M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les...

94
ethodes num´ eriques pour les EDP instationnaires : Diff´ erences Finies et Volumes Finis Notes pour le cours de base M2-Math´ ematiques de la mod´ elisation (2014) B. Despr´ es 15 juillet 2014

Transcript of M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les...

Page 1: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Methodes numeriques pour les EDP instationnaires : Differences

Finies et Volumes Finis

Notes pour le cours de base M2-Mathematiques de la modelisation

(2014)

B. Despres

15 juillet 2014

Page 2: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

2

Page 3: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Table des matieres

1 Introduction 5

2 Cadre fonctionnel et modeles 7

2.1 Cadre fonctionnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Espaces de Lebesgue Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Fonctions a variation bornee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quelques modeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Equation de transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Equation de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Principe du maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Systemes de Friedrichs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Termes sources ou de couplage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Quelques principes de construction 17

3.1 Approximation numerique en dimension d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Equation du transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Equation de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Approximation numerique en dimension d ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Methodes de Differences Finies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Methode de Volumes Finis pour l’equation d’advection . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Methode de Volumes Finis pour l’equation de la chaleur . . . . . . . . . . . . . . . . . . . 31

3.2.4 Methodes de Volumes Finis pour les systemes de Friedrichs . . . . . . . . . . . . . . . . . 35

4 Analyse numerique des methodes de Differences finies 37

4.1 Consistance, stabilite et theoreme de Lax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Consistance pour le cas stationnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Cas instationnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Schema de Crank-Nicholson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Schema semi-discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.5 Un principe de comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.6 Caracterisation spectrale de la stabilite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.7 Schema de splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Schema decentre en dimension un . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Donnee moins reguliere et ordre de convergence fractionnaire . . . . . . . . . . . . . . . . 48

4.2.3 Maillage non uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 Schemas de differences finis explicites et a un pas . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.5 Construction des schemas semi-lagrangiens/schemas de Strang . . . . . . . . . . . . . . . 57

3

Page 4: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4 TABLE DES MATIERES

5 Analyse numerique des methodes de Volumes finis 675.1 Equation d’advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Analyse de la condition de stabilite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.1.2 Consistence des schemas de Volumes Finis pour l’advection . . . . . . . . . . . . . . . . . 72

5.2 Convergence dans L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.2.1 Premiere etape : estimation en temps dans Lp . . . . . . . . . . . . . . . . . . . . . . . . . 755.2.2 Deuxieme etape : estimation en espace dans L2 . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Convergence dans L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.3.1 Cas des fonctions indicatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.3.2 Donnees generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Convergence du schema de diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785.5 Quelques resultats d’approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Schemas non lineaires 856.1 La methode Muscl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.2 La methode par intervalles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.3 Convergence pour des donnees BV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Page 5: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 1

Introduction

On peut considerer que les methodes numeriques pour les equations aux derivees partielles (EDP) d’evolutions’appuient sur deux piliers. Le premier pilier en est l’analyse fonctionnelle et la theorie des espaces fonctionnels,le second pilier s’appuie sur les modeles d’EDP et leurs liens avec la modelisation des phenomenes reels. Cettediscipline est liee de tres pres egalement au developpement des moyens de calculs informatiques. Pour autantla construction et l’analyse numerique de methodes numeriques efficaces pour les EDP d’evolution s’appuientsur des regles propres qui forment l’objet de ces notes pour le cours de base du M2-Mathematiques de lamodelisation 1.

Un probleme modele central dans ces notes est issu de la modelisation des phenomenes reels et de la pratiquede l’art de l’ingenieur. Il est de type transport-diffusion et s’ecrit

∂tu+ a · ∇u−∆u = 0.

Cependant on considerera le plus souvent separement l’equation de transport ou d’advection ∂tu+ a · ∇u = 0,qui est de type hyperbolique, et l’equation de la chaleur ∂tu−∆u = 0, qui est de type parabolique. Les equationsde convection-diffusion, non lineaires cette fois, sont aussi tres utilisees en traitement de l’image, par exempleen suivant les modeles de Perona-Malik : ∂tu = ∇ · (g∇u) = g∆u +∇g · ∇u avec g une fonction non lineairecompliquee de u ; pour g = u on retrouve une equation pour les ecoulements en milieux poreux. Nous neconsidererons dans la suite que des equations a coefficients constants et donnes.

On s’appuiera sur les deux notions fondamentales que sont la stabilite et la consistance pour construire etjustifier les methodes de Differences Finies et Volumes Finis qui seront etudiees dans ces notes. Les methodesd’Elements Finis sont evoquees rapidement au chapitre 3. Les methodes de Differences finies sont simples aconstruire et leur theorie sert de socle a la plupart des methodes numeriques non stationnaires. Les methodesde Volumes Finis peuvent etre vues comme des methodes de Differences Finies sur maillage tordu. Elles sontegalement simples de construction et sont a la base de la plupart des codes industriels et de recherche de CFD(Computational Fluid Dynamics).

Ce texte est redige avec deux niveaux de lecture. Tout ce qui concerne la construction des methodes numeriquesest en taille normale. Les parties en taille reduite apportent des details complementaires pour justifier certains elements ou pour

mener a bien les diverses preuves. Elles doivent etre laissees de cote en premiere lecture.De meme il est conseille de passer directement au deuxieme chapitre.

1. Il s’agit de la premiere version/edition des ces notes, aussi des coquilles/erreurs peuvent subsister. Merci de les signaler parmail a [email protected]

5

Page 6: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

6 CHAPITRE 1. INTRODUCTION

Page 7: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 2

Cadre fonctionnel et modeles

Pour toute methode de discretisation numerique d’une equation aux derivees partielles, une question fonda-mentale est de montrer la convergence de la solution numerique vers la solution exacte, et mieux d’obtenir desestimations quantitatives optimales pour l’erreur. Pour cela, nous aurons besoin d’un cadre fonctionnel.Ce chapitre peut etre laisse de cote en premiere lecture.

2.1 Cadre fonctionnel

On renvoie a [6].

Definition 1 (Espace de Banach). Un espace de Banach reel V est un espace vectoriel reel, muni d’unenorme u 7→ ‖u‖ definie pour tout u ∈ V , et complet pour cette norme. Les proprietes de la norme sont

— ‖u‖ ≥ 0 pour tout u ∈ V ,— ‖u‖ = 0 si et seulement si u = 0,— ‖λu‖ = |λ| ‖u‖ pour tout λ ∈ R,— ‖u+ v‖ ≤ ‖u‖+ ‖v‖ pour tous u, v ∈ V .

L’espace V est appele un espace de Hilbert dans le cas ou la norme est associee a un produit scalaire

‖u‖ =√

(u, u)

avec (u, v) ∈ R etant le produit scalaire de u et v. Pour memoire, les proprietes d’un produit scalaire reel sont— le produit scalaire est une forme bilineaire,— (u, u) ≥ 0 pour tout u ∈ V ,— (u, u) = 0 si et seulement si u = 0,— (u, v) = (v, u) pour tous u, v ∈ V .

2.1.1 Espaces de Lebesgue Lp

Soit Ω un ouvert regulier de Rd, borne ou non.

Definition 2 (Espaces de Lebesgue). Soit p ∈ [1,∞].— Pour 1 ≤ p < ∞, l’espace Lp(Ω) est constitue des fonctions mesurables telles que

∫Ω|u(x)|p dx < ∞.

La norme dans Lp(Ω) est

‖u‖Lp(Ω) =

(∫

Ω

|u(x)|p dx) 1

p

.

— Pour p =∞, l’espace L∞(Ω) est constitue des fonctions mesurables et bornees. La norme dans L∞(Ω)est

‖u‖L∞(Ω) = sup λ; mes (|u(x)| > λ) 6= 0 <∞.

7

Page 8: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

8 CHAPITRE 2. CADRE FONCTIONNEL ET MODELES

— Les espaces de Lebesgue sont des espaces de Banach.

Les derivees partielles d’une fonction sont notees

u(k1,··· ,kd) =∂k1+···+kd

∂k1x1 . . . ∂

kdxd

u, avec 0 ≤ ki pour tout i = 1, . . . , d.

On renvoie a [6] pour une definition rigoureuse de la derivation au sens des distributions d’une fonction mesu-rable.

Definition 3. L’ensemble des fonctions mesurables de Lp(Ω) dont toutes les derivees sont egalement dansLp(Ω) jusqu’a un ordre de derivation totale de q ∈ N est note W q,p(Ω). Pour 1 ≤ p ≤ ∞ une norme dansW q,p(Ω) est

‖u‖W q,p(Ω) =∑

k1+···+kd≤q

||u(k1,··· ,kd)||Lp(Ω).

2.1.2 InegalitesSoient deux nombres positifs p ∈ [1,∞] et q ∈ [1,∞] (l’infini est autorise) tels que

1

p+

1

q= 1.

Nous dirons que p et q sont conjugues.

Lemme 1 (Inegalite de Holder). Soient u ∈ Lp(Ω) et v ∈ Lq(Ω) ou p et q sont des nombres conjugues. Alors∣∣∣∣

Ωu(x)v(x)dx

∣∣∣∣ ≤ ‖u‖Lp(Ω) × ‖v‖Lq(Ω).

Dans le cas p = q = 2, l’inegalite de Holder est identique a l’inegalite de Cauchy-Schwarz. Le cas p = ∞ et q = 1 est immediat.

2.1.3 Fonctions a variation borneeLe cadre des fonctions a variation bornee permet de manipuler des fonctions discontinues, ce qui est tres utile pour l’analysenumerique des equations de transport. On renvoie a [18, 19].Pour un vecteur ϕ = (ϕ1, · · · , ϕd) on notera

|ϕ| =√ϕ21 + · · ·ϕ2

d.

L’espace des fonctions a derivee bornee, a valeur vectorielle, a support compact, et bornees par 1, sera note

W1,∞b,0 (Rd)d =

ϕ ∈

(W

1,∞0 (Rd)

)d, |ϕ(x)| ≤ 1 ∀x

Definition 4 (Variation totale). Soit u ∈ L1(Rd). Le nombre eventuellement infini

|u|BV(Rd) = supϕ∈W1,∞

b,0(Rd)d

(−∫

Rdu(x)∇ · ϕ(x)dx

)

sera appele la variation totale de u.

La definition est encore valable en remplacant L1(Rd) par L1loc(R

d).

Exemple 1 (En dimension un d’espace). Soit u ∈W 1,1(R). Alors

|u|BV = ‖u′‖L1(R) =

R

|u′(x)|dx.

Cela vient de la formule d’integration par parties

−∫

R

u(x)ϕ′(x)dx =

R

u′(x)ϕ(x)dx.

Le supremum sur tous les ϕ tels que |ϕ| ≤ 1 montre que

sup|ϕ|≤1

(∫

R

u′(x)ϕ(x)dx)

=

R

∣∣u′(x)∣∣ dx = ‖u′‖L1(R).

Page 9: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

2.2. QUELQUES MODELES 9

Exemple 2 (En dimension deux d’espace). Soit le carre unite C = x = (x1, x2), 0 < x1, x2 < 1 ⊂ R2. La fonction indicatricede C est notee 1C avec 1C(x) = 1 si x ∈ C ; 1C(x) = 0 dans le cas contraire.Alors |1C |BV = 4.

En effet on a a pour tout ϕ ∈W1,∞b,0 (R2)

−∫

R2

1C(x)∇ · ϕ(x)dx = −∫

x∈C∇ · ϕ(x)dx =

x∈∂Cϕ(x) · nSdx ≤ 4.

La borne est atteinte pour une suite bien choisie de fonctions ϕn.On remarque par ailleurs que la valeur 4 est la valeur du perimetre du carre C, ce que nous noterons

|C| = |1C |BV.

Definition 5 (Espace BV). L’espace des fonctions de L1(Rd) a variation totale bornee est note BV(Rd). Une norme associee est

‖u‖BV(Rd) = |u|BV(Rd) + ‖u‖1.

On a l’inclusion 1 dense W 1,1(Rd) ⊂ BV(Rd).

L’exemple 1 montre l’inclusion en dimension un d’espace. La densite de l’inclusion sera montree dans un cas particulier a la section5.3. L’inclusion est stricte W 1,1(Rd) 6= BV(Rd) comme consequence de la definition et des exemples.Soit u ≥ 0 une fonction mesurable positive ou nulle. On definit l’ensemble de niveau

Eλ =x ∈ R

d, u(x) > λ

⊂ Rd.

Le perimetre de Eλ est

|Eλ| =∣∣1Eλ

∣∣BV(Rd)

= supϕ∈W1,∞

b,0(Rd)d

(

−∫

∇ · ϕ(x)dx)

,

ou 1Eλest la fonction indicatrice de Eλ. Pour toute fonction positive ou nulle, on

u(x) =

∫ ∞

01Eλ

(x)dλ p.p.

Lemme 2 (Formule de la coaire : voir [18]). Soit u ∈ BV(Rd) une fonction positive ou nulle, u ≥ 0. Alors

|u|BV(Rd) =

∫ ∞

0|Eλ|dλ. (2.1)

2.2 Quelques modeles

Les modeles consideres sont lineaires. Ils servent souvent de briques de base pour des modeles plus elabores.

2.2.1 Equation de transport

L’equation du transport libre a vitesse constante s’ecrit en tout dimension

∂tu+ c.∇u = 0, t > 0, x ∈ Rd.

1. Notons aussi que BV (R) ⊂ L∞(R) en dimension un d’espace. Une preuve rapide est la suivante. Soit u ∈ BV (R) : on sedonne trois nombres x0 ∈ R, ε > 0 et µ > 0 et on considere la fonction continue negative ou nulle

ϕ(x) = −

0 pour x ≤ x0,x−x0ε

pour x0 ≤ x ≤ x0 + ε,

1− µ(x− x0 − ε), pour x0 + ε ≤ x ≤ x0 + ε+ 1µ,

0 pour x0 + ε+ 1µ

≤ x.

On a bien |ϕ| ≤ 1. On a aussi −∫Ru(x)ϕ′(x)dx ≤ BV(u). Un calcul montre que −

∫Ru(x)ϕ′(x)dx = 1

ε

∫ x0+εx0

u(x)dx −

µ∫ x0+ε+ 1

µ

x0+εu(x)dx. Donc

∫ x0+εx0

(u(x)− BV(u)) dx ≤ εµ∫ x0+ε+ 1

µ

x0+εu(x)dx. Comme u ∈ L1(R), on peut passer a la limite µ → 0

pour le deuxieme terme qui tend vers zero : limµ=0+ µ∫ x0+ε+ 1

µ

x0+εu(x)dx = 0. Donc

∫ x0+εx0

(u(x)− BV(u)) dx ≤ 0. Cela etant arbi-

traire par rapport a x0 et ε qui peut etre aussi petit que souhaite, alors u(x) ≤ BV (u) presque partout. De meme on montre enprenant ψ = −ϕ que −BV (u) ≤ u(x) presque partout. Donc u ∈ L∞(R).

Page 10: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

10 CHAPITRE 2. CADRE FONCTIONNEL ET MODELES

La fonction (t,x) 7→ u(t,x) est l’inconnue : t est la variable de temps, et x = (x1, · · · , xd) ∈ Rd est la variable

d’espace. L’operateur gradient est defini par

∇u =

(∂

∂x1u, · · · , ∂

∂xdu

).

Le champ x 7→ c(x) ∈ Rd est donne. Il est appele champ de vitesse pour des raisons qui paraitront evidentes

dans la suite.

Dimension d = 1

On considere tout d’abord le cas en dimension d = 1 pour une vitesse constante que l’on note a ∈ R. Il s’agitde l’equation d’advection

∂tu+ a∂xu = 0, t > 0, x ∈ R. (2.2)

On supposera que a > 0. L’autre cas a < 0 est symetrique et se deduit du cas a > 0. On munit l’equation d’unecondition initiale a t = 0

u(0, x) = u0(x). (2.3)

Lemme 3. L’unique solution de (2.2) avec la condition initiale (2.3) est

u(t, x) = u0(x− at). (2.4)

Demonstration. Cette propriete peut se demontrer dans tout type d’espace fonctionnel. Par souci de simpliciteon considere une donnee initiale reguliere u0 ∈ C1(R). Prenons la fonction definie par (2.4). On a ∂tu =−au′0(x − at) et ∂xu = u′0(x − at). Donc ∂tu + a∂xu = −au′0 + au′0 = 0 ce qui montre que (2.4) est bien unesolution.

t

x = X2 + at

xX1 X2

x = X1 + at

Figure 2.1 – La solution de l’equation d’advection est constant le long des droites caracteristiques x = X + at.

Montrons a present l’unicite. Soient u1 et u2 deux solutions de classe C1(R) eventuellement differentes, avec lameme donnee initiale

u1(0, x) = u2(0, x) = u0(x).

Soit x 7→ ϕ0(x) une fonction derivable, positive ou nulle, a support compact : ϕ0(x) = 0 for |x| ≥ A. On noteϕ(t, x) = ϕ0(x− at) qui est solution de l’equation d’advection. Posons v = (u1 − u2)2ϕ ≥ 0. On commence parverifier que v est aussi solution de l’equation d’advection

∂tv + a∂xv = 2 (u1 − u2)ϕ (∂t (u1 − u2) + a∂x (u1 − u2)) + (u1 − u2)2 (∂tϕ+ a∂xϕ) = 0.

Par construction v est a support compact ce qui n’etait pas necessairement le cas de u1 ni de u2. Donc

0 =

R

(∂tv + a∂xv) dx =

R

∂tvdx+ a

∫ A+at

−A+at

∂xvdx =d

dt

R

vdx.

Page 11: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

2.2. QUELQUES MODELES 11

Or v(0, x) = 0. Donc∫Rv(T, x)dx = 0 pour tout T > 0. Comme v ≥ 0, il s’ensuit que v ≡ 0. Le support de v

pouvant etre aussi grand que souhaitee, cela montre que u1 = u1.

Soit un champ de vitesse de transport x 7→ c(x) ∈ R et u une solution de l’equation du transport

∂tu+ c(x)∂xu = 0, u(x, 0) = u0(x).

Nous construisons les courbes caracteristiques

y′(t;X) = c(y(t;X)),y(0;X) = X.

On utilise souvent des notations simplifiees. Par exemple en notant les courbes caracteristiques x(t) a la placede x = y(t;X).

Proposition 1. Supposons c Lipschitzienne et bornee. Alors il existe une et une seule solution de l’equationdes courbes caracteristiques (x ∈ R, t ≥ 0).

Demonstration. C’est une consequence du theoreme de Cauchy-Lipshitz.

Proposition 2. Sous les memes hypotheses, une solution de l’equation du transport est

u(x, t) = u0(X), x = y(t;X).

Demonstration. On a u(x, t) = u(y(t;X), t). Derivant par rapport a t, X etant fixe, on obtient

0 =d

dtu0(X) =

d

dtu(y(t;X), t) = y′(t;X)∂xu(y(t;X), t) + ∂tu(y(t;X), t)

= ∂tu(y(t;X), t) + c(y(t;X))∂xu(y(t;X), t).

Cela est vrai pour tout (t,X), c’est vrai pour tout x = y(t;X) et tout t. La preuve est terminee.

Dimension d ≥ 2 en domaine borne

Nous nous concentrons a present sur les conditions au bord qu’il faut considerer en domaine borne, car celaconstituera un bon point de depart pour la construction de schemas numeriques pour cette equation.Soit Ω ⊂ R

d un ouvert borne regulier. On note le champ de vitesse x 7→ a(x). On supposera que a ∈ C1(Ω) esta divergence nulle

∇.a = 0.

De ce fait l’equation admet une formulation conservative

∂tu+∇ · (au) = ∂tu+ a · ∇u+ (∇ · a)u = 0.

Le bord de Ω est separe en deux parties Γ = Γ− ∪ Γ+ avec

Γ− = x ∈ Γ, a · n < 0, Γ+ = x ∈ Γ, a · n ≥ 0.

Nous considerons le probleme avec condition initiale et condition au bord

∂tu+ a · ∇u = 0, x ∈ Ω, t > 0,u(0,x) = u0(x), x ∈ Ω,u(t,x) = u−(t,x), x ∈ Γ−.

(2.5)

On note immediatement qu’il n’y a pas de condition sur le bord Γ+.

Page 12: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

12 CHAPITRE 2. CADRE FONCTIONNEL ET MODELES

n

a

Γ−

Γ+

n

n

n

Figure 2.2 – Sur cet exemple le champ de vitesse a est oriente en diagonale : la partie Γ+ du bord surligneeen gras est constitue des parties du bord en haut et a droite ; la partie Γ− du bord correspond aux parties dubord en bas et a gauche.

Lemme 4. Soient deux fonctions u1 et u2 solutions regulieres de (2.5). Supposons que u1 ont u2 ont la memecondition initiale, et ont la meme condition sur le bord Γ−. Alors u1 = u2.

Demonstration. La difference e = u1 − u2 est solution de

∂te+ a · ∇e = 0, x ∈ Ω, t > 0,e(0,x) = 0, x ∈ Ω,e(t,x) = 0, x ∈ Γ−.

Posons E(t) = 12 ‖e(t)‖

22. Alors

E′(t) =

Ω

e∂tedx = −∫

Ω

ea·∇edx = −∫

Ω

∇·(ae2

2

)dx = −

Γ−

a·ne2

2dσ−

Γ+

a·ne2

2dσ = −

Γ+

a·ne2

2dσ ≤ 0.

Notons que l’on a utilise que e = 0 on Γ−. Or E(0) = 0 donc E(t) = 0 pour tout temps t > 0. Cela montre queu1 = u2.

Il est important de bien comprendre pourquoi le bord Γ+ ne joue finalement aucun role dans la preuve d’unicite.

Courbes caracteristiques ”en avant” dans un domaine borne

A present nous construisons la solution a partir des courbes caracteristiques t 7→ y(t,X) definies par

d

dty(t,X) = a(X) avec la donnee initiale y(0,x) = X.

Ces courbes sont correctement construites dans le cadre du theoreme de Cauchy-Lipschitz pour a ∈ C1(Ω).Soit une fonction u constante le long des caracteristiques

u(y(X), t) = u0(X).

Elle verified

dtu = ∂tu+

d

dty(t,X).∇u = ∂tu+ a.∇u = 0.

Pour un x donne et un t donne, on peut ainsi determiner la valeur de u(t,x) une fois que le pied de la caracteristique X a ete definien resolvant l’equation

y(t,X) = x. (2.6)

Il s’ensuit qu’il est necessaire d’inverser l’equation (2.6) pour obtenir le point de depart X ∈ Ω∪Γ− de la caracteristique qui arriveen (t,x) ∈ R+ × Ω. Pour rendre la discussion legerement plus simple, on peut construire les caracteristiques ”en arriere”.

Page 13: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

2.2. QUELQUES MODELES 13

X1 ∈ Γ−

x2 ∈ Γ+

Figure 2.3 – La fonction u est constante le long des caracteristiques dont le point de depart est note sous laforme de cercle noir : le point X1 ∈ Γ− est un point de depart ; le point x2 ∈ Γ+ n’est pas un point de depart.

Courbes caracteristiques ”en arriere” dans un domaine borne

Les courbes caracteristiques en arriere sont construites a partir de la position au temps final

d

dtX(t,x) = −a(X) pour t > 0, avec X(0,x) = x ∈ Ω.

Bien sur X(t,x) est aussi le point de depart de la caracteristique en avant discutee precedemment. Nous definissons le temps (desortie)

T (x) = inf(t) tel que X(t,x) ∈ ∂Ω.

Si X(t,x) ∈ Ω pour tout t > 0, on posera T (x) = +∞. Par definition T (x) > 0 pour tout x ∈ Ω.La construction de la solution u au point (t, x) s’appuie sur deux cas.

Premier cas : t < T (x). On poseu(t,x) = u0(X(t,x)). (2.7)

Deuxieme cas : T (x) ≤ t. Pour le temps t = T (x) la courbe caracteristique rencontre le bord, necessairement en Γ−. On pose

u(t,x) = u− (t− T (x),X (T (x),x)) . (2.8)

Par construction la fonction u (2.7-2.8) satisfait la condition initiale

u(0,x) = u0(x), ∀x ∈ Ω, (c’est a dire (2.7) a t = 0) ,

et la condition au bordu(t,x) = u−(t,x), ∀x ∈ Γ−,

(c’est a dire (2.8) pour x ∈ Γ−) .

