Review on Deep-Learning-based Cognitive...

12
1 XX 1 X ˇ g ˜ z ˘ Vol. XX, No. X 2017 c X ACTA AUTOMATICA SINICA Month, 201X ˘S@Onª 1, 2 S3* 1, 2 o;u 1, 2 op 1, 2 ` XŒU5, ¯˘S˜%m'la+=£@O+, XJ,Ø5Œ @U/U˘E˜9:, C˘Sk"mØŒ@O+˜#9. 'o (Cc5Œe˜u˘S@O˜?, 'Ol˘SŒL«!@.!˘S¿1O9 A^¡?1cV!', Ø¡Œ˘S@O]u?1o(!g". c ˘S, @O, ., , ¿1 ^, S3, o;u, op. ˘S@Onª. g˜z˘, 2017, XX(X): X-X DOI 10.16383/j.aas.2017.c160690 Review on Deep-Learning-based Cognitive Computing CHEN Wei-Hong 1, 2 AN Ji-Yao 1, 2 LI Ren-Fa 1, 2 LI Wan-Li 1, 2 Abstract With the advent of the era of big data and artificial intelligence, the research focus of machine learning has shifted from perception domain to cognition computational domain. How to improve the cognitive ability for big data is becoming a research hotpot of intelligence science and technology, in which recent deep learning has been expected to spark a new wave of research on cognitive computation. This paper summarizes the research progress of cognitive computation based on deep learning in recent years. And, comparison and analyses of recent progress in deep learning and cognitive computation are presented at the view of three aspects, that is, deep learning data representation, cognitive models, parallel computing and its applications in the big data environment. Finally, some challenges and development trends of cognitive computation based on deep learning for big data are investigated to come forward with future research. Key words Deep learning, cognitive computation, models, tensor, parallelism Citation CHEN Wei-Hong, AN Ji-Yao, LI Ren-Fa, LI Wan-Li. Review on Deep-Learning-based Cognitive Computing. Acta Automatica Sinica, 2017, XX(X): X-X @O(Cognitive computing, CC)u[ <MO¯X<U, §·ˇL<g, p9˘S, ˇßüla. Œ¥«, ¢y§a !P`!˘S§@˜ [1] . XŒ 5, ·LŒ£@OH5# ¯. d, Œ5!«a!E, L<M@U, Xk/Ø Œ@, øD@O5ª] [2] . @O·Ø#UXA:V). l ıU¡, @X<a,@U, U ´vFˇ 2016-10-10 ^Fˇ 2017-06-22 Manuscript received October 10, 2016; accepted June 22, 2017 I[g,˘˜7(61672217, 61370097) Supported by National Natural Science Foundation of China (61672217, 61370097) 'I?? XXX Recommended by Associate Editor XXX 1. H˘&E˘§˘ 410082 2. i\O H:¢¿ 410082 1. College of Computer Science and Electronic Engineering, Hunan University Changsha 410082 2. Key Laboratory for Embedded and Network Computing of Hunan Province Chang- sha 410082 /ØŒuy!n)!n!ßüA @? [3] . @O·n)˘SK, ˘SU·@X, AO·3cŒ , l˘SŒ£5·L. Cc5, ˆuO¯M5UJ,OEu, ˘S(Deep learning, DL)«#¯˘ S{, /Œ@O˜9: [4] . ˘SˇL˜uL«ı¯˘S ., Œ, ˘Sk^A, JO!'aO(5 [5] . ˘SV g˘S, ˘S\E,£, §·² ˘S{» [6, 7] . ˘S@O, ·˜ u˘S{Œ¥d, O(! g£, J,ØŒ@U [8, 9] . ˜ u˘S§SAlphaGoˆY ² [10] .

Transcript of Review on Deep-Learning-based Cognitive...

Page 1: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

1 XX ò 1 X Ï g Ä z Æ � Vol. XX, No. X

2017 c X � ACTA AUTOMATICA SINICA Month, 201X

�ÝÆS@�O�nã

��÷1, 2 S3�*1, 2 o;u1, 2 o�p1, 2

Á � �X�êâÚ�U����5, ÅìÆS�ïÄ­%®m©la�+�=£�@�O�+�, XÛJ,é�5�ê

â�@�U室��U�Æ�Eâ���ïÄ9:, �C��ÝÆSk"mé�êâ@�O�+��ïÄ#9�. �©o

(Cc5�êâ�¸eÄu�ÝÆS�@�O�ïÄ?Ð, ©Ol�ÝÆSêâL«!@��.!�ÝÆS¿1O�9Ù

A^��¡?1c÷V¹!'�Ú©Û, é¡��êâ��ÝÆS@�O��]ÔÚuЪ³?1o(!g��Ð".

'�c �ÝÆS, @�O�, �., Üþ, ¿1

Ú^�ª ��÷, S3�, o;u, o�p. �ÝÆS@�O�nã. gÄzÆ�, 2017, XX(X): X−X

DOI 10.16383/j.aas.2017.c160690

Review on Deep-Learning-based Cognitive Computing

CHEN Wei-Hong1, 2 AN Ji-Yao1, 2 LI Ren-Fa1, 2 LI Wan-Li1, 2

Abstract With the advent of the era of big data and artificial intelligence, the research focus of machine learning has

shifted from perception domain to cognition computational domain. How to improve the cognitive ability for big data

is becoming a research hotpot of intelligence science and technology, in which recent deep learning has been expected

to spark a new wave of research on cognitive computation. This paper summarizes the research progress of cognitive

computation based on deep learning in recent years. And, comparison and analyses of recent progress in deep learning

and cognitive computation are presented at the view of three aspects, that is, deep learning data representation, cognitive

models, parallel computing and its applications in the big data environment. Finally, some challenges and development

trends of cognitive computation based on deep learning for big data are investigated to come forward with future research.

Key words Deep learning, cognitive computation, models, tensor, parallelism

Citation CHEN Wei-Hong, AN Ji-Yao, LI Ren-Fa, LI Wan-Li. Review on Deep-Learning-based Cognitive Computing.

Acta Automatica Sinica, 2017, XX(X): X−X

@�O�(Cognitive computing, CC) u�[

<M�O�ÅXÚ�<ó�U, §´ÏL<�g,

�¸��p9ØäÆS, �ÏûüölØÓa.�

°þêâ¥�«���É, ±¢yØÓ§Ý�a

�!PÁ!ÆSÚÙ§@�¹Ä[1]. �X�êâ�

���5, ´L�êâÚ�£�@�O�H5#

�Å�. �dÓ�, êâ�5�!«a!�ÝÚE,

ÝÑ���L<M�@�Uå, XÛk��¤é

�êâ�@�, ù�DÚ@�O���5ã�]

Ô[2].

@�O�´é#���UXÚA:�V). l

õU�¡þ, @�XÚä�<a�,@�Uå, U

ÂvFÏ 2016-10-10 ¹^FÏ 2017-06-22Manuscript received October 10, 2016; accepted June 22, 2017I[g,�ÆÄ7(61672217, 61370097)Supported by National Natural Science Foundation of China

(61672217, 61370097)�©I??� XXXRecommended by Associate Editor XXX1. �H�Æ&E�Æ�ó§Æ� �â 410082 2. i\ª��äO��H�­:¢�¿ �â 4100821. College of Computer Science and Electronic Engineering,

Hunan University Changsha 410082 2. Key Laboratory forEmbedded and Network Computing of Hunan Province Chang-sha 410082

ÑÚ�¤éêâ�uy!n)!ín!ûü�A

½@�?Ö[3]. @�O�´)ûn)ÚÆS�¯K,

ÆSUå´@�XÚ�'�, AO´3�c�êâ

��, �øÆS�êâÚ�£�5�´L. Cc5,

�ÃuO�ÅM�5U�J,Ú�O�Eâ�uÐ,

�ÝÆS(Deep learning, DL)���«#�ÅìÆ

S�{, ®¤��êâ��@�O��ïÄ9:�

�[4]. �ÝÆSÏL�ïÄuL«�õ�ÅìÆS

�., Ôö°þêâ, ÆSk^A�, ±��J,£

O!©a½ýÿ�O(5[5]. �ÝÆS�±��V

gÆS, ÆS��\E,��£, §´�� ²�ä

ÆS�{�­�â»[6, 7]. �ÝÆS@�O�, ´Ä

u�ÝÆS�{�÷êâ¥�d�, ±���O(!

���g��£, J,éêâ�@�Uå[8, 9]. Ä

u�ÝÆS��Ú§SAlphaGo®����ÚÃY

²[10].

Page 2: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

2 g Ä z Æ � XXò

ã1 �ÝÆS@�O�«¿ã

Fig. 1 Diagram of deep learning cognitive

computing

8c, ���ÝÆS@�O�L§Ì��¹

n��¡: �ÝÆSêâL«!�ÝÆS@��

.!�ÝÆS¿1O�, �©[nã�n��¬, X

ã1¤«. @�O��8I´lÑ\êâ¥ÏL�.

