication 21 July 1994) Loudness levels (LL) of musical scale segments played pianissimo and fortissimo were predicted for 11 orchestral instruments, using Zwicker's and Stevens' Mark VI procedures for loudness calculation. The results show that the dynamic LL range of musical instruments depends not only on the dynamic sound-pressure level range, but is also influenced by changes in the spectral envelope that accompany the dynamic gradations of sound. As the sound is played louder, its bandwidth extends to high frequencies, and the increase in sound-pressure level (SPL) is greater for the high partials than for the low ones. Due to spectral loudness summation, the changes in spectral envelope with playing level enhance the dynamic LL range of the sound. As a consequence, for most instruments the dynamic LL range in a given pitch register is larger than the dynamic SPL range in that register. The difference between the two ranges was found to be greatest for brass instruments and for the clarinet, and approached about 6 dB in certain pitch registers. PACS numbers: 43.75.De, 43.75.Ef, 43.75.Fg, 43.66.Cb

    INTRODUCTION

    This study compares the dynamic range of musical in- struments predicted from calculations of loudness level (LL) with the dynamic range expressed in terms of sound-pressure level (SPL). The dynamic LL range refers to the difference between the highest and the lowest LL produced by a sound source whereas the dynamic SPL range refers to the differ- ence between the highest and the lowest SPL. From the point of view of sound perception, LL is more appropriate for de- scribing the dynamic range of music than SPL; however, LL has never been used to compare the dynamic range of differ- ent instruments. Instead, the dynamic range of musical in- stmments has been measured primarily in terms of physical parameters, such as SPL or sound-power level (Bouhuys, 1965; Clark and Luce, 1965; Meyer and Angster, 1981; Meyer, 1990). Burghauser and Spelda (1971) measured the weighted SPLs of a variety of instruments. However, the appropriateness of weighted SPLs as loudness indicators has been questioned both for noise (Hellman and Zwicker, 1987) and for musical tones (Fastl, 1990). It has been demonstrated that loudness is predicted considerably more accurately from methods based on 1/3-octave-band SPLs than from weighted SPLs (Scharf et aL, 1977; Hellman, 1991).

    Owing to variations in spectral envelope with playing level, the dynamic LL ranges of musical instruments may differ from their dynamic SPL ranges. A number of studies have demonstrated that the spectral envelope of most acous- tic instruments changes considerably with playing level (Rei- necke, 1953; Benade, 1976; Luce, 1975; Meyer, 1978), As the sound is played louder, its spectral bandwidth extends to high frequencies and the increase in SPL is greater for the high partials than for the low ones. Changes in the spectral

    a)Portions of this paper were presented at the 123rd meeting of the Acous- tical Society of America [l. Acoust. Soc. Am. 91, 2374(A} (1992)].

    envelope with playing level are greatest for the brass instru- ments and for the clarinet (Luce and Clark, 1967; Luce, 1975; Benade and Kozoupis, 1988). Psychoacoustic mea- surements of loudness summation across critical bands re- veal that a broadening of the spectral bandwidth of the sound can increase its loudness (Zwicker etal., 1957; Scharf, 1970). For this reason, variations in the spectral envelope of musical tones can contribute to changes in their loudness.

    The purpose of the present study is to examine the effect of spectral envelope variations on the range of calculated LLs of orchestral instruments. Sound-pressure level ranges of short musical scale segments played pianissimo and for- tissimo on various instruments were compared to LL ranges predicted from 1/3-octave-band SPLs, using Zwicker's and Stevens' Mark VI (ISO, 1966) procedures for loudness cal- culation.

    I. PROCEDURE

    The sounds investigated were recordings of short scale segments played on the violin, viola, cello, double bass, flute, oboe, clarinet, bassoon, French horn, trumpet, and trombone. The scale segments pitch registers, at two playing fortissimo (f)9. Musicians, who Academy of Music in Warsaw,

    were performed in various levels, pianissimo (pp) and were students at the Chopin were asked to Olay levels of

    pp and ff considered typical for orchestral performance. Each scale segment was about 4 s long. Music notations of the scale segments are given in Fig. 1.