Il reste a verifier que u est bien solution, et en quel sens, de l’equation de transport. On a un premier resultat, qui est partielcependant car il y une restriction sur le temps.

Lemme 5. Supposons que u0 ∈ C1(Ω). Soit un point de l’espace temps (t, x) tel que t < T (x). Alors a fonction u (2.9) estlocalement C1 et est solution de

∂tu+ a.∇u = 0 ∀x ∈ Ω ∀t < T (x).

Demonstration. On a par construction

X(t− h,X(h,x)) = X(t,x) pour de petits h > 0,

doncu(t− h,X(t− hX(h,x)) = u(t,x) pour de petits h > 0. (2.9)

La transformation (t,x) 7→ X(t,x) est C1 localement autour de (t,x) dans le cas t < T (x). Par derivation de (2.9) on obtientddhu(t− h,X(t− hX(h,x)) = 0, ou encore

−∂tu− d

dhX(t− hX(h,x) · ∇u = 0.

Par ailleurs ddh

X(t− hX(h,x) = a(X(t− hX(h,x)), donc pour h = 0 on obtient −∂tu− a.∇u = 0.

La restriction est pour t ≥ T (x), qui peut faire apparaitre des pertes dans le caractere regulier de la solution. Par exemple le tempsde sortie x 7→ T (x) peut meme ne pas etre continu, comme dans l’exemple d ela figure 2.4.De maniere generale il est possible de considerer que la fonction definie par formulation Lagrangienne (2.9) est une solutiongeneralisee de la formulation Eulerienne de l’equation du transport. On pourra consulter [2].

Page 14: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

14 CHAPITRE 2. CADRE FONCTIONNEL ET MODELES

x2

x1a

X2

X1

X0

x0

Ω

Figure 2.4 – La vitesse a est verticale et constante. La fonction x 7→ X(T (x),x)) n’est pas continue au pointx1. Le temps de sortie T (x) est egalement discontinu en x1.

2.2.2 Equation de la chaleur

L’operateur Laplacien est defini en dimension d par

∆u = ∇ · ∇u =∂2

∂x21u+ · · ·+ ∂2

∂x2du.

Soit le probleme de la chaleur en dimension d = 2 avec une condition de Neumann

∂tu−∆u = 0, t > 0, x ∈ Ω,∇u · n = 0, t > 0, x ∈ Γ,u(0,x) = u0(x) x ∈ Ω.

(2.10)

Ce probleme est bien pose. Il existe une et une seule solution de la formulation variationnelle associee : voir[17, 19].

On considere l’energie quadratique E(t) = 12 ‖u(t)‖

2L2(Ω) . On a E′(t) =

∫Ωu∂tudx =

∫Ωu∆udx. Une integration

par parties montre que E′(t) = −∫Ω∇u · ∇udx +

∫Γu∇u · ndσ = −

∫Ω|∇u|2 dx. Une integration en temps

montre que

E(T ) + 2

∫ T

0

Ω

|∇u(t,x)|2 dxdt = E(0).

L’unicite est alors pour les solutions regulieres.

Lemme 6. Soient deux solutions u1 et u2 pour la meme condition initiale u0. Alors u1 = u2.

Demonstration. Soit u = u1 − u2, qui est alors solution du meme probleme avec une condition initiale nulle.L’identite precedente montre que E(T ) ≤ E(0) = 0, donc u ≡ 0, ce qui montre l’unicite de la solution.

Les liens entre (2.10) et les problemes variationnels stationnaires sont immediats apres utilisation d’une procedure d’Euler implicitepour la discretisation de la derivee en temps. Soit ∆t > 0 un pas de temps destine in fine a tendre vers 0. On approche (2.10) parune succession de problemes stationnaires un

un+1 −∆t∆un+1 = un, x ∈ Ω,∇un+1 · n = 0, t > 0, x ∈ Γ,u0 = u0 x ∈ Ω.

(2.11)

Exercice 1. On considere que u0 ∈ L2(Ω). Montrer que la formulation variationnelle de (2.11) admet une unique solution dansH1

0 (Ω) pour tout n ∈ N.

On renvoie a [9] pour les aspects complementaires.

Page 15: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

2.2. QUELQUES MODELES 15

2.2.3 Principe du maximum

Les equations d’advection et de diffusion satisfont le principe du maximum que nous etudions ici pour le problemedans le plan

∂tu+ a · ∇u− k∆u = 0, x ∈ R2, t > 0

u(0,x) = u(x), x ∈ R2,

(2.12)

pour a ∈ R2 et k ≥ 0.

Soit ϕ : R → R une fonction de classe C2 et convexe : ϕ′′ ≥ 0. On supposera que ϕ(0) = 0 et que u et negligeable a l’infini.

Lemme 7 (Estimation a priori). On a ∫

R2

ϕ (u(t,x)) dx ≤∫

R2

ϕ (u0(x)) dx. (2.13)

Demonstration. On a

d

dt

R2

ϕ (u(t,x)) dx =

R2

∂tu(t,x)ϕ′ (u(t,x)) dx =

R2

(k∆u− a · ∇u)ϕ′ (u(t,x)) dx

= ∇ ·(k∇∫

R2

ϕ (u(t,x))− a

R2

ϕ (u(t,x))

)− k

R2

|∇u(t,x)|2 ϕ′′ (u(t,x)) dx.

Comme u tend vers 0 pour |x| → ∞ et que ϕ(0) = 0, on peut integrer dans tout le domaine car les termes a l’infini disparaissent.On obtient

d

dt

R2

ϕ (u(t,x)) ≤ 0.

Cela termine la preuve apres integration en temps.

Soit u0 ∈ L∞(R2), et pour simplifier positive et a support compact : 0 ≤ u0 ≤ ‖u0‖L∞(R2).

Lemme 8. On a pour tout t > 0

0 ≤ u(t,x) ≤ ‖u0‖L∞(R2), x ∈ R2. (2.14)

Demonstration. Soit la fonction ϕ : R → R

ϕ−(v) = max (−v, 0)3 = max(−v3, 0

).

Cette fonction est convexe. Sa derivee seconde est continue et nulle en v = 0. Donc ϕ− est C2. De plus ϕ ≥ 0 et ϕ(v) = 0 siet seulement si v ≥ 0. Du fait de la positivite de la donnee initiale, l’estimation a priori fournit :

∫R2 ϕ− (u(t,x)) ≤ 0. Donc∫

R2 ϕ− (u(t,x)) ≤ 0 et au final u(t) ≥ 0.Soit a present

ϕ+(v) = max(0, v − ‖u0‖L∞(R2)

)3= max

(0,(v − ‖u0‖L∞(R2)

)3),

qui est une fonction convexe et de derivee seconde continue (et nulle en v = ‖u0‖L∞(R2)). On a alors

R2

ϕ+ (u(t,x)) ≤∫

R2

ϕ+ (u0(x)) = 0

ce qui montre in fine que u ≤ ‖u0‖L∞(R2).

2.2.4 Systemes de Friedrichs

Soient deux matrices A1, A2 ∈ Rn×n. On fait l’hypothese majeure que les matrices sont symetriques

A1 = At1 et A2 = At2.

On considere le systeme de Friedrichs a coefficients constants

∂tU+A1∂x1U+A2∂x2U = 0, t > 0, x = (x1, x2) ∈ R2. (2.15)

La fonction inconnue est U(t,x) ∈ Rn. La condition initiale s’ecrit U(0,x) = U0(x) pour tout x ∈ R2, ou la fonction U0 est ladonnee initiale. Les systemes de Friedrichs sont accompagnes d’une identite d’energie quadratique.

Proposition 3. Les systemes de Friedrichs conservent l’energie quadratique : ddt

‖U(t, ·)‖L2(R)n = 0.

Page 16: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

16 CHAPITRE 2. CADRE FONCTIONNEL ET MODELES

Demonstration. On considere une solution de (2.15), suffisamment reguliere d’une part. Le produit scalaire avec U donne

∂tU ·U+A1∂x1U ·U+A2∂x2U ·U = 0.

On a ∂tU ·U = 12∂t|U|2. Par ailleurs

1

2∂x1 (A1U ·U) =

1

2A1∂x1U ·U+

1

2A1U · ∂x1U =

1

2A1∂x1U ·U+

1

2U ·At1∂x1U. =

(A1 +At1

2∂x1U

)·U.

Or A1 est symetrique. Donc 12∂x1 (A1U ·U) = (A1∂x1U)·U. De meme 1

2∂x2 (A2U ·U) = (A2∂x1U)·U car A2 est aussi symetrique.

On a donc1

2∂t|U|2 +

1

2∂x1 (A1U ·U) +

1

2∂x2 (A2U ·U) = (∂tU+A1∂x1U+A2∂x2U) ·U = 0.

D’ou apres integration en espace pour une fonction assez petite a l’infini (en espace) ddt

∫R2 |U|2dx = 0, d’ou l’on deduit le

resultat.

2.2.5 Termes sources ou de couplageLe couplage de certains modeles d’EDP avec des termes sources ou de couplage peut generer de nouvelles questions, tant en termed’analyse des modeles que de construction pour les methodes numeriques. C’est particulierement vrai lorsqu’il a y interaction forteentre les termes sources et les operateurs aux derives partielles. Nous illustrons ce comportement sur le modele suivant.Soit le systeme des ondes lineaires avec deux parametres ǫ > 0 et σ > 0

∂tp+1ε∇ · u = 0, t > 0, x ∈ R2,

∂tu+ 1ε∇p+ σ

ε2u = 0, t > 0, x ∈ R2,

(2.16)

avec les conditions initiales p(0) = p0 et u(0) = u0. Les inconnues sont d’une part p ∈ R qui est un scalaire et d’autre part u ∈ R2

qui est un vecteur.

Exercice 2. Montrer formellement l’identite d’energie

d

dt

R2

(p(x, t)2 + |u(x, t)|2

)dx = − σ

ε2

R2

|u(x, t)|2dx.

Un phenomene particulierement interessant apparait dans le regime ou ε > 0 est petit. Pour le mettre en evidence nous consideronsun developpement de Hilbert, c’est a dire que nous developpons a priori chacune des quantites presentes en fonction de ε sous laforme

p = p0 + εp1 + ε2p2 +O(ε3)

etu = u0 + εu1 + ε2u2 +O(ε3).

Dans ces expressions p et u dependent de ε car sont solutions d’un systeme d’EDP qui depend de ε. Cependant nous consideronsque p0, p1, p2, u0, u1 et u2 sont eux independants du parametre ε. Ceci est un developpement a priori ou Ansatz.

Lemme 9. La limite formelle p0 verifie l’equation de la chaleur

∂tp0 − 1

σ∆p0 = 0, t > 0 et x ∈ R

2. (2.17)

Demonstration. En plongeant ce developpement dans le systeme (2.16) et en organisant en puissance de ε on obtient pour lapremiere equation

1

ε

(∇ · u0

)+(∂tp

0 +∇ · u1)+O(ε) = 0

et pour la deuxieme equation (la puissance en ε du terme residuel n’est pas la meme)

1

ε2

(σu0

)+

1

ε

(σu1 +∇p0

)+O(1) = 0.

En identifiant les coefficients en puissance de ε, on obtient

∇ · u0 = 0 et σu0 = 0 =⇒ u0 = 0,

puis ∂tp0 +∇ · u1 = 0 et σu1 +∇p0 = 0 d’ou l’on deduit le resultat apres elimination de u1.

Il s’ensuit que le systeme hyperbolique avec terme source (2.16) admet une limite asymptotique (2.17) qui est parabolique

sans terme source. Un tel phenomene de changement de type est tout a fait caracteristique de l’interaction de termes sourcesavec des operateurs aux derivees partielles.

Page 17: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 3

Quelques principes de construction

Nous considerons plusieurs types de discretisation numerique en distinguant suivant que la grille est cartesienneou quelconque, suivant le type d’equation (transport ou chaleur) et suivant la methode d’approximation (Differen-ces Finies, Elements Finis et Volumes Finis).L’indice abstrait signalant une approximation numerique sera note h. En pratique h est souvent egal au pasd’espace ∆x. Plus generalement h pourra designer l’ensemble des parametres numeriques, par exemple h =(∆x,∆t).

3.1 Approximation numerique en dimension d = 1

Nous considerons une grille de pas d’espace uniforme ∆x > 0 et de pas de temps t > 0. Comme sur la figure3.1, les points de grille en espace seront notes xj = j∆x pour j ∈ Z et les points de grille en temps seront notestn = n∆t pour n ∈ N.

3

x

t

x xx1 2 3

x x0

t0

t2

t3

t4

t5

1t

−1

(x ,t )2

Figure 3.1 – Grille Differences Finies

L’interpolee en (xj , tn) de la solution exacte u est

u(xj , tn).

La solution numerique au point (xj , tn) sera notee unj . A priori unj 6= u(xj , tn) En rassemblant toutes les valeurs

17

Page 18: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

18 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

pour un temps donne, on definit solution interpolee au temps tn

vn = (u(xj , tn))j∈Z∈ R

Z.

On notera la solution numerique au temps tn par

un =(unj)j∈Z∈ R

Z.

Nous considererons que la donnee initiale u0 est connue, et pour simplifier que c’est une fonction continue. Aussila discretisation sur la grille de la condition initiale est immediate

u0j = u0(xj), j ∈ Z. (3.1)

Le principe de discretisation consiste a utiliser l’operateur aux derivees partielles pour etablir une relation derecurrence qui permette de calculer successivement la solution numerique a chaque pas de temps tn.

3.1.1 Equation du transport

Approximation par Differences Finies

Principe 1 (Differences Finies). Le principe de construction des methodes de Differences Finies consiste adiscretiser les operateurs differentiels ∂t et ∂x, en faisant toute hypothese de regularite necessaire pour justifierles divers ordres d’approximations.

On a par exemple pour la derivation en temps

∂tu(xj , tn) =u(xj , tn)− u(xj , tn)

∆t+O(∆t).

Concernant la derivation en espace on a

∂xu(xj , tn) =u(xj , tn)− u(xj−1, tn)

∆x+O(∆x) (decentrement a gauche),

∂xu(xj , tn) =u(xj+1, tn)− u(xj−1, tn)

2∆x+O(∆x2) (approximation centree),

∂xu(xj , tn) =u(xj+1, tn)− u(xj , tn)

∆x+O(∆x) (decentrement a droite).

Supposons que la vitesse est positive a > 0 dans l’equation du transport. Pour des raisons de stabilite, il fautprivilegier la discretisation en espace decentree a gauche

u(xj , tn+1)− u(xj , tn)∆t

+ au(xj , tn)− u(xj−1, tn)

∆x= O(∆x,∆t). (3.2)

En abandonnant le terre de residu et en remplacant la valeur interpolee par l’approximation numerique, onobtient le schema de differences finies decentre

un+1j − unj

∆t+ a

unj − unj−1

∆x= 0, j ∈ Z, n ≥ 0. (3.3)

Ce schema prend aussi le nom de schema upwind, car le decentrement va chercher l’information en remontantle courant, ou encore en remontant le vent. L’erreur de troncature visible dans (3.2) fait que ce schema est ditd’ordre un (en temps et en espace).

Principe 2 (Ordre d’un schema : ce principe sera precise et generalise aux definitions 8, 7 et 9 et a la remarque4). Soit une equation aux derivees partielles du premier ordre en temps et d’ordre quelconque en espace. Soitun schema numerique donne. Supposons que l’insertion des valeurs ponctuelles de la solution exacte dans leschema permet d’obtenir un residu de la forme O(∆xp +∆tq). Alors on dira que le schema est d’ordre p enespace et q en temps.

Page 19: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.1. APPROXIMATION NUMERIQUE EN DIMENSION D = 1 19

Une illustration numerique avec le schema upwind est la suivante. Nous considerons une donnee initiale u0(x) =1 si 0.2 < x < 0.6 et u0(x) = 0 ailleurs, et des conditions periodiques aux bords. La solution exacte estu(x, t) = u0(x− at) aussi

u(x, 0.3) = 1 pour 0.5 < x < 0.8, et u(x, 0.3) = 0 ailleurs.

Nous notons que cette solution est discontinue.

Nous resolvons numeriquement avec 100 mailles sur un intervalle de longueur 1, soit ∆x = 0.01. Les resultatscalcules avec le schema upwind sont presentes a la figure 3.2 pour ν = a∆t

∆xavec trois valeurs du parametre

ν = 1.1, ν = 0.1 et ν = 0.7. Pour ν = 1.1, on observe une solution numerique violemment oscillante, on dirainstable. En revanche la solution numerique semble proche de la solution exacte pour ν = 0.1 et ν = 0.7.

A partir de la forme explicite du schema upwind,

un+1j = (1− ν)unj + νunj−1

on retrouve aisement que ν ≤ 1 est une condition suffisante pour eliminer les violentes oscillations numeriquesdu cas ν = 1.1. En effet

ν ≤ 1 =⇒ supj

∣∣un+1j

∣∣ ≤ supj

∣∣unj∣∣ . (3.4)

Le phenomene de stabilite/instabilite sera etudie systematiquement au chapitre suivant. On demontrera aussila convergence numerique sous des conditions generales.

0.8 0.9 1 0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

’sol0’

−15

−10

−5

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

−20

’sol1’

t = 0 t = 0.3 et ν = 1.1

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

0

’sol2’

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

0

’sol3’

t = 0.3 et ν = 0.1 t = 0.3 et ν = 0.7

Figure 3.2 – Donnee initiale en haut a gauche, solution numerique au temps t = 0.3 pour trois valeurs differentesdu parametre ν = a∆t

∆x. On observe une instabilite en haut a droite, et une solution numerique ”correcte” en

bas.

Page 20: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

20 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Approximation par Elements Finis

Principe 3 (Methode des elements finis). La discretisation numerique par methode des elements finis s’appuied’une part sur l’etablissement d’une formulation variationnelle des equations, et d’autre part sur le choix d’unespace d’approximation de Galerkin.

Nous presentons l’application de ce principe sur l’equation simplifiee stationnaire

d

dxu = f, x ∈ R. (3.5)

pour un second membre donne f . La formulation faible que nous considerons est

R

d

dxu(x)v(x)dx =

R

f(x)v(x)dx, u ∈ V, ∀v ∈ V. (3.6)

A priori l’espace verifie V ⊂ H1(R), ce qui fait que les integrales sont calculables (i.e. sont convergentes). Pourune raison de symetrie qui fait partie integrante des approximations de Galerkin, les fonctions tests sont aprendre dans le meme espace. Il faut faire attention cependant car la forme bilineaire definie dans (3.6) n’estpas coercive. Cependant cela n’empeche pas d’appliquer l’approximation de Galerkin en dimension finie pourobtenir une discretisation numerique.

Lemme 10. L’approximation Elements Finis de type P 1 de l’operateur differentiel ddx

est centree.

Demonstration. L’approximation de Galerkin discrete la plus simple de type P 1 s’appuie sur Vh = Vect (ϕj)j∈Z⊂

V avec

ϕj(x) = 0 pour x ≤ (j − 1)∆x ou x ≥ (j + 1)∆x,

ϕj(x) =x− (j − 1)∆x

∆xpour (j − 1)∆x ≤ x ≤ j∆x,

ϕj(x) =(j + 1)∆x− x

∆xpour j∆x ≤ x ≤ (j + 1)∆x.

(3.7)

xj+1

x

ϕj+1(x)ϕj−1(x)

ϕj(x)

xj−1 xj

Figure 3.3 – Fonction chapeau ϕj et les deux fonctions voisines ϕj−1 et ϕj+1

La formulation discrete est∫

R

d

dxuh(x)vh(x)dx =

R

f(x)v(x)dx, uh ∈ Vh, ∀vh ∈ Vh, (3.8)

ou encore ∫

R

d

dxuh(x)ϕj(x)dx =

R

f(x)ϕj(x)dx, ∀j. (3.9)

L’approximation numerique est uhuh =

i∈Z

uiϕi.

Page 21: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.1. APPROXIMATION NUMERIQUE EN DIMENSION D = 1 21

On obtient ∑

i∈Z

(∫

R

ϕ′i(x)ϕj(x)dx

)ui =

R

f(x)ϕj(x)dx, ∀j.

Posons ai,j =∫Rϕ′i(x)ϕj(x)dx. Des calculs elementaires montrent que

ai,j = 0 i ≤ j − 2,ai,j = 0 i ≥ j + 2,

aj+1,j =

∫ (j+1)∆x

j∆x

1

∆x× (j + 1)∆x− x

∆xdx =

1

2,

aj−1,j =

∫ j∆x

(j−1)∆x

−1∆x× x− j∆x

∆xdx = −1

2,

aj,j =

R

d

dx

(ϕ2j

2

)dx = 0.

On obtient une approximation numerique sous la forme

uj+1 − uj−1

2=

R

fϕj , j ∈ Z.

Posons par commodite fj =1

∆x

∫Rfϕj . On ecrit alors

uj+1 − uj−1

2∆x= fj , j ∈ Z. (3.10)

En comparant avec l’equation de depart (3.5), cela montre bien que l’approximation numerique obtenue parelements finis est centree.

Ce principe s’etend naturellement a l’approximation par methode variationnelle en espace-temps de ∂tu+a∂xu =0 qui s’ecrit ∫

R

R

(∂tu+ a∂xu) v(x, t)dxdt = 0, u ∈ V, ∀v ∈ V.

Les fonctions discretes en temps sont

ψn(x) = 0 pour t ≤ (n− 1)∆t ou t ≥ (n+ 1)∆t,

ψn(x) =t− (n− 1)∆t

∆tpour (n− 1)∆t ≤ t ≤ n∆t,

ψn(x) =(n+ 1)∆t− t

∆tpour n∆t ≤ t ≤ (t+ 1)∆t.

L’approximation numerique est

uh(x, t) =∑

j,m

umi ϕi(x)ψm(t).

La variante discrete s’ecrit∫

R

R

(∂tuh + a∂xu∆x,∆t)ϕj(x)ψn(t)dxdt = 0, ∀j, n.

On obtient ∑

j,n

(∫

R

R

(ϕ′i(x)ψm(t) + aϕi(x)ψ

′m(t))ϕj(x)ψn(t)dxdt

)umi = 0, ∀j, n,

ou encore ∑

j,n

(∫

R

ai,jbm,n + abi,jam,n

)umi = 0, ∀j, n.

Page 22: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

22 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Les coefficients sont

bi,j =

R

ϕi(x)ϕj(x)dx =

2

3for i = j,

1

6for i = j ± 1,

0 for i 6= j − 1, j, j + 1.

On obtient finalement le schema

16u

n+1j−1 + 2

3un+1j + 1

6un+1j+1 − 1

6un−1j−1 − 2

3un−1j − 1

6un−1j+1

∆t(3.11)

+a16u

n−1j+1 + 2

3unj+1 +

16u

n+1j+1 − 1

6un−1j−1 − 2

3unj−1 − 1

6un+1j−1

∆t= 0.

On remarque que ce schema est centre en temps et en espace. Il est aussi implicite car on ne peut pas calculerdirectement un+1.Une autre possibilite consiste a utiliser une approximation d’elements finis pour la partie en espace, et a secontenter d’une discretisation explicite pour la derivee en temps. On obtient

un+1j − unj

∆t+ a

unj+1 − unj−1

2∆x= 0. (3.12)

Dans les trois cas (3.10), (3.11) et (3.12), l’approximation de ddx

par elements finis est centree.

Approximation par Volumes Finis

Principe 4. La discretisation numerique par methodes de volumes finies s’appuie : a) sur une ecriture sousforme divergente des equations ; b) sur une integration des equations dans un volume de controle s’appuyantsur un maillage : c) sur la construction de flux numeriques pour clore la construction.

Une forme divergente des equations signale que les differents termes sont ranges ”a l’interieur” des operateursdifferentiels. Pour l’advection c’est le cas car on peut ecrire ∂t(u) + ∂x(au) = 0.L’etape b) peut se realiser en integrant dans un volume espace-temps ou uniquement espace, avec le memeresultat. Par souci de simplicite, nous integrons dans un volume de type espace.Le volume (ou maille, ou cellule) d’indice j est situe entre les bords de volume xj− 1

2=(j − 1

2

)∆x et xj+ 1

2=(

j + 12

)∆x. La longueur (volume en 3D) de la maille est ∆xj = xj+ 1

2− xj− 1

2: on remarque que les longueurs

de mailles peuvent etre variables ce qui autorise plus de souplesse pour la mise en oeuvre.L’integration dans la maille fournit

∫ xj+1

2

xj− 1

2

(∂tu+ a∂xu) dx =

∫ xj+1

2

xj− 1

2

∂tudx+

∫ xj+1

2

xj− 1

2

a∂xudx = 0. (3.13)

La premiere integrale est aussi∫ x

j+12

xj− 1

2

∂tudx = ddt

∫ xj+1

2xj− 1

2

u(t, x)dx. La quantite∫ x

j+12

xj− 1

2

u(t, x)dx represente la

masse de l’inconnue u dans la maille. Puis nous definissons la valeur moyenne de de cette meme quantite autemps tn

vnj =

∫ xj+1

2xj− 1

2

u(x, tn)dx

∆xj.