ÆSÚp5UO�¢y©a!n)�@�¹Ä. �

êâ�¸e, êâäk�þ!õ�5!É�5�A

�, XÛk�L«êâò��K�@��.�ïá

±9@�O���J, êâL«´�ÝÆS@�O

��Ä:. �DÚ�f��ä�', ���ä�.ä

k�r��ÆSUå, Ð��ÝÆS@��.òU

��Ð�@��J, �.´'�. �X�êâ8��

cO�, êâE,õC, ±9�Ý�.�E,, @�

�{?n�´NPJ¯K, üÅO�Uå�ØU÷v

�ÝÆSÔö�I�, p5U¿1O�¤�¢y�

ÝÆS@�O���æ.

du�ÝÆS@��{ÚO�Uå�â», �

ÝÆSiå@�O�+���g�·. 8c, IS

�ÝÆS�ïÄÅ�kõÔõ�Æ!�A|��

Æ!d"4�Æ!Ý��Æ!�^ïÄ�!Google!

IBMïÄ�!zÝúi�, ®ò�ÝÆS¤õA^

uO�ÅÀú[11]!Ã�N£O[12]!ã�Ú�Ñ£

O[13]−[15]!Ѫ?n[[16, 17]]!�ÂL�©a[18]!�

a©Û[19]!g,�ó?n[20, 21]!Uuy#�Ô�

zÆ©f©Û[22, 23]�õ�+�. �ÝÆS|^��

²�äÆSÑp�Ä�A�, ù«ÆSUå��

M�ÆSL§�q, ´@�XÚ�­�|¤Ü©, ®

���X�â»5�?Ð, �$^�ÝÆS?1

@�O��ïÄE?uÐ?�ã, �ÝÆSòé@

�O��)���K�. �u�êâ�¸e�ÝÆ

S@�O��­�ÆâïÄ¿Â�A^d�, �©

lêâL«!�ÝÆS�.9`z!�ÝÆS¿1

O���¡o(y�ã�ÝÆS@�O��ïÄ?

Ð.

1 �ÝÆSêâL«

õ�5���êâ�­�A���§�¹�þ

É�!kØÓ©ÙÚE,'X��êâ®Ø2´�

�½���. ��, õ���p�êâ�5�~�,

ùêâ^DÚ�ÝL«ØU�.zpÝ��5

©Ù, �N´¿�k^�p�(�&E. , , �Ý

ÆS�äkáÚå�A:´§�ÆSUå. 1962c,

Rosenblatt�ÑͶ�ÆS½n: <ó ²�ä

�±Æ¬§�±L��?ÛÀÜ[24]. lù�½n�

±wÑ, <ó ²�ä�L�Uå��/��§

�ÆSUå. Ïd, XÛk�L«�«a.êâ¤�

�êâ�¸e�ÝÆS@�O�ïÄ�­�SN�

�[25]. lêâ�ØÓA��Ý, êâ�©�ü��

L«Úõ��L«; lêâ��;/ª�Ý, êâ�

©��þ!ÝÚÜþL«. �!Ì�0�õ��

êâL«ÚÜþêâL«�{.

1.1 Äuõ���êâL«

?n�êâõ�5�'�´êâ8¤[26, 27]. �

é�êâõ�5A:, Ngiam�[28]JÑõ��ê

âL«��ÝÆS�{. T�{£ã���

�A�ÆS��Ýg?èì(�, ¦^ü���

�Ñ\, ÏL8¤ÑÀªêâÆSL«, ¦^�

Ýg?èì(�5Ó¼ü����m�“¥�”A

�L«. Salakhutdinov�[29]JÑÄuVÇ�õ�

�DBM(Deep boltzmann machine, �ÝÀ�[ù

Å), T�{Äk3õ��Ñ\�éÜ�m½Â�

�VÇ�Ý, DBM�z����êâ�ï��Ò

ªRBM(Restricted boltzmann machines, É�À

�[ùÅ), ,�^½Â�d3CþG���L«,

5ÆSõ���k�A�L«. ù«VÇ/ªUò

¿����&El^�VÇ¥æ��Ö, 3A�Æ

S�ã, õ���ÝÆS'�k����UÆ��

�A�.

��Ð�õ��ÆS�.I�÷v: (1) 3L«

�m��q5Û¹éA“Vg”��q5; (2) éÜL

«3"y,���¹e�N´¼�, =3�Ñ�

½þêâ�¹e, W¿¿�����´�U�. õ�

��ÝÆS�.��3ÏL�IPêâ�õ��Æ

Sü��L«ÚÆS���êâL«�¡�J�Ð.

�êâ�¸e, Ñ\�É�êâ�¹õ���, z�

��kØÓ�L«Ú'X(�. ~X, ©�²~L«

�lÑDÕ�ücOê�þ, ¦^ký¢�ÚÈ�

Ý���rݽA�Ä�ì�ÑÑ5L«ã�. ù

��õ��êâL«Juuy�3uØÓ��$�

A��m�pÝ��5'X, �'uy�Ó��Ø

ÓA��m�'X�J, l I��ïÚ��êâ

L«�{.

1.2 ÄuÜþ�êâL«

õ���ÝÆS�.3KÜ��L«�A��

c, ©OÕá/lü���ÆSA�, §��ÑÑ\

Page 3: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

XÏ ��÷�: �ÝÆS@�O�nã 3

êâ�m¥É�êâ���5'X, ��ØU¿©

ÆSêâ¥�k^A�. ÄuÜþ�êâL«�{

ØÓuõ��êâL«, §±Ú��ªë�ÚL«

�«É�êâ, U�ïÚ��êâL«�.z�ê

â�p�'X[30]−[34]. Kuang�[31]JÑÄuÜþ

�êâL«�{9Ù?nµe. êâ?nµe�¹

Ê��¬: êâÂ8�¬!êâÜþ�¬!êâü

��¬!êâ©Û�¬ÚêâÑÖ�¬, Xã2¤«.

êâÂ8�¬KIÂ85gØÓ+���«a.�

�©êâ, XѪ!Àª!XML©�!GPSêâ�.

ùêâÏ~�(�z!�(�z½�(�z, v

kÚ��êâ�ª, ÄuÜþ�êâL«��ïÚ

��êâL«�.Jø#g´. ÄuÜþ�êâ

L«�{�: Äk�âêâ�Щ�ª)¤ØÓ�

ê�fÜþ, ,�KÜ�fÜþ¤Ú��ÜþL«

�..

ã2 ÄuÜþ�êâL«Ú?nµe

Fig. 2 Tensor-based data representation and

processing framework

(1) ÄuÜþ�êâ�.

��/§�m!�mÚêâÑÖ�Éö�êâ

�Ä�A�, Ïd, ½ÂÄuÜþ�êâ�.�:

T ∈ RIt×Is×Iu×I1×···×Ip (1)

ª(1)¥(P + 3)� Ü þ � ¹ ü Ü ©, � ½ Ü

©RIt×Is×IuÚ�*ÐÜ©RI1×···×Ip§Üþ¥It!Is!

Iu©OL«�m!�mÚ^r. 3Üþ�.¥, Üþ

��L«êâA�, É�êâéAÜþ��L«õ

«A�, ¦^Üþ*Ðö�¦É�êâ�A��6

uÜþ�.��½Ü©.

(2) Üþ*Ðö�

b�A ∈ RIt×Is×Iu×I1 , B ∈ RIt×Is×Iu×I2 , KÜ

þ*Ðö��:

f : A→×B → C,CIt×Is×Iu×I1×I2 (2)

ÏLª(2)�±�ѵÄkòÉ�êâL«¤$�f

Üþ§,�òÙ*ФÚ��p�Üþ"Üþ*Ð

ö�→×3�3��õ�5�Ó�§KÜ�Ó�Ü

þ"~X§fÜþTsub1ÚTsub2k�m�It−1, It−2,

Ù¥It−1 ∈ {i1, i2}, It−2 ∈ {i1, i3}, KIt−1→× It−2 ∈

{i1, i2, i3}.(3) Ú��ÜþL«�.

éu�(�zêâdu!�(�zêâdsemiÚ(

�zêâds§ÏLª(3)¢yÚ��êâÜþzö

�"

f : (du ∪ dsemi ∪ ds)→ Tu ∪ Tsemi ∪ Ts (3)

Üþ��L«¤�|/ª, ��£ã¤�*ÐÜ©

Ú�½Ü©. 3{zÜþ¤ü���.¥, SÜ�.

i\�n�It × Is × Iu�N�.¥, ÏLÜþz�

{, �.zÉ�êâ¤fÜþ, ,��\�ü��.

¥��Ú��Üþ.

