Un algorithme Elston-Stewart pour le calcul des dérivées...

22
Un algorithme Elston-Stewart pour le calcul des d´ eriv´ ees exactes de la vraisemblance en ´ epid´ emiologie g´ en´ etique Alexandra Lefebvre 1 and Gr´ egory Nuel 1 (Th` ese co-dirig´ ee par: G. Nuel 1 & A. Duval 2 ) (1) LPSM (Probabilit´ es, Statistique et Mod´ elisation), CNRS, Sorbonne Universit´ e, Paris (2) CRSA, Instabilit´ e des microsatellites et cancer, Hˆopital Saint-Antoine, Paris Les journ´ ees annuelles du GDR Statistique et Sant´ e Nantes, 27 & 28 September 2018 A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 1 / 20

Transcript of Un algorithme Elston-Stewart pour le calcul des dérivées...

Page 1: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Un algorithme Elston-Stewart pour le calcul des deriveesexactes de la vraisemblance en epidemiologie genetique

Alexandra Lefebvre1 and Gregory Nuel1

(These co-dirigee par: G. Nuel1 & A. Duval2)

(1) LPSM (Probabilites, Statistique et Modelisation), CNRS, Sorbonne Universite, Paris(2) CRSA, Instabilite des microsatellites et cancer, Hopital Saint-Antoine, Paris

Les journees annuelles du GDRStatistique et Sante

Nantes, 27 & 28 September 2018

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 1 / 20

Page 2: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

General context: Likelihood in family studies

Genetic epidemiologyPopulation based (GWAS, ...)Family studies, pedigree based (Segregation, linkage, TDT, ...)

1 2 3 4

5 6

7

GU = {Gu}u∈U , YU = {Yu}u∈Upau : set of labels for parents of Xu

Gu (resp. Yu): set of values for Gu (resp. Yu)

Evidence: Either data or neutral ev.ev|G = {Gu ∈ G∗u ⊆ Gu}, u ∈ Uev|Y = {Yu ∈ Y∗u ⊆ Yu}, u ∈ U

Potential related to u

ϕu(Gu|Gpau ; θ) =

∫Yu

1Gu∈G∗u 1Yu∈Y∗u P(Gu|Gpau ; θ)P(Yu|Gu; θ)

with θ ∈ Rp, p ≥ 1Likelihood

L(θ) = P(ev|θ) =∑GU

∏u∈U

ϕu(Gu|Gpau ; θ)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 2 / 20

Page 3: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

General context: Computation of L(θ)

Complexity

L(θ) =∑G1

· · ·∑Gn

n∏u=1

ϕu

(Gu|Gpau ; θ

)Let g = |Gu| ⇒ Complexity = O (gn)

AlgorithmsElston-Stewart (1971), Totir et al. (2009) : Peeling of individuals.Sum-product or message passing: Elimination of variables.

Complexity : O(gm×n)→ O(n × gm×k)n individuals, m loci, k being less than 5 in most cases

Lander-Green (1987) : Peeling of loci

Complexity : O (gm×n)→ O (m × gn)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 3 / 20

Page 4: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

General context: Computation of L(θ)

Elston-Stewart algorithm or Sum-product algorithm

Pedigree

1 2 3 4

5 6

7

Clique decomposition

1 2 3 4

5 6

7

L(θ) =∑G5

∑G6

∑G7

{( F1(G5)︷ ︸︸ ︷∑G1

∑G2

ϕ1(G1)ϕ2(G2)ϕ5(G5|G1,G2)

)( F2(G6)︷ ︸︸ ︷∑

G3

∑G4

ϕ3(G3)ϕ4(G4)ϕ6(G6|G3,G4)

)ϕ7(G7|G5,6)

}A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 4 / 20

Page 5: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

C1 = {G∗1 ,G∗2 ,G∗5 }

C2 = {G∗3 ,G∗4 ,G∗6 }

C3 = {G5,G6,G∗7 }

F1(G5|θ)

F2(G6|θ)

F3(∅|θ)

∀i ∈ {1, . . . 4}; φi (Ci |θ) =∏

Gu∈Ci∗

ϕu(Gu|Gpau ; θ)

Fi (Si |θ) =∑Ci\Si

∏j∈fromi

Fj(Sj |θ)

× φi (Ci |θ); F3(∅|θ) = L(θ)

Our objective: Compute L(θ) and its derivatives up to a chosen order d .