On peut remarquer qu’aucune approximation n’a pour l’instant ete realisee. Une approximation de type DifferencesFinies de l’operateur d

dtpermet d’obtenir

d

dt

∫ xj+1

2

xj− 1

2

u(t, x)dx = ∆xjvn+1j − vnj

∆t+O(∆t) (3.14)

Page 23: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.1. APPROXIMATION NUMERIQUE EN DIMENSION D = 1 23

qui est correct des que u est suffisamment regulier. Il n’y a donc pas de difficulte veritable avec la discretisationde la derivee temporelle.A present nous considerons ∫ x

j+12

xj− 1

2

a∂xu(n∆t, x)dx.

On integre dans la maille la forme divergente∫ x

j+12

xj− 1

2

∂xau(n∆t, x)dx = au(n∆t, xj+ 12)− au(n∆t, xj− 1

2).

Le terme de bord a u(n∆t, xj+ 12) est le flux que nous devons discretiser lors de l’etape c). L’idee est d’obtenir

une representation precise de u(n∆t, xj+ 12) a partir de combinaisons bien choisies des vnj .

x

unj− 1

2

= unj−1 unj+ 1

2

= unj

︸ ︷︷ ︸unj

t

Figure 3.4 – La valeur en xj+ 12est decentre en suivant le signe de la vitesse a > 0, ce qui revient a remonter

le long des caracteristiques.

Le choix usuel (de base) consiste a decentrer cette quantite suivant le sens des caracteristiques, donc suivant lesigne de la vitesse a. Pour a > 0, on prendra

u(n∆t, xj+ 12) = vnj +O(∆x), ∀j.

D’ou ∫ xj+1

2

xj− 1

2

a∂xu(n∆t, x)dx = a(vnj − vnj−1) +O(∆x). (3.15)

On trouve en inserant (3.14) et (3.15) dans (3.13)

∆xjvn+1j − vnj

∆t+ a(vnj − vnj−1) = O(∆x) +O(∆t).

Abandonnant le residu a droite, nous obtenons le schema de Volumes Finis

∆xjun+1j − unj

∆t+ a(unj − unj−1) = 0. (3.16)

Ce schema est d’ordre un en temps et en espace.Pour le cas de l’equation d’advection, il est aise de comparer le resultat de ces trois constructions.

Lemme 11. Soit une grille uniforme : ∆xj = ∆x pour tout j.Les schemas de Volumes Finis (3.16) et de Differences Finies (3.3) sont identiques et decentres, et sont doncdifferents des schemas d’Elements Finis centres tels que (3.11) et (3.12).

Page 24: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

24 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Exercice 3. Montrer que le schema de Lax-Wendroff est d’ordre deux en temps et en espace.

un+1j = (1− ν2)unj +

ν + ν2

2unj−1 +

ν2 − ν2

unj+1. (3.17)

Exercice 4. Montrer que le schema de Beam-Warming est d’ordre deux en temps et en espace.

un+1j =

(1− 3

2ν +

1

2ν2)unj + (2ν − ν2)unj−1 +

ν2 − ν2

unj−2. (3.18)

3.1.2 Equation de la chaleur

Nous appliquons a present les principes de construction de Differences Finies, d’Elements Finis et de Volumesa l’equation de la chaleur sur la droite reelle

∂tu− ∂xxu = 0, x ∈ R, t > 0.

Les notations discretes de points et de mailles sont conservees. Le pas de temps est note ∆t > 0, et ∆x > 0 estle pas d’espace.

Approximation par Differences Finies

Le schema explicite de Differences Finis prend la forme

un+1j − unj

∆t−unj+1 − 2unj + unj−1

∆x2= 0, ∀j ∈ Z. (3.19)

Exercice 5. Montrer que ce schema est d’ordre un en temps et deux en espace.

Une illustration numerique calculee avec le schema (3.19) est la suivante. Soit une donnee initiale u0(x) =cos(2πx) et des conditions periodiques aux bords. La solution exacte est

u(x, t) = cos(2πx)e−4π2t.

Pour un temps de T = log 24π2 ≈ 0.0175581, on obtient u(x, T ) = 1

2u0(x).Nous resolvons ce probleme avec 100 mailles sur un intervalle de longueur 1, soit ∆x = 0.01. Les resultatscalcules avec le schema (3.19) pour un parametre ν = 2 ∆t

∆x2 sont presentes a la figure 3.5, pour trois valeurs duparametre ν = 0.55, ν = 0.1 et ν = 0.45.A partir de la forme explicite du schema upwind,

un+1j = (1− 2ν)unj + νunj−1 + νunj+1

on retrouve aisement que ν ≤ 12 est une condition suffisante pour eliminer les violentes oscillations numeriques

du cas ν = 0.55. En effet

ν ≤ 1 =⇒ supj

∣∣un+1j

∣∣ ≤ supj

∣∣unj∣∣ .

Approximation par Elements Finis

La methode des Elements Finis s’appuie sur une formulation variationnelle que nous developpons tout d’abordpour l’equation stationnaire −u′′(x) = f avec f ∈ L2(R) pour fixer les idees. On a

R

u′(x)v′(x)dx =

∫f(x)v(x)dx, pour tout v dans un espace bien choisi de type H1(R).

Page 25: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.1. APPROXIMATION NUMERIQUE EN DIMENSION D = 1 25

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

−1

’soldifini’

−6e+08

−4e+08

−2e+08

0

2e+08

4e+08

6e+08

8e+08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

−8e+08

’soldifCFL=.55’

t = 0 t = T et ν = 1.1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

−0.5

’soldifCFL=.45’

−0.4

−0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

−0.6

’soldifCFL=.1’

t = T et ν = 0.45 t = T et ν = 0.1

Figure 3.5 – Donnee initiale en haut a gauche, solution numerique au temps T = log 24π2 . On observe une

instabilite en haut a droite, et une solution numerique ”correcte” en bas. Les amplitudes de l’instabilite sontsans commune mesure avec l’amplitude de la solution exacte.

Soit une fonction test P 1 definie dans (3.7). La formulation discrete est∫

R

u′hϕ′jdx =

∫fϕjdx.

Considerons comme auparavant que uh =∑

i uiϕi. On obtient

i

(∫

R

ϕ′i(x)ϕ

′j(x)dx

)ui =

∫fϕjdx, ∀j.

Posons ci,j =∫Rϕ′i(x)ϕ

′j(x)dx d’ou l’on obtient

ci,j = 0 i ≤ j − 2,ci,j = 0 i ≥ j + 2,

cj+1,j =

∫ (j+1)∆x

j∆x

1

∆x× −1

∆xdx = − 1

∆x,

cj−1,j =

∫ j∆x

(j−1)∆x

−1∆x× 1

∆xdx = − 1

∆x,

cj,j =

∫ (j+1)∆x

(j−1)∆x

1

∆x2dx =

2

∆x.

Nous posons par commodite fj =1

∆x

∫Rfϕj . On obtient alors le schema

−uj+1 − 2uj + uj−1

∆x= ∆xfj , ∀j.

Page 26: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

26 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Une discretisation de type Differences Finies explicite du terme ∂tu permet d’obtenir le schema

∆xun+1j − unj

∆t− uj+1 − 2uj + uj−1

∆x= 0, n ∈ N, j ∈ Z, (3.20)

dans lequel on retrouve le schema aux Differences Finies (3.19).

Approximation par Volumes Finis

Considerons a present une discretisation par la methode des Volumes Finis pour la forme divergente

∂tu− ∂xf = 0, f = ∂xu.

Nous integrons en espace entre xj− 12et xj+ 1

2

d

dt

∫ xj+1

2

xj− 1

2

u(t, x)dx−∫ x

j+12

xj− 1

2

∂xxu(t, x)dx = 0.

D’oud

dt

∫ xj+1

2

xj− 1

2

u(t, x)dx− ∂xu(t, xj+ 12) + ∂xu(t, xj− 1

2) = 0. (3.21)

Le centre des mailles est note xj avec

xj =xj− 1

2+ xj+ 1

2

2.

Comme auparavant la valeur moyenne de u dans la maille est notee

vnj =

∫ xj+1

2xj− 1

2

u(n∆t, x)dx

∆xj= u(n∆t, xj) +O(∆x2j ), (3.22)

et la derivation en temps est approchee par la difference finie explicite (3.14). Une discretisation naturelle duflux ∂xu(t, xj+ 1

2) est

∂xu(n∆t, xj+ 12) =

u(n∆t, xj+1)− u(n∆t, xj)xj+1 − xj

+O(xj+1 − xj). (3.23)

uj+1

uj

uj+12

xj+12

︸ ︷︷ ︸Gj+1−xj+1

2

︸︷︷︸xj+1

2−Gj

Figure 3.6 – Interpolation en xj+ 12de la derivee en espace.

On peut remarquer que si le maillage est uniforme

xj+1 − xj+ 12= xj+ 1

2− xj ⇐⇒ xj+ 3

2− xj+ 1

2= xj+ 1

2− xj− 1

2,

Page 27: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.2. APPROXIMATION NUMERIQUE EN DIMENSION D ≥ 2 27

alors l’erreur d’interpolation est du second ordre

∂xu(n∆t, xj+ 12) =

u(n∆t, xj+1)− u(n∆t, xj)xj+1 − xj

+O((xj+1 − xj)2

)

et donc a priori plus precis que (3.23). En remplacant la valeur ponctuelle par la valeur moyenne (3.22), nousobtenons

∂xu(n∆t, xj+ 12) =

vnj+1 − vnjxj+1 − xj

+O (max(∆xj+1,∆xj))

D’ou a partir de (3.21)

∆xjvn+1j − vnj

∆t−vnj+1 − vnjxj+1 − xj

+vnj − vnj−1

xj − xj−1= O (max (∆xj+1,∆xj ,∆t)) .

Il reste a abandonner le residu et a remplacer la solution exacte par la solution numerique pour obtenir

∆xjun+1j − unj

∆t−unj+1 − unjxj+1 − xj

+unj − unj−1

xj − xj−1= 0. (3.24)

Proposition 4. Soit une grille uniforme : ∆xj = ∆x pour tout j. Alors les schemas de Differences Finies(3.19), d’Elements Finis (3.20) et de Volumes Finis (3.24) sont identiques.

3.2 Approximation numerique en dimension d ≥ 2

Nous passons en revue quelques principes qui permettent d’etendre les schemas precedents en dimensionsuperieure.La presentation sera faite en dimension d = 2, cependant les principes restent les memes en dimension d = 3 etplus.

3.2.1 Methodes de Differences Finies

Soit une grille cartesienne uniforme dont les points en espace sont notes

xi,j = (i∆x, j∆x) , i, j ∈ Z.

Les pas de temps sont toujours tn = n∆t pour n ∈ N. La solution numerique au point d’espace-temps (xi,j , tn)sera notee uni,j .

Principe 5. Une extension bidimensionnelle immediate d’un schema de Differences Finies mondimensionnelconsiste a additionner les discretisations dans les diverses directions spatiales.

Soit par exemple l’equation d’advection bidimensionnelle

∂tu+ a∂xu+ b∂yu = 0, (x, y) ∈ R2. (3.25)

En supposant a > 0 et b < 0, un schema bidimensionnel explicite construit a partir de (3.3) s’ecrit

un+1i,j − uni,j

∆t+ a

uni,j − uni,j−1

∆x+ b

uni,j+1 − uni,j∆x

= 0. (3.26)

Ce schema est d’ordre un en temps et en espace.

Principe 6. Une extension bidimensionnelle par splitting directionnel d’un schema de Differences Finies mon-dimensionnel consiste a decomposer le schema en deux etapes monodimensionnelles.

Page 28: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

28 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Toujours pour la meme equation (3.25) et avec les memes hypotheses a > 0 et b < 0, on aura le schema expliciteen deux etapes

Premiere etape :un+ 1

2

i,j − uni,j∆t

+ auni,j − uni,j−1

∆x= 0

suivi de

Deuxieme etape :un+1i,j − u

n+ 12

i,j

∆t+ b

un+ 1

2

i,j+1 − un+ 1

2

i,j

∆x= 0.

Une telle decomposition peut sembler surprenante a premiere vue. Cependant en additionnant ces deux etapeson obtient

un+1i,j − uni,j

∆t+ a

uni,j − uni,j−1

∆x+ b

un+ 1

2

i,j+1 − un+ 1

2

i,j

∆x= 0, (3.27)

dans lequel on retrouve la discretisation des derivees en x et en y mais avec un centrage en temps intermediairepour la derivee discrete en y.

L’extention de ces principes est immediate pour tout type d’equation qui admet une discretisation de DifferencesFinies en dimension d = 1 d’espace.

3.2.2 Methode de Volumes Finis pour l’equation d’advection

Ces idees ont ete developpees a parti des travaux initiaux de Hill-Reed et Lesaint-Raviart [32, 28] pour ladiscretisation de problemes en neutronique. La motivation initiale etait d’utiliser des maillages quelconquesavec des donnees numeriques constantes par maille, i.e. P 0, car cela est adapte a la prise en compte d’unephysique complexe.

Soit a ∈ R2 un champ de vitesse constant en espace et en temps. Soit Ω ⊂ R

2 un ouvert borne polygonal telque celui de la figure 3.7.

Ω

Ωj

a

Γ+

njnjk

Ωk

Ωl

Ωp

Γ−

Figure 3.7 – Domaine et maillage

Page 29: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.2. APPROXIMATION NUMERIQUE EN DIMENSION D ≥ 2 29

Soit un maillage de Ω. Ce maillage est une collection de mailles polygonales Ωj (considerees comme desouverts). La condition de recouvrement s’ecrit

Ω = ∪jΩj .

L’aire de Ωj est notee sj > 0 et

Aire (Ω) =∑

j

sj .

La normale sortante de Ωj est nj . L’interface entre Ωj et Ωk est Σjk = Σkj . Sur cette interface nj sera aussinote njk. La longueur de l’interface est ljk = lkj . Elle peut etre nulle pour Σjk = ∅ ce qui signale que les maillesne sont pas voisines. Par construction

njk + nkj = 0 pour ljk > 0.

La frontiere de Ωj est alors egale a la collection de segments

∂Ωj = ∪kΣjk ∪ Γ−j ∪ Γ+

j

ouΓ−j = ∂Ωj ∩ Γ−, c’est a dire a · nj < 0 sur Γ−

j ,

etΓ+j = ∂Ωj ∩ Γ+, c’est a dire a · nj ≥ 0 sur Γ+

j .

La longueur de Γ±j sera notee l±j .

Definition 6 (Longueur caracteristique du maillage). Il est utile de definir une longueur caracteristique quimesure la finesse du maillage : on la notera h. Avec une part d’arbitraire, on la definit comme

h = max

(maxjk

ljk,maxjl−j ,max

jl+j

). (3.28)

A partir de ces notations, nous sommes en mesure de construire un schema de Volumes Finies en suivant leprincipe 4. Une integration de l’equation dans la maille Ωj donne

Ωj

(∂tu+∇ · (f(u))) dx = 0.

Icif(u) = au

est le flux exact. Separant la derivee en temps des derivees en espace

d

dt

Ωj

udx+

Ωj

∇ · f(u)dx = 0. (3.29)

La fonction u sera supposee aussi reguliere que necessaire, ce qui permet de justifier toutes les developpementsde Taylor qui seront realises. Le terme en temps est

(d

dt

Ωj

udx

)(n∆t) = sj

vn+1j − vnj

∆t+O(h2∆t). (3.30)

Ici vnj est la valeur moyenne de u au temps tn

vnj =

∫Ωju(tn,x)dx

sj. (3.31)

Page 30: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

30 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Exercice 6. En notant xj le centre de masse de la maille, montrer que

vnj = u(n∆t,xj) +O(h2). (3.32)

Considerons a present la deuxieme partie de (3.29), que nous integrons directement dans la maille. En supposantque Ωj est situe strictement a l’interieur du domaine, on obtient

Ωj

∇ · f (u(n∆t,x)) dx =

∂Ωj

f (u(n∆t,x)) · njdσ =∑

k

(ljk a · njk) vnjk. (3.33)

Ici vnjk est la valeur moyenne de u sur l’interface Σjk au temps tn

vnjk =

∫Σjk

u(n∆t,x)dσ

ljk.

Il est temps d’appliquer l’etape c) du principe de construction 4 des schemas de Volumes Finis. Nous nousappuyons sur les droites caracteristiques. Pour un champ de vitesse a est oriente de Ωj vers Ωk, on considereque vnjk ≈ vnj . Cela est illustre a la figure 3.8.

ΩjΩk

nj

a

ΩjΩk

nj

a

vnjk = vnk +O(h) vnjk = vnj +O(h)

Figure 3.8 – On recherche une approximation decentree suivant le signe de a · n de la valeur moyenne al’interface entre deux mailles.

La meme idee est utilisee sur chaque interface. Sur le bord entrant Γ−j , on utilise la donnee au bord u−

u−,nj =

∫ (n+1)∆t

n∆t

∫Γ−j

u−(s,x)dσds

∆t l−j. (3.34)

Si a · njk = 0, alors la valeur choisie de vnjk n’a pas d’importance car elle est multipliee ljka · njk = 0 in (3.33).On obtient

sjvn+1j − vnj

∆t+O(h2∆t)

+∑

k, a·njk>0

ljk a · njk

(vnj +O(h)

)+

k, a·njk<0

ljk a · njk (vnk +O(h))

+l−j a · njv−,nj + l+j a · nj

(vnj +O(h)

)= 0.

Page 31: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.2. APPROXIMATION NUMERIQUE EN DIMENSION D ≥ 2 31

En abandonnant les residus O(·) et en remplacant systematiquement les moyennes de la solutions exactes parla solution numerique on obtient

sjun+1j − unj

∆t+

k, a·njk>0

ljk a · njkunj +

k, a·njk<0

ljk a · njkunk + l−j a · nju

−,nj + l+j a · nju

nj = 0. (3.35)

Notons que le flux numerique sur chaque bord peut se representer par la formule symetrique

Fj,k(u, v) =|a · njk|+ a · njk

2u− |a · nkj |+ a · nkj

2v. (3.36)

Ce flux numerique est une approximation numerique du flux exact, au sens ou

Fj,k(u, u) = f(u) · njk. (3.37)

Cette propriete est appelee la consistance du flux numerique. Une autre propriete du flux numerique est

Fj,k(u, v) + Fj,k(v, u) = 0 ∀u, v ∈ R. (3.38)

Avec ces notations le schema peut se recrire

sjun+1j − unj

∆t+∑

k

ljkFjk(unj , u

nk ) + l−j Fj,j−(u

nj , u

−,nj ) + l+j Fj,j+(u

nj , u

+,nj ) = 0 (3.39)

ou nous avons utilise la meme convention d’ecriture pour les flux sur les bords exterieurs indices j− et j+ (leterme u+,n

j est artificiel et ne joue pas sur la valeur du flux numerique).Soit Mn =

∑j sju

nj la masse totale dans le domaine de calcul.

Lemme 12. Le schema (3.35) est conservatif, au sens ou la variation de masse totale se determine en fonctiondes flux sur les bords sortant et entrant

Mn+1 −Mn

∆t+∑

j

l−j a · nju−,nj +

j

l+j a · njunj = 0.

Demonstration. Considerant (3.39), il suffit de sommer sur toutes les mailles et de montrer que la contributiondes flux internes s’annule. On a

j

k

ljkFjk(unj , u

nk ) =

j,k

(ljkFjk(u

nj , u

nk ) + lkjFkj(u

nk , u

nj ))= 0

en vertu de (3.38). La preuve est terminee.

La stabilite et la convergence de ce schema seront etablies au chapitre 5.

3.2.3 Methode de Volumes Finis pour l’equation de la chaleur

Nous considerons l’equation de la chaleur en dimension d = 2 avec une condition de Neumann homogene

∂tu+∇ · g(∇u) = 0, x ∈ Ω,g(∇u) · n = 0, x ∈ Γ

pour le flux g(∇u) = −∇u.Nous utilisons les notations precedentes sur le maillage. La methode d’integration de Volumes Finis est similaireau cas de l’advection, cependant il apparaitra une condition de compatibilite sur le maillage. De ce point devue, cela fait apparaitre une difference fondamentale entre ces deux problemes.

Page 32: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

32 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

Apres integration dans Ωj , discretisation explicite de la derivee temporelle et expression des flux aux bords, onobtient

sjvn+1j − vnj

∆t+∑

k

ljk wnjk = O(h2∆t) (3.40)

ou vnj represente la valeur moyenne (3.31) de la solution exacte dans la maille et wjk est la valeur moyenne duflux exact sur l’interface

ljkwnjk = −

Σjk

∇u(n∆t, x)dσ · njk = ∇u(n∆t,xjk) · njk +O(h2)

ou xjk est defini comme le milieu du bord. On a

u(n∆t,xk) = u(n∆t,xjk) +∇u(n∆t,xjk) · (xk − xjk) +O(h2),

etu(n∆t,xj) = u(n∆t,xjk) +∇u(n∆t,xjk) · (xj − xjk) +O(h2).

En soustrayant nous obtenons

u(n∆t,xk)− u(n∆t,xj) = ∇u(n∆t,xjk) · (xk − xj) +O(h2).

Posons

djk = |xk − xj | et mjk =xk − xj

djkavec |mjk| = 1.

Pour continuer la construction, nous ajoutons des conditions sur le maillage.

Hypothese 1 (Sur le maillage). Nous supposons qu’il existe une constante C > 0 independante de h telle que

inf(j,k)

djk ≥ Ch (3.41)

ou h est la longueur caracteristique (3.28). De plus nous supposons que le segment qui relie les centres de mailleest orthogonal au bras

mjk = njk, ∀j, k. (3.42)

Un contre-exemple est propose a la figure 3.9.Grace a (3.41) et (3.42) on peut ecrire apres division par djk

∇u(n∆t,xjk) · njk =u(n∆t,xk)− u(n∆t,xj)

djk+O(h). (3.43)

C’est donc que

wnjk =

u(n∆t,xk)− u(n∆t,xj)

djk+O(h).

Or on peut approcher a l’ordre deux les valeurs ponctuelles par les valeurs moyennes grace a (3.32), d’ou

wnjk =

vnk − vnjdjk

+O(h).

On reporte cette expression dans (3.40). Abandonnant les residus et remplacant les moyennes de la solutionexacte par la solution numerique, on obtient le schema numerique de Volumes Finis

sjun+1j − unj

∆t−∑

k

ljkunk − unjdjk

= 0, ∀j. (3.44)

Page 33: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.2. APPROXIMATION NUMERIQUE EN DIMENSION D ≥ 2 33

njkCell j

Cell k

xjxk

mjk

Figure 3.9 – Exemple d’un maillage satisfaisant localement (3.41), mais ne satisfaisant pas la condition d’ali-gnement (3.42) car mjk 6= njk.

On remarque que la condition au bord de Neumann est automatiquement prise en compte car la somme sur lesmailles k exclut le bord. Cette construction permet d’identifier un flux numerique

Gjk(u, v) =u− vdjk

, avec Gjk(u, v) +Gjk(v, u) = 0. (3.45)

Il s’ensuit que le schema (3.44) se recrit sous la forme generale

sjun+1j − unj

∆t+∑

k

ljkGjk

(unj , u

nk

)= 0, ∀j. (3.46)

Lemme 13. Le schema (3.46) est conservatif, au sens ou la variation de masse totale est nulle.

Exercice 7. Le montrer.