    The recordings were made in a studio (volume: 850 m3; reverberation time: 0.9-1.1 s in the range 125-4000 Hz) with a cardioid condenser microphone (Neumann KM 84) and a Studer A 810 tape recorder operating at 38.1 cm/s. The sound was monitored in the control room via Tannoy speak- ers. All instruments were recorded at a distance of 1 m from

    the microphone. The microphone was typically placed di-

    3375 J. Acoust. Soc. Am. 96 (6), December 1994 0001-4966/94/96(6)/3375/5/$6.00 1994 Acoustical Society of America 3375

  • INSTRUMENTS

    A5 e----- D5 --' '

    D4

    A1 t- *.:-

    FIG. l. Scale segments played for the measurement of sound-pressure level and loudness level. The label corresponds to the lowest pitch or note in each scale segment.

    rectly in front of the performer. To enhance sound quality, fine adjustments were made to the height and direction of the microphone. This was done to simulate real conditions en- countered in music recording.

    During each recording session, a reference signal (white noise at 85 dB SPL) was played back in the studio and re- corded on the tape. The reference signal was later used for calibration of the measuring instruments.

    The recorded sounds were analyzed to determine the overall SPL and the 1/3-octave-band SPLs of the scale seg- ments. The recordings were played back using a Revox A77 tape recorder and a 1/3-octave-band spectrum shaper (Briiel & Kjar 5537). A single 1/3-octave-band signal or an until- tered signal was sent to a measuring amplifier (Brfiel & Kjer 2607). The amplitude envelope obtained from the amplifier's dc output was digitized with a digital event recorder (Briiel & Kjar 7502) and sent to a computer (Olivetti M-20) which calculated either the SPL in a single 1/3-octave-band or the overall SPL, according to the formula

    J0 where p(t) is the instantaneous sound pressure in pascals (Pa), p0=2x10 -5 Pa, and T the duration of the scale seg- ment in seconds. The analysis window began with the onset of the first tone of the scale segment and ended with the offset of the last tone.

    Loudness levels were predicted from 1/3-octave-band SPLs, using the procedures of Zwicker and of Stevens (Mark VI), recommended as standard procedures for loudness cal- culations (ISO, 1966). Both these procedures were originally developed and validated mainly for noise measurements. The justification for applying them for calculating LLs of musical instruments was the positive result we obtained in our prey i-

    ous study in which loudness estimates of music and noise were compared (Rakowski and Mikiewicz, 1989; Mi- kiewicz and Rakowski, 1992). The musical stimuli used in that study were recordings of 4-s scale segments performed on various instruments at a constant playing level, i.e., pia- nissimo, mezzoforte, and fortissirno. The noise signals were at the same duration as the scale segments, and their 1/3- octave-band SPLs were matched to those of music. The re- sults demonstrated good agreement between the loudness es- timates of the matched music and noise stimuli, suggesting that loudness of short musical passages performed at a con- stant playiag level might be predicted by calculation proce- dures used for noise measurements. Since this finding may be limited to certain kinds of musical stimuli, we restricted our present study to scale patterns similar to those examined in our previous research.

    II. RESULTS

    Figure 2 shows the results obtained for the brass instru- ments. The top panels compare the overall LLs and SPLs of scale segments played ff and pp in various pitch registers. The bottom panels show the dynamic LL and SPL ranges, defined, respectively, as the difference in LL l or SPL ob- tained for a scale segment played ff and pp. According to Fig. 2, loudness levels determined by Zwicker's procedure are generally higher than those obtained by Mark VI. The difference between LL values predicted by Zwicker's and Stevens' procedures is greater in the low than in the high pitch registers. The data also show that the dynamic LL ranges for the brass instruments are considerably larger than the dynamic SPL ranges. The difference between the dy- namic LL and SPL ranges is most pronounced for the French horn approaching 5-7 dB, depending on the method used for loudness calculation.

    Results for the woodwind instruments are given in Fig. 3 and those for the bowed instruments are given in Fig. 4. The data are plotted in the same manner as in Fig. 2. Figure 3 shows that the difference between the dynamic LL and SPL ranges in the woodwind instruments is most pronounced for the clarinet. In the low pitch register the dynamic LL range of the clarinet exceeds the dynamic SPL range by about 6 dB; in the higher registers the difference between the LL and SPL ranges becomes somewhat smaller. For the flute, the oboe, and the bassoon, the dynamic LL ranges exceed the dynamic SPL ranges by only 2 dB or less. The data obtained for the woodwind instruments show again that Zwicker's procedure yields higher values of LL than Mark VI. How- ever, the difference between both procedures decreases for the high pitch registers.