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 5 / 20

Page 6: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

State of art

Sensitivity analysis: express L(θ) as a polynomial in θ⇒ not always possible (e.g. P(Xu = 1) = eθ/(1 + eθ) )⇒ prohibitive if degree in θ is large (e.g. θ in many potentials)

Smoothing recursions (Cappe and Moulines, 2005): express∇d log L(θ) as function of E[∇d logϕu|ev] (Fisher-Louis’ formulas)⇒ developed for Hidden Markov Models⇒ many terms and complex recursions when d increases

Polynomial computations: perform sum-product with polynomials⇒ moments of additive functional in BN (Cowel, 1992; Nilsson, 2001)⇒ moment generating function / probability generating function forregular expr. in Markov models (Nuel, 2008, 2010)

Our idea: Use polynomial computations in the framework ofderivatives

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 6 / 20

Page 7: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Method: Derivative generating function

L(θ) =∑GU

∏u∈U

ϕu(Gu|Gpau ; θ) ⇒∑GU

Fu∈U

Ddϕu(Gu|Gpau ; θ)

Derivative generating function (Dgf)Let f be a function of class Cd of θ ∈ R, d ∈ N

Dd f (θ) =d∑

k=0

f (k)(θ)zk

where z is a dummy variable.Example: D2f (θ) = f (θ) + f ′(θ)z + f ′′(θ)z2

⇒ Polynomial potentials of degree d : ∀u ∈ U :

Ddϕu(Gu|Gpau ; θ) =d∑

k=0

ϕu(k)(Gu|Gpau ; θ)zk =

ϕu(Gu|Gpau ; θ) + ϕ′u(Gu|Gpau ; θ) z + . . .+ ϕ(d)u (Gu|Gpau ; θ) zd

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 7 / 20

Page 8: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Method: “Leibniz’s product” : F

Definition “Leibniz’s product”

P =d∑

k=0

akzk with ak = f (k)(θ)

Q =d∑

k=0

bkzk with bk = g (k)(θ)

P ? Q =d∑

k=0

ckzk with ck = (fg)(k)(θ)

(fg)(k)(θ) =k∑

i=0

(k

i

)f (i) (θ) g (k−i) (θ)⇒ ck =

k∑i=0

(k

i

)aibk−i

P ? Q =d∑

k=0

k∑i=0

(k

i

)aibk−iz

k

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 8 / 20

Page 9: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Multidimensional parameter Θ = θ1, . . . , θp

Dgf of f function Cd of Θ ∈ Rp

Dd f (Θ) =∑

k1+...+kp≤d

∂(k1+...+kp)f (θ)

∂θ1k1 . . . ∂θp

kpz1

k1 . . . zpkp

“Leibniz product”

P =∑

k1+...+kp=d

ak1,...,kpz1k1 . . . zp

kp ; ak1,...,kp =∂(k1+...+kp)f (Θ)

∂θ1(k1) . . . ∂θp

(kp)

Q idem with coef. b instead of a and function g instead of f

P ? Q =∑

k1+...+kp=d

ck1,...,kpz1k1 . . . zp

kp

with ck1,...,kp =

k1∑i1=0

. . .

kp∑ip=0

(k1

i1

). . .

(kpip

)ak1−i1,...,kp−ipbi1,...,ip

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 9 / 20

Page 10: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Computation :∑∏

φu →∑

FDdφu

C1 = {G∗1 ,G∗2 ,G∗5 }

C2 = {G∗3 ,G∗4 ,G∗6 }

C3 = {G5,G6,G∗7 }

F1(G5|θ)

F2(G6|θ)

F3(∅|θ)

∀i ∈ {1, . . . 4}; φi (Ci |θ) =∏

Gu∈Ci∗

ϕu(Gu|Gpau ; θ)

Fi (Si |θ) =∑Ci\Si

∏j∈fromi

Fj(Sj |θ)

× φi (Ci |θ); F3(∅|θ) = L(θ)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 10 / 20

Page 11: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Computation :∑∏

φu →∑

FDdφu

C1 = {G∗1 ,G∗2 ,G∗5 }

C2 = {G∗3 ,G∗4 ,G∗6 }

C3 = {G5,G6,G∗7 }

F1(G5|θ)

F2(G6|θ)

F3(∅|θ)

∀i ∈ {1, . . . 4}; Φdi (Ci |θ) = F

Xu∈Ci∗Ddϕu(Xu|Xpau ; θ)

F di (Si |θ) =

∑Ci\Si

(F

j∈fromi

F dj (Sj |θ)

)?Φd

i (Ci |θ) F d3 (∅|θ) = DdL(θ)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 10 / 20