La construction de ce schema est soumise a la contrainte que les centres de mailles (xj) doivent satisfairel’hypothese 1. Cette hypothese est en pratique une contrainte extremement forte sur le maillage. Les maillagescartesiens voire cartesiens a pas variable tels que celui de la figure 3.10 verifie cette contrainte. Cependantil n’y a pas de raison qu’un maillage quelconque la satisfasse. Cela montre qu’il y a des liens forts entre lamethode consideree de discretisation de l’equation de la chaleur et la geometrie du maillage sur lequel s’appuiela discretisation.On decrit dans ce qui suit une solution elegante qui relaxe en partie cette contrainte pour les maillages entriangles. Nous allons definir un point xj attache a la maille Ωj et nous etudions quelques proprietes de lavaleur de la solution exacte interpolee en ce point

vnj = u(n∆t, xj).

Nous definissons par ailleurs des quantites geometriques

djk = |xk − xj | et mjk =xk − xj

djktel que

∣∣∣fjk∣∣∣ = 1. (3.47)

Supposons alors qu’il existe une constante universelle C > 0 independante de h avec les proprietes suivantesOn a pour une solution u suffisamment reguliere

sjvn+1j − vnj

∆t= sj

wn+1j − wn

j

∆t+O(h3).

Page 34: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

34 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

∆y1

∆y2

∆x1 ∆x2

Figure 3.10 – Exemple d’un maillage en quadrangles satisfaisant les conditions de la table 3.1. Ce maillage estfortement contraint.

a) supj |xj − xj | ≤ Chb) inf(j,k) djk ≥ Chc) mjk = njk pour tout (j, k)

Table 3.1 – Contraintes sur le maillage.

Donc on peut recrire (3.40) sous la forme

sjwn+1

j − wnj

∆t−∑

k

ljk wnjk = O(h2∆t) +O(h3). (3.48)

Or nous pouvons approcher wnjk par une combinaison lineaire de wn

j et wnk . En effet on a

u(n∆t, xk)− u(n∆t, xj) = ∇u(n∆t,xjk) · (xk − xj) +O(h2).

On trouve en utilisant les points a) et b) plus haut

∇u(n∆t, xjk) · mjk =u(n∆t, xk)− u(n∆t, xj)

djk+O(h).

Le reste de la construction etant similaire, on obtient en suivant les memes principes

sjun+1j − unj

∆t+∑

k

ljkGjk

(unj , u

nk

)= 0, ∀j (3.49)

pour le flux numerique

Gjk(u, v) =u− vdjk

. (3.50)

Page 35: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

3.2. APPROXIMATION NUMERIQUE EN DIMENSION D ≥ 2 35

La convergence de la variante implicite de ce schema sera etablie au chapitre 5.Pour un maillage donne, les conditions enoncees dans la table 3.1 sont des conditions suffisantes pour que leschema de Volumes Finis (3.49) soit construit en accord avec le principe 4.Il est absolument remarquable qu’une solution simple a mettre en oeuvre existe pour un maillage en trianglesdont tous les angles sont strictement inferieurs a π

2 .

Lemme 14. Soit un maillage constitue de triangles. Supposons que les angles des triangles soient tous stricte-ment inferieurs a π

2 − ǫ pour un ǫ independant de h. Soit xj le centre du cercle circonscrit a la maille d’indicej.Alors xj ∈ Ωj pour tout j, et les autres conditions de 3.1 sont verifiees.

B

DC

xk

A

xj

Figure 3.11 – Triangles et cercles circonscrits.

Exercice 8. Demontrer ce resultat en partant de la figure 3.11.

Les triangles de la figure 3.11 constituent un cas particulier de maillage de Delaunay [16]. La discretisationde l’equation de la chaleur en Volumes Finis se conduit aussi pour les maillages de Delaunay-Voronoi pourlesquels on renvoie a on renvoie a une reference initiale [22]. Voir aussi [15] pour une utilisation de la conditiond’orthogonalite entre les centres de mailles et les bras visible a la figure 3.11 dans le cadre des methodes deVolumes Finis pour l’equation de la chaleur.

3.2.4 Methodes de Volumes Finis pour les systemes de FriedrichsOn reprend les notations sur le maillage introduites precedemment et on considere une solution reguliere du systeme de Friedrichs(2.15). La valeur moyenne de la solution exacte dans la maille est notee

Vnj =

∫Ωj

U(x, t)dx

sj.

La valeur moyenne sur un bras de la solution exacte est notee

Vnjk =

∫Σjk

U(x, t)dσ

ljk.

Apres integration en temps de l’equation (2.15), discretisation explicite de la derivee temporelle et expression des termes de fluxau bord, on obtient

sjVn+1j −Vn

j

∆t+∑

k

ljkAjkVnjk = O(h2∆t) (3.51)

Page 36: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

36 CHAPITRE 3. QUELQUES PRINCIPES DE CONSTRUCTION

ou les matrices de bord sont definies exactement par

Ajk = A1n1jk +A2n

2jk = −Akj , njk =

(n1jk,n

2jk

)∈ R

2. (3.52)

Le terme de flux vient d’une utilisation de la formule de Stockes sous la forme∫

Ωj

(∂x1 (A1U) + ∂x2 (A2U)) dx =

∂Ωj

(n1jA1U+ n2

jA2U)dσ =

k

ljkAjkVjk.

L’expression (3.51) est exacte car aucune approximation n’a ete realisee pour l’instant.Si on peut determiner une expression des termes d’interfaces Vn

jk en fonction des valeurs moyennes Vnj et en tenant compte de

la structure matricielle du probleme, cela permet de proposer une facon de terminer la construction de la methode. C’est ce quel’on appelle communement un solveur de Riemann. Il se trouve qu’il est beaucoup plus judicieux en pratique de chercher adeterminer une valeur pour le produit AjkV

njk en fonction de Vn

j et de Vnk . En effet les exemples usuels montrent que les matrices

Ajk peuvent etre non inversible (detAjk = 0).On considere dans ce qui suit un mode de construction simple qui s’appuie sur une decomposition en partie positive et partienegative de la matrice de bord sous la forme

Ajk = A+jk

+A−jk

(3.53)

ou A+jk

=(A+jk

)t≥ 0 est une matrice symetrique positive ou nulle et A−

jk=(A−jk

)t≤ 0 est une matrice symetrique negative

ou nulle, tout en conservant A+jk

= A+kj

et A−jk

= A−kj

. Une telle decomposition est aisee a realiser pour des matrice symetriques,

cependant elle n’est pas unique ce qui explique en partie la profusion de solveurs de Riemann. Pour fixer les idees on part d’unediagonalisation

Ajk =n∑

p=1

λpjk

wpjk

⊗wpjk

ou les vecteurs propres wpjk

sont orthonormes. On choisit alors

A+jk

=∑

λpjk>0

λpjk

wpjk

⊗wpjk

et A−jk

=∑

λpjk<0

λpjk

wpjk

⊗wpjk. (3.54)

On a la formuleAjkV

njk = A+

jkVnj +A−

jkVnk +O(h) (3.55)

qui sert pour definir le flux numerique. En effet on pose

fjk (U,V) = A+jk

U+A−jk

V. (3.56)

En abandonnant les differents termes d’erreur et en remplacant la solution exacte par la solution numerique, on obtient le schemade Volumes Finis explicite

sjUn+1j −Un

j

∆t+∑

k

ljkfjk(Unj ,U

nk

)= 0. (3.57)

On peut faire quelques remarques.

Remarque 1. On peut se demander pourquoi ne pas prendre un flux numerique plus simple, par exemple fjk (U,V) = AjkU+V

2.

Il se trouve qu’un tel choix mene a un schema instable, et c’est pour cela qu’il n’est jamais retenu.

Remarque 2. Si le probleme est scalaire c’est a dire n = 1, alors le systeme de Friedrichs est identique a l’equation d’advection.On peut alors verifier que le flux (3.56) est identique au schema decentre defini par le flux (3.36).

Remarque 3. On peut remarquer que la formule (3.56) ne permet pas de definir de valeur intermediaire car la matrice Ajk peutne pas etre inversible.

La stabilite et la convergence de ce schema peuvent etre etablies avec les estimations developpees au chapitre 5, ce qui justifie cetteconstruction.

Page 37: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 4

Analyse numerique des methodes deDifferences finies

L’analyse numerique des methodes de Differences Finies se realise a partir des notions fondamentales de consis-tance et de stabilite, ce qui permet d’evaluer et parfois de mesurer quantitativement la precision numerique.Cela pose par ailleurs les bases de l’analyse numerique de la plupart des methodes numeriques instationnaires.La presentation qui suit est tout a fait classique [33, 27, 11, 1, 20, 14], en veillant toutefois a permettre l’analysenumerique des methodes de Volumes Finis avec les memes outils au chapitre suivant.

4.1 Consistance, stabilite et theoreme de Lax

La presentation du cadre theorique sera developpee a partir du probleme lineaire modele

∂∂tu = Au, t > 0,

u(0) = u0 ∈ V, (4.1)

ou V un espace de Banach de norme || · ||. On suppose l’existence d’un sous-espace dense dans V note X ⊂ V∀u ∈ V, inf

v∈X‖u− v‖ = 0.

L’operateur lineaire est A : D(A) → V de domaine dense X ⊂ D(A) ⊂ V . Sous des conditions generalespour lesquelles on renvoie a [11, 6], ce probleme est bien pose (existence et unicite de la solution). Cela definitu(t) ∈ V .

Definition 7. Nous considererons que le semi-groupe d’operateur etA est borne

∃ K, L ≥ 0 tels que ||etA|| ≤ KeLt, t ∈ R. (4.2)

Nous dirons que etA est uniformement borne si L = 0.Nous dirons que etA est unitairement borne si de plus K = 1, auquel cas on a ||etA|| ≤ 1 pour tout temps.

La plupart des exemples considerees dans ces notes correspond a des semi-groupes uniformement voire unitai-rement bornes. On representera la solution de (4.1) sous la forme abstraite

u(t) = etAu0. (4.3)

Le probleme modele avec second membre s’ecrit

∂∂tu = Au+ f, t > 0,

u(0) = u0.(4.4)

Sa solution est donnee par la formule de Duhamel

u(t) = etAu0 +

∫ t

0e(t−s)Af(s)ds.

Cependant pour des raisons de simplicite de notations, nous ne considererons que le probleme homogene f = 0. Par ailleurs celane changerait pas fondamentalement les conclusions auxquelles nous arriveront.

37

Page 38: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

38 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

4.1.1 Consistance pour le cas stationnaire

Le sous espace X est typiquement constitue de fonctions regulieres, par exemple de classe C2 voire meme C∞.Ce qu’il faut c’est que X permette au moins de definir l’operateur d’interpolation et de realiser les differentesetudes de consistance necessaires.Soit Vh ⊂ V un sous-espace vectoriel de V et Πh un operateur d’interpolation,

Πh : X → Vh.

Ici interpolation fait reference au fait que X 6= V , ce qui est le cas pour l’exemple central (4.5). Si ΠhΠh = Πh

on dira que plus Πh est un operateur de projection. Dans la plupart des situations rencontres dans ces noteset avec quelques adaptations dans les notations, Πh est a la fois un operateur d’interpolation et de projection 1.Ces objets dependent d’un parametre h > 0 qui est destine a converger vers zero. Ce parametre represente lesparametres numeriques de la methode. On peut identifier h a la plus grande longueur du maillage telle quedefinie dans (3.28).Nous considererons que Πh est un bon operateur d’approximation au sens ou

∀u ∈ X, limh→0||u−Πhu|| = 0. (4.6)

Soit Ah : Vh → Vh. un schema numerique qui realise une approximation de A.

Definition 8 (Consistance, ordre d’approximation). On dit que le schema numerique Ah est une approximationconsistante de A ssi

∀u ∈ X, limh→0||AhΠhu−Au|| = 0. (4.7)

On dira que l’approximation est d’ordre p > 0 ssi il existe une constante C > 0 independante de h et u telle que

||AhΠhu−Au|| ≤ Chp||u||, u ∈ X. (4.8)

On note que l’ordre d’approximation peut dependre de X et Πh.

4.1.2 Cas instationnaire

Soit ∆t > 0 un pas de temps et tn = n∆t pour n ∈ N. Avec l’ensemble de ces notations, le schema d’Eulerexplicite pour la discretisation de (4.1) s’ecrit

un+1h − unh

∆t= Ahu

nh, n ≥ 0,

u0h = Πhu0.(4.9)

1. Un exemple qui permet d’illustrer ces definitions est le suivant. On peut prendre V = Lp(R2) pour 1 ≤ p ≤ ∞. Un sous-espaceX qui convient naturellement est X = C0(R2). On peut aussi prendre X = Cq(Ω) pour q ∈ N assez grand ce qui se revelera adaptepour l’etude de consistance. L’espace discret s’appuie sur un maillage c’est-a-dire une collection de points

xij = (i∆x, j∆y), (i, j) ∈ Z2.

Un operateur d’interpolation ponctuel naturel est

Πh(u) = (u(xij))i,j∈Z(4.5)

qui est defini pour des fonctions de classe C∞. Le pas d’espace ∆x dans la direction x est eventuellement different du pas ∆y dansla direction y. On aura naturellement h = max(∆x,∆y). L’espace discret Vh est constitue des fonctions discretes dont les valuessont specifiees aux points du maillage

Vh =vh = (vij)i,j∈Z

.

On pourrait objecter que Vh n’est pas un sous-espace de V . Mais ce n’est en rien une restriction pour peu que l’on identifie (quel’on confonde) Vh et Wh qui est l’espace des fonctions constantes par morceaux sur des carres Cij =](i− 1

2)∆x, (i+ 1

2)∆x[×](j −

12)∆y, (j + 1

2)∆y[ de centre xij

Wh = v ∈ V, v est constant sur tous Cij .

On a alors Vh ≈Wh ⊂ V et la norme dans Vh est la norme de V : ‖vh‖ =(∆x∆y

∑ij |vij |p

) 1p. Dans ces conditions on a bien que

Vh ⊂ V . Enfin il est aise de donner un sens a la relation ΠhΠh = Πh ce qui fait que Πh est aussi un operateur de projection.

Page 39: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.1. CONSISTANCE, STABILITE ET THEOREME DE LAX 39

L’erreur de troncature de ce schema est rnh ∈ Vh

rnh =1

∆t(Πhu(tn+1)−Πhu(tn))−AhΠhu(tn), ∀n, h. (4.10)

Definition 9. On dira que le schema (4.9) est une approximation consistante de (4.1) ssi

∀u ∈ C1([0, T ] : X), limh→0

(maxn≤ T

∆t

‖rnh −Πh (∂tu−Au) (tn)‖)

= 0. (4.11)

On dira que l’approximation est d’ordre p en espace et q en temps ssi il existe r ∈ N assez grand tel que

∀u ∈ Cr([0, T ] : X), maxn≤ T

∆t

‖rnh −Πh (∂tu−Au) (tn)‖ ≤ C(hp +∆tq). (4.12)

Notons qu’on a augmente la regularite en temps dans (4.12) par rapport a (4.11) car sinon il y a peu de chanced’obtenir un precision en temps a l’ordre q pour q assez grand.Comme

limh

∥∥∥∥1

∆t(Πhu(tn+1)−Πhu(tn))−Πh∂tu

∥∥∥∥ = 0, pour u ∈ C1([0, T ] : X),

le critere de consistance (4.11) pour le probleme instationnaire se trouve etre tres proche du critere de consistance(4.7) pour le probleme stationnaire.

Remarque 4 (Critere de consistance precise). Le plus souvent on se contente de verifier le critere precise

maxn≤ T

∆t

‖rnh‖ ≤ C(hp +∆tq) (4.13)

pour toute solution suffisamment reguliere de ∂tu−Au = 0.

Le schema d’Euler explicite peut se recrire sous la forme

un+1h = (Ih +∆tAh)u

nh

ou Ih +∆tAh est l’operateur d’iteration et Ih est l”operateur identite dans Vh : Ihvh = vh pour tout vh ∈ Vh.Aussi la question de la stabilite de cet operateur d’iteration est naturelle. On etend alors la definition 7 enintroduisant une possible restriction sur le pas de temps 2 pour suivre ce que l’on a observe aux simulationsnumeriques presentees dans les figures 3.2 et 3.5.

Definition 10 (Stabilite et condition CFL de Courant-Friedrichs-Levy). Nous supposons qu’il existe une fonc-tion τ : R+ → R

+ et deux constantes K ′, L′ ≥ 0 avec la propriete suivante : pour tous h et ∆t satisfaisant lacondition CFL de restriction sur le pas de temps

∆t ≤ τ(h), (4.14)

on a‖(Ih +∆tAh)

n‖ ≤ K ′eL′n∆t. (4.15)

Nous dirons alors que l’operateur d’iteration est stable pour la condition CFL (4.14).Si L′ = 0, on dira que l’operateur d’iteration est uniformement stable pour la condition CFL (4.14).Si enfin L′ = 0 et K ′ = 1, on se propose de dire que l’operateur d’iteration est unitairement stable pour lacondition CFL (4.14).

En general pour un operateur Ah qui discretise un operateur aux derivees partielles donne A, le pas de tempsmaximal est tel que

limh→0

τ(h) = 0. (4.16)

Une consequence de la condition CFL (4.16) est alors : plus le maillage est fin, plus le pas detemps est petit, ce qui accroit d’autant la charge de calcul de l’ordinateur.

2. Cela fait reference au celebre article de 1928 de Courant, Friedrichs et Levy [10].

Page 40: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

40 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Theoreme 1 (Theoreme de Lax : premiere version). Soit un schema lineaire (4.9) consistant au sens de (4.12).Supposons que le pas de temps satisfasse a la condition CFL (4.16). Alors il est convergent au sens ou

∀T > 0, limh→0

(maxn≤ T

∆t

‖Πhu(tn)− unh‖)

= 0 (4.17)

pour tout u ∈ C1([0, T ] : X) solution de (4.1).

Demonstration. On definit l’erreur numerique enh = unh − Πhu(tn). On a la formule de recurrence en+1h =

(Ih +∆tAh) enh +∆t rnh avec l’initialisation e0h = 0. D’ou la formule de representation

enh = (Ih +∆tAh)ne0h +∆t

n−1∑

p=0

(Ih +∆tAh)n−1−p

rph,

ou plus precisement

enh = ∆t

n−1∑

p=0

(Ih +∆tAh)n−1−p

rph.

D’ou

||enh|| ≤ ∆t

n−1∑

p=0

|| (Ih +∆tAh)n−1−p || ||rph|| ≤

(∆t

n−1∑

p=0

||rph||)eL

′T (4.18)

pour tout n tel que n∆t ≤ T . Or u ∈ C1([0, T ] : X) est solution de (4.1). Donc le critere de consistance (4.12)

montre que l’erreur de troncature est telle que limh→0

(maxn≤ T

∆t‖rnh‖

)= 0. Grace au theoreme de convergence

dominee, cela montre que limh→0 ∆t∑n−1

p=0 ||rph||. D’ou le resultat recherche : limh→0

(maxn≤ T

∆t‖enh‖

)= 0.

La forme utile en pratique est plutot la suivante.

Theoreme 2 (Theoreme de Lax : deuxieme version). Soit un schema lineaire (4.9) verifiant le critere deconsistance precise (4.13) a l’ordre p en espace et q en temps. Supposons que le pas de temps satisfasse a lacondition CFL (4.16). Alors il est convergent a l’ordre p en espace et q en temps et

maxn≤ T

∆t

‖Πhu(tn)− unh‖ ≤ CTeL′T (hp +∆tq) .

Demonstration. Preciser (4.18).

Ce theoreme est central dans la comprehension des proprietes d’approximation des schemas numeriques lineaires.

Exercice 9. Enoncer et montrer un theoreme de Lax pour le probleme avec second membre (4.4).

Schema d’Euler implicite

On analyse ici un fait bien connu qui est que les schemas implicites ont souvent des proprietes de stabilitesuperieures par rapport a celles des schemas explicites.Soit par exemple le schema d’Euler implicite pour resolution numerique de (4.1)

un+1h − unh

∆t= Ahu

n+1h , n ≥ 0,

u0h = Πhu0.(4.19)

La relation de recurrence est a present(Ih −∆tAh)u

n+1h = unh.

Cela definit un+1h a condition que l’operateur lineaire Ih −∆tAh soit inversible.

Page 41: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.1. CONSISTANCE, STABILITE ET THEOREME DE LAX 41

Proposition 5 (Stabilite du schema d’Euler implicite). Supposons que l’operateur d’iteration explicite Ih+∆tAh

est uniformement stable‖(Ih +∆tAh)

n‖ ≤ K ′, n ∈ N

pour un pas de temps ∆t ≤ τ(h) restreint par une condition CFL (4.14).Alors pour tout ∆t > 0, l’operateur I −∆tAh est inversible et uniformement stable avec la meme constante

∥∥(Ih −∆tAh)−n∥∥ ≤ K ′, n ∈ N.

Demonstration. Il est remarquable que le schema implicite soit stable independamment de toute condition CFLsur le pas de temps.

On definit Th = Ih + τ(h)Ah, α = ∆t∆t+τ(h) et β = 1 − α = τ(h)

∆t+τ(h) . Alors Ih − ∆tAh = 1β(Ih − αTh) ce qui

permet de representer l’inverse grace a la serie de Neumann

(Ih −∆tAh)−1

= β (Ih − αTh)−1= β

∞∑

p=0

αpTph .

Cette serie est bien convergente et∥∥∥∑∞

p=0 αpT

ph

∥∥∥ ≤∑∞

p=0 αp‖Th‖p ≤

∑p α

pK ′ = K′

β. Cela montre que la

majoration∥∥(Ih −∆tAh)

−1∥∥ ≤ K ′, et implique l’inversibilite de Ih −∆tAh.

Par ailleurs on a

(Ih −∆tAh)−n

= βn

(∞∑

p=0

αpTph

)n

= βn

∞∑

q=0

(∑

p1+···+pn=q

αp1 . . . αpn

)T

qh .

D’ou

∥∥∥(Ih −∆tAh)−n∥∥∥ ≤ βn

∞∑

q=0

(∑

p1+···+pn=q

αp1 . . . αpn

)K ′ = βn

(∞∑

p=0

αp

)n

K ′ = βn 1

βnK ′ = K ′.

Remarque 5 (Calcul effectif de un+1h ). En pratique, c’est a dire pour des calculs sur ordinateur, l’operateur

lineaire Mh = Ih −∆tAh est une matrice de dimension finie. Le calcul de un+1h s’effectue en inversant un

systeme lineaire, ce qui doit s’operer par des methodes efficaces d’algebre lineaire qui ne sont pas evoquees dansces notes.

Proposition 6. Soit un schema numerique d’Euler explicite uniformement stable sous condition CFL, consis-tant et donc convergent. Alors le schema numerique d’Euler implicite associe (4.19) est egalement convergent.

Demonstration. La stabilite ayant deja ete montree, il reste a verifier la consistance ce qui permettra d’appliquerle theoreme de Lax pour montrer la convergence. On etudie l’erreur de consistance ou de troncature du schemaimplicite

rnh =1

∆t(Πhu(tn+1)−Πhu(tn))−AhΠhu(tn+1), n ∈ N. (4.20)

On a

rnh − rn+1h =

1

∆t(Πhu(tn+1)−Πhu(tn))−

1

∆t(Πhu(tn+2)−Πhu(tn+1))

=

(1

∆t(Πhu(tn+1)−Πhu(tn))− ∂tu(tn+1)

)+

(∂tu(tn+1)−

1

∆t(Πhu(tn+2)−Πhu(tn+1))

).

Pour une fonction u ∈ C1([0, T ] : X), les deux termes entre parentheses tendent vers 0, qui plus est uniformement

sur tout intervalle ferme. D’ou limh→0

(maxn≤ T

∆t

∥∥rnh − rn+1h

∥∥)= 0. Par inegalite triangulaire

limh→0

(maxn≤ T

∆t

‖rnh −Πh (∂tu−Au) (tn)‖)

= 0

Page 42: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

42 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

pour tout u ∈ C1([0, T ] : X) solution de (4.1). Cela etablit la consistance.

Pour finir la preuve de convergence, on peut recrire (4.20) sous la forme

Πhu(tn+1) = (Ih −∆tAh)−1

Πhu(tn) + ∆tsnh, snh = (Ih −∆tAh)−1rnh .

De son cote le schema se recrit

un+1h = (Ih −∆tAh)

−1unh.

Donc la difference enh = unh−Πhu(tn) est solution de en+1h = (Ih −∆tAh)

−1enh+∆tsnh avec une erreur initialement

nulle e0h = 0. On peut alors se contenter de reprendre la preuve des theoremes 1 ou 2. La preuve est terminee.