    Less clear-cut are the results for the bowed instruments

    as seen in Fig. 4. In this family of instruments, the dynamic LL ranges of individual scale segments exceed their dynamic SPL ranges only in some of the pitch registers. The increase in dynamic LL range, if any, is small, in most cases less than 2 dB. Overall, there is little difference between the LL and SPL dynamic ranges in the bowed instruments.

    Figure 5 shows examples of 1/3-octave-band spectra measured for four instruments chosen from each of the three families. The combined data in Fig. 5 demonstrate that the

    3376 J. Acoust. Soc. Am., Vol. 96, No. 6, December 1994 A. Mi{kiewicz and A. Rakowski: Loudness of musical instruments 3376

  • FRENCH tt0 ,' ,' . . ' ,'

    I- -, , ' -4 .,. ,001-- '...' 1- .,.--. -II-. ..----_'-"M

    [] [] .," [] , / ..' // [] //' t. .-' / / .]/ ".o" // ..o'" / I- ,'" 1 I-" '"" 11 -o'"" 1 . ,,iz.,,,..:, 80 .." 80

    [[] n ,..' 11- TRUM"ET 11- 'BOMBO" 1 ' D2 A2 D3 A3 D4 A4 A3 D4 A4 D5 D2 A D3 A3 D4 A4

    m' 25 TRUMPET TROMBONE 25

    5 Q [] U.lr v o o

    D2 A2 D3 A3 D4 A4 A3 D4 A4 B5 D2 A2 D3 A3 D4 A4

    Pitch Register

    FIG. 2. Loudness levels (LL) and sound-pressure levels (SPL) for the brass instruments. Shown in the top panels, are LLs calculated according to Zwicker's procedure (squares) and by Mark VI (triangles). The corresponding SPLs are shown by the circles. Open and closed symbols refer to scale segments played pianissimo (pp) and fortissimo (ff), respectively, in the various pitch registers. Shown by the bar graphs in the bottom panels, are the dynamic SPL ranges (filled bars), and the dynamic LL ranges predicted from Zwicker's (hatched bars) and Stevens' Mark VI (dotted bars) procedures.

    degree to which the spectral envelope shape changes with playing level depends greatly on the instrument. For the vio- lin, the changes in spectral envelope are relatively small; the difference in SPL between the pp and ff levels is about the same in most of the 1/3-octave bands below 4 kHz. Larger differences in 1/3-octave-band SPLs can be observed above 4 kHz; however, they do not result in any notable increase in

    the LL range, since the highest frequency bands contain only a relatively small fraction of the total sound energy. Simi- larly, our measurements of the 1/3-octave-band SPLs for the other bowed instruments revealed relatively small differ- ences between the pp and ff spectral envelopes. In contrast, increasing the playing level of the clarinet broadens the spec- tral bandwidth considerably. As a result, the difference in

    FLUTE =

    CLARINET 70

    04 A4 [35 A5 D [34 A4 05 A5 D3 A3 04 A4 05 A5

    BASSOON 70

    D2 A2 03 /3 D4

    ' 20 FLUTE OBOE CLARINET BASSOON 20 15 15

    D4 A4 D5 A5 D4 A4 D5 A5 D3 A3 D5 A5 D2 A2 D3 A3

    Pitch Register

    FIG. 3. Loudness levels and sound-pressure levels for the brass instruments. The legend is the same as in Fig. 2.

    3377 J. Acoust. Sec. Am., Vol. 96, No. 6, December 1994 A. Mi{kiewicz and A. Rakowski: Loudness of musical instruments 3377

  • 1 oo

    8o o,

    7O

    VIOLIN

    A2 D4 A4 D5 A5 D

    VIOLA

    -& &-

    _

    '6. 6. 6. 6.-

    o i i o, i 'i' D3 A3 D4 A4 D5

    CELLO

    ' - ''-, ,....&

    n n '.,e,, n -n A n .

    6---'--... 6. .,.e'

    D2 A2 D3 A3 D4

    DOUBLE BASS

    AG"--. ,.-. ,

    A1 D2 A2 D3

    A3 D4 A4 D5 A5 D6 D3 A3 D4 A4 D5 D2 A2 D3 A3 D4

    DOUBLE BASS

    AI D2 A2 D3

    Pitch Register

    1oot

    o

    70

    t5 o

    o

    FIG. 4. Loudness levels and sound-pressure levels for the bowed instruments. The legend is the same as in Fig. 2.

