TP Cours : Diagrammes de Bode du premier...

18
TP Cours Filtres 1 er ordre Physique Chimie TSI1 Lycée Saint Nicolas Page 1 TP Cours : Diagrammes de Bode du premier ordre Dans ce polycopié, on passe en revue les méthodes et définitions à maîtriser pour l’étude des filtres du premier ordre. Toutes ont été étudiées lors des séances de TP-cours. A chaque fois, elles sont appliquées dans le cas des filtres classiques RC et RL. Contenu I Etude qualitative d’un filtre ......................................................................................... 2 1. Méthode .............................................................................................................................. 2 2. Application au filtre RC ........................................................................................................ 2 3. Application au filtre RL ........................................................................................................ 3 II Fonction de transfert du premier ordre ............................................................... 4 1. Définitions ........................................................................................................................... 4 2. Application au Filtre RC ....................................................................................................... 5 3. Application au filtre RL ........................................................................................................ 6 III Diagrammes de Bode asymptotiques ................................................................. 7 1. Intérêt de la fonction de transfert....................................................................................... 7 2. Diagramme de Bode ............................................................................................................ 7 3. Tracés des diagrammes de Bode asymptotiques ................................................................ 8 4. Application : diagrammes de Bode asymptotiques du circuit RC ....................................... 8 5. Application : diagrammes de Bode asymptotiques du circuit RL ...................................... 10 IV Diagrammes de Bode réels..................................................................................... 12 1. Protocole expérimental ..................................................................................................... 12 2. Diagramme de Bode du filtre RC ....................................................................................... 12 3. Diagrammes de Bode du filtre RL ...................................................................................... 13 V Mesure de la pulsation de coupure ..................................................................... 15 1. Notion de bande passante ................................................................................................ 15 2. Méthode de mesure de la pulsation de coupure .............................................................. 15 3. Effet de variation des composants .................................................................................... 16 4. Circuit RC : vérification de l’expression de .................................................................. 17 5. Circuit RL : vérification de l’expression de ................................................................... 18

Transcript of TP Cours : Diagrammes de Bode du premier...

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 1

TP – Cours : Diagrammes de Bode du premier ordre

Dans ce polycopié, on passe en revue les méthodes et définitions à maîtriser pour l’étude des filtres du premier ordre. Toutes ont été étudiées lors des séances de TP-cours. A chaque fois, elles sont appliquées dans le cas des filtres classiques RC et RL.

Contenu

I – Etude qualitative d’un filtre ......................................................................................... 2

1. Méthode .............................................................................................................................. 2

2. Application au filtre RC ........................................................................................................ 2

3. Application au filtre RL ........................................................................................................ 3

II – Fonction de transfert du premier ordre ............................................................... 4

1. Définitions ........................................................................................................................... 4

2. Application au Filtre RC ....................................................................................................... 5

3. Application au filtre RL ........................................................................................................ 6

III – Diagrammes de Bode asymptotiques ................................................................. 7

1. Intérêt de la fonction de transfert ....................................................................................... 7

2. Diagramme de Bode ............................................................................................................ 7

3. Tracés des diagrammes de Bode asymptotiques ................................................................ 8

4. Application : diagrammes de Bode asymptotiques du circuit RC ....................................... 8

5. Application : diagrammes de Bode asymptotiques du circuit RL ...................................... 10

IV – Diagrammes de Bode réels ..................................................................................... 12

1. Protocole expérimental ..................................................................................................... 12

2. Diagramme de Bode du filtre RC ....................................................................................... 12

3. Diagrammes de Bode du filtre RL ...................................................................................... 13

V – Mesure de la pulsation de coupure ..................................................................... 15

1. Notion de bande passante ................................................................................................ 15

2. Méthode de mesure de la pulsation de coupure .............................................................. 15

3. Effet de variation des composants .................................................................................... 16

4. Circuit RC : vérification de l’expression de .................................................................. 17

5. Circuit RL : vérification de l’expression de ................................................................... 18

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 2

I – Etude qualitative d’un filtre

1. Méthode

Avant de poser les calculs, on aime souvent savoir comment va se comporter un circuit en fonction de la fréquence du signal d’entrée. Pour cela on réalise une étude qualitative du filtre en basses et hautes fréquences.