4.1.3 Schema de Crank-Nicholson

Le terme Ahunh pour le schema explicite, ou Ahu

n+1h pour le schema implicite est un discretisation du premier

ordre de la derivee en temps. La methode de Cranck Nicholson est a priori plus precise car du deuxieme ordred’approximation pour la partie temporelle. Elle s’ecrit

un+1h − unh

∆t= Ah

un+1h + unh

2, n ≥ 0,

u0h = Πhu0.(4.21)

La relation de recurrence est (Ih −

1

2∆tAh

)un+1h =

(Ih +

1

2∆tAh

)unh.

Sous les hypotheses de la proposition 6, l’operateur Ih − 12∆tAh est inversible. Le schema est egalement uni-

formement stable, consistant et donc est convergent.

4.1.4 Schema semi-discret

A present nous considerons le schema semi-discret qui est la limite continue en temps du schema explicite (ou du schemaimplicite) c’est a dire pour ∆t → 0 et h fixe. Au contraire des precedents schemas, c’est un schema purement theorique au sensou il n’est pas possible de le programmer sur ordinateur. Son interet est qu’il peut simplifier de maniere importante l’etude desmethodes numeriques.

Formellement on ecrit que vh(t) est solution du systeme

ddtvh(t) = Ahvh(t),

vh(0) = Πhu0.(4.22)

Dans le cas ou Vh est un espace de dimension fini, Ah est de fait une matrice carree de taille finie. La solution est donnee parl’exponentielle de matrice

vh(t) = etAhΠhu0.

Il suffit que Ah soit un operateur borne pour donner un sens a cette representation de la solution. Or c’est bien le cas si le schema

explicite est stable sous condition CFL, car alors ‖(Ih + τ(h)Ah)n‖ ≤ K′ d’ou l’on tire que ‖Ah‖ ≤ 1+K′

τ(h)<∞ ce qui fait que Ah

est bien un operateur lineaire borne. On en deduit que∥∥etAh

∥∥ ≤ et‖Ah‖.

On a en fait mieux en supposant la stabilite uniforme du schema explicite. En effet on a la formule etAh = e−µeµ(Ih+τ(h)Ah) pourµ = t

τ(h). Cela montre que

etAh = e−µ∞∑

n=0

µn

n!(Ih + τ(h)Ah)

n .

On obtient l’estimation∥∥∥etAh

∥∥∥ ≤ e−µ∞∑

n=0

µn

n!K = e−µeµK = K. (4.23)

Cela montre que le schema semi-discret beneficie de la meme propriete de stabilite que le schema explicite. Ce resultat est en faitune extension de la proposition 6.

Page 43: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.1. CONSISTANCE, STABILITE ET THEOREME DE LAX 43

4.1.5 Un principe de comparaison

Nous montrons un principe de comparaison pour un operateur Ah dont l’operateur d’iteration explicite est stable (4.15) sous uncondition de type CFL telle que (4.14). Ce principe sera utilise au chapitre 5 pour l’analyse numerique des schemas de VolumesFinis.

Soit unh solution du schema d’Euler explicite pour une certaine donnee initiale u0

un+1h

− unh∆t

= Ahunh , n ≥ 0,

u0h = Πhu0.(4.24)

Soit vnh donne par

vn+1h

− vnh

∆t= Ahv

nh + rnh , n ≥ 0,

v0h = Πhu0,(4.25)

ou rnh joue le role d’une erreur de troncature avec des proprietes particulieres. On fait l’hypothese que l’on peut ecrire

rnh = τ(h)Ahsnh avec ‖snh‖ ≤ S <∞ pour tout h, n. (4.26)

Comme la condition de stabilite (4.15) permet simplement de borner ‖τ(h)Ah‖ ≤ C, on deduit a partir de (4.26) que∥∥rnh

∥∥ ≤ C.Ce terme est O(1) par rapport a h. Donc une strategie base sur le theoreme de Lax pour estimer la difference entre unh et vnh ne

donnera que∥∥vnh − unh

∥∥ = O(1). L’interet du resultat suivant est qu’il indique que la structure (4.26) fait que la difference tendvers zero, avec un taux de convergence explicite. Cette propriete abstraite developpee dans [12] sera utile pour l’etude de certainesmethodes de Volumes Finis, et tente de correspondre a la notion de supraconvergence [38].

Lemme 15. Il existe une constante C > 0 (qui depend des estimations de stabilite) telle que

‖vnh − unh‖ ≤ CS

√Tτ(h)

1− ν, n∆t ≤ T, (4.27)

avec ν = ∆tτ(h)

< 1 et S donne dans (4.26).

Dans les cas que nous considerons, on a τ(h) → 0 pour h tendant vers 0. Aussi cette inegalite est en fait un resultat de convergencede vnh vers unh . Notons que la condition CFL est stricte, au sens ou ∆t doit etre strictement inferieur au pas de temps maximalτ(h).

Demonstration. Soit enh = vnh − unh avecen+1h

−enh∆t

= Ahenh + rnh et e0h = 0. Donc

enh = ∆t

n−1∑

p=0

(Ih +∆tAh)n−1−p rp

h. (4.28)

Posons Th = Ih + τ(h)Ah dont les puissances sont bornees sous la forme∥∥T qh

∥∥ ≤ K′eL′q∆t grace a la stabilite (4.15). On posera

C = K′eL′T un majorant uniforme des

∥∥T qh

∥∥ pour q∆t ≤ T .

Posons ν = ∆tτ(h)

avec ν ≤ 1 du fait de l’hypothese (4.14). On note egalement q = n− 1− p pour simplifier. Alors on peut ecrire

(Ih +∆tAh)q rph= ((1− ν)Ih + νTh)

q (Th − Ih) sph=

q∑

j=0

(q

j

)(1− ν)q−jνjT j

h

(Th − Ih)

︸ ︷︷ ︸=Aq

sph.

On pose aqj =

(q

j

)(1− ν)q−jνj ainsi que aqj = 0 pour j < 0 ou j > q + 1. Alors Aq =

∑j(a

qj−1 − a

qj )T

jh. Or

aqj−1 − a

qj = [j − (q + 1)ν]× q!

(q − j)!(j − 1)!(1− ν)q−jνj−1

La fonction entre crochets j 7→ j − (q + 1)ν est croissante, negative pour j = 0 et positive pour n = q. Donc ij − (q + 1)ν ≤ 0 pourj ≤ j∗ ≡ [(q + 1)ν] et 0 ≤ j − (q + 1)ν pour j∗ < j. On a

‖Aq‖ ≤∑

j≤j∗

(aqj − a

qj−1

)C +

j≥j∗+1

(−aqj + a

qj−1

)C = 2aqj∗C

Page 44: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

44 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Or une estimation basique 3 montre que aqj ≤ min

(2√

ν(1−ν)q, 1

)pour tous j et q. On est en mesure d’estimer l’erreur (4.28) par

‖enh‖ ≤ ∆t

2 +

n−1∑

p=2

2√ν(1− ν)p

2CS ≤ ∆t

(

2 +2

√ν(1− ν)

∫ n

1

dx√x

)

2CS ≤ ∆t

(

2 +2

√ν(1− ν)

(2√n− 2

))

2CS.

On peut verifier que 2− 4√ν(1−ν)

≤ 0 pour toute valeur de ν ∈]0, 1[. Donc

‖enh‖ ≤ ∆t8n

√ν(1− ν)

CS.

Par ailleurs ∆t√nν=√n∆tτ(h) ≤

√Tτ(h) ce qui termine la preuve quitte a redefinir la constante C.

On peut utiliser ce principe pour estimer la difference entre le schema explicite et le schema implicite. Partons de unh solution duschema explicite (4.24) et de vnh solution du schema implicite

vn+1h

− vnh

∆t= Ahv

n+1h

, n ≥ 0,

v0h = Πhu0,(4.29)

que l’on recrit comme un schema explicite avec un reste

vn+1h

− vnh

∆t= Ahv

nh + rnh , n ≥ 0,

v0h = Πhu0,(4.30)

ournh = Ah

(vn+1h

− vnh

)= τ(h)Ahs

nh (4.31)

et

snh = νAhvn+1h

, ν =∆t

τ(h). (4.32)

Lemme 16. Supposons la condition CFL verifiee sous la forme ν < 1. Alors il existe une constante C telle que

‖vnh − unh‖ ≤ C ‖AhΠhu0‖√Tτ(h), n∆t ≤ T.

Cela etablit que la difference entre le schema explicite et le schema implicite tend vers 0 avec h. Il faut cependant s’assurer d’uneestimation naturelle annexe ‖AhΠhu0‖ ≤ C′ qu’il faut en pratique verifier en utilisant la condition initiale et les proprietes duschema numerique.

Demonstration. On a vnh = (Ih +∆tAh)−n v0h d’ou Ahv

nh = (Ih +∆tAh)

−n Ahv0h. Le schema implicite etant stable, on a

immediatement∥∥Ahvnh

∥∥ ≤ C′′ ∥∥Ahv0h∥∥ = C′′ ‖AhΠhu0‖ ou C′′ est la constante de stabilite. Pour ν ≤ 1, on obtient

‖snh‖ =∥∥∥νAhvn+1

h

∥∥∥ ≤ C′′ ‖AhΠhu0‖ ce qui definit S = C′′ ‖AhΠhu0‖ .

La preuve est terminee par application du principe de comparaison (4.27).

L’extension au schema semi-discret est immediate.

Lemme 17. Supposons la condition CFL verifiee sous la forme ν < 1. Alors il existe une constante C telle que la difference entrele schema semi-discret et le schema est explicite est majoree par

‖vh(n∆t)− unh‖ ≤ C ‖AhΠhu0‖√Tτ(h), n∆t ≤ T.

Demonstration. Posons vnh = vh(n∆t) de sorte que (4.30) est satisfait avec rnh =vh(tn+1)−vh(tn)

∆t−Ahvh(tn) = τ(h)Ahs

nh et

snh = ν1

∆t

∫ tn+1

tn

vh(s)− vh(tn)

∆tds.

Sous la condition que AhΠhu0 est borne independamment de h, on obtient une estimation uniforme de la derivee ddtvh(s) grace a

la definition (4.22) et a la stabilite (4.23). D’ou∥∥∥ vh(s)−vh(tn)

∆t

∥∥∥ ≤ C′′′ ‖AhΠhu0‖ ce qui implique une majoration uniforme de snh .

Cela termine la preuve.

3. Par exemple on a par un calcul en Fourier en developpant anj = 12π

∫ 2π0

((1− ν) + νeiθ

)ne−ijθdθ. Or

∣∣(1− ν) + νeiθ∣∣2 =

1− 4ν(1− ν) sin2 θ2. D’ou par des majorations elementaires

|anj | ≤1

π

∫ π

0

(1− 4ν(1− ν) sin2

θ

2

)n2

dθ ≤ 1

π

∫ π

0

(1− 4ν(1− ν)

θ2

π2

)n2

≤ 1

π

∫ π

0e−2ν(1−ν)n θ2

π2 dθ ≤ 1

π

∫ ∞

0e−2ν(1−ν)n θ2

π2 dθ =1

√2ν(1− ν)n

∫ ∞

0e−u

2

du.

Reconnaissant l’integrale de Gauss∫∞−∞ e−u

2du =

√π, on trouve anj ≤ π√

81√

ν(1−ν)n≤ 2√

ν(1−ν)n. Par ailleurs |anj | ≤ 1.

Page 45: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.1. CONSISTANCE, STABILITE ET THEOREME DE LAX 45

4.1.6 Caracterisation spectrale de la stabilite

Pour une methode de Differences Finies l’operateur d’interpolation est naturellement defini par les valeurs auxpoints de grille. Cela garantit egalement la consistance. Aussi la difficulte est souvent de montrer la stabilite.Une approche efficace quand elle peut etre menee consiste a passer par l’etude du spectre (des valeurs propres)de l’operateur d’iteration. C’est la stabilite au sens de von Neumann, la reference initiale trouvant dans [7].

Soit par exemple l’operateur d’iteration Jh

Jh =

Ih +∆tAh, schema explicite,

(Ih −∆tAh)−1, schema implicite,(

Ih − 12∆tAh

)−1 (Ih + 1

2∆tAh

), schema de Cranck-Nicholson.

Le schema s’ecrit

un+1h = Jhu

nh. (4.33)

Pour simplifier on suppose que Vh est de dimension finie. Les valeurs propres de l’operateur d’iteration sontnotees λph ∈ C avec

Jhvph = λ

phv

ph, v

ph 6= 0, 1 ≤ p ≤ dim(Vh).

Le rayon spectral de Jh est

ρ(Jh) = maxp|λph|.

Lemme 18 (Condition necessaire de stabilite en dimension finie). Soit un operateur d’iteration Jh stable. Alorsil existe une constante C > 0 telle que ρ(Jh) ≤ 1 + C∆t pour tout ∆t ∈ (0, 1].

Si Jh est uniformement stable, alors ρ(Jh) ≤ 1.

Demonstration. On sait que ρ(Jh) ≤ ‖Jnh ‖

1n . Partant d’un operateur stable au sens de (4.15) on a ρ(Jh) ≤

(K ′)1n eL

′∆t. D’ou

ρ(Jh) ≤ lim∞

(K ′)1n eL

′∆t = eL′∆t ≤ 1 + C∆t

pour une constante C > 0 bien choisie. Si l’operateur est uniformement stable, L′ = 0 ce qui clot la preuve.

La definition en dimension finie d’un operateur normal est qu’il commute avec son operateur adjoint. Aussil’operateur Jh est normal ssi

Jh J∗h = J∗

h Jh.

Cette notion n’a de sens qu’au sein d’un espace de Hilbert car l’operateur adjoint est defini grace au produitscalaire par

(Jhuh, vh) = (uh, J∗hvh), uh, vh ∈ Vh.

Pour une matrice M ∈ Rn×n, on dit que M est normale ssi MM t =M tM .

Lemme 19 (Condition suffisante pour les operateurs normaux en dimension finie). Soit l’operateur d’iterationJh pour le schema (4.33) pose dans un espace de Hilbert. Supposons que Jh est normal, et supposons queρ(Jh) ≤ 1 pour tout h. Alors le schema est unitairement stable.

Demonstration. Pour un operateur normal en dimension finie on sait que ‖Jh‖ = ρ(Jh). Voir [11]. D’ou leresultat.

Page 46: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

46 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

4.1.7 Schema de splittingLes methodes de Splitting se rencontrent lors de l’implementation effective de methodes numeriques. Elles ont ete evoquees pourla methode de differences finies en dimension deux lors de l’enonce du principe 6.Nous considererons le probleme abstrait

∂tu = Au+Bu (4.34)

dont le second membre est splitte (i.e. decompose) en la somme de deux termes.

Exemple 3 (Splitting directionnel). Cela correspond aux situations ou A est un operateur aux derivees partielles dans la directionx, et B est un operateur aux derivees partielles dans la direction y. Par exemple

∂tu = a∂xu− ∂xxu︸ ︷︷ ︸=Au

+ b∂yu− ∂y(D(x, y)∂yu︸ ︷︷ ︸=Bu

(4.35)

ou D ≥ 0 est un coefficient de diffusion a priori borne et regulier.

Nous considerons tout d’abord le schema explicite

un+ 1

2

h− unh

∆t= Ahu

nh ,

un+1h

− un+ 1

2

h

∆t= Bhu

n+ 12

h.

(4.36)

Les deux etapes sont explicites par simplicite, mais peuvent etre remplacees par des discretisations implicites. La forme expliciteest

un+1h

= Jhunh avec Jh = (Ih +∆tBh)(Ih +∆tAh).

Que peut-on dire en terme de stabilite ?

Lemme 20. Supposons que les operateurs d’iteration sont stables au sens ou il existe K′′, L′′ tels que

‖(Ih +∆tAh)n‖ ≤ K′′eL

′′n∆t et ‖(Ih +∆tBh)n‖ ≤ K′′eL

′′n∆t.

Alors— soit Ah et Bh commutent, auquel cas l’operateur d’iteration Jh est stable

‖Jnh ‖ ≤ K′′e2L′′n∆t.

— soit Ah et Bh sont unitairement stables (K′′ = 1 et L′′ = 0), auquel cas l’operateur d’iteration Jh est aussi unitairementstable.

Demonstration. Evident.

La situation vraiment interessante correspond au cas unitairement stable car elle se rencontre souvent dans les applications quisont dominees par le transport et la diffusion.

Exercice 10. Proposer pour l’exemple (4.35) un splitting directionnel par schema explicite unitairement stable.

On peut determiner une condition CFL de stabilite unitaire pour l’operateur non splitte Ih +∆t (Ah +Bh).

Proposition 7. Supposons que Ih +∆tAh et Ih +∆tBh sont chacun unitairement stable sous une condition CFL egale respecti-vement a τA(h) et τB(h). Alors le schema non splitte est unitairement stable sous la condition CFL

∆t ≤ τA+B(h) =τA(h)τB(h)

τA(h) + τB(h).

Demonstration. On a la decomposition

Ih +∆t (Ah +Bh) = α

(Ih +

∆t

αAh

)+ (1− α)

(Ih +

∆t

1− αBh

)0 < α < 1.

Si ∆tα

≤ τA(h) et ∆tα

≤ τB(h), alors ‖Ih +∆t (Ah +Bh) ‖ ≤ 1. Cela fait apparaitre une condition de stabilite

∆t ≤ min (ατA(h), (1− α)τB(h))

dans laquelle α est une valeur arbitraire que l’on peut choisir pour maximiser le resultat. La valeur optimale correspond a ατA(h) =

(1− α)τB(h) dont la solution est α =τB(h)

τA(h)+τB(h). On trouve τA+B(h) = ατA(h) =

τA(h)τB(h)τA(h)+τB(h)

ce qui termine la preuve.

Proposition 8. Supposons qu’il existe un operateur d’interpolation commun Πh et un espace dense commun X tels que lesoperateurs Ah et Bh sont tous deux consistants (avec A et B respectivement). Alors Ah +Bh est consistant avec A+B.

Demonstration. Considerons pour simplifier le critere de consistance stationnaire (4.7). On a pour u ∈ X

‖(Ah +Bh)Πhu− (A+B)u‖ ≤ ‖AhΠhu−Au‖+ ‖BhΠhu−Bu‖grace a l’inegalite triangulaire. D’ou le resultat.

Page 47: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 47

4.2 Applications

On illustre l’utilisation des differents concepts de consistance et stabilite a partir de quelques exemples.

4.2.1 Schema decentre en dimension un

Soit le schema numerique decentre (3.3) pour l’advection en dimension d = 1, la vitesse d’advection etantpositive a > 0. La condition initiale est x 7→ u0(x). Soit h = ∆x > 0 le pas constant du maillage en espace.

∆x

xj xj+1xj−1

Figure 4.1 – Maillage Differences Finies a pas constant.

Soit unh =(unj)j∈Z∈ R

Z la solution numerique au temps tn = n∆t. Le schema (3.3) se recrit

un+1h = (Ih +∆tAh)u

nh,

ou Ih est l’identite de RZ et Ah : R

Z → RZ est l’operateur defini par

Ahu = (wj) avec wj = −aunj − unj−1

∆x.

Montrer la convergence consiste in fine a comparer unh et vnh = Πhu(tn), mais aussi a choisir l’espace fonctionnelet la norme pour lesquels la convergence va etre etudiee. L’approche la plus simple, quand elle est possible,consiste a mener cette etude dans un espace de fonctions bornee. Aussi nous prendrons ici

V = L∞(R) et Vh =

vh = (vj)j∈Z, sup

j

|vj | <∞

= l∞.

On ecrira indistinctement ‖vh‖ = ‖vh‖∞ = ‖vh‖L∞(R). L’operateur d’interpolation Πh : C∞(R)→ Vh est

Πh(u) = (u(xj))j∈Z, xj = j∆x.

On sait grace a (3.4) que le schema est stable sous CFL avec

‖Ih +∆tAh‖ ≤ 1 pour ∆t ≤ τ(h) = h

a=

∆x

a.

On note vnh = Πhu(tn).Soit l’erreur numerique enh = vnh − unh qui est solution du processus iteratif

en+1h − enh

∆t= Ahe

nh + rnh avec la donnee initiale e0h = 0.

Le terme source est l’erreur de troncature rnh =(rnj)avec

rnj =vn+1j − vnj

∆t+ a

vnj − vnj−1

∆x.

Pour continuer l’analyse nous supposons ici que la donnee initiale est suffisamment reguliere, u0 ∈ W 2,∞(R).On a par un developpement de Taylor

vn+1j = vnj +∆t∂tu (tn, xj) +

(∆t2‖∂2t u‖∞

)αnj ,

∣∣αnj

∣∣ ≤ 1

2, (4.37)

Page 48: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

48 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

et

vnj−1 = vnj −∆x∂xu (tn, xj) +(∆x2‖∂2xu‖∞

)βnj ,

∣∣βnj

∣∣ ≤ 1

2. (4.38)

On obtient

rnj = ∂tu (n∆t, j∆x)+(∆t‖∂tu‖∞)αnj +a∂xu (n∆t, j∆x)+a

(∆x‖∂2xu‖∞

)βnj = (∆t‖∂tu‖∞)αn

j +a(∆x‖∂2xu‖∞

)βnj .

Notons que ‖∂2t u‖∞ = a2‖∂2xu0‖∞ et ‖∂2xu‖∞ = ‖∂2xu0‖∞. D’ou

∣∣rnj∣∣ ≤ a

(∆xαn

j + a∆tβnj

)‖∂2xu0‖∞.

Or la condition CFL implique que le pas de temps est borne par le pas d’espace sous la forme ∆t ≤ ∆xa. Cela

implique que

‖rnh‖∞ ≤ a∆x‖∂2xu0‖∞. (4.39)

On dirat que le schema est consistant a l’ordre 1 en O(∆x) dans L∞.

On obtient le resultat de convergence.

Lemme 21. Supposons que u0 ∈ W 2,∞(R). Supposons la condition CFL satisfaite. Soit T > 0 donne. Alorspour tout n tel que tn = n∆t ≤ T , on a l’estimation d’erreur

‖enh‖∞ ≤ ‖∂2xu0‖∞(aT∆x). (4.40)

Le schema converge a l’ordre un en espace (et en temps).

Demonstration. La preuve est ne fait que reprendre la demonstration du theoreme de Lax. On a en+1h =

(Ih +∆tAh) enh + ∆trnh . Donc ‖en+1

h ‖∞ ≤ ‖ (Ih +∆tAh) enh‖∞ + ∆t‖rnh‖∞. Or la stabilite fait que ‖Ih +

∆tAh‖∞ ≤ 1. Donc ‖en+1h ‖∞ ≤ ‖enh‖∞ + ∆t‖rnh‖∞. Comme e0 = 0, on obtient finalement que ‖en‖∞ ≤

∆t∑n−1

p=0 ‖rp‖∞. Le resultat est demontre grace a (4.39).

4.2.2 Donnee moins reguliere et ordre de convergence fractionnaire

Une question interessante est de determiner un ordre de convergence pour la solution numerique du schemaupwind (3.3) avec une donnee moins derivable, par exemple u0 ∈W 1,∞(R). Nos verrons que le prix a payer seraque l’ordre de convergence est sous-lineaire.

6

u0

0 2 4-2 x

Figure 4.2 – Exemple d’une donnee initiale u0 ∈ W 1,∞(R) pour laquelle le resultat de convergence d’ordrefractionnaire s’applique : u0(x) = mink∈Z |x− 2k|. Cette fonction est par ailleurs 2-periodique.

Page 49: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 49

Definition 11 (Regularisation). Soit ϕ ∈W 1,∞0 (R) une fonction positive ou nulle, de derivee bornee, a support

compact 4 et telle que ∫

R

ϕ(z)dz = 1.

Pour une fonction donnee w ∈W 1,∞(R), nous definissons la fonction regularisee par convolution

wε(x) =1

ε

R

ϕ

(x− yε

)w(y)dy. (4.42)

Lemme 22. On a les inegalites

‖wε‖∞ ≤ ‖w‖∞, ‖w′ε‖∞ ≤ ‖w′‖∞, ‖w′′

ε ‖∞ ≤∫|ϕ′(z)|dzε

‖w′‖∞, (4.43)

et

‖wε − w‖∞ ≤ ε∫ϕ(z)|z|dz‖∂xw‖∞. (4.44)

Demonstration. Cela est standard [6]. A partir de la definition de wε on a

|wε(x)| ≤(1

ε

R

ϕ

(x− y

ε

)dy

)‖w‖∞.