3�êâA^¥, êâäkP{5!Ø(½5

�, ��;¤k�Ý�êâ¢Sþ´Ø�U�, ¼

�êâ¥�d�â´�­��. �êâC��~E

,�, I��k��ÜþO��{, X���Üþ�

�O, 5?n©ÙªO�!�;��5�Üþ. éÜ

þêâL«?1©)½�Ý~�´J,é�êâ@

��­�SN[35, 36]. Li�[35]¦^MapReduceµe

JÑTuckerÜþ©)��*ÐÚ©Ùª�{MR-

T. T�{&¢�êâ8�DÕ55��z¥m

êâ, ;��.ݦ, �Tucker©)�3?n

p�Üþ�¡���Ý/J¯K. Zhou�[36]ÄuÜ

þCP©)JÑ(¹�¯��{FFCP, ��¦Ü

þêâ�~DÕ, �´u�\ÛÜÂñ. Üþ©)�

{�pE,ÝÚÂñ�Ýú�¯K´òÙ$^u�

êâ©Û���´¶, Ïd, ïáå�êâ�¸eÚ

�!p��Üþ©)�{´��ïÄ��.

2 �ÝÆS@��.

�!Äk0��ÝÆSÄ�g�9;.��Ý

ÆS�., ,�Ú\ÄuÜþ��ÝÆS�., ��

'�Ú©Û�ÝÆS�.`z�{.

Page 4: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

4 g Ä z Æ � XXò

2.1 �ÝÆS

�ÝÆS�Vgå u<ó ²�ä�ï

Ä, @3þ­V90c�����JÑõÛ�

²�ä�.[37]−[39], g2006cGeoffrey Hinton�3

5Science6þJÑÄu�Ý&?�(Deep belief net-

work, DBN)��iÒÔö�{§¢y�ÝÆS

3ÅìÆSïÄ¥�­�â»[18]. �ÝÆS��

Ò´{ü�¬�õ�æU, §ÏLEÜõ�{ü�

��5�¬�¤ÆSL§[6]. �ÝÆS@��.X

ã3¤«, Ù¥, L0�Ñ\�, �ÑÑ�, w�ë��

���m���, L1 ∼ Ln−1�Û�Ü©, Û��Ñ

\/ÑÑ�mÏL��5¼ê¢yC�.

ã3 �ÝÆS���.

Fig. 3 The deep learning cognitive model

DNN´c" ²�ä½äkõÛ��õ�a

�ì, ÙO�L§�¹c�DÂO�Ú��DÂO

�. lÑ\�m©, c�DÂO��: é1l��z�

ü�j, Ù�y(l)j = f(z

(l)j ), z

(l)j =

∑iwij

(l)x(l)

i+ b(l)

j,

Ù¥i��H{¤k1l�ü�, 0 < l < n, x(l)

i�

1l�Ñ\, b(l)j �1l�1j�ü�� ��. ��/,

$���ÑÑ��p���Ñ\, =x(l+1)i

= y(l)j .

��DÂO�æ^óª{K, òØ�FÝlp�Ñ

Ñü�D4�$�Ñ\ü�, ÑÑü��FÝÏL

é��¼ê¦���. b�ÑÑü����¼ê

�J = 0.5(y(l) − t(l))2, Ù¥t(l)�Ï"ÑÑ�, K:

∂J

∂z(l)=

∂J

∂y(l)· ∂y

(l)

∂z(l)= (y(l) − t(l))f ′(z(l))

lÑÑü��§�c��Û�, 1(l− 1)�z�

ü�i�Ø�FÝO��:

∂J

∂y(l−1)

i

=∑

j

∂J

∂z(l−1)· ∂z

(l−1)

∂y(l−1)

j

=∑

jwij ·

∂J

∂z(l−1)

Ù¥, j��H{¤kÑÑ�ü�. �daí, ��

�Ñ\��Ø�FÝ ∂J∂xi

. DNN��æ^�ÅFÝ

eü(SGD)?1Ôö. ���z��¼êJ, z�

ëêwijÚbjÑIЩz���Å�¿?1�ES

�����Âñ. SGD�{�z�gS�¥éë

êwÚb��#O��:

w(l)ij

= w(l)ij− α ∂J

∂w(l)ij

,

b(l)j

= b(l)j− α ∂J

∂b(l)j

Ù¥, α�ÆSÇ.

�ÝÆS�.¥�z��¬C�$��L

«¤p��L«, Å�EÜvõ�C�, ±Æ

��~E,�¼ê. �â(�ØÓ, �ÝÆS

�.�©��Ý ²�ä(Deep neural network,

DNN)[6]!�Ý&?�DBN [8]!ÒªgÄ?è

ì(Stacked auto-encoder, SAE)[40, 41]!�ÝÀ�[

ùÅDBM[42]!òÈ ²�ä(Convolutional neural

network, CNN)[14]!48 ²�ä(Recurrent neu-

ral network, RNN)�. éuÄu�ÝÆS�@�,

p�L«�±Or,�¡�Ñ\, ³�Ø�'�C

þ. ~X, ±ê|L«����ã�, 3L«�1�

�£ãã��A½ �½��´Äk>�3, 1�

�uÿd>�¤�¬, 1n�|Üù¬�¤ÔN

�,�Ü©, /¤���¬, ��|Üù�¬¤�

��N, �EÑ�uÿ8I[19]. �ÝÆS�A��

ØI�<ó�O, §�ÏLXÚÔögļ�Ñ\

��gA�, z��¬ÏLC�§�Ñ\5O\L

«�ÀJ5ÚØC5[43]−[45].

�âÔöêâ´ÄkIP, �ÝÆS�©�k

iÒ�ÝÆSÚÃiÒ�ÝÆS. kiÒ��ÝÆ

S�.Ï~Ôö�k�, �ï�(¹, �·ÜE,

XÚ�à�àÆS, ~XDNN!CNN. �ÝÃiÒ

ÆS�.�´n), �N´i\+��£Ú?nØ

(½5¯K, �éE,XÚJu?níä�ÆS, ~

XDBN!DBM!RNN!SAE. DBN�±k�¦^

�I5êâ, w���VÇ)¤�., ÏL�)ªý

Ôö�{`z�.���, k�)û@�O�¥�

L[ܽj[ܯK, Ù�mE,Ý��.��Ú

�ݤ�5'X. ¦^ýÔöÐ�DBN5Щz�

.��, ~~¬��'�ÅЩz�{�Ð�(J.

2.2 òÈ ²�ä

òÈ ²�ä´|^ã��ÛÜA5Ôöê

â!�E��Ü©ëÏ�ä!Û�æ^òÈØ�ª

wÄO�� ²�ä, ÙØ%g�´: ÛÜë�!�

���!�m½�mæ�. òÈ ²�ä��?(

��)êâÑ\�!òÈ�!��5C�!³z/e

æ��Ú�ë��, ;.��ÝòÈ�(�LeNetX

ã4¤«. òÈ�^5uÿ5gþ��A��ÛÜë

�, ³z�^5KÜ�Â��qA�. òòÈ!��

Page 5: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

XÏ ��÷�: �ÝÆS@�O�nã 5

5!³z���½n��ã?1æU, ,�k�õ

�òÈÚ�ë��, ÏL�ä��DÂFÝ, #N¤

kòÈØ|�����Ôö.

ã4 �ÝòÈ��.LeNet

Fig. 4 Deep convolution network model of

LeNet

CNNÔöaqDNN, äNL§�¹ü��ã:

�cDÂÚ��DÂ. 1��ã§Äk, l��¥�

����(X, t(l)), òXÑ\�ä; ,�²Lõg�

òÈ!��5C�!³zO�Ú�ë�O�, ��

¢SÑÑy(l). 1��ã, ÄkO�¢SÑÑy(l)��

A�Ï"ÑÑt(l)��; ,�, U��zØ��{�

�DÂN���[34]. òÈ�¥�ü�±A�ã/ª

L«, z�A�㥦^�¹��8�òÈØ£q

¡LÈì¤|ë�z�ü��c��A�ã�ÛÜ

¬, ,�ÏLReLU��5C�D4ÛÜ��Ú. b

�Ñ\A�ãL«�X, òÈØ�K[m,n], KÏL

òÈO�ÑÑ�A�N�y�:

yi,j = (X ∗K)i,j

=∑m

∑n

Xi+m,j+nKm,n(4)

Ù¥, ∗���lÑòÈ$�. ¤¢³z, Ò´ã¡

�eæ�. CNN�³z�{k: Max pooling(��

³z), Mean pooling(þ�³z), Overlapping(­

Uæ�)�, Ù¥�²;�´��³z. ±ã4�~,

Ñ\���32*32�Ã�Nã¡, ÑÑ�©a(J,

=0-9�m���ê. C1�òÈ�, ÀJ6�5*5�

òÈØ, Ú��1, �±��6�A�ã, z�A�

ã���32-5+1=28. S2�eæ��, ¦^��³

z�{, ³���2*2, ��uéC1�28*28ã¡?