Point Méthode

Comment prédire qualitativement le comportement en fréquence

d’un filtre ?

1. On dessine le circuit équivalent en basses fréquences (BF)

On remplace les condensateurs par des circuits ouverts On remplace les bobines par des fils

2. On en déduit la relation entre la tension de sortie et d’entrée en BF en appliquant la loi des mailles, nœuds…

3. On dessine le circuit équivalent en basses fréquences (HF) On remplace les condensateurs par des fils On remplace les bobines par des circuits ouverts

4. On en déduit la relation entre la tension de sortie et d’entrée en HF en appliquant la loi des mailles, nœuds…

5. On déduit le type de filtre réalisé par le circuit (passe-bas, passe-haut…)

2. Application au filtre RC

Déterminer par une analyse qualitative le type de filtre réalisé par le circuit RC suivant :

Analyse Basses Fréquences : Circuit Equivalent :

Relations : Or car D’où : A Basses Fréquences, la tension d’entrée « passe à travers le circuit » et se retrouve en sortie.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 3

Analyse Hautes Fréquences : Circuit Equivalent :

Relations : est la tension aux bornes d’un fil D’où : A Hautes Fréquences, la tension d’entrée « ne passe pas à travers le circuit ».

La tension d’entrée n’est retrouvée en sortie que pour les basses-fréquences

Le filtre RC est un circuit passe-bas.

3. Application au filtre RL

Déterminer par une analyse qualitative le type de filtre réalisé par le circuit RL suivant :

Analyse Basses Fréquences : Circuit Equivalent :

Relations : est la tension aux bornes d’un fil D’où : A Basses Fréquences, la tension d’entrée « ne passe pas à travers le circuit ».

Analyse Hautes Fréquences : Circuit Equivalent :

Relations : Or car D’où : A Hautes Fréquences, la tension d’entrée « passe à travers le circuit » et se retrouve en sortie.

La tension d’entrée n’est retrouvée en sortie que pour les hautes-fréquences.

Le filtre RL est un circuit passe-haut.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 4

II – Fonction de transfert du premier ordre

1. Définitions

Après l’étude qualitative, on aimerait en savoir quand même un peu plus sur le circuit. Par exemple, jusqu’à quelle fréquence un passe-bas laisse-t-il passer le signal… Pour y répondre, il faut calculer la fonction de transfert du circuit.

Fonction de transfert d’un filtre

Soit le circuit électrique linéaire ci-dessous :

Sa tension d’entrée est , origine des phases. Sa tension de sortie est On appelle « Fonction de Transfert » le nombre complexe :

On utilise en général la formule du pont diviseur de tension pour calculer les fonctions de transfert. Dans les cas plus compliqués, le théorème de Millmann est aussi utilisé.

Fonction de transfert du premier ordre

On appelle « Fonction de transfert du premier ordre » toute fonction de transfert pouvant se mettre sous la forme canonique :

est la constante de temps du filtre du premier ordre est la pulsation de coupure à 3dB (dite aussi pulsation caractéristique ou pulsation propre) du filtre du premier ordre.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 5

2. Application au Filtre RC

Déterminer la fonction de transfert du filtre RC ci-dessous. La mettre sous sa forme canonique et en déduire sa constante de temps et sa pulsation de coupure à 3dB.

Détermination de la function de transfert par pont diviseur de tension :

Dans le cas présent,

Mise sous forme canonique (utilisation de

De la forme canonique

Par identification :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 6

3. Application au filtre RL

Déterminer la fonction de transfert du filtre RL ci-dessous. La mettre sous sa forme canonique et en déduire sa constante de temps et sa pulsation de coupure à 3dB.