Comme 1ε

∫Rϕ(x−yε

)dy =

∫Rϕ(z)dz = 1, cela montre immediatement que ‖wε‖∞ ≤ ‖w‖∞.

On a aussi l’inegalite

w′ε(x) = − 1

ε2

R

ϕ′(x− y

ε

)w(y)dy =

1

ε

R

ϕ

(x− y

ε

)w′(y)dy

qui montre que ‖w′ε‖∞ ≤ ‖w′‖∞.

Considerons ensuite

w′′ε (x) = − 1

ε2

R

ϕ′(x− y

ε

)w′(y)dy

qui implique que∣∣w′′ε (x)

∣∣ ≤ 1

ε2

R

∣∣∣∣ϕ′(x− y

ε

)∣∣∣∣ dy‖w′‖∞ =

∫|ϕ′(z)|dzε

‖w′‖∞.

Il reste a montrer (4.44). Or on a par construction

wε(x)− w(x) =1

ε

R

ϕ

(x− y

ε

)(w(y)− w(x)) dy

d’ou l’on tire

|wε(x)− w(x)| ≤(1

ε

R

ϕ

(x− y

ε

)|x− y|dy

)‖w′‖∞ =

∫ϕ(z)|z|dz

)‖w′‖∞.

Cela termine la preuve.

On peut alors montrer le resultat suivant pour le schema (3.3).

Lemme 23 (Convergence a l’ordre 12 ). Soit une donnee initiale u0 ∈ W 1,∞(R). Supposons la condition CFL

satisfaite. Soit T > 0 un temps final donne. Alors pour tout tn = n∆t ≤ T , on a l’estimation

‖enh‖∞ ≤4√3‖∂xu0‖∞

√aT∆x.

Demonstration. On commence par regulariser la donnee initiale

u0,ε(x) =1

ε

R

ϕ

(x− y

ε

)u0(y)dy.

4. On peut prendre par exemple

ϕ(z) = 1− |z| pour |z| ≤ 1, et ϕ(z) = 0 pour |z| ≥ 1. (4.41)

Page 50: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

50 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

La solution numerique decoulant de cette donnee initiale est notee unε,h =(unε,j

)

j∈Z

avec

un+1ε,h

− unε,h

∆t= Ahu

nε,h,

unε,j = u0,ε(j∆x).

On a l’inegalite triangulaire

‖enh‖∞ = ‖vnh − unh‖∞ ≤ ‖vnh − vnε,h‖∞ + ‖vnε,h − unε,h‖∞ + ‖unε,h − unh‖∞, (4.45)

ou vnh = (u(n∆t, j∆x))j∈Zet vnε,h = (uε(n∆t, j∆x))j∈Z

.

La stabilite du schema montre que le troisieme terme est borne par ‖unε,h − unh‖∞ ≤ ‖u0ε,h − u0h‖∞ ≤ ‖u0,ε − u0‖∞.

Comme la regularisation commute avec l’advection, on a pour le deuxieme terme ‖vnh − vnε,h‖∞ ≤ ‖u0,ε − u0‖∞.

Il reste a estimer le deuxieme terme. Grace (4.43) on obtient ‖u0,ε−u0‖∞ ≤ ε∫ϕ(z)|z|dz‖u′0‖∞. La derivee seconde de la solution

regularisee peut se controler grace a (4.43). Aussi, utilisant (4.40) on trouve

‖vnε,h − unε,h‖∞ ≤∫|ϕ′(z)|dzε

‖u′0‖∞(aT∆x).

Apres insertion dans (4.45) on obtient

‖enh‖∞ ≤(2ε

∫ϕ(z)|z|dz +

∫|ϕ′(z)|dzε

aT∆x

)‖u′0‖∞.

Il reste a choisir la valeur optimale de ε qui est celle qui permet de minimiser le resultat : on prend ε =(aT∆x

∫|ϕ′(z)|dz

2∫ϕ(z)|z|dz

) 12.

Finalement

‖enh‖∞ ≤ 2

(2aT∆x

∫|ϕ′(z)|dz ×

∫ϕ(z)|z|dz

) 12

‖u′0‖∞.

Pour le noyau (4.41) on a∫|ϕ′(z)|dz ×

∫ϕ(z)|z|dz = 2

3. Le reste de la preuve est evident.

4.2.3 Maillage non uniforme

Enfin nous considerons l’equation d’advection ∂tu + a∂xu = 0 discretisee en dimension d = 1 avec le schemaupwind (3.3) sur un maillage non uniforme par le schema (3.16). Cet exemple permet d’illustrer une difficultespecifique de l’analyse numerique des schemas aux Differences Finies et aux Volumes Finis sur maillage nonuniforme. La difficulte sera nettement plus consequente en dimension superieure, voir chapitre 5.

∆xj−1

xj xj+1

xj−12

xj+12

xj−1

∆xj ∆xj+1

Figure 4.3 – Maillage non uniforme en 1D. Ici ∆xj−1 6= ∆xj 6= ∆xj+1. Les centres des mailles sont d’indiceentier. Les bords de mailles sont d’indices demi-entier.

On commence par definir la finesse du maillage

h = supj

∆xj

ou ∆xj = xj+ 12−xj− 1

2est la longueur de la maille d’indice j. Il s’agit ensuite de definir l’operateur de projection

sur la maillage ce qui necessite de definir prealablement les centres de mailles par

xj =xj+ 1

2− xj− 1

2

2, (4.46)

Page 51: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 51

d’ou une premiere definition naturelle de l’operateur d’interpolation/projection Π1h :W 2,∞(R)→ Vh = l∞ par

Π1h(v) = (v(xj))j∈Z

.

Une deuxieme definition possible de l’operateur d’interpolation/projection, elle aussi naturelle, est fournie parles valeurs moyennes

Π2h(v) =

1

∆xj

∫ xj+1

2

xj− 1

2

v(x)dx

j∈Z

.

Proposition 9. L’erreur de consistance associee a Π1h ou Π2

h ne tend pas vers zero pour un maillage nonuniforme.

Demonstration. Commencons par evaluer l’erreur de consistance pour Π1h a partir de l’un des deux criteres (4.7)

ou (4.11) au choix. Pour (4.11) on a rnh =(rnj)j∈Z

avec

rnj =vn+1j − vnj

∆t+ a

vnj − vnj−1

∆xj− ∂tu(tn, xj)− a∂xu(tn, xj).

Reprenant (4.37-4.38) pour une fonction dont les derivees secondes sont bornees, on a

rnj =

(xj − xj−1

∆xj− 1

)a∂xu(tn, xj) +O(∆t) +O(∆x). (4.47)

Le terme principal disparait pourxj−xj−1

∆xj= 1 pour tout j, ce qui revient in fine a considerer que le maillage

est uniforme : ∆xj = ∆xk = ∆x pour tout j, k.Cependant pour un maillage non uniforme on a uniquement rnh = O(1) ce qui fait que cette erreur de consistancede tend pas vers zero.Pour v ∈W 2,∞(R), on a

∥∥Π1hv −Π2

hv∥∥∞≤ ∆x2‖v′′‖L∞(R). Cette difference etant d’ordre deux en h, la resultat

est le meme en partant de Π2h. La preuve est terminee.

Cette analyse montre d’une part que l’analyse numerique des schemas sur grille non uniforme est moins evidentque pour des grilles uniformes, et d’autre part que le critere de consistance (4.7) ou (4.11) depend bien duchoix de l’operateur d’interpolation Πh. Cependant on a bien la convergence a partir d’un autre operateurd’interpolation adapte au schema. Soit Π3

h :W 2,∞(R)→ Vh = l∞ defini par

Π3h(v) =

(v(xj+ 1

2))j∈Z

. (4.48)

On observe que le point d’interpolation est decentre sur le bord droit des mailles.

Proposition 10. L’erreur de consistance associee a Π3h tend vers zero a l’ordre un pour une donnee suffisam-

ment reguliere et pour tout maillage.

Demonstration. On part de l’erreur de consistance definie par (4.12). Pour rnh =Π3

hu(tn+1)−Π3hu(tn)

∆t− Ahu

nh −

Π3h (∂tu−Au(tn)) on a

rnj =u(tn+1, xj+ 1

2)− u(tn, xj+ 1

2)

∆t+ a

u(tn, xj+ 12)− u(tn, xj− 1

2)

∆xj− ∂tu(tn, xj+ 1

2)− a∂xu(tn, xj+ 1

2).

Reprenant (4.37-4.38) pour une fonction dont les derivees secondes sont bornees, on a

rnj =

(xj+ 1

2− xj− 1

2

∆xj− 1

)a∂xu(tn, xj) +O(∆t) +O(∆xj) = O(∆t) +O(∆x)

car xj+ 12− xj− 1

2= ∆xj . Cela termine la preuve.

Page 52: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

52 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Lemme 24. Soit le schema (3.16) avec l’initialisation u0h = Π3hu0 pour une donnee initiale u0 ∈ W 2,∞(R).

Supposons la condition CFL satisfaite. Alors

‖Π3hu(tn)− unh‖∞ ≤ aT‖u′′0‖∞h, n∆t ≤ T. (4.49)

Pour une donnee initiale moins reguliere u0 ∈W 1,∞(R), on a l’ordre de convergence fractionnaire moitie

‖Π3hu(tn)− unh‖∞ ≤

4√3||u′0||∞ ×

√aTh, n∆t ≤ T. (4.50)

Demonstration. Il s’agit de la meme preuve que pour le lemme 21, a partir de l’erreur d’interpolation associeea Π3

h.

4.2.4 Schemas de differences finis explicites et a un pas

Les schemas d’ordre arbitrairement eleve et explicites a un pas ont ete abondamment etudies dans lalitterature depuis le debut des methodes numeriques [5, 11, 20, 34, 35]. Ils prennent la forme

un+1j =

k∑

r=k−p

αrunj+r (4.51)

ou les p+1 coefficients (αr)k−p≤r≤k caracterisent la methode et dependent des parametres numeriques tels queles pas de temps ∆t et d’espace ∆x. On ecrira indistinctement

αr = αhr = α∆t,∆x

r ∈ R.

On conviendra que αr = 0 pour r > k ou r < k − p. On parle aussi de schemas compacts car le stencil est leplus petit possible compte tenu des proprietes d’approximation obtenues.

u

uj

uuuj−2

n

j−1

n n n

j+1

n+1

j

Figure 4.4 – Representation graphique d’un schema a 4 points pour lequel k = 1 et p = 3.

Un outil d’analyse important pour cette famille de schemas est la transformation de Fourier.On commence par caracteriser l’EDP a l’aide de la transformee de Fourier. Le schema (4.51) est une discretisationd’une equation aux derivees partielles que l’on prend sous la forme

∂tu = Au,

et dont l’inconnue est u(t, x) avec une donnee initiale u(0, x) = u0(x). La transformee de Fourier de w ∈ L2(R)est

w(θ) =

R

w(x)e−iθxdx, i2 = −1,

avec la transformee inverse

w(x) =1

R

w(θ)eiθxdθ

et la formule de Plancherel ‖w‖2L2(R) =12π ‖w‖

2L2(R). Un operateur A a coefficients constants peut se caracteriser

par son symbole en Fourier au moyen de son symbole.

Page 53: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 53

Definition 12 (Symbole d’un operateur). La fonction θ 7→ µ(θ) telle que Aeiθx = µ(θ)eiθx est le symbole de A.

On a la representation integrale de la solution

u(t, x) =1

R

eµ(θ)t+iθxu0(θ)dθ (4.52)

ou u0 est la transformee de Fourier de la donnee initiale u0. En effet

∂tu−Au =1

R

(∂t −A) eµ(θ)t+iθxu0(θ)dθ =1

R

(µ(θ)− µ(θ)) eµ(θ)t+iθxu0(θ)dθ = 0.

Par ailleurs on a bien

u(0, x) =1

R

eiθxu0(θ)dθ = u0(x).

Remarque 6. Pour l’equation d’advection A = −a∂x avec a ∈ R, le symbole est µ(θ) = −iaθ.Pour l’equation de diffusion, A = D∂xx avec un coefficient de diffusion D ≥ 0, le symbole est µ(θ) = −Dθ2.On note que dans les deux cas ∣∣∣eµ(θ)t

∣∣∣ ≤ 1 pour t ≥ 0 et θ ∈ R. (4.53)

Notons a present la solution numerique au temps tn = n∆t comme un vecteur infini dispose en colonne

Unh =

. . .

un−1

un0un1. . .

∈ R

Z.

Le schema numerique peut se mettre sous la forme

Un+1h =MhU

nh

ou la matrice doublement infinie Mh = (mij)i,j∈Za pour coefficients

mij = αr avec r = j − i. (4.54)

On dit queMh est une matrice bande. Seules p+1 bandes deMh ne sont pas nulles. La matrice Mh caracterisel’operateur d’iteration Jh. Par exemple la matrice doublement infinie a deux bandes du schema upwind est

Mh =

· · · · · ·· 1− ν ν 0 0 ·· 0 1− ν ν 0 ·· 0 0 1− ν ν ·· 0 0 0 1− ν ·· · · · · ·

Proposition 11. La matrice Mh commute avec sa matrice transposee.

Demonstration. Cette propriete est une consequence directe de la structure bande. Les coefficients de P =MhM

th sont pij =

∑kmikmjk =

∑k αk−iαk−j . Les coefficients de Q =M t

hMh sont

qij =∑

k

mkimkj =∑

k

αi−kαj−k =∑

l; k=i+j−l

αl−jαl−i = pij

ce qui montre le resultat.

Page 54: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

54 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Exercice 11. Verifier que Mh commute aussi avec l’operateur de decalage (translation) d’un indice.Verifier que deux matrices bandes commutent.

Comme le signale le lemme 19, un bon cadre alors est le cadre quadratique (Hilbertien). Cependant une differenceimportante avec la situation evoquee au lemme 19 est que nous sommes a present en dimension infinie.On pose

Vh = l2 =

U = (ui)i∈Z,

i

|ui|2 <∞

muni d’une norme ponderee par le pas d’espace

‖U‖2h = ∆x∑

i∈Z

|ui|2. (4.55)

La projection/interpolation sur les points de grille est naturellement 5

Πh : C0(R) ∩ L2(R)→ Vh

avec Πhu = (u(i∆x))i∈Z. Soit la transformation de Fourier discrete u(θ) = ∆x

∑j∈Z

uje−iθj∆x qui est une

fonction 2π∆x

-periodique appartenant a L2(− π

∆x, π∆x

)La representation en Fourier de la solution est

uj =1

∫ π∆x

− π∆x

u(θ)eiθj∆xdθ, j ∈ Z,

avec la formule de Plancherel adaptee

‖U‖2h =1

∫ π∆x

− π∆x

|u(θ)|2 dθ. (4.56)

Definition 13 (Symbole du schema). Le symbole du schema est la fonction θ 7→ λh(θ) avec

λh(θ) =

k∑

r=k−p

αreiθr.

Le symbole est en fait la valeur propre de Mh. Les vecteurs propres (on parle plutot de vecteurs propresgeneralises voir [25]) de M sont U(θ) =

(eiθj)j∈Z

avec

MhU(θ) = λh(θ)U(θ).

En effet

(MhU(θ))i =

p∑

r=k−p

αrei(j+r)θ

=

p∑

r=k−p

αreirθ

eijθ = λh(θ)e

ijθ = λh(θ) (U(θ))i i ∈ Z.

On note que les vecteurs propres sont des modes de Fourier, et qu’ils ne dependent pas des parametres dediscretisation. En revanche la valeur propre en depend par l’intermediaire des coefficients αr.

Lemme 25 (Stabilite au sens de von Neumann). Le schema numerique (4.51) est stable au sens de VonNeumann ssi

supθ∈R

|λh(θ)| ≤ 1. (4.57)

5. Soit une fonction w ∈ L2(R), constante sur tout morceau](i− 1

2

)∆x,

(i+ 1

2

)∆x[. Comme w est continue autour de chaque

point i∆x on peut definir Πhw sans probleme. On note que ‖w‖L2(R) = ‖Πhw‖h ce qui est la raison du poids ∆x dans la norme

(4.55).

Page 55: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 55

La stabilite au sens de Von Neumann est ici equivalente a la stabilite uniforme dans l2.

Demonstration. On definit unh(θ) = ∆x∑

j∈Zunj e

iθj∆x ou (unj ) = unh. Donc

un+1h (θ) = ∆x

j∈Z

p∑

r=k−p

αrunj+r

e−iθj∆x = ∆x

j∈Z

p∑

r=k−p

αreiθr∆x

unj+re

−iθ(j+r)∆x

On fait le changement d’indice j′ = j + r. D’ou

un+1h (θ) =

k∑

r=k−p

αreiθr∆x

unh(θ) = λh(θ∆x)u

nh(θ).

Donc ‖Unh ‖

2= 1

∫ π∆x

− π∆x

|λh(θ∆x)|2n∣∣u0h(θ)

∣∣2 dθ ce qui montre que la stabilite au sens de Von Neumann est une

condition suffisante pour la stabilite uniforme en norme quadratique. Comme u0h est quelconque, la conditionest aussi necessaire.

Le symbole permet aussi de caracteriser la stabilite d’un schema en norme l∞ ou en norme l1.

Lemme 26. Le schema numerique (4.51) est stable en norme l1 ou l∞ ssi il existe une constante C ∈ R+ independante de htelle que

supn≥0

j∈Z

∣∣∣∣

∫ 2π

0λh(θ)

ne−ijθdθ

∣∣∣∣

≤ C. (4.58)

Demonstration. Une formule classique d’algebre lineaire indique que les normes l1 et l∞ d’une matrice M = (mij)ij sont donnes

par ‖M‖1 = supj(∑

i |mij)et ‖M‖∞ = supi

(∑j |mij

). La matrice Mh etant une matrice bande on obtient

‖Mh‖1 = ‖Mh‖1 =∑

r∈Z

|αr| (4.59)

ou les coefficients αr peuvent se determiner a partir du symbole par

αr =1

∫ 2π

0λh(θ)e

−ijθdθ.

Or le symbole du produit de deux matrices bande est le produit des symboles, car les vecteurs propres sont communs. Donc lesymbole de Mn

h est λnh . L’utilisation de l’identite (4.59) termine la preuve.

La consistance et la convergence de la methode numerique peuvent se caracteriser en comparant les symboles apartir du critere (4.60), ce qui est aise a verifier pour un schema donne.

Lemme 27 (Consistance et convergence). On suppose qu’il existe p, q, r ∈ N∗ et une constante C > 0

independante de ∆t, ∆x et θ ∈ R avec l’inegalite

∣∣∣eµ(θ)∆t − λh(θ∆x)∣∣∣ ≤ C |θ|r (∆xp +∆tq)∆t, −π ≤ θ∆x ≤ π. (4.60)

Supposons que les criteres de stabilite unitaires sont verifiees, tant continu (4.53) que discret (4.57).Alors le schema est convergent a l’ordre p en espace et q en temps en norme quadratique pour des solutionsdans Hr(R).

Demonstration. Une norme adaptee, evaluee en Fourier, est ‖u‖2Hr(R)

=∫R(1 + θ2r)|u(θ)|2dθ.

Pour les commodites de la preuve nous definissons un operateur de projection Π4h particulier sous la forme Π4

hv = Π1hFhv ou Fhv

est la fonction tronquee en Fourier

Fhv(x) =1

∫ π∆x

− π∆x

eiθxv(θ)dθ.

On peut verifier que Π1hFhv est correctement defini car Fhvestunefonctioncontinue : c’est garanti au moins si v ∈ H2(R) avec

r ≥ 2. Donc cette condition ne pose pas de difficulte.

Page 56: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

56 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Soit la solution numerique unh issue de la donnee initiale u0h = Π4hu0. On pose vnj = (Π4

hu)(n∆t, j∆x) c’est a dire

vnj =1

|θ|< π∆x

eµ(θ)n∆teiθj∆x u0(θ)dθ.

Par ailleurs on a

unj =1

|θ|< π∆x

λh(θ∆x)neiθj∆x u0(θ)dθ.

Grace a la formule de Plancherel (4.56), on a

∥∥Π4hu(tn)− unh

∥∥h=

1√2π

∥∥∥(eµ(θ)n∆t − λh(θ∆x)

n)u0(θ)

∥∥∥L2(− π

∆x, π∆x

).

Posant α = eµ(θ)∆t et β = λh(θ∆x), on peut estimer la parenthese par αn − βn = (α − β)∑n−1p=0 α

n−1−pβp. Compte tenu de la

stabilite unitaire du probleme continu, i.e. |α| ≤ 1, et de celle du probleme discret, i.e. |β| ≤ 1, on obtient |αn − βn| ≤ n |α− β|.En consequence on a

∥∥Π4hu(tn)− unh

∥∥h≤ n√

∥∥∥(eµ(θ)∆t − λh(θ∆x)

)u0(θ)

∥∥∥L2(− π

∆x, π∆x

)≤ Cn∆t√

2π‖θru0(θ)‖L2(− π

∆x, π∆x

) (∆xp +∆tq)

grace a l’hypothese de consistance sur les symboles (4.60). Pour une donnee initiale dans Hr(R), on a (quitte a redefinir la constanteC > 0) ∥∥Π4

hu(tn)− un∥∥h≤ CT ‖u0‖Hr(R) (∆x

p +∆tq) , n∆t ≤ T. (4.61)

La preuve est terminee.

On peut completer la preuve en mesurant l’erreur entre l’interpolation ponctuelle classique Π1hv et l’interpolation ponctuelle de la

fonction tronquee en Fourier Π4hv. On a le resultat suivant pour une fonction un tout petit plus que Hr(R).

Lemme 28. Soit v ∈ V r(R) ⊂ Hr(R) avec

V r(R)w ∈ Hr(R), x(∂x)

r−1w ∈ L2(R)

r ≥ 1.

Alors∥∥Π1

hv −Π4hv∥∥h≤ C ‖v‖V r(R) ∆x

r−1.

Demonstration. On peut verifier qu’une norme adaptee evaluee en Fourier est

‖v‖2V r(R) =

R

[(1 + θ2r)|v(θ)|2 + θ2r−2|v′(θ)|2

]dθ.

Soit w = Π1hv −Π4

hv avec

wj =1

|θ|> π∆x

v(θ)eiθj∆xdθ =1

∫ ∞

π∆x

v(θ)eiθj∆xdθ

︸ ︷︷ ︸=aj

+1

∫ − π∆x

−∞v(θ)eiθj∆xdθ

︸ ︷︷ ︸=bj

.

Pour j > 0 on commence par faire une integration par partie, en integrant eiθj∆x par rapport a θ. D’ou par exemple pour le premier

terme aj = − 12π

∫∞π

∆xv′(θ) e

iθj∆x−(−1)j

ij∆xdθ. On obtient

|aj | ≤1

πj∆x

∫ ∞

π∆x

∣∣v′(θ)∣∣ dθ

puis

|aj | ≤1

πj∆x

∫ ∞

π∆x

(θr−1

∣∣v′(θ)∣∣) 1

θr−1dθ ≤ 1

πj∆x

(∫ ∞

π∆x

θ2r−2∣∣v′(θ)

∣∣2 dθ

) 12(∫ ∞

π∆x

θ2r−2

) 12

≤ Cr

πj∆x‖v‖V r(R) ∆x

r− 12 ≤ C′

r∆xr− 3

2

j‖u0‖V r(R) .

Le terme a0 se majore en utilisant que v ∈ Hs(R). D’ou par une nouvelle inegalite de Cauchy-Schwarz (et 1+ 14+· · ·+ 1

j2+· · · <∞) :

‖a‖h ≤ C′′ ‖v‖V r(R) ∆xr−1. De meme pour b = (bj). La preuve est terminee.

On peut alors mesurer l’erreur entre l’interpolation classique (operateur Π1h) de la solution exacte et la solution

numerique issue de l’interpolation classique unh = JnhΠ

1hu(t0). En notant Jh l’operateur d’iteration on a par

exemple la decomposition telescopique

Π1hu(tn)− unh =

(Π1

hu(tn)−Π4hu(tn)

)+(Π4

hu(tn)− JnhΠ

4hu(t0)

)+ Jn

h

(Π4

hu(t0)−Π1hu(t0)

).