    1/3-octave-band SPLs between ff and pp levels rapidly in- creases with frequency. The other woodwinds, i.e., the flute, oboe, and bassoon, demonstrate much smaller changes in spectral envelope than the clarinet. Finally, the brass instru- ments exhibit substantial changes in spectral envelope shape with gradations in the playing level, a tendency similar to that found for the clarinet.

    III. DISCUSSION AND CONCLUSIONS

    The results of this study demonstrate that the dynamic LL range of musical instruments depends not only on the dynamic SPL range but is also markedly influenced by the

    90

    80

    7O

    a. 60

    50

    *, 40

    . 9o

    , so 7O

    6O

    OBOE: D4 TRUMPET: 04

    o o 1/3-Onve-Bnnd Cener Frequen (kHz}

    FIG. 5. Examples of 1/3-octave-band SPLs obtained for scale segments played pianissimo (pp) and fortissimo (ff) on the violin, the clarinet, the oboe, and the trumpet. All examples refer to the same scale segment, labeled D4 in Fig. 1.

    variations in spectral envelope that arise from gradations in playing level. As a consequence of the variations in spectral envelope, the dynamic LL range may considerably exceed the dynamic SPL range. The increase in the dynamic LL range depends on the degree to which the spectral envelope broadens with playing level; it is greatest for the clarinet and for the brass instruments. For instruments such as the flute, oboe, bassoon, and bowed instruments, which produce smaller dynamic changes in spectral envelope shape, the dif- ferences between the dynamic LL and SPL ranges are much less pronounced than those described above.

    Psychoacoustical measurements of loudness growth as a function of bandwidth provide a basis for understanding the effect of spectral envelope variations on the LL range. A large body of data have demonstrated that sounds with com- plex spectra presented at moderate and high levels become louder with increases in bandwidth, even though their overall SPLs are maintained constant (Zwicker and Feldtkeller, 1967; Scharf, 1970). This result is attributed to a broadening of the excitation patterns elicited in the auditory system by wideband stimuli. According to Zwicker's model of loudness summation (Zwicker, 1958; Zwicker and Scharf, 1965), loudness is directly related to excitation patterns. Consistent with empirical evidence, the loudness calculations show that the widening of the spectral bandwidth produces an increase in loudness and the associated loudness level.

    A comparison between LLs predicted by two different procedures shows that LLs obtained according to Zwicker's procedure are higher than those calculated according to Mark VI (Figs. 2-4). This outcome is in agreement with previous studies (e.g., Schaff et aL, 1977). However, it is important to note that this difference between Zwicker's and Stevens' pro- cedures is greater in the low pitch registers than in the high ones. Since musical pitch registers typically extend over a wide range of frequency bands, these results suggest that the dynamic LL ranges predicted for musical instruments may be

    3378 d. Acoust. Soc. Am., Vol. 96, No. 6, December 1994 A. Mikiewicz and A. Rakowski: Loudness of musical instruments 3378

  • significantly affected by the procedure used for loudness cal- culation. It remains to be determined which calculation pro- cedure is most accurate for predicting the loudness of music,

    The procedure used in this study for recording the sound samples was designed to resemble real situations encoun- tered in music recording. However, it should be noted that our measurements of 1/3-octave-band SPLs refer to certain conditions in which the sound samples were recorded and might be influenced by such factors as directivity of the in- struments (Meyer, 1978) and acoustical characteristics of the studio in which the instruments were played. So far, no stan- dard procedure has been proposed for recording musical in- struments for the purpose of sound measurement or assess- ment of sound quality. Finally, we would like to emphasize that the musical validity of the measurements in this study may be liralied, because the sound examples were restricted to short scale segments played smoothly at a constant dy- namic level. Current knowledge of the perception of loud- ness in music is insufficient to predict the LLs of longer or more complex musical passages.

    ACKNOWLEDGMENTS

    The authors wish to thank Professor Mary Florentine, Professor S6ren Buus, Professor Tomasz Letowski, and Dr. Richard Pamcutt for their comments on an earlier version of

    the manuscript, and Professor Hugo Fastl for providing a copy of the computer program for calculating loudness ac- cording to Zwicker's procedure. Special thanks are due to Professor Rhona Hellman, whose thorough and constructive review helped us very much to shape the final version of the manuscript.