Page 12: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Computation :∑∏

φu →∑

FDdφu

C1 = {G∗1 ,G∗2 ,G∗5 }

C2 = {G∗3 ,G∗4 ,G∗6 }

C3 = {G5,G6,G∗7 }

F1(G5|θ)

F2(G6|θ)

F3(∅|θ)

Φd2 (G3,G4,G6|θ) = Ddϕ3(X3; θ) ? Ddϕ4(X4|X1; θ)

F d3 (∅|θ) =

∑G5

∑G6

∑G7

F d1 (G5|θ) ? F d

2 (G6|θ) ?Φd3 (G7|G5,G6; θ)

F d3 (∅|θ) = DdL(θ) = L(θ) + L′(θ)z + . . .+ L(d)(θ)zd

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 10 / 20

Page 13: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Comparison with empirical computation

Empirical computation

L′(θ) ' L(θ + h1)− L(θ)

h1; L′′(θ) ' L(θ + 2h2)− 2L(θ + h2) + L(θ)

h22

for a small enough h1 and h2.

Complexities

Let C be the complexity to compute L(θ) = P(ev|θ)

Unidimensional parameter & arbitrary d → L(θ), L′(θ), . . . , L(d)(θ)Complexity = O

(C × d2

)Multidimensional parameter (p > 1) & d = 2 → L(θ),∇L(θ),Hess L(θ)Complexity = O

(C × p2

)Similar to the empirical method with two main advantages

Exact derivativesNo need to choose the step h and converge iteratively to the solution

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 11 / 20

Page 14: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Application : two-point linkage in genetics

Goal : Locate a gene of interest on the genome.Trick: uses crossovers (CO), phenomenon happening during meiosis.

Xm Mm

Xp MpPat. chr.

Mat. chr.

Xp Mp

Xp Mm

Xm Mp

Xm Mm

R

NR

R

NR

Assumption: The closest two genes are on the genome, the lesschances to be separated during meisosis

Parameter:

θ =#R

#R + #NR= P(odd C ) with C = #CO

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 12 / 20

Page 15: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Genetic distance h - Haldane, J. B. S. (1919).

Genetic distance h:

Assumption: C ∼ P(h)⇒ h = E[C ]

θ = P(odd C ) =∞∑k=0

P(C = 2k + 1) =∞∑k=0

e−hh(2k+1)

(2k + 1)!=

1− e−2h

2

h = − log(1− 2θ)

2expressed in morgan (M) or centimorgan (cM)

LOD score:

θ −−−→h→∞

1

2LOD(θ) = log10

(L(θ)

L( 12 )

)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 13 / 20

Page 16: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Example with the KUS family (MENDEL package)

Interest RADIN:

Xp ∈ {1, 0}Xm ∈ {1, 0}

}→

11 → lethal before birth10 or 01 → Y = 1, black filling00 → Y = 0, no filling

Marker PGM1:Mp ∈ {1+, 1−, 2+, 2−}Mm ∈ {1+, 1−, 2+, 2−}

}→ 16 configurations

G ∈ {1 + 1+, 1 + 1−, . . . , 2− 2−}, 10 values

Pedigree (familial structure)1+1-

1-2- 1+2+1-2- 1+1- 1-2- 1+2+

1+2- 1+2-1+1-1+2-1+1- 1-1- 1-1- 1-1- 1-2-1+2-1+2- 2+2-1+2-

1+1-

2+2-

B1 M1

Y1 C1 C2 Y2 C3 C4 Y4

D1 D2 D3 D4 D5 D6 D7 D8 D11 D12 D13 D16 D17

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 14 / 20

Page 17: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Variables in two-point linkage

Y1

Xp1

Xm1

Xp3

SMp3SXp3

SMm3SXm3

Θ

Θ

Y2

Xp2

Xm2

Xm3 G2

Mp2

Mm2

Mm3

G1

Mp1

Mm1

Mp3

G3Y3

Known Structure and Observed G and Y .