Page 57: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 57

Par inegalite triangulaire on obtient une majoration de l’erreur numerique sous la forme Ennum ≤ Ensch + Einter.L’erreur du schema est estimee par le Lemme (27)

Ensch =∥∥Π4

hu(tn)− JnhΠ

4hu(t0)

∥∥h≤ CT (∆xp +∆tq) n∆t ≤ T, (4.62)

et est a priori une fonction croissante de l’indice d’iteration n. L’erreur d’interpolation

Einter ≤ C∆xr−1

est independante du temps (de n), et peut etre aussi petite que souhaitee pour un r suffisamment grand,ce parametre etant independant des parametres du schema caracterise par p et q. Pour r ≥ p + 1 l’erreurd’interpolation est au moins du meme ordre que l’erreur du schema.

Principe 7. Au final on retiendra que l’erreur (4.62) de consistance en norme quadratique peut se mesurerdirectement sur la difference (4.60) entre le symbole exact et le symbole discret. Ce principe est valable pourtout schema de Differences Finis.

Pour l’equation d’advection un cas couramment rencontre concerne r = p+ 1 avec p = q. On note ν = a∆t∆x

.

Proposition 12 (Forme simplifiee de (4.60) pour l’advection). Considerons le cas de l’equation d’advection.Pour r = p+ 1 = q + 1, le critere (4.60) est equivalent

∣∣e−iνθ − λh(θ)∣∣ ≤ C |θ|p ν, −π ≤ θ ≤ π. (4.63)

Demonstration. Evident avec le changement de variables θ ← θ∆x.

Par exemple le symbole du schema upwind est λuph (θ) = (1− ν) + νe−iθ. Comme on verifie sans peine que

∣∣(1− ν) + νe−iθ − e−iνθ∣∣ ≤ Cνθ,

on retrouve bien le fait que le schema est d’ordre un en norme quadratique.Considerons a present le symbole du schema a trois points (3.19) pour l’equation de diffusion

λh(θ) = 1− 2ν(1− cos θ), ν =∆t

∆x2, θ ← θ∆x2.

Un developpement local montre que ∣∣∣e−νθ2 − λh(θ)∣∣∣ ≤ Cνθ2

ce qui permet de retrouver la convergence a l’ordre deux en espace (et un en temps mais c’est la meme chosepour un schema explicite de ce type). Le cas general est presente dans la propriete suivante.

Proposition 13 (Forme simplifiee de (4.60) pour la chaleur). Considerons l’equation de la chaleur. Pourr = p+ 2 et sans tenir compte de l’ordre en temps, le critere de consistance (4.60) est equivalent

∣∣∣e−νθ2 − λh(θ)∣∣∣ ≤ C |θ|p ν, −π ≤ θ ≤ π. (4.64)

Demonstration. Laissee au lecteur.

4.2.5 Construction des schemas semi-lagrangiens/schemas de Strang

Les schemas semi-lagrangiens, dont nous nous montrerons qu’ils sont identiques a des schemas d’interpolationproposes par Strang pour l’advection et qu’ils sont tels que leurs symboles respectent (4.63), sont utilises pourune discretisation precise d’ordre tres eleve des equations du transport.Soit un profil numerique unh =

(unj)j∈Z

dont nous connaissons les valeurs aux points d’une grille de type

differences finies xj = j∆x. Il s’agit de construire/proposer une valeur numerique pour un+1j qui soit une

approximation d’ordre elevee de l’equation l’advection.

Page 58: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

58 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

issue de (x ,t )

x

t

tn

n+1t

xj

xxxj−1j−2 j+1

droite caractéristique

j n+1

Figure 4.5 – Droite caracteristique et maillage Differences Finies

Principe 8 (Principe general des schemas semi-lagrangiens). Le principe, illustre dans la figure 4.5, consiste aremonter la droite caracteristique a partir de (xj , tn+1) pour croiser la droite t = tn en un point xν qui, le plussouvent, n’est pas un point de la grille differences finies. La position de ce point se determine comme a la figure4.6. On a la relation a = d

∆tpour d = xj − xν . Donc

xν = xj − a∆t = xj − ν∆x.Puis on reconstruit une valeur de u(xν) la plus precise possible compte tenu de la connaissance des points voisinsde xν . Par exemple on peut chercher a reconstruire xν a partir des 4 points presents dans l’ellipse de la figure4.5. Enfin on transport exactement cette information le long de la caracteristique en posant par exemple

un+1j = Valeur reconstruite a partir de

(unj−2, u

1j−1, u

nj , u

nj+1

).

Les degres de liberte pour construire la methode concernent alors le nombre de points que l’on fait intervenirpour la reconstruction, ainsi que la methode de reconstruction. Dans ce qui suit on decrit la methode dereconstruction a l’aide des polynomes de Lagrange.On se donne pour cela deux nombres entiers 0 ≤ k ≤ p et on definit les polynome de Lagrange associes auxp+ 1 points

xj+k−p, xj+k−p+1, . . . , xj , . . . xj+k.

Le polynome de Lagrange d’indice r est defini par

lr(ν) =Πk

s=k−p,s 6=r(ν − s)Πk

s=k−p,s 6=r(r − s).

Les polynomes de Lagrange sont de degre exactement egal a p : deg(lr) = p. Ils verifient

lr(s) = δrs, k − p ≤ s ≤ k,ce qui signifie que lr s’annule en tous les points sauf en xr ou il prend la valeur 1.

Definition 14 (Polynome interpolant). Soit f une fonction reelle. La fonction interpolee a partir des p + 1valeurs f(xr) pour k − p ≤ r ≤ k est defini par

P (ν) =k∑

r=k−p

lr(ν)f(r). (4.65)

La fonction polynomiale P est le polynome interpolant,

Page 59: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 59

x

xj

xxj−1 j+1

xν ∆t

d

Figure 4.6 – Zoom sur la figure 4.5

Proposition 14. Le polynome interpolant est tel que

P (r) = f(r), k − p ≤ r ≤ k. (4.66)

Demonstration. Combiner les deux proprietes precedentes.

Proposition 15. Si f est une fonction polynomiale avec deg(f) ≤ p, alors P = f ou encore

P (ν) =

k∑

r=k−p

lr(ν)f(r), ν ∈ R. (4.67)

Demonstration. La fonction f − p est un polynome avec deg(f − P ) ≤ p. Or le polynome f − P s’annule en aumoins p+ 1 points distincts qui sont ν = k − p, k − p+ 1, ·, k. Il est donc nul.

Definition 15 (Forme finale du schema semi-lagrangien). On obtient alors le schema semi-lagrangien pour lesindices 0 ≤ k ≤ p

un+1j =

k∑

k−p

αrunj , j ∈ Z,

avec les coefficients donnes parαr(ν) = lr(−ν), k − p ≤ r ≤ k. (4.68)

Le signe − s’interprete a partir de la figure 4.6, et vient de ce que xν = xj − ν∆x.Nous analysons a present la consistance, puis la stabilite de cette famille de schemas numeriques a partir dusymbole

λh(θ) =

k∑

k−p

αreirθ =

k∑

k−p

lr(−ν)eirθ. (4.69)

Page 60: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

60 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Proposition 16. Pour tout p ≥ 1 et tout k ≥ p, le schema construit a partir de (4.68) est d’ordre p+ 1.

Demonstration. Soit la fonction polynomiale x 7→ f(x) = xn avec 0 ≤ n ≤ p. La proposition 15 montre alors que

p∑

r=k−pαr(ν)r

n =

p∑

r=k−plr(−ν)rn = (−ν)n 0 ≤ n ≤ p. (4.70)

On peut alors evaluer le critere simplifie (4.63). On a en developpant les exponentielles en series infinies

e−iνθ − λh(θ) = e−iνθ −p∑

r=k−pαr(ν)e

irθ =

∞∑

n=0

(

(−ν)n −∑

r

αr(ν)rn

)(iθ)n

n!, (4.71)

ou les p+ 1 premiers coefficients. On obtient alors

e−iνθ − λh(θ) =

∞∑

n=p+1

(

(−ν)n −∑

r

αrrn

)(iθ)n

n!.

Or les αr = lr(−ν) sont construits de telles sortes si r 6= 0 alors αr(0) = 0 car le point 0 partie des points d’interpolationk− p, . . . , 0, . . . p pour 0 ≤ k ≤ p. Donc |lr(−ν)| ≤ Cν pour k− p ≤ r ≤ p et r 6= 0, et pour ν borne. En sommant ce qui reste de laserie, on obtient

∣∣eiνθ − λh(θ)∣∣ ≤ Cνθp+1 dans lequel on retrouve exactement (4.63). La preuve est terminee.

Proposition 17. Les schemas sont conservatifs au sens ou

∆x∑

j∈Z

un+1j = ∆x

j∈Z

unj . (4.72)

On dit aussi que la masse totale M est conservee.

Demonstration. La premiere relation de consistance montre que 1 =∑

r αr. Donc

M =∑

j∈Z

un+1j =

j∈Z

p∑

r=k−p

αrunj+r

.

Un rearrangement montre que

M =

p∑

r=k−p

αr

×

j∈Z

unj =∑

j∈Z

unj .

La preuve est terminee.

Les schemas sont en fait uniques dans la classe consideree.

Lemme 29. Soit un schema de la forme un+1j =

∑kr=k−p αru

nj+r pour l’equation d’advection. On suppose que le schema est

d’ordre p en espace au sens ou son symbole verifie le critere (4.63) de consistance a l’ordre p. Alors αr = lr(−ν) avec ν = a ∆t∆x

.Il n’y a donc qu’un seul schema de ce type.

Demonstration. Le schema etant d’ordre p les premiers termes dans le developpement (4.71) sont nuls

(−ν)n −k∑

r=k−pαr(ν)r

n = 0 pour n = 0, 1, . . . , p. (4.73)

Cela forme un systeme lineaire de taille p+ 1 dont les inconnues sont les αr et dont la matrice A = (aij)1≤i,j≤p+1 est

aij = (k − p+ i− 1)j−1 , 1 ≤ i, j ≤ p+ 1.

La matrice A est de Vandermonde et det(A) 6= 0. Il n’y a donc qu’une seule solution au systeme lineaire (4.73), egale a (4.68).

Une possibilite alternative pour construire les coefficients consiste a recrire le symbole exact sous la forme d’undeveloppement de Taylor

e−iνθ =(1 + (e−iθ − 1)

)k+νekiθ =

(Pp

(e−iθ − 1

)+O

(e−iθ − 1

)p+1)ekiθ

Page 61: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 61

avec Pp un polynome de degre p que l’on calcule a partir du developpement de Taylor a l’ordre p + 1 de lafonction fk(z) = (1 + z)k+ν pour z = e−iθ − 1. On a la formule avec reste integral

fk(z) =

p∑

q=0

µqzq +

∫ 1

t=0

(1− t)pp!

zp+1f(p+1)k (tz)dt, (4.74)

ou∫ 1

t=0(1−t)p

p! zp+1f(p+1)k (tz)dt =

Πpq=0(k+ν−q)

p!

∫ 1

t=0(1−t)pzp+1

(1+tz)p+1−ν dt. On a alors une autre formule

λh(θ) = eikθp∑

q=0

µq

(e−iθ − 1

)q(4.75)

On trouve par exemple les coefficients des schemas suivants.

Upwind (p, k) = (1, 0). A partir de (1 + z)ν = 1 + νz + O(z2) on retrouve le schema upwind un+1j = unj +

ν(unj−1 − unj ).Beam-Warming (p, k) = (2, 0). Partant de (1 + z)ν = 1 + νz + ν(ν−1)

2 z2 + O(z3), on retrouve le schema deBeam-Warming

un+1j = unj + ν(unj−1 − unj ) +

ν(ν − 1)

2(unj−2 − 2unj−1 + unj )

which is the Beam-Warming scheme.

Lax-Wendroff (p, k) = (2, 1). Le developpement (1 + z)1+ν = 1 + (1 + ν)z + (1+ν)ν)2 z2 + O(z3) permet de

retrouver le schema de Lax-Wendroff

un+1j = unj+1 + (1 + ν)(unj+1 − unj ) +

(1 + ν)ν

2(unj−1 − 2unj + unj+1).

Un schema d’ordre 5 pour (p, k) = (5, 2). On obtient apres calculs

un+1j = unj+2 + (2 + ν)(unj+1 − unj+2) +

(2 + ν)(1 + ν)

2(unj − 2unj+1 + unj+2)

+(2 + ν)(1 + ν)ν

6(unj−1 − 3unj + 3unj+1 − unj+2)

+(2 + ν)(1 + ν)ν(ν − 1)

24(unj−2 − 4unj−1 + 6unj − 4unj+1 + unj+2)

+(2 + ν)(1 + ν)ν(ν − 1)(ν − 2)

120(unj−3 − 5unj−2 + 10unj−1 − 10unj + 5unj+1 − unj+2).

On peut retrouver le flux de ce schema pour une implementation comme un schema de Volumes Finissous la forme

uj+ 12= unj+2 +

ν + 3

2(unj+1 − unj+2) +

(2 + ν)(1 + ν)

6(unj − 2unj+1 + unj+2)

+(2 + ν)(1 + ν)(ν − 1)

24(unj−1 − 3unj + 3unj+1 − unj+2)

+(2 + ν)(1 + ν)(ν − 1)(ν − 2)

120(unj−2 − 4unj−1 + 6unj − 4unj+1 + unj+2).

Ces formules peuvent parfois etre plus simple a implementer.

La question suivante consiste a determiner lesquels de ces schemas sont stables. Tracant a la figure 4.7 le modulede λh(θ) pour 1 ≤ p ≤ 6 et p = 2k + 1, p = 2k ou p = 2k + 2, on observe que la condition de stabilite de vonNeumann |λh(θ)| ≤ 1 est verifiee. Le resultat principal remonte a Strang [34].

Page 62: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

62 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

scheme_1_0(x)scheme_2_0(x)scheme_2_1(x)scheme_3_1(x)scheme_4_1(x)scheme_4_2(x)scheme_5_2(x)scheme_6_2(x)scheme_6_3(x)

Figure 4.7 – Module du symbole du schema µ(α) = λ(2πα). Le parametre de Courant est ν = 0.45. Le premierindice est p, le second est k. Seuls p = 2k + 1, p = 2k or p = 2k + 2 ont ete traces pour 1 ≤ p ≤ 6. Le fait queles modules sont tous inferieurs ou egaux a 1 montre la stabilite au sens de von Neumann.

Lemme 30 (Strang-Iserles). Ces schemas sont stables dans L2 sous CFL ν ≤ 1 pour p = 2k + 1, p = 2k etp = 2k + 2. La famille p = 2k + 2 est stable pour ν ≤ 2.

La preuve proposee repose sur une formule de representation de λh(θ).Soit la fonction intermediaire est

gσ(θ) =

∫ θ+2π

θ

eiσϕ sinpϕ

2dϕ.

Proposition 18. On a la formule multiplicative

gσ(0)λh(θ) = gσ(θ)e−iνθ (4.76)

ou σ = k − p2+ ν.

Demonstration. A partir de (4.69) on a∂λh(θ)∂θ

= i∑kk−p rlr(−ν)eirθ. Or rlr(−ν) = r

Πks=k−p,s 6=r(−ν−s)Πk

s=k−p,s 6=r(r−s) = −νlr(−ν)− Q(−ν)

Πks=k−p,s 6=r

(r−s) ,

ou le polynome Q(µ) = Πks=k−p(µ−s) est de degre exactement p+1 et Q(r) = 0 pour tout k−p ≤ r ≤ k. Pour calculer les coefficients

numeriques, on utilise ici une remarque tiree de [4]. On remarque en effet que Πks=k−p,s 6=r(r − s) = (−1)k−r(r − (k − p))!(k − r)!

ce qui fait que1

Πks=k−p,s 6=r(r − s)

=(−1)k−r

p!

p!

(p− (k − r))!(k − r)!=

(−1)k−r

p!

(p

k − r

)

peut exprimer en fonction du coefficient du binome de Newton. Donc on peut factoriser

∂λh(θ)

∂θ= −iνλh(θ)− i

Q(−ν)p!

k∑

r=k−p(−1)k−r

(p

k − r

)eirθ = −iνλh(θ)− i

Q(−ν)p!

(−1)pei(k−p)θ(1− eiθ

)p,

ou encore

∂λh(θ)

∂θ+ iνλh(θ) = −i

Q(−ν)p!

(−1)p(−2i)pei(k−p2)θ sinp

θ

2= (−1)pip+12p

Πks=k−p(ν + s)

p!ei(k−

p2)θ sinp

θ

2.

Apres multiplication par eiνθ cette identite peut se recrit sous la forme

∂(eiνθλh(θ)

)

∂θ= (−1)pip+12p

Πks=k−p(ν + s)

p!ei(k−

p2+ν)θ sinp

θ

2. (4.77)

Page 63: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 63

Connaissant a present une formule compacte pour la derivee, nous l’integrons en utilisant des valeurs particulieres de λh(θ) ou desrelations entre ces valeurs.On sait que λh(θ) est 2π-periodique. Une integration de l’expression (4.77) entre θ et θ + 2π donne

eiν(θ+2π)λh(θ + 2π)− eiνθλh(θ) = (−1)pip+12pΠks=k−p(ν + s)

p!

∫ θ+2π

θ

ei(k−p2+ν)ϕ sinp

ϕ

2dϕ.

Donc eiν(θ+2π)λh(θ + 2π)− eiνθλh(θ) =(eiν2π − 1

)eiνθλh(θ) ce qui donne la formule de representation intermediaire

λh(θ) = e−iνθ(−1)pip2p−1Πks=k−p(ν + s)

p!(eiν2π − 1

)∫ θ+2π

θ

ei(k−p2+ν)ϕ sinp

ϕ

2dϕ (4.78)

On sait aussi que par construction λh(0) = 1. Donc

(−1)pip2p−1Πks=k−p(ν + s)

p!(eiν2π − 1

) gσ(0) = 1, σ = k − p

2+ ν.

Donc une multiplication de la formule (4.78) par gσ(0) permet d’obtenir le resultat final.

Preuve du lemme 30. Un resultat technique de base demontre a la proposition suivante montre que si p est impair, alors gσ(0) 6= 0et |gσ(θ)| ≤ |gσ(0)| pour tout σ ∈

[− 1

2, 12

]. La necessite d’avoir un schema stable fait que l’on prend

−1

2≤ σ = k − p

2+ ν ≤ 1

2.

Cela est garanti pour tout 0 < ν ≤ 1 uniquement si p = 2k + 1.Si p est pair, alors l’intervalle autorise est plus grand : |gσ(θ)| ≤ |gσ(0)| pour tout σ ∈ [−1, 1]. On considere alors

−1 ≤ σ = k − p

2+ ν ≤ 1.

Cela est garanti pour tout 0 < ν < 1 uniquement si p = 2k ou p = 2k + 2.Si p = 2k + 2 on peut meme prendre 0 < ν ≤ 2.La preuve est terminee.

Remarque 7. Supposons que p soit pair. Il est alors evident que g0 est constant car la fonction ϕ 7→ sinp ϕ2ne change pas de signe.

Si p est impair, alors la fonction ϕ 7→ sinp ϕ2

change de signe. Il est aise de voir cependant que |g0(θ)| ≤ g0(0) =∫ θ+2πθ

sinp ϕ2dϕ.

Le resultat suivant enonce qu’un comportement similaire a lieu pourvu que |σ| ne soit pas trop grand.

Proposition 19. Si p est impair, alors |gσ(θ)| ≤ |gσ(0)| 6= 0 pour tout σ ∈[− 1

2, 12

].

Si p est pair, alors |gσ(θ)| ≤ |gσ(0)| 6= 0 pour tout σ ∈ [−1, 1].

Demonstration. On a par definition

|gσ(θ)|2 =

(∫ θ+2π

θ

cos(σϕ) sinpϕ

2dϕ

)2

+

(∫ θ+2π

θ

sin(σϕ) sinpϕ

2dϕ

)2

.

On etudie la derivee hσ(θ) =12ddθ

|gσ(θ)|2. On a

hσ(θ) = (−1)p sinpθ

2

∫ θ+2π

θ

(cos(σϕ) cos(σ(θ + 2π)) + sin(σϕ) sin(σ(θ + 2π))) sinpϕ

2dϕ

− sinpθ

2

∫ θ+2π

θ

(cos(σϕ) cos(σθ) + sin(σϕ) sin(σθ)) sinpϕ

2dϕ

= sinpθ

2

∫ θ+2π

θ

((−1)p cos(σ(ϕ− θ − 2π))− cos(σ(ϕ− θ))) sinpϕ

2dϕ.

• Supposons d’abord p impair. Alors la somme des cosinus sous l’integrale peut se simplifier en

hσ(θ) = −2 cosσπ × sinpθ

2× I

ou

I =

∫ θ+2π

θ

cos(σ(ϕ− θ − π)) sinpϕ

2dϕ =

∫ π

−πcos(σϕ) cosp

ϕ+ θ

2dϕ

=

∫ π

−πcos(σϕ)

(cos

ϕ

2cos

θ

2− sin

ϕ

2sin

θ

2

)pdϕ

=

p∑

j=0

(p

j

)cos

θ

2

p−jsin

θ

2

j

(−1)j∫ π

−πcos(σϕ) cos

ϕ

2

p−jsin

ϕ

2

jdϕ.

Page 64: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

64 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Or chacune des fonctions sous l’integrale est une fonction paire de ϕ pour j pair, et impaire pour j impair. Comme le domained’integration est centre en 0, le resultat est exactement nul pour j impair et est positif pour j pair sous la condition que − 1

2≤ σ ≤ 1

2.

Pour 0 ≤ θ ≤ π, on a aussi que cos θ2≥ 0 et sin θ

2≥ 0. Il s’ensuit que I est une somme de termes positifs ou nuls. Donc I ≥ 0

pour 0 ≤ θ ≤ π.En prenant des intervalles ouverts, on a plus precisement I > 0 pour 0 < θ < π et − 1

2< σ < 1

2. Donc, toujours pour 0 < θ < π et

en utilisant cosσπ > 0, le signe de hσ(θ) est strictement negatif. Cela montre que la fonction |gσ(θ)| est strictement decroissantesur l’intervalle [0, π] et termine la preuve de la premiere partie de la proposition pour |σ| < 1

2. Le resultat s’etend immediatement

par continuite au cas σ = ± 12.

• Supposons a present p pair. Un calcul similaire montre que

hσ(θ) = −2 sinσπ × sinpθ

2× J

avec

J =

∫ θ+2π

θ

sin(σ(ϕ− θ − π)) sinpϕ

2dϕ =

∫ π

−πsin(σϕ) cosp

ϕ+ θ

2dϕ

=

p∑

j=0

(p

j

)cos

θ

2

p−jsin

θ

2

j

(−1)j∫ π

−πsin(σϕ) cos

ϕ

2

p−jsin

ϕ

2

jdϕ.

Chacune des fonctions sous l’integrale est une fonction impaire de ϕ pour j pair, et paire pour j impair. Pour −1 < σ < 1, lesigne de sin(σϕ) cos ϕ

2p−j sin ϕ

2j est egal au signe de σ. Donc J est du signe de σ pour 0 < θ < π. Comme le signe de sinσπ est le

meme que celui de σ, il s’ensuit que le signe de hσ(θ) est strictement negatif. Cela montre que la fonction |gσ(θ)| est strictementdecroissante sur l’intervalle [0, π] et termine la preuve de la proposition pour −1 < σ < 1. Puis le resultat est etendu a σ = ±1 parcontinuite.

Une analyse plus fine du comportement de ces schemas numeriques peut se realiser a partir des coefficients de diffusion et dedispersion.

Definition 16 (Coefficients de diffusion et dispersion). Les deux premiers coefficients du developpement de Taylor a l’origine de

eiνθλh(θ) = 1− αhθp+1 − βhθ

p+2 +O(θp+3)

sont les coefficients de diffusion et dispersion du schema.Le coefficient de diffusion est reel positif.Le coefficient de dispersion est imaginaire pur.

A partir de la formule (4.77) pour la derivee, on trouve immediatement

eiνθλh(θ) = 1 + (−1)pip+1Πks=k−p(ν + s)

p!

(1

p+ 1θp+1 + i

k − p2+ ν

p+ 2θp+2θ

)

+O(θp+3).

Le coefficient de diffusion est l’oppose du premier coefficient pour p = 2k+1. La diffusion domine la dispersion (pour θ petit). Pourp pair, c’est le contraire.

Lemme 31 (Thomee [5]). Les schemas du lemme 30 d’ordre impair p = 2k + 1 sont stables dans L1 et L∞. Ce sont les seuls.