1©¬, z�¬���2*2, �z�¬����, �

�6Ü14*14���ã¡. C3�òÈ�, Ó�ÀJ

òÈØ���5*5, Ú��1, ��#�ã¡��

�10*10. ù16Üã¡�z�Ü, ´ÏLS2�6Ü

ã¡�òÈØ?1òÈ$��?1\�|Ü�

�. S4ÓS2, æ^2*2���³z¬?1��³z

O�, ��16Ü5*5���ã¡. C5UY^5*5òÈ

Ø?1O�, ��1*1���ã¡, =�� ²ü

�. ^120�òÈØ��120�A�ã, éA120�

²ü�. ù� ²ü��, �A�^�ë�

�DNN?1?n.

òÈ ²�äæ^3ØÓ ����Ó��,

3��ã��ØÓ �uÿ�Ó�ª, ÏLA�ã

�òÈØ�òÈö���~�ëêê8, {z

ÔöL§. ��A�ã¥�¤k(J���Ó�ò

ÈØ, �´, ��òÈØ�UJ���A�, �J�

õ�A�ÒI�õ�òÈØ, 3Ó��¥�ØÓA

�ã¦^ØÓ�òÈØ. ��³zü�l¬¥�Ñ

\, ù¬ÏLØ�L�1½��£Ä~�£ã

��Ý, é��£ ½C/MïØC5. ã��±

����Ñ\, ;�DÚ£O�{¥E,�A�

Ä�Úêâ­�L§; ����¦�ä(��aq

u)Ô ²�ä, ~���êþ, ü$�ä�.

�E,Ý. òÈ ²�ä�±?nE,�¸, ín5

Kز(�¯K, äkûÐ�N�Uå!¿1?n

UåÚgÆSUå, ù«�ä(�é²£!'~ 

�!���C/äkpÝØC5. 8c, òÈ ²�

ä®�þA^��Ñ!ã�!¡ÜÚó£O�+

�.

2.3 Òªg?èì

Òªg?èì´�a;.�ÃiÒ�Ý ²�

ä, ÙÑÑ�þÚÑ\�þÓ�, ÏLÛ�ÆSN�

�.ëê, ��z����, ÑÑØÓ�L«, ù

L«=�A�. SAE�Ì��¬´g?èì, §d?

èìÚ)èì|¤§Xã5¤«. g?èìÄk²L

?èìòÑ\xN��Û�, L«�y; ,�y²L)

èìq�gN��Û�, L«�z, ÏL?èìÚ)

èì�­�Ñ\. ?èì¼ê/ª�:

y = f(x) = sf (Wx+ b) (5)

Ù¥, sf���5-¹¼ê, Ï~�Sigmoid¼

êsf (x) = 11+e−x , b�?èì ��þ, W���

Ý. )èì¼ê/ªz�:

z = g(y) = sg(W’y + b’) (6)

Ù¥, sg�)è-¹¼ê, Ï~�ð�¼ê

½Sigmoid¼ê, b′)èì ��þ, W

′��

Ý. g?èìÏL��z8I¼êÔ

öëê{W, b,W ′, b′}, 8I¼ê�: JAE(θ) =∑x∈D L(x, g(f(x))), Ù¥L��g�Ø�½���.

ã5 g?èì(�

Fig. 5 The structure of the auto-encoder

���L[Ü, \\��P~�Kz��­

�Ø�¥: JAE+wd(θ) =∑

x∈D L(x, g(f(x))) +

Page 6: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

6 g Ä z Æ � XXò

λ∑

ij w2ij, Ù¥λ��ëê§^u���KzrÝ.

ù«\\�Kz�SAE¡�DÕg?èì(SParse

Auto-Encoder, SPAE)[46]. SPAEæ^�8�{Æ

S, �mE,ÝÚ�mE,Ýþ��5, ·^u�

5�êâ�ÆS. ÏLDÕ5�å¦���C

�0�“dropout”�{Ó���5�ý, ù«�ýò

3Ñ\êâ½Û�¥Ú\. ~X, Kuang�[47]£ã

��Dg?èì(Denoising Auto-Encoder, DAE),

\\�ÅD(�Ñ\êâ¥. AlainÚBengio|^�

g�­�Ø�ÚpdZ6D(ò(J�z�?¿

ëê�?)èL§[48]. �D(oþ�Cu0�, �.

�±�(�O)¤êâ�©Ù.

2.4 48 ²�ä

DÚ ²�ä�Ñ\ÚÑÑ´�pÕá�,

k?Ö��YÑÑ�c�ã�A�´�'�,

l Ú\äk“PÁ”Vg�48 ²�ä[49].

RNN´�Ý�.¥�Û�!:½�ë�¤��<

ó ²�ä. RNN´���~r��Ä�XÚ, Û

��ÑÑ�±�;3�;ì¥��,��Ñ\, �

��DÂ�FÝ3z����Ú½¥Q�UO\,

��U~�. RNN��9�Ðm, �w�´�~�

Ý�c" ²�ä, Xã6¤«. 3Û�ü�^!

:sL«, 3t���st, Û�U�5gc�Ú½Ù§

²��Ñ\. Uìù«�ª, 48 ²�äUN

�Ñ\S�xt¤ÑÑS�ot, z��ot�6u¤kc

�g�xt′ , Ù¥t′ ≤ t. 3z�Ú¥, RNN���

Ó�ëêU!V!W .

ã6 RNN(�

Fig. 6 The structure of RNN

Visin�[50]JÑReNet(�, T(�¦^o

�RNNO�CNN¥�òÈ�, lo���×£$

�A�: le þ!lþ e!l��m!lm

��. �CNN�', RNN¥�48�(�§�

z��A�-y���ã��A½ �?1-

y. ���.Ôö¥, �c�ÑÑØ=�6u

L��A�, ��U�6�5�A�. duI

ORNN �Ñ�5�þe©&E, Weninger�

JÑV�RNN(Bidirectional RNNs, BRNN)�

.[51]. BRNN�z�Ú/z��m:��õ�(�,

z��ÔöS��cÚ��´ü�RNN, ë�XÓ

��ÑÑ�, ù«(��ÑÑ�z�!:Jø��

�L�Ú�5þe©&E.

RNN�U|^���.¥�þe©&

E, �PÁNþk�, N´¿��ë�È�

�&E. Hakkani-Tjr�JÑLSTM(�áÏP

Á)�RNN�{[52]. LSTMÏL“�”4&EÀJ

5ÏL, )û&E�Ï�6'X�¯K. 8

cLSTM�A«CN: O\“peephole connection”,

4����ÉG��Ñ\; ¦^ÍÜ�#P�ÚÑ

\�, Ó��ÑÏL½¿ï�ûü[52, 53].

2.5 ÄuÜþ��ÝÆS�.

�êâ�¹�þ�(�z!�(�zÚ(�

zêâa., õ��êâL«ÚÜþêâL«�

Ñ�êâ@��L«�{, �XÛïáÚ���

ÝÆS�.´�êâ@��J:. Yu�3DNNÄ

:þuÐ�ÝÜþ ²�ä(Deep tensor neu-

ral network, DTNN)[54]. DTNN|^VÝK�O

�DNN¥���½õ��, z��Ñ\�þN�¤

ü���5f�mÚ��Üþ�, ü�f�m�p

ÝK5éÜýÿ�ÝÆS�e��. Deng�JÑ

Üþ�ÝÒª�(Tensor deep stacked network, T-

DSN)[55, 56], T-DSN�z��¬�¹ü�Õá�Û

�, ü�ÕáÛ�?1È$���m�Û�, �)

�¹ü�Û��¤k�U¤é���¦È���þ,

ù�ÜþC¤Ý. ÏL�ï��5��m�Û

�, #Np���A��p.

Zhang�ÄuÜþ�L«�., JÑÜþg

?èì(Tensor auto-encoder, TAE)�Üþ�ÝÆ

S�.[57]. TAEæ^Üþål, Ø´î¼ålÚ

�����­�Ø�¥�²þØ�²�Ú, 5-y

¥mL«Ó¼¦�Uõ���p��êâ©Ù: �

O3Üþ�m¥�p�BP�{(HBP)ÔöTAE¥

ëê; ÏLæUÜþg?èìïáÜþ�ÝÆS�

., 5ÆS�êâ¥�õ�A��. b�X�Ñ\

Üþ, f�Sigmoid¼ê, ©OL«Û��Ñ\ÚÑ

Ñ��Ñ\, a(2)j1j2···jn(1 ≤ ji ≤ Ji, 1 ≤ i ≤ n)!

z(3)i1i2···in(1 ≤ ij ≤ Ij, 1 ≤ j ≤ n)©OL«Û��-

yÚÑÑ��-y, KÜþg?èì�.L«�:

z(2)j1j2···jn = W(1)

α ·X + b(1)j1j2···jn

(α = jn +∑N−1

i=1 (ji − 1)∏Nt=i+1 Jt)

(7)

a(2)j1j2···jn = f(z

(2)j1j2···jn) (8)

Page 7: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

XÏ ��÷�: �ÝÆS@�O�nã 7

z(3)i1i2···in = W

(2)β · a(2) + b

(2)i1i2···in

(β = in +∑N−1

j=1 (ij − 1)∏Nt=j+1 Jt)

(9)

�J��êâA�, æUÜþg?èì/

¤Üþ�ÝÆS�.(Stacking Tensor Auto-

encoder, STAE)[58]. STAE±Òªg?èìSAE�

Ó��ªÐ©zÜþ�ÝÆS�., ¦^ÆS��

1k�L«��1k + 1��Ñ\, =3ck�Ôö�

�Ôö1k+ 1�. STAE�¤ýÔö�, ¦^§��

p�ÑÑL«��iÒÆS�{�Ñ\, ÏLN`

�����ëê. ÄuÜþ��ÝÆS�.UL«

Ú?n�5�É�êâ, U^u�êâ�A�ÆS,

�´ÆS�5�É�êâ�¦�õ�ëê. XÛé

ÄuÜþ��ÝÆS@��.?1k��Üþ©)

±~��.ëê½ü$�{E,Ý, ±9éÜþ�

.@�O�¿1z5\�Äu�ÝÆS�@�, �

�?�ÚïÄÚ&?.