Latent: Xp & Xm ∈ {1, 0}; Mp & Mm ∈ {1+, 1−, 2+, 2−};SXp, SXm, SMp, SMm ∈ {pat,mat}

ϕSXp3(SXp3 = pat) = ϕSXp3

(SXp3 = mat) = 0.5

ϕSMp3(SMp3 = SXp3|SXp3) = (1− θ)

ϕSMp3(SMp3 6= SXp3|SXp3) = θ

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 15 / 20

Page 18: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Build polynomial potentials

Polynomials of degree 0 (All except those related to selector of M)

Polynomials of degree strictly positive (Related to selector of M)

D2ϕSMp3(SMp3 = SXp3|SXp3) = (1− θ)− z

D2ϕSMp3(SMp3 6= SXp3|SXp3) = θ + z

Reparametrization: θ = eβ/(1 + eβ)

D2ϕSMp3(SMp3 = SXp3|SXp3) =

1

1 + eβ− eβ

(1 + eβ)2z − eβ(1− eβ)

(1 + eβ)3z2

D2ϕSMp3(SMp3 6= SXp3|SXp3) =

1 + eβ+

(1 + eβ)2z +

eβ(1− eβ

)(1 + eβ)3

z2

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 16 / 20

Page 19: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Results: Examples of the last polynomial message

Recalls θ = eβ

1+eβ; β = log θ

1−θ

We define `(β) = log L(

1+eβ

)θ F 2

K (∅|θ) = D2`(θ) F 2K (∅|β) = D2`(β)

0.001 −46.68 + 984.0 z−1.106 z2 −46.68 + 0.9830 z−17.10−3 z2

0.01 −44.52 + 83.84 z−1002 z2 −44.52 + 0.8300 z−17.10−2 z2

0.05 −43.57 + 3.159 z−417.7 z2 −43.57 + 0.1500 z−0.8074 z2

0.1 −43.74− 7.771 z−119.5 z2 −43.75− 0.6993 z−1.528 z2

0.15 −44.25− 12.12 z−65.80 z2 −44.25− 1.546 z−2.152 z2

0.2 −44.93− 14.90 z−47.94 z2 −44.93− 2.384 z−2.658 z2

0.3 −46.63− 18.90 z−33.49 z2 −46.63− 3.969 z−3.065 z2

0.4 −48.66− 21.42 z−14.72 z2 −48.67− 5.140 z−1.876 z2

0.5 −50.84− 22.00 z−4.000 z2 −50.85− 5.5000 z−0.2500 z2

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 17 / 20

Page 20: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Results: Derivatives

−7 −6 −5 −4 −3 −2 −1 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

beta

LOD

LOD(β) =`(

1+eβ

)− `(0.5)

log(10)

β = −2.772409⇒ θ = 0.05883346

LOD(β) = 3.164775

∂LOD

∂β(0.0) = −2.38862

∂2LOD

∂β2(β) = −0.4104178

Black dots computed with Mendel 16.0 (Reference software)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 18 / 20

Page 21: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Results : Confidence intervals and tests

θ (95% IC) LR W S

KUS (n = 22) 0.059 (0.008, 0.320) 14.574 7.264 32.010ALL (n = 93) 0.193 (0.106, 0.326) 17.012 15.821 12.900

p. values KUS 1.3 · 10−4 7.0 · 10−3 1.5 · 10−8

p.values ALL 3.7 · 10−5 7.0 · 10−5 3.3 · 10−4

O(β) = −`′′(β) I (β) = E[O(β)|β]

Likelihood ratio test statistic:

LR = 2(`(β)− `(β0)) ∼H0

χ2(df = 1)

Wald’s test statistic:

W =(((((((I (β0)(β − β0)2 = O(β)(β − β0)2 ∼

H0

χ2(df = 1)

Score test statistic:

S =����`′(β0)2

I (β0)=`′(β0)2

O(β)∼H0

χ2(df = 1)

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 19 / 20

Page 22: Un algorithme Elston-Stewart pour le calcul des dérivées ...gdr-stat-sante.math.cnrs.fr/spip/IMG/pdf/02-lefevre_alexandra.pdf · Un algorithme Elston-Stewart pour le calcul des

Summary and perspectives

Summary:

Sum-product with polynomials and “Leibniz product”univariate: derivatives up to order d in O(d2 × C )multivariate θ ∈ Rp: gradient and Hessian in O(p2 × C )confidence intervals, theoretical distributions under H0A. Lefebvre and G. Nuel. A sum-product algorithm with polynomialsfor computing exact derivatives of the likelihood in Bayesian networks.Proceedings of Machine Learning Research 72:201–212, 2018.

Perspectives:

joint estimation of allele frequencies and θextensive simulations under H0other genetic models: segregation, TDT, IBD, etc.Applications in local score of a sequence.

Acknowledgement: This work was funded bythe Ligue Nationale Contre le Cancer.

A. Lefebvre and G. Nuel Derivatives of the likelihood in BNs PGM 2018 20 / 20