Détermination de la function de transfert par pont diviseur de tension :

Dans le cas présent,

Mise sous forme canonique (utilisation de

De la forme canonique

Par identification :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 7

III – Diagrammes de Bode asymptotiques

1. Intérêt de la fonction de transfert

La fonction de transfert est un outil mathématique très important, car elle contient beaucoup d’informations sur le circuit. On rappelle, d’après la définition :

Exprimons ainsi le module et l’argument de en fonction des tensions d’entrée et de sortie.

Le module de la fonction de transfert représente donc le rapport de l’amplitude de la tension de sortie sur l’amplitude de la tension d’entrée du circuit.

L’argument de la fonction de transfert représente donc le déphasage entre la tension de sortie et la tension d’entrée du circuit. Pour un circuit donné (dont les composants ne varient pas), ces deux grandeurs ne dépendent que de la fréquence. Comme ces deux grandeurs nous donnent beaucoup d’informations sur la tension de sortie du filtre, on va les représenter graphiquement.

2. Diagramme de Bode

Diagramme de Bode

Le diagramme de Bode d’un filtre correspond à deux tracés :

- Le diagramme de Bode « en Gain » :

Tracé de en fonction de

- Le diagramme de Bode « en phase » :

Tracé de en fonction de

Tracer l’allure réelle d’un diagramme de Bode n’est en général pas facile car les fonctions de transfert sont souvent compliquées. En revanche, on peut facilement prévoir la « forme générale » du diagramme de Bode en traçant les diagrammes de Bode « asymptotiques » en utilisant des formes équivalentes simplifiées de la fonction de transfert.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 8

3. Tracés des diagrammes de Bode asymptotiques

Point Méthode

Comment tracer un diagramme de Bode asymptotique d’un filtre

d’ordre 1 ?

1. Déterminer la fonction de transfert du filtre d’ordre 1.

2. Le mettre sous forme canonique en faisant apparaître

au

dénominateur 3. Déterminer , équivalent de aux basses fréquences

calculer sa phase calculer

4. Déterminer , équivalent de aux hautes fréquences

calculer sa phase calculer

5. Représenter et dans le diagramme de Bode en Gain 6. Représenter et dans le diagramme de Bode en phase

4. Application : diagrammes de Bode asymptotiques du circuit RC

Déterminer le diagramme de Bode asymptotique du circuit RC.

Etapes 1 et 2 : On a déjà démontré que la fonction de transfert de ce circuit était :

Avec Etape 3 : Equivalent de la fonction de transfert aux basses fréquences

et sont donc des constantes en fonction de

Droites horizontales sur le diagramme asymptotique.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 9

Etape 4 : Equivalent de la fonction de transfert aux hautes fréquences

est une constante en fonction de

Droite horizontale sur le diagramme asymptotique

est une fonction affine par rapport à , de coefficient directeur -20 Droite de pente -20dB/décade

Etape 5 : Tracé du diagramme asymptotique en gain On trace les asymptotes calculées précédemment.

Pour un filtre du premier ordre, les asymptotes se coupent toujours en

On retrouve un comportement de type passe-bas

Etape 6 : Tracé du diagramme asymptotique en phase On trace les asymptotes calculées précédemment.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 10

5. Application : diagrammes de Bode asymptotiques du circuit RL

Déterminer le diagramme de Bode asymptotique du circuit RL.

Etapes 1 et 2 : On a déjà démontré que la fonction de transfert de ce circuit était :

Avec Etape 3 : Equivalent de la fonction de transfert aux basses fréquences

est une constante en fonction de

Droite horizontale sur le diagramme asymptotique

est une fonction affine par rapport à , de coefficient directeur +20 Droite de pente 20dB/décade

Etape 4 : Equivalent de la fonction de transfert aux hautes fréquences

et sont donc des constantes en fonction de

Droites horizontales sur le diagramme asymptotique.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 11

Etape 5 : Tracé du diagramme asymptotique en gain On trace les asymptotes calculées précédemment.