2.6 �ÝÆS�.`z

DNN¥õÛ� ²��¦^, Ø=wÍJp

DNN�ï�Uå, ��)Nõ�C�`�

��. =¦ëê3ÆS¦^�ÅFÝeü(SGD)�

{, ÆSL§¬�\ÛÜ�`, �duÑyjZ�

ÛÜ�`VÇ'�.¥¦^�ê ²���$, ¤

±�N�JDNNE,éÐ. éuDNNÆS�pÝ�

à`z¯K, du`z´lЩ�.m©�, ¤±

�Ð�ëêЩzEâò¬�EÑ�Ð��.. �

êâ�¸e, ïÄö�3�ï�ÝÆS�.�Ó�

���.`z�¡�ó�, Ì��)��5C

�[59, 60]!��Щz[61]−[63]!FÝeü[64, 65]!5

U`z[66, 67]�.

��5C�. SigmoidÚtanh´DNN�~^�

��5ü�, ���äü�3ü���Ñ�C�

Ú�, FÝCzé�, ���ä�ÆSC�éú.

JaintlyÚHinton[68]��ÑSigmoidü��":,

JÑ�5?�ü�(ReLU). 3¤k�¥�¿�Ñ

�Ü©Û�ü�, ù«�{U��LÝ[Ü, ¼�Ð

��J[44]. kReLU��5� ²�䮲y²'

IO�Sigmoidü��¯, ®�DahlÚMaas¤õA

^3�c®þ�Ñ£Oþ[69, 70]. Salakhutdinov�

JÑ3ReLU�ä¥é��`z�Path-SGD�

{[61]. T�{Øy ���éAÛ5��ØC5,

ÏL­#�ÄÜ·�AÛ(�5`z��, ØK�

�äÑÑ. ��`z�{�AÛA5!g·AÚ�!

Äþ�(Ü, 3�5��äþ?1��5��Ôö,

ò¼��Ð��J. Miao�[71]JÑ“��ÑÑ”�

{Maxout, =3�|�½Ñ\��þ?1��z

ö�, T�{�CNN¥���³zaq. Zhang�

òMaxoutü�í2�üa: 1�«Soft-maxoutò

�5���zö�O��Soft-max¼ê; 1�«p-

normü�¦^��5�C�[72]. ¢�L², p-

normü�¦^p=2�, 'Maxout!tanhÚReLUü

��JÑÐ.

Srivastava�[73]JѦ^dropoutL§, äNö

�Xe: éz�Ôö¢~, z�Û�ü�Ñ�Å/

±�½VÇ£Xp=0.5¤��Ñ, ��ئ^ 

�DNN��, )è�~�¤. Dropout�Kz`

:: ÔöDNNL§¦Û�ü�=Ég�-y�K

�, Ø�6Ù§ü�, ¿Jø�«3ØÓ�ä¥

¦Ù²þ�.��{. ù`:3Ôöêâk�½

ö�DNN�ä��'êâ���õ�, �J��²

w. Dahl�òdropoutüÑÚReLUü��å¦^,

�=3�ë��DNNp�A^¥¦^dropout[65].

Deng�[74]òdropoutA^�òÈ ²�ä�¤k

�, �)$��òÈ�Ú³z�!p���

ë��, ¿uyCNN¥�dropoutÇI��Ìü

$. DahlG�¦^ReLU+dropout3DNNþÔö,

'Sigmoidü��éJp4.2%, 'GMM/HMMXÚ

U?14.4%[65]. ¦+dropout��LÝ[Ü, k�

Ð�°�5, �3ÔöL§¥O\D(!ü$

ÆS�Ç. �#dropout�ª���XÛ(½, ±

9é3�5�êâþÔö�JXÛ, ùÑ´'

udropoutI?�ÚïÄ�¯K.

3 �ÝÆS¿1O�

¿1O�´�r���5� E,�O�¯K,

©)¤eZ�5����±Aé�f¯K, ,�^

õ�?nì¿1/¦)ùf¯K, ±�ª¼��

¯K�¦)[70]. �êâ�¸e��ÝÆS@�O�

¿1z³371. 1�, �ÝÆS��ä�.E,,

Ôöêâõ, O�þ�. �Ý ²�äI�õ ²�

�[<��M, ²��m�ë�êþ�; z� ²

��¹êÆO�, I��O�ëêþ�; DNNI�

�þêââUÔöÑpO(Ç��.. 1�, �Ý

²�äI�|±��.. ~X, ÏLO\òÈ��L

Èìêþ±9�.�Ý�, ¼��Ð��.�þ. 1

n, �Ý ²�äÔöJÂñ, I��Eõg¢�.

�Ý ²�ä��.(�!�.Щz�ÑòK�

�ª�@��J. �ÝÆS@�¿1O�, ò4�/

\�@�XÚéêâ�uy!n)!ín!ûü�

@�. 8c, ®ZyÑNõ¡��ÝÆS�¿1O�

�{, �)GPU\�!êâ¿1��.¿1!O�

8+9Ù¿1A^[75]−[82].

Page 8: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

8 g Ä z Æ � XXò

3.1 GPU\�

��5�O�|±�Ý�., �Ó�I��Ñ

�þ�O�] . �ÃuGPU¯ØNX(�, §

S3GPUXÚþ�$1�Ý�éüØCPU J

,A��$�þZ�. 3�êâÔö|µe, |

^GPU5Ôö�ÝÆS�., �±¿©u�Ùp�

�¿1O�Uå, �Ì áO��m. 8c, �Ý

ÆSµe�¢y8¥3ÄuGPU�¿1. 3CUDA

GPU�Y¥, z�GPUk��p�°Úpò���

Û�;ì, ù«(�#N�-?¿1Ú�§?¿1.

GPU¿1­3'5êâ6, ��¡, ÏL=��ê

â¬~�RAMÚGPU�m�êâDÑ, ÏLþD¼

�¦�U���IPêâ, 3�Û�;ì¥�;g

dëê; ,��¡, ÏL�ïêâ¿1ÚÆS�#5

¢y¿1[75]. 2015cNvidiauÙ�ÝÆSGPUÔ

öXÚ, §�GPU\��ÝÆS^�!GPU\��

{¥ÚCUDA�ÝÆS�ä, �±ÏL�¯�E,

�.ÔöÚ�O5ME¿Ôö��!�O(��Ý

ÆS�., Jø\�`z��ÝÆSUå.

3.2 êâ��.¿1

lÔö�ªþ, �ÝÆS¿1�©�êâ¿1

Ú�.¿1. êâ¿1´�éÔöêâ��©, Ó�

æ^õ��.¢~, éõ�©¡�êâ¿1Ôö. �

�¤êâ¿1I��ëê��, Ï~d��ëêÑ

Öì5�Ï�¤. �.¿1ò�. ©¤A�©¡,

dA�Ôöü�©O±k, �Ó���¤Ôö. ��

� ²��Ñ\5g,��Ôöü�þ� ²��

ÑÑ�, �)Ï&m�. êâ¿1Ú�.¿1ÑØU

Ã�*Ð. êâ¿1�Ôö§S�õ�, Ø�Ø~�

ÆSÇ, ±�yÔöL§�²­; �.¿1�©¡�

õ�, ²�ÑÑ����þ¬:ìO\, �Ç�Ì

eü. Ïd, 8¤�.¿1Úêâ¿1�`³�´�

«~��Y.

ã7´CNN GPU�êâ¿1Ú�.¿1·Üe

�, Te�éo�GPU©�ü|, |Sü�GPU�

�.¿1, |m�êâ¿1. �.¿13O�L§¥

��ÑÑ�Úí�, êâ¿13Mini-batch(å�

���.�­, CNNêâ¿1Ú�.¿1µe®3

ã�£OA^¥®Ð�¤�, 3�&ã��Ö¥�

}ÁÙ¯õd3A^.