    Although the unit for LL is in phons, we express the difference in LL in decibels. According to the definition of LL, a phon is referred to the SPLof a l-kHz tone; therefore it cannot be used as a unit for the difference in LL.

    Benade, A. H. (1976). Fundamentals o/Musical Acoustics (Oxford U.P., New York).

    Benade, A. H., and Kozoupis, S. N. (1988). "The clarinet spectrum: Theory and experiment," J. Acoust. Soc. Am. 83, 292-304.

    Bouhuys, A. (1965). "Sound-power production in wind instruments," J. Acoust. Soc. Am. 37, 453-456.

    Burghauser, 1., and Spelda, A. (1971). Die Akustischen Grundlagen der Instrumentation (Bosse, Regensburg).

    Clark, M., and Luce, D. A. (1965). "Intensities of orchestral instrument scales played at prescribed dynamic markings," J. Audio Eng. Soc. 13, 151-157.

    Fastl, H. (1990). "Gehbrbezogene Lautstiirke-Me/verfahren in der Musik," Das Orchester 38. 1-b.

    Hellman, R. (1991). "Predicting the loudness of tone-noise complexes from Stevens' and Zwicker's procedures," in Proceedings of Noise-Con 91, edited by D. A. Quinlan and M. G. Prasad (Noise Control Foundation, Poughkeepsie, NY), pp. 491-498.

    Hellman, R., and Zwicker, E. (1987). "Why can a decrease in dB(A} pro- duce an increase in loudness?," J. Acoust. Soc. Am. 82, 1700-1705.

    International Organization for Standardization (1966). "Procedure for cal- culating loudness," ISO 532A, ISO532B, Geneva.

    Luce, D. A. (1975). "Dynamic spectrum changes of orchestral instruments," J. Audio Eng. Soc. 23, 565-568.

    Lucc, D. A., and Clark, M. (1967). "Physical correlates of brass-instrument tones," J. Acoust. Soc. Am. 42, 1232-1243.

    Meyer, J. (1978). Acoustics and the Performance of Music (Das Musikin- stmment, Frankfurt/Main).

    Meyer, 1. (1990). "Zur Dynamik und Scha!leistung yon Orchesterinstru- menten," Acustica 71, 277-286.

    Meyer, J., and Angster, J. (1981). "Zur Schalleistungsmessung bet Vio- lMen," Acustica 49, 192-204.

    Mikiewicz, A., and Rakowski, A. (1992). "Music rs. noise: A comparison of loudness eslimates," Arch. Acoust. 17, 203-216.

    Rakowski, A., and Mikiewicz, A. (1989). "Estimation of loudness of mu- sical tones," in Proceedings of the 13th !nternatitnal Congress on Acous- tics, edited by P. Pravica and G. Drakulic (Dragon Sruic, Belgrade), Vol. 3, pp. 125-128.

    Reinecke, H. P. (1953). "l.Iber den doppelten Sinn des Lautheitsbegriffes beim musikalisehen H6ren," Dissertation, Universitiit Hamburg.

    Scharf, B. (1970). "Critical bands," in Foundations of Modern Auditory Theory, edited by J. V. Tobias (Academic, New York), Vol. 1, pp. 157- 202.

    Scharf, B., Hellman, R., and Bauer, J. (1977). "Comparison of various methods for predicting the loudness and acceptability of noise," Rep. #550/9-77-101, U.S. Environmental Protection Agency, Washington, DC.

    Zwicker, E. (1958). "0bet psychologisebe und metodisehe Grundlagen der Lautheit," Acustica 8, 237-258.

    Zwicker, E., and Feldtkeller, R. (1967). Dos Ohr als Nachrichtenempf;nger (Hirzel, Stuttgart), 2nd ed.

    Zwicker, E., Floltorp, G., and Stevens, S.S. (1957). "Critical bandwidth in loudness summation," J. Acoust. Soc. Am. 29, 548-557.

    Zwicker, E., and Scharf, B. (1965). "A model of loudness summation," Psychol. Rev. 72, 3-26.

    3379 J. Acoust. Soc, Am., Vol. 96, No. 6, December 1994 A. Mikiewicz and A. Rakowski: Loudness of musical instruments 3379