On retrouve un comportement de type passe-bas

Etape 6 : Tracé du diagramme asymptotique en phase On trace les asymptotes calculées précédemment.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 12

IV – Diagrammes de Bode réels

1. Protocole expérimental

Le diagramme de Bode réel peut être tracé grâce à des relevés expérimentaux. On réalise le montage suivant :

On mesure et à l’aide de l’oscilloscope. On relève les amplitudes de ces deux tensions , ainsi que leur déphasage pour plusieurs fréquences d’entrée.

2. Diagramme de Bode du filtre RC

On trace d’abord le diagramme de Bode en gain en traçant

en fonction de :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 13

On trace ensuite le diagramme de Bode en phase en traçant en fonction de :

On ajoute les asymptotes sur le diagramme de Bode réel et on s’aperçoit que l’on retrouve les comportements prédits en théorie.

3. Diagrammes de Bode du filtre RL

On réalise le montage suivant pour relever le diagramme de Bode du circuit RL :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 14

On en déduit le diagramme de Bode en gain :

Et le diagramme de Bode en phase :

On trace les asymptotes qui confirment l’étude théorique.

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 15

V – Mesure de la pulsation de coupure

1. Notion de bande passante

L’exploitation des diagrammes de Bode permet de mesurer la pulsation de coupure des filtres étudiés. C’est le paramètre crucial du filtre car elle indique la limite de la bande passante. Exemples :

L’oreille humaine entend les signaux sonores de 20 à 20kHz. Lors de la conversion de fichiers musicaux en mp3, selon la qualité de compression, on peut aller jusqu’à atténuer les signaux dépassant 16kHz pour gagner en taux de compression (et donc perte de qualité). C’est la fréquence de coupure du filtre qui détermine cette fréquence max.

De même, des hauts parleurs ont tous une bande passante, c’est-à-dire qu’ils permettent de laisser passer certaines fréquences et pas d’autres (selon leur dimension). C’est pourquoi on est obligé d’en associer plusieurs pour restituer entièrement l’ensemble des fréquences audibles convenablement (caissons de basses, haut-parleurs pour les aigus…).

2. Méthode de mesure de la pulsation de coupure

Point Méthode

Comment déterminer la pulsation de coupure d’un filtre du premier

ordre ? Dans le cas d’un filtre du premier ordre, 3 méthodes sont envisageables pour déterminer la pulsation de coupure Méthode 1 : On trace l’intersection des asymptotes du diagramme de gain : son abscisse est . Méthode 2 : On regarde la pulsation pour laquelle le gain est égal au Gain maximal moins 3dB.

Méthode 3 : On regarde la pulsation pour laquelle la phase vaut

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 16

Ces trois méthodes sont illustrées sur les diagrammes de Bode précédents.

On compare ensuite les trois valeurs déterminées expérimentalement, sous forme d’un axe, et qui permettent de définir un intervalle de confiance. Exemple pour le circuit RL : Avec et

La valeur théorique est

Elle appartient à l’intervalle de confiance et donc un bon accord entre experience et théorie est observé.

3. Effet de variation des composants

Dans le circuit , si on divise par 10, on trouve que est divisé par 10 (car )

Le diagramme de Bode est donc décalé vers la gauche d’une décade :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 17

4. Circuit RC : vérification de l’expression de

Démontrer expérimentalement que, pour le filtre RC, est bien proportionnelle à C.

Protocole :

Mesures et Interprétations :

TP Cours Filtres 1er ordre – Physique Chimie – TSI1 – Lycée Saint Nicolas Page 18

5. Circuit RL : vérification de l’expression de

Démontrer expérimentalement que, pour le filtre RL, est bien proportionnelle à L.

Protocole :

Mesures et Interprétations :