ã7 ÄuGPU�êâ¿1Ú�.¿1·Üe�

Fig. 7 The hybrid architecture based on data

parallel and model parallel

3.3 �ÝÆSO�8+9Ù¿1A^

�ïO�8+´\��ÝÆS�~^�Y,

XCPU8+!GPU8+½É�8+. CPU8+�

`³3u: |^�.�©Ùª�;!ëêÉÚÏ&

�A:, ���5�©ÙªO�¯�Ôö�8�.

CPU8+�Y·ÜGPUSJ±NB���., ±9

DÕë�� ²�ä. Google�ï�DistBelief, ´

��æ^CPU8+��ÝÆSêâ¿1Ú�.¿

1µe, ���.Ú�êâ8��ÝÆS©ÙªX

Ú�ÔöÚÆS �O, ¢y�ÅFÝeü�{

�¿1z, |±�Ñ£OÚã�©a�@�O�A

^[76]. ©z[76]¥ò��.©�¤144¬, ��Jp

Ôö�Ý.

(ÜGPU\�Eâ, �ïGPU8+�¤�\

��5��ÝÆSÔö�k�)û�Y. GPU8

+�ï3CPU-GPUÉ�XÚ�þ, æ^10Gbps�

p���äÏ&��kÐ��J. 3m �

«, Krizhevsky�uÙ�Cuda-Convnet, 2012c|

±ü�GPUÔö, 2014c|±õGPUþ�êâ

¿1Ú�.¿1Ôö. Jia�[77]Jø�Caffe^

�3CPUÚGPUþ¢y¯�òÈ ²�ä, ¦

^NVIDIA K40½Titan GPU3�US�¤oZ

�Üã¡�Ôö. 3ó�., Google�COTS

HPCXÚ�)16�GPUÑÖì8+, z�ÑÖì

��o�NVIDIA GTX680 GPUs, k4GB�;ì,

GPUÑÖì�mæ^Infinibandë�, dMPI��

Ï&[72]. �k�¦^�;ìÚGPUO�, ¢

yL§I�c[�OCUDAØ. ~X, O�Ý

¦Y=WX, Ù¥W´LÈìÝ, X´Ñ\Ý,

Coates�[78]©O|^ÝDÕÚÛÜaÉ�, Ï

Lé��Ó�aÉ�� ²�Ä�W¥��"�,

,��X¥�A���¦, düѤõ;���¦

��;�uGPU���;ì��¹. Facebook!z

Ý�(Üêâ¿1Ú�.¿1, ¢yõGPU��

ÝÆSÔö²�[79, 80]. 2014c, ��@�JÑ

Ä��ÝÆS?nìe�“»ÉV”, 2017cJÑõ

�¡ÅìÆS�“DaDianNiao”(�5\��ÝÆ

SCNNÚDNN[81, 82]. GPU8+3u�ü!:pO

�UåÄ:þ, 2¿©�Ó8+¥õÑÖì�m�

O�Uå, U?�Ú\��5�@�O�?Ö.

4 �ÝÆS@�O�A^

Äu�ÝÆS�@�ïÄNõg,&Ò�

©?�¤A5. 3©?(�¥, p?A�d$�A

�EÜ�¤. ~X, 3ã�¥, ÛÜ>�EÜ/¤

Page 9: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

XÏ ��÷�: �ÝÆS@�O�nã 9

¬, ¬|¤Ü©, Ü©|¤ÔN[5]. �q�A��

3u�Ñ!c!é!©��&Ò¥. 2012c, dÍ

¶�d"4�Æ�ÇAndrew NgÚ�5�O�º?

;[Jeff Dean�ÓÌ��Google Brain�8$^�

ÝÆSEâ¦�ÅìXÚUÆS¿gÄ£Oc[83].

¦�Äk|^�þ��IP�ã¡?1ÃiÒ�

ÝÆS, ÆS¼�Uk�L«�«ÔN�Ä�A

�; 3dÄ:þ, |^�þ�kIP�Ôöã��

±¯�ÆSÑÔN�.. 32012c�ImageNet¿

m¥, A^�ÝòÈ���¹5gWeb�z�ã�

�êâ8¥, TWeb�¹1000�ØÓ�a, XÚk

�¦^GPU!ReLUÚdropout5�z�{, ©a�

ØÇü$�4.94%. 2015c�^æ³ïÄ�A^�

�í��­�ÆSL§, ­½�DNN¥�&E6,

¢yã��½ !uÿ�©a, XÚ�ØÇ$

�3.57%[84]. 2015c, Ren�Äu�ÝÆSEâ, ¢

y��ÅìÀú+��A^, =éÜòÈ ²�

äÚ48 ²�ä5)¤ã�IK[85]. 3�Ñ£O

�¡, õ«�ÑêâéÜÔö�.[16]. �Ý ²�

ä�.ÏLÅ�Ôö, UJ��N<a�Ñ�5

�p�A�, é8I�Ñ£O�)È4��J.

�1�)û�Y�(Ü, Äu�ÝÆS�@�

O�Ul�êâ¥�÷Ñpd��ÀÜ, ¢yû�

A^. �ÝÆS@�L§, Ï~òÙw¤çÝ?1

Ôö. ���äÔö�¤, �±wßçÝ, �ÀzS

�L§¥z��A�ã�Cz. XÛ|^S�L§

¥�A�Cz5Æ\�ÆS, ü$O�¤�, ¦�¡

�CPS�1�A^´J:.

5 �ÝÆS@�O�uЪ³�g�

�ÃuGPU¯ØNX(��Ñy±9�O�E

â�uÐ, �ÝÆS±Ù(¹����.ÚêâL

«`³, 3�Ñ!ã�!©��@�O�+�CA

c��ã�¤õ, ù�ïÄÚ)û¢S@�O�

¯K�5#�g�. , , �Aéêâ��5�Ú

õ�5!�¡J,�êâ�@�Uå, ��3Nõ

���\&?�¯K:

(1) êâL«

�ÝÆS'DÚ�f�ÆSäk�Ð���5

L«Uå, �du°þÉ�êâ�E,5, XÛ�ï

Ú��êâL«5¿©ÆSêâ¥�k^A�, ´

�ÝÆS@�O�¥Ä�)û�¯K. �é��5

��ÜþO�¯K, �ÄòÜþ©)![£ÆS5

\��ÝÆS�.¥, éJ,¯K�@�´�«k

��ª.

(2) @��.

�ÝÆS@��.3ëêêþ�Lêâ:êþ

�äk�{���L�Uå. �éäN1�A^, X

Ûk�|^ÆSL§¥¼��Ä�A�5�Oäk

�rL�Uå����., �ÝÆS�rzÆS�

KÜò¤�ïá�þ?�ÝÆS�.�â»�, �

ÝÆS�çÝ�Àzk"mér<ó�U��.

(3) ¿1O�

�êâ�©ÙªO���;, ±9��5�

ÄuÜþ�ÝÆS�.�@�O�¯K, ¤��

5�É�¿1O����J:. lDÚ�üGPU,

�Google�É�¿1, 2�zÝ�õØGPU¿1,

�ÑSGDØU¿1�JK. , , ¡�k¢�5U

I¦�XÚ, XÛ��S�!�NÉ�õ?nì�

m�O�Uå\��êâ�¸e�@�, �ïp5

U��ÝÆS@�O�äk�©­��¿Â.

(4) �ÝÆS@�O�A^

8c, �ÝÆS@�O��A^¯K3u´Ä

u�Ý(�� ²�ä(a�ª�´êâA�L«

¯K. ä�k��£��UÆS�{U3¡é#?

Ö�'�#mu� ²�ä¬Ly��Ð!Ôö�

Ý�¯. 'X§ÄuGAN(Generative adversarial

networks, )¤é|�ä)�.§^�`DÑnØ5

&¢�Ý ²�ä, wBÅìÆSçÝ, U�Ð/n

)�ÝÆS��§l ��@�O���¦Ú8I.

�éA½+�§'Xð�CPS!¢�i\ªXÚ§

XÛïá���þO�5UÚN´��n)��Ý

ÆS@��., ¿÷v3$O�¤��¹e�°�

�OI¦, ´��äk]Ô5�ïÄ�K.

6 (Ø

�êâ�¸e, Äu�ÝÆS�@�O��C

c5�êâ©ÛÚn)JøEâ|±. �©±�

ÝÆS@�O�ïÄ?Ð��â, ©Û�êâé

@�O��5�¯K�]Ô, ©n��¡nã�

êâ�¸e�ÝÆS@�O��êâL«!@��

.!¿1O�, 9ÙA^, ¿éÄu�ÝÆS�@�

O�?1o(ÚÐ", Ï���'ïÄ<Jø

#g´, é@�O��)­�K�.

Page 10: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

10 g Ä z Æ � XXò

References

1 Zorzi M, Zanella A, Testolin A. Cognition-based networks: anew perspective on network optimization using learning anddistributed intelligence. IEEE Access, 2015, 3: 1512-1530

2 Shen Xiao-Wei. From big data to cognitive computing.Communications of the China Computer Federation, 2014,10(12): 26-28(!¡¥. l�êâ�@�O�. ¥IO�ÅƬÏÕ, 2014,10(12): 26-28)

3 Kelly J. Computing, cognition and thefuture of knowing [online], available:http://www.research.ibm.com/software/IBMResearch/multimedia/Computing Cognition WhitePaper.pdf, 2015

4 Yu Kai, Jia Lei, Chen Yu-Qiang, et al. Deep learning: yes-terday, today, tomorrow. Journal of Computer Research andDevelopment, 2013, 50(9): 1799-1804({p, _[, ��r, �. �ÝÆS��U, 8UÚ²U. O�ÅïÄ�uÐ, 2013, 50(9): 1799-1804)

5 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015,521(7553): 436-444

6 Schmidhuber J. Deep learning in neural networks: Anoverview. Neural Networks, 2015, 61: 85-117

7 Wang F Y, Zhang J J, Zheng X, et al. Where does AlphaGogo: from Church-Turing thesis to AlphaGo thesis and be-yond. Acta Automatica Sinica, 2016, 3(2): 113-120

8 Hinton G E, Salakhutdinov R R. Reducing the dimensional-ity of data with neural networks. Science, 2006, 313(5786):504-507

9 Ludwig L. Toward an integral cognitive theory of mem-ory and technology. Extended Artificial Memory. Kaiser-slautern: Technical University of Kaiserslautern, 2013. 16-32

10 Silver D, Huang A, Maddison C J, et al. Mastering the gameof Go with deep neural networks and tree search. Nature,2016, 529(7587): 484-489

11 Ji S, Xu W, Yang M, et al. 3D convolutional neural networksfor human action recognition. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 2013, 35(1): 221-231

12 Deng L, Yu D. Deep learning: methods and applications.Signal Processing, 2014, 7 (3-4): 197-387

13 Sun Xu, Li Xiao-Guang, Li Jia-Feng, et al. Review ondeep learning based image super-resolution restoration al-gorithms. Acta Automatica Sinica, 2017, 43(5): 697-709(�R, o¡1, oW¹,�. Äu�ÝÆS�ã��©EÇE�ïÄ?Ð. gÄzÆ�, 2017, 43(5): 697-709)

14 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifica-tion with deep convolutional neural networks. In: Proceed-ings of advances in Neural Information Processing Systems.Lake Tahoe, Nevada, US, 2012. 1097-1105

15 Tompson J, Jain A, LeCun Y, et al. Joint training of a con-volutional network and a graphical model for human poseestimation. In: Proceedings of Advances in Neural Informa-tion Processing Systems. Montreal, Quebec, Canada, 2014.1799-1807

16 Yu D, Deng L. Automatic Speech Recognition: A DeepLearning Approach. New York: Springer, 2015. 58-80

17 Hinton G E, Deng L, Yu D, et al. Deep neural networksfor acoustic modeling in speech recognition. IEEE SignalProcessing Magazine, 2012, 29 (6): 82-97

18 Bordes A, Chopra S, Weston J. Question answer-ing with subgraph embeddings [Online], available:http://arxiv.org/abs/1406.3676v3, September 4, 2014

19 Ma J, Sheridan R P, Liaw A, et al. Deep neural netsas a method for quantitative structure-activity relation-ships. Journal of Chemical Information and Modeling, 2015,55(2), 263-274

20 He Y, Xiang S, Kang C, et al. Cross-modal retrieval viadeep and bidirectional representation learning. IEEE Trans-actions on Multimedia, 2016, 18(7): 1363-1377

21 Jean S, Cho K, Memisevic R, Bengio Y. On using very largetarget vocabulary for neural machine translation [Online],available: https://arxiv.org/abs/1412.2007, March 18, 2015

22 Chen Y, Li Y, Narayan R, et al. Gene expression inferencewith deep learning. Bioinformatics, 2016, 32(12): 1832-1839

23 Leung M K K, Xiong H Y, Lee L J, et al. Deep learningof the tissue regulated splicing code. Bioinformatics, 2014,30(12): i121-i129

24 Xiong H Y, Alipanahi B, Lee L J, et al. The human splicingcode reveals new insights into the genetic determinants ofdisease. Science, 2015, 347(6218):1254806

25 Bengio Y, Courville A, Vincent P. Representation learning:A review and new perspectives. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828

26 Zheng Y, Capra L, Wolfson O, et al. Urban computing: con-cepts, methodologies, and applications. ACM Transactionson Intelligent Systems and Technology, 2014, 5(3): 1-18

27 Zheng Y. Methodologies for cross-domain data fusion: anoverview. IEEE Transactions on Big Data, 2015, 1(1): 16-34

28 Ngiam J, Khosla A, Kim M, et al. Multimodal deep learning.In: Proceedings of machine learning. Bellevue, Washington,USA, 2011. 689-696

29 Srivastava N, Salakhutdinov R R. Multimodal learning withdeep boltzmann machines. In: Proceedings of Advancesin Neural Information Processing Systems. Lake Tahoe,Nevada, US, 2012. 2222-2230

30 Cichocki A. Era of big data processing: a new approach viatensor networks and tensor decompositions [Online], avail-able: https://arxiv.org/abs/1403.2048, March 9, 2014

31 Kuang L, Hao F, Yang L T, et al. A Tensor-Based Ap-proach for Big Data Representation and Dimensionality Re-duction. IEEE Transactions on Emerging Topics in Com-puting, 2014, 2(3): 280-291

32 Zhang Q, Yang L T, Chen Z. Deep computation model forunsupervised feature fearning on big data. IEEE Transac-tions on Service Computing, 2014, 1-11

33 Hutchinson B, Deng L, Yu D. Tensor deep stacking net-works. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2013, 35(8): 1944-1957

34 Deng L, Yu D. Deep Learning for Signal and InformationProcessing. Delft: Microsoft Research Monograph, 2013. 29-48

35 Li L, Boulware D. High-order tensor decomposition forlarge-scale data analysis. In: Proceedings of Big Data, NewYork, USA, 2015. 665-668

36 Zhou G, Cichocki A, Xie S. Decomposition of bigtensors with low multilinearrank [Online], available:arXiv:1412.1885, December 29, 2014

37 J.-S. R. Jang, ANFIS: Adaptive-network-based fuzzy infer-ence system, IEEE Transactions on Systems, Man, Cyber-netics, 1993, (23): 665-685

38 Wang F Y, Kim H. Implementing adaptive fuzzy logic con-trollers with neural networks: a design paradigm. Journalof Intelligent & Fuzzy Systems, 1995, 3(2): 165-180

Page 11: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

XÏ ��÷�: �ÝÆS@�O�nã 11

39 Wang G Y, Shi H B. Three valued logic neural network. In:Proceedings of International Conference on Neural Informa-tion Processing, Hong Kong, 1996. 1112-1115

40 Rosca M, Lakshminarayanan B, Warde-Farley D,et al. Variational approaches for auto-encodinggenerative adversarial networks [online], available:https://arxiv.org/abs/1706.04987, June 15, 2017

41 Lv Y, Duan Y, Kang W, Li Z, Wang F. Traffic flow predic-tion with big data: a deep learning approach. IEEE Trans-actions on intelligent transportation systems, 2015, 16(2):865-873

42 Goodfellow I, Courville A, Bengio Y. Scaling up spike-and-slab models for unsupervised feature learning. IEEE Trans-actions on pattern analysis and machine intelligence, 2013,35(8): 1902-1914

43 Chang C H. Deep and shallow architecture of multilayerneural networks. IEEE transactions on neural networks andlearning system, 2015, 26(10): 2477-2486

44 Xie Kun, Wang Xin, Liu Xue-Li, et al. Interference-awarecooperative communication in multi-radio multi-channelwireless networks. IEEE Transactions on Computers, 2016,65(5): 1528-1542

45 Salakhutdinov R. Learning deep generative models [Ph. D.dissertation], University of Toronto, 2009

46 Wu X D, Yu K, Ding W, et al. Online feature selection withstreaming features. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2013, 35(5): 1178-1192

47 Kuang L W, Zhang Y X, Yang L T, et al. A holistic ap-proach to distributed dimensionality reduction of big data.IEEE Transactions on Cloud Computing, 2015, PP(99): 1-14

48 Bengio Y, Yao L, Alain G, et al. Generalized denoising auto-encoders as generative models. In: Proceedings of Advancesin Neural Information Processing Systems. Lake Tahoe,Nevada, USA, 2013. 899-907

49 Zhu Yu, Zhao Jiang-Kun, Wang Yi-Ning, et al. A review ofhuman recognition based on deep learning. Acta Automat-ica Sinica, 2016, 42(6): 848-857(Áø, ëô%, �ºw, �. Äu�ÝÆS�<N1�£O�{nã. gÄzÆ�, 2016, 42(6): 848-857)

50 Visin F, Kastner K, Cho K, et al. Renet: a recurrent neu-ral network based alternative to convolutional networks [on-line], available: https://arxiv.org/abs/1505.00393, July 23,2015

51 Weninger F, Bergmann J, Schuller B W. Introducing CUR-RENNT: the munich open-source CUDA recurrent neuralnetwork toolkit. Journal of Machine Learning Research,2015, 16(3): 547-551

52 Wang F, Tax D M J. Survey on the attention based RNNmodel and its applications in computer vision [online], avail-able: https://arxiv.org/abs/1601.06823, January 25, 2016

53 Duan Yan-Jie, Lv Yi-Sheng, Zhang Jie, et al. Deep learningfor control: the state of the art and prospects. Acta Auto-matica Sinica, 2016, 42(5):643-654(ãý#, ½¨), Ü#,�. �ÝÆS3��+��ïÄyG�Ð".gÄzÆ�, 2016, 42(5):643-654)

54 Yu D, Deng L, Seide F. The deep tensor neural network withapplications to large vocabulary speech recognition. IEEETransactions on Audio, Speech, and Language Processing,2013, 21(2): 388-396

55 Hutchinson B, Deng L, Yu D. Tensor deep stacking net-works. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2013, 35(8): 1944-1957

56 Deng L, Yu D. Deep learning: methods and applications.Foundations and Trends in Signal Processing, 2014, 7(3-4):197-387

57 Zhang Q, Yang L T, Chen Z. Deep computation model forunsupervised feature learning on big data. IEEE Transac-tions on service computing, 2016, 9(1): 161-171

58 Hutchinson B, Deng L, Yu D. Tensor deep stacking net-works. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2013, 35(8): 1944-1957

59 Dahl G E, Sainath T N, Hinton G E. Improving deep neuralnetworks for LVCSR using rectified linear units and dropout.In: Proceedings of Acoustics, Speech, and Signal Processing.Vancouver, Canada, 2013. 8609-8613

60 Chandra B, Sharma R K. Fast learning in deep neural net-works. Neurocomputing, 2016, 171: 1205-1215

61 Neyshabur B, Salakhutdinov R R, Srebro N. Path-SGD:Path-normalized optimization in deep neural networks. In:Proceedings of Advances in Neural Information ProcessingSystems. Montreal, Canada, 2015. 2422-2430

62 Burda Y, Grosse R, Salakhutdinov R. Impor-tance weighted autoencoders [Online], available:https://arxiv.org/abs/1509.00519, November 7, 2016

63 Le Q V, Jaitly N, Hinton G E. A simple way to initialize re-current networks of rectified linear units [Online], available:https://arxiv.org/abs/1504.00941, April 7, 2015

64 Sutskever I, Martens J, Dahl G, et al. On the importance ofmomentum and initialization in deep learning. In: Proceed-ings of Machine Learning, Atlanta, GA, USA, 2013

65 Kingma D P, Ba J L. Adam: a method for stochastic opti-mization. In: Proceedings of Learning Representations, SanDiego, CA, 2015. 1-15

66 Martens J, Grosse R B. Optimizing neural networks withkronecker-factored approximate curvature. In: Proceedingsof Learning Representations, San Diego, CA, 2015. 2408-2417

67 Shinozaki T, Watanabe S. Structure discovery of deep neu-ral network based on evolutionary algorithms. In: Proceed-ings of Acoustics, Speech and Signal Processing. Brisbane,Australia, 2015. 4979-4983

68 Jaitly N, Hinton G. Learning a better representation ofspeech soundwaves using restricted boltzmann machines.In: Proceedings of Acoustics, Speech and Signal Process-ing. Prague, Czech Republic, 2011. 5884-5887

69 Dahl G E, Sainath T N, Hinton G E. Improving deep neuralnetworks for LVCSR using rectified linear units and dropout.In: Proceedings of Acoustics, Speech and Signal Processing.Vancouver, BC, Canada, 2013. 8609-8613

70 Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearitiesimprove neural network acoustic models. In: Proceedings ofMachine Learning, Atlanta, US, 2013. 1-6

71 Miao Y, Metze F, Rawat S. Deep maxout networks for low-resource speech recognition. In: Proceedings of AutomaticSpeech Recognition and Understanding, Olomouc, CzechRepublic, 2013. 398-403

72 Zhang X, Trmal J, Povey D, et al. Improving deep neu-ral network acoustic models using generalized maxout net-works. In: Proceedings of Acoustics, Speech and Signal Pro-cessing, Florence, Italy, 2014. 215-219

73 Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting.Journal of Machine Learning Research, 2014, 15(1): 1929-1958

Page 12: Review on Deep-Learning-based Cognitive Computingesnl.hnu.edu.cn/phd2015/chenweihong_Review_on_Deep... · 2018. 6. 3. · and cognitive computation are presented at the view of three

12 g Ä z Æ � XXò

74 Chen Guo-Liang, Mao Rui, Lu Ke-Zhong. Parallel comput-ing framework of big data. Chinese Science Bulletin, 2015,60(5): 566-569(�Iû, fH, º�¥. �êâ¿1O�µe. �ÆÏ�, 2015,60(5): 566-569.)

75 Chetlur S, Woolley C, Vandermersch P, et al. cudnn:Efficient primitives for deep learning [Online], available:https://arxiv.org/abs/1410.0759, December 18, 2014

76 Dean J, Corrado G, Monga R, et al. Large scale distributeddeep networks. In: Proceedings of the Neural InformationProcessing Systems. Lake Tahoe, Nevada, United States,2012. 1223-1231

77 Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutionalarchitecture for fast feature embedding. In: Proceedings ofthe 22nd ACM International Conference on Multimedia. Or-lando, Florida, USA, 2014. 675-678

78 Coates A, Huval B, Wang T, et al. Deep learning with COTSHPC systems. In: Proceedings of Machine Learning. At-lanta, Georgia, USA, 2013. 16-21

79 Yadan O, Adams K, Taigman Y, et al. Multi-gpu training of convnets [Online], available:https://arxiv.org/abs/1312.5853, February 18, 2013

80 Yu K. Large-scale deep learning at Baidu. In: Proceedingsof the 22nd ACM International Conference on Information& Knowledge Management. San Francisco, CA, USA, 2013,ACM. 2211-2212

81 Chen Y, Luo T, Liu S, et al. DaDianNao: A machine-learning supercomputer. In: Proceedings of the 47thIEEE/ACM International Symposium on Microarchitec-ture. Cambridge, United Kingdom, 2014

82 Luo T, Liu S, Li L, et al. DaDianNao: A neural networksupercomputer. IEEE Transactions on Computers, 2017,66(1): 73-86

83 Markoff J. How many computers to identify a cat? 16,000.New York Times, 2012: 6-25

84 He K, Zhang X, Ren S, et al. Deep residual learning forimage recognition. In: Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition. Las Vegas,Nevada, USA, 2016. 770-778

85 Ren M, Kiros R, Zemel R. Exploring models and data forimage question answering. In: Proceedings of the NeuralInformation Processing Systems. Montreal, Canada, 2015.2953-2961

��÷ �H�Æ&E�Æ�ó§Æ�Æ

¬ïÄ), �H¢½Æ��Ç. 2006c¼�

�H�Æa¬Æ . Ì�ïÄ���&EÔ

nXÚ, ©ÙªO�, ÅìÆS.

E-mail: [email protected]

(CHEN Wei-Hong Ph. D. candidate

at the College of Computer Science and

Electronic Engineering, Hunan University.

Professor at Hunan City University. She received her Mas-

ter’s degree from Hunan University in 2006. Her research

interest covers cyber physical systems, distributed comput-

ing, and machine learning.)

S3� �H�Æ�Ç. 2012c¼��H

�ÆƬƠ. Ì�ïÄ���&EÔ

nXÚ,¿1�©ÙªO�,O��U.�

©Ï&�ö.

E-mail: [email protected]

(AN Ji-Yao Professor at Hunan Uni-

versity. He received his doctor’s degree

from Hunan University in 2012. His re-

search interest covers cyber-physical systems, parallel and

distributed computing, and computing intelligence. Corre-

sponding author of this paper.)

o;u �H�Æ�Ç, u¥�E�ÆÆ

¬. Ì�ïÄ���i\ªXÚ, &EÔn

XÚ, <ó�U�ÅìÀú.

E-mail: [email protected]

(LI Ren-Fa Professor at Hunan Uni-

versity. He received his doctor’s degree

from Huazhong University of Science and

Technology. His research interest covers

embedded system, cyber-physical systems, artificial intelli-

gence, and machine vision.)

o�p �H�Æ&E�Æ�ó§Æ�

ƬïÄ). 2014c¼��H�ÆƬÆ

 . Ì�ïÄ���ÅìÆS, O�ÅÀ

ú, �U�ÏXÚÚf¨1�©Û.

E-mail: [email protected]

(LI Wan-Li Ph. D. candidate at the

College of Computer Science and Elec-

tronic Engineering, Hunan University.

He received his B.S. degree from Hunan University in 2014.

His research interest covers machine learning, computer vi-

sion, intelligent transportation systems, and driver behav-

ior analysis.)