Demonstration. Il suffit de verifier le critere de stabilite en norme L1 et L∞ du lemme (26) en utilisant explicitement le fait quele coefficient de diffusion des schemas p = 2k+ 1 domine le coefficient de dispersion. On renvoie a [13] pour un preuve recente.

Un schema qui satisfait le principe du maximum sur un pas de temps verifie

minj∈Z

(unj)≤ min

j∈Z

(un+1j

)≤ max

j∈Z

(un+1j

)≤ max

j∈Z

(unj)

(4.79)

pour tout (unj ). Cela implique que la norme l∞ de l’operateur d’iteration est ≤ 1. Pour un schema qui preserveles constantes tels que ceux consideres, c’est meme une equivalence.

Exercice 12. Le montrer.

Lemme 32. Les schemas semi-lagrangiens d’ordre p ≥ 2 ne respectent pas le principe du maximum.

Demonstration. Nous allons montrer que ∑

r

|αr| > 1 (4.80)

pour un schema d’ordre plus grand ou egal a deux. Premierement on a 1 =∑

r αr donc il existe au moins uncoefficient αr strictement positif. Soit un schema d’ordre au minimum deux. On a a partir de (4.70) ν2 − ν =∑p

r=k−p αr(ν)(r2 − r). Or ν2 − ν < 0 pour 0 < ν < 1. Par ailleurs r2 − r ≥ 0 pour tout r ∈ Z. Donc il existe

aussi au moins un coefficient αr strictement negatif. Cela montre (4.80).Utilisant (4.59) cela montre que la norme de l’operateur d’iteration est > 1 et termine la preuve.

Page 65: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

4.2. APPLICATIONS 65

Ce resultat est en fait lie a un celebre resultat d’obstruction de Godunov qui enonce que les seul schemaslineaires pour l’advection qui verifient le principe du maximum pour tout ν ≤ 1 sont d’ordre un.

Page 66: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

66 CHAPITRE 4. ANALYSE NUMERIQUE DES METHODES DE DIFFERENCES FINIES

Page 67: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 5

Analyse numerique des methodes deVolumes finis

Les methodes de Volumes Finis sur maillage non structures sont a la base des codes de CFD (ComputationalFluid Dynamics) et de resolution de systemes hyperboliques non lineaires pour lesquels l’objectif est le calculprecis de solutions tres peu regulieres voire meme discontinues (les discontinuites et les ondes de chocs). Lecalcul de transport et diffusion en milieux poreux sont eux aussi tres demandeurs en methodes de VolumesFinis.L’analyse numerique des methodes de Volumes Finis met en evidence deux proprietes fortes qui sont d’une partla stabilite et le principe du maximum et d’autre part une structure de donnees simple. Cela explique l’interetfort de ces methodes en calcul scientifique et ingenierie numerique. Cependant la consistance et la convergenceavec le pas du maillage apparaissent nettement plus delicates a analyser. On verra qu’il est cependant possiblede montrer par exemple la convergence a l’ordre 1

2 pour le transport de donnees BV ce qui est representatif dela convergence des methodes de Volumes Finis pour des donnees peu regulieres.

5.1 Equation d’advection

Le probleme modele est ∂tu+ a · ∇u = 0, x ∈ Ω, t > 0,u(0,x) = u0(x), x ∈ Ω,

(5.1)

dans un domaine Ω que l’on prend sans bord pour simplifier les notations. Par exemple on pourra considerersoit que Ω = R

2 soit que Ω = T = [0, 1] × [0, 1] est le tore (carre academique periodique) : on peut identifierx+ 1 = x et y + 1 = y.Nous considerons ici un champ de vitesse eventuellement non constant, mais regulier a ∈ C1(Ω) et a divergencenulle

∇ · a = 0.

On utilise les notations generales de la section 3.2.2. On pose

ajk =1

ljk

Σjk

a(x) · njk(x)dσ

qui est la valeur moyenne de a apres produit scalaire contre la normale exterieure. Pour simplifier un peu lesnotations, on definit

I+(j) = k tels que ajk > 0 et I−(j) = k tels que ajk < 0et on utilisera la convention de notation

k± au lieu et place de de k ∈ I±(j).

67

Page 68: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

68 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

On utilise aussi la notation

mjk = ljk |ajk| ∀j, k..

Un schema de Volumes Finis qui generalise (3.35) s’ecrit

sjun+1j − unj

∆t+∑

k+

mjkunj = 0. (5.2)

En dimension d = 2 on peut evaluer la valeur numerique des ajk sans difficulte.

A−jk

tjk = (−β, α)

A+jl

njk = (α, β)

A+jk = A−jl

Maille j

Maille l

Maille k

Figure 5.1 – Orientation des interfaces

En effet on peut supposer que a est le rotationnel d’un potentiel scalaire donne q ∈ C2(Ω)

a = ∇∧ q = (−∂x2q, ∂x1

q) .

Par construction ∇ · a = ∂x1(−∂x2

q) + ∂x2(∂x1

q) = 0. Posons n = (α, β) et t = (−β, α) : alors

ajk =1

ljk

Σjk

∇∧ q · njkdσ =1

ljk

Σjk

(−∂x2q α+ ∂x1

q β) dσ = − 1

ljk

Σjk

∇q · t dσ = − 1

ljk

Σjk

∂q

∂tdσ,

ou encore

ajk =q(Ajk−

)− q

(Ajk+

)

ljk.

Par convention (A−jk, A

+jk) sont orientes dans le sens des aiguilles d’une montre sur le bord Σjk. On a par ailleurs

que A−jk = A+

kj .

Lemme 33. On a l’egalite∑

k ljkajk = 0.

Demonstration. En effet∑

k ljkajk =∑

k ljk

(q(Ajk−)−q(Ajk+)

ljk

)=∑

k

(Ajk− −Ajk+

)= 0 pour tout contour

ferme. On peut aussi utiliser la condition de divergence nulle∑

k ljkajk =∫∂Ωj

a ·nj dσ =∫Ωj∇ · a dx = 0.

Lemme 34. On a∑

k+ mjk =∑

k− mjk.

Immediat a partir de la definition de mjk du lemme 33.

Page 69: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.1. EQUATION D’ADVECTION 69

5.1.1 Analyse de la condition de stabilite

Le schema (5.2) peut se mettre sous la forme explicite

un+1j =

(1− ∆t

sj

k+

mjk

)unj +

∆t

sj

k+

mjkunk . (5.3)

Lemme 35. Supposons que le pas de temps satisfasse a l’inegalite de stabilite (condition CFL)

∆t

sj

k+

mjk ≤ 1, ∀j. (5.4)

Alors la solution numerique verifie le principe du maximum

infk(unk ) ≤ un+1

j ≤ supk

(unk ) . (5.5)

Demonstration. Soit m = infk unk le minimum de la solution numerique au temps tn. Nous allons commencer

par montrer que m ≤ un+1j pour toute maille j. On a

un+1j −m =

(1− ∆t

sj

k+

mjk

)(unj −m) +

∆t

sj

k+

mjk(unk −m).

Les coefficients 1− ∆tsj

∑k+ mjk et ∆t

sj

∑k+ mjk sont positifs ou nuls et leur somme fait 1. Donc un+1

j −m est

une combinaison convexe, c’est a dire une moyenne, des unk . Donc m ≤ un+1j pour tout j.

Une inegalite similaire se demontre pour la borne superieure M = supk unk . Cela termine la preuve.

Soit plus generalement une fonction convexe u 7→ ϕ(u)

ϕ (θu1 + (1− θ)u2) ≤ θϕ (u1) + (1− θ)ϕ (u2)

pour tous u1 et u2 et pour tout θ ∈ [0, 1].

Lemme 36. Supposons la condition CFL (5.4) satisfaite. On a l’inegalite

j

sjϕ(un+1j

)≤∑

j

sjϕ(unj). (5.6)

Demonstration. Comme ϕ est convexe, on a plus l’inegalite ϕ (∑θiui) ≤

∑θiϕ (ui) sous les conditions θi ≥ 0

pour tout i et∑θi = 1. Donc

ϕ(un+1j

)≤(1− ∆t

sj

k+

mjk

)ϕ(unj)+

∆t

sj

k+

mjkϕ (unk ) .

Sommons sur tout le maillage

j

ϕ(un+1j

)≤∑

j

ϕ(unj)−∑

j

k+

∆t mjk

sjϕ(unj)+∑

j

k+

∆t mjk

sjϕ (unk ) .

On a ∑

j

k+

∆t mjk

sjϕ(unj)=∑

j

k, ajk>0

∆t mjk

sjϕ(unj)

et ∑

j

k−

∆t mjk

sjϕ (unk ) =

j

k, ajk<0

∆t mjk

sjϕ (unk ) .

Page 70: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

70 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Or on a l’egalite ∑

j

k, ajk>0

∆t mjk

sjϕ(unj)=∑

j

k, ajk<0

∆t mjk

sjϕ (unk ) .

Le reste de la preuve est evident.

Remarque 8. Dans le cas ou le maillage est infini ce qui correspond par exemple a Ω = R2, il faut cependant

justifier la convergence et la permutation des sommes infinies dans la preuve de (5.6). C’est bien le cas siϕ(0) = 0 et la solution numerique est a support compact. Cela couvre les cas particuliers etudies ci-dessous.Pour un maillage fini, cette difficulte n’a pas lieu.

Lemme 37. Le schema de Volumes Finis (5.2) est stable dans tous les Lp sous la meme condition (5.4). Plusprecisement

‖un+1‖pLp(Ω) ≤ ‖un‖

p

Lp(Ω) 1 ≤ p ≤ ∞. (5.7)

Demonstration. Tout d’abord on considere 1 ≤ p <∞. La fonction ϕ(u) = |u|p etant convexe, on peut appliquerl’inegalite precedente. D’ou le resultat. Le cas p =∞ est une consequence du principe du maximum (5.5).

Cependant l’inegalite 36 permet de deriver aussi le principe du maximum, ce qui fournit une deuxieme demonstrationde la stabilite dans L∞.

u

ϕ(u)

ϕ+(u)ϕ−(u)

m M

︸ ︷︷ ︸unj

Figure 5.2 – ϕ− et ϕ+

On pose m = mink unk et M = maxk u

nk . Soit la fonction

ϕ−(u) =

m− u pour u ≤ m,0 pour m ≤ u.

Cette fonction ϕ− est continue, convexe et ϕ−(0) = 0. L’inegalite (36) implique que

j

sjϕ−

(un+1j

)≤ 0.

Or ϕ− ≥ 0. Donc ϕ−

(un+1j

)= 0 pour tout j, ce qui montre que m ≤ un+1

j pour tout j.

Pour montrer que un+1j ≤M , nous considerons une deuxieme fonction convexe

ϕ+(u) =

0 pour u ≤M,

u−M pour M ≤ u.

Un raisonnement similaire montre que un+1j ≤M pour tout j.

A present nous interpretons geometriquement la condition de CFL. Le membre de droite de

∆t ≤ sj∑k+ mjk

∀j, (5.8)

Page 71: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.1. EQUATION D’ADVECTION 71

depend de la structure locale du maillage. Il importe de s’assurer que ce terme n’est pas excessivement petit,d’augmenter les temps de calcul dans des proportions excessives. Pour simplifier l’analyse on considere que

a ∈ R2 est constant en espace. (5.9)

A

a

B

C

D

E

F

G

lj

lj

lj

Maille j

Figure 5.3 – Largeur apparente d’une maille

Nous definissons lj la largeur apparente de la maille Ωj comme la dimension de cette maille vue par un obser-vateur a l’infini dans la direction a.

Lemme 38. Supposons les mailles convexes. Alors l’inegalite de stabilite se recrit

∆t ≤ sj

|a|lj(5.10)

ou lj est la longueur apparente comme sur la figure 5.3.

Demonstration. Nos montrons cette propriete sur l’exemple de la maille pentagonale Ωj de sommets ABCDEde la figure 5.3.On construit une maille plus grande Ωj′ avec Ωj ⊂ Ωj′ : ses sommets sont ABCFG, les segments AG et CFetant paralleles au vecteur a. Comme Ωj est convexe par hypothese et que a est constant, les bords sortantsk ∈ I+(j) (i.e. AB et BC sur la figure) forment une ligne brisee connexe. De la meme maniere les bords entrantsk ∈ I−(j) (i.e. CD, DE et EA sur la figure) forment une ligne brisee connexe. Les bords sortants de Ωj′ sontles memes que ceux de Ω, ce que l’on peut noter par

I+(j) = I+(j′).

Alors ∑

k∈I+(j)

mjk =∑

k∈I+(j′)

mjk =∑

k∈I−(j′)

mjk = |a|lj .

Or AG et CF sont parallele a a, donc ils ne contribuent pas. La preuve est terminee.

Remarque 9. En revanche∑

k∈I+(j)mjk > |a|lj est tout a fait possible pour une maille non convexe. Dans ce

cas le pas de temps est plus restreint que pour (5.10).

Page 72: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

72 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Soit a present une maille Ωj convexe : on definit r−j le plus grand rayon des cercles internes et r+j le plus petitrayon des cercles externes. On a

diam(Ωj) ≤ 2r+j .

Pour un triangle r−j est le rayon du cercle inscrit, et r+j est le rayon du cercle circonscrit.

Lemme 39. Soit une maille convexe. Alors une condition suffisante pour obtenir (5.8) est que

∆t ≤π(r−j )

2

2|a|r+j. (5.11)

Demonstration. Par definition sj ≥ π(r−j )2 et lj ≤ 2r+j . Aussi (5.10) est une consequence de (5.11).

Definition 17. On definit le facteur de qualite, aussi appele rapport d’aspect, du maillage

Q = supj

(r+j

r−j

)≥ 1,

et la longueur caracteristique du maillage

h = supj

(diam(Ωj)) .

La definition de h est une alternative possible a une definition similaire (3.28).Avec ces notations, la condition sur le pas de temps (5.11) est verifiee des que

|a|(Q2

π

)∆t

h≤ 1. (5.12)

Pour un calcul sur ordinateur, on a toujours interet a utiliser le plus grand pas de temps possible. Le pas dumaillage h est le plus souvent dicte par la precision souhaitee. En revanche Q est donne par la structure dumaillage. De ce point de vue l’interet pratique dicte d’utiliser un maillage avec une constante Q la plus petitepossible.

Definition 18. Une suite de maillages indices par n et de longueur caracteristique hn avec hn → 0 pour n→∞est dite reguliere si

1 ≤ Qn ≤ C, ∀n.

Les preuves de convergence utilisent une telle hypothese de regularite de maillage. Il faut noter que la situationest identique pour la theorie de convergence des methodes d’elements finis [8].

5.1.2 Consistence des schemas de Volumes Finis pour l’advection

Nous allons plutot montrer que la non consistance au sens des Differences Finies est la regle generalepour l’equation d’advection. Cette non consistance formelle est la raison des difficultes d’analyse numeriquegenerees pas ces methodes.Nous partons du schema de Volumes Finis pour un maillage general (5.2) ou (5.3). Pour analyser la consistanceau sens des Differences Finis, il faut definir un operateur de projection Πh a partir de points xj . Ces pointspeuvent etre les centres de masses des mailles mais ce n’est pas obligatoire. Il apparait raisonnable de demanderque xj ∈ Ωj , mais ce n’est pas obligatoire non plus.Soit u = u0(x−at) une solution exacte pour la donnee initiale u0 ∈W 2,∞(R2). L’erreur de troncature est alors

rnj =vn+1j − vnj

∆t+

1

sj

k+

mjkvnj −

1

sj

k−

mjkvnk =

vn+1j − vnj

∆t− 1

sj

k−

mjk

(vnk − vnj

).

Page 73: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.1. EQUATION D’ADVECTION 73

ou vnj , vn+1j et les vnk sont les valeurs ponctuelles associees a des points xj que l’on a choisi preliminairement :

vnj = u(n∆t,xj) pour tout j et tout n. Pour des fonctions regulieres un developpement de Taylor montre que

vn+1j = vnj + ∂tu(n∆t,xj)∆t+O(∆t2) = vnj − a · ∇u(n∆t,xj)∆t+O(∆t2)

etvnk = vnj +∇u(n∆t,xj) · (xk − xj) +O(h2).

On supposera que les points sont tels que

supk∈I(j)

|xj − xk| ≤ Ch pour C independant de h.

On obtient

rnj = −a · ∇u(n∆t,xj)∆t−1

sj

k−

ljka · njk∇u(n∆t,xj) · (xk − xj) +O(∆t) +O(h),

ou encorernj =

(Mt

jka)· ∇u(n∆t,xj) +O(∆t) +O(h). (5.13)

avec une matrice Mj = −I + 1sj

∑k− ljknjk ⊗ (xk − xj) ∈ R

2×2. Donc pour avoir rnj = O(∆t + h) il faut et

il suffit que Mtja s’annule. On note que l’on retrouve exactement le critere deja etudie (4.47) en dimension un

d’espace. Comme il apparait raisonnable que les points xj soit independants autant que possible de l’equation,on retiendra la definition suivante.

Definition 19 (Consistence au sens des Differences Finies : premiere version). On dira que le schema estconsistent au sens des Differences Finies si il existe des points (xj) solution de l’equation Mj = 0, c’est a dire

k−

ljknjk ⊗ (xk − xj) = sjI, ∀j. (5.14)

Si de plus xj ∈ Ωj la solution est locale.

La somme etant sur les k−, il subsiste une dependance par rapport a a dans cette definition.Comme nous le savons deja , les maillages cartesiens beneficient de la consistance au sens des Differences Finies,ce que l’on retrouve rapidement de la facon suivante. Soit en effet un maillage cartesien (en dimension d = 2).Considerons que xj est le centre de masse (aussi centre de gravite ou barycentre) de la maille d’indice j. Alorsla condition de consistance (5.14) est vraie pour tout a. En effet sj = ∆x2, ljk = ∆x et xk − xj = ∆x njk.Deux bords au plus contribuent dans (5.14). Le reste est affaire de calcul evident.Un resultat negatif est le suivant.

Lemme 40. Il existe des maillages pour lesquels il n’y a aucune solution au critere de consistance (5.14).

Demonstration. Considerons le maillage en triangles de la figure 5.4.Une seule maille est dans I−(j). La somme (5.14) se reduit a une seule contribution ljknjk ⊗ (xk − xj). Cettematrice est au plus de rang un, et ce pour tout xj et tout xk. Elle ne peut donc pas etre egale a sjI qui est derang deux.

Cela incite a etudier une version affaiblie de la relation de consistance (5.14).

Definition 20 (Consistance au sens des Differences Finies : deuxieme version). Un deuxieme critere de consis-tance au sens des Differences Finis s’ecrit : Mt

jka = 0. Ou encore

xj =∑

k−

(ljk a · njk∑r− ljr a · njr

)xk −

sj∑k− ljk a · njk

a. (5.15)

Page 74: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

74 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Maille k

xk

njka

xj

Maille j

Figure 5.4 – Un cas particulier sans solution au critere de consistance (5.14)

Si (5.15) est vrai alors l’erreur de troncature (5.13) est en O(∆t+ h), ce qui est exactement la definition de laconsistance au sens des Differences Finies.Il est possible a priori de resoudre (5.15) de proche en proche en considerant que les xk ont deja ete calcules.Cela determine le point xj comme une moyenne des xk plus une correction geometrique, ce qui propage laconnaissance de xj de mailles en mailles. Cependant l’etude de ce systeme, meme elementaire, n’a pas evidente.Par exemple la solution peut ne pas etre locale, xj 6∈ Ωj . Cela rend l’interpretation de la solution delicate. Onpourra consulter [3].

xk x′′k

xj x′′j

a

x′k

x′j

lj

hj

Figure 5.5 – Ici l’equation (5.15) se simplifie en xj =hj

2|a|a + xk. La hauteur du triangle est hj =sjlj. Si le

second membre de (5.15) est xk alors xj ∈ Ωj . Cependant si x′k ou x′′

k sont pres des coins, alors xj 6∈ Ωj .

5.2 Convergence dans L2

Nous montrons la convergence dans L2 du schema de Volumes Finis pour l’advection, en utilisant une combi-naison de techniques adaptees. Le domaine d’etude est le tore T . Le champ de vitesse a ∈ R

2 est constant entemps et en espace. La donnee initiale est une fois derivable dans L2, soit u0 ∈ H1(T ).Le maillage est regulier avec un nombre de voisins par mailles qui est borne independant de h. Cela est assurepour un maillage dont les mailles sont des polygones avec un nombre donne maximal de cotes. Les mailles sonttoutes convexes.

Theoreme 3. Supposons la condition CFL verifiee. Alors le schema de Volumes Finis est convergent avecl’estimation d’ordre fractionnaire

‖unh −Πhu(n∆t)‖L2(T ) ≤ C‖∇u‖L2(T )(Th)12 , n∆t ≤ T. (5.16)

Page 75: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.2. CONVERGENCE DANS L2 75

Remarque 10. La comparaison avec les resultats en dimension un d’espace de la section 4.2.3 montre que ceresultat est optimal car il retrouve exactement l’ordre de convergence moitie pour une donnee une fois derivable(dans L2).

Pour simplifier un peu, la preuve est decompose en deux etapes. La premiere etape est plus generale car dansLp.

5.2.1 Premiere etape : estimation en temps dans Lp

On s’appuie sur le lemme 17 pour remplacer le schema explicite

un+1j − unj

∆t+

1

sj

k+

mjkunj −

k−

mjkunk

= 0,

par le schema semi-discret

v′j(t) +1

sj

k+

mjkvj(t)−∑

k−

mjkvk(t)

= 0.

La condition initiale est commune

u0j = vj(0) =1

sj

Ωj

u0(x)dx.

Lemme 41. Soit une donnee initiale u0 ∈ W 1,p(T ). Soit une suite de maillages reguliers de pas h → 0. Alors il existe uneconstante universelle C > 0 telle que

‖unh − vh(n∆t)‖Lp(T ) ≤ C‖∇u0‖Lp(T )(Th)12 , n∆t ≤ T. (5.17)

Demonstration. On applique l’inegalite de comparaison du lemme 17. Tout d’abord les hypotheses sur le maillage et l’etude de lacondition CFL montrent que τ(h) ≤ Ch pour une constante C > 0 bornee independamment de h. Il reste a obtenir une bonneestimation sur AhΠhu0 = (wj) avec

wj =1

sj

k+

ljk(u0k − u0j

)

ou u0j = 1sj

∫Ωju(x)dx et u0k = 1

sk

∫Ωk

u(x)dx sont les valeurs moyennes obtenues par projection de la donnee initiale. On a

wj =1

sj

k+

ljk

(u0jk − u0j

)+

1

sj

k+

ljk

(u0k − u0jk

)

ou u0jk = 1ljk

∫∂Ωj∩∂Ωk

u(x)dx est la valeur moyenne sur l’interface commune de la donnee initiale. L’inegalite de Holder montreque

∣∣∣∣∣∣

k+

ljk

(u0jk − u0j

)∣∣∣∣∣∣≤

k+

ljk

∣∣∣u0jk − u0j

∣∣∣p

1p

k+

ljk

1q

≤(Ch

− 1pAj

)h

1q

ou on a repris la definition (5.36) de Aj . De meme pour les autres termes. D’ou grace a la minoration uniforme sj ≥ ch2 :

|wj | ≤ Ch1q− 1

p−2

Aj +∑

k+

Ak

.

Puis en utilisant le fait que le nombre de voisins est borne independamment de h, on obtient ‖AhΠhu0‖ =(∑

j sj |wj |p) 1

p ≤

Ch1q− 1

p−2+ 2

pA, avec A defini par (5.39) : le terme h2p vient des contributions de la forme s

1p

j . Or A ≤ ch ‖∇u0‖Lp(T ) par le lemme

48. Comme 1q− 1p− 2 + 2

p+ 1 = 0, cela etablit le resultat.

5.2.2 Deuxieme etape : estimation en espace dans L2

Nous etudions a present la difference entre la solution du schema semi-discret et la projection de la solutionexacte, en norme L2.

Lemme 42. Supposons : u0 ∈ H1(T ) ; la condition CFL realisee ; et les maillages reguliers. On a l’estimationd’erreur

||u(n∆t)− vh(n∆t)||L2 ≤ C ‖∇u0‖L2(T )

(h+ (Th)

12

), n∆t ≤ T. (5.18)

Page 76: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

76 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Demonstration. La fonction vh(t) ∈ L2(Ω) est constante par mailles. On etudie

E(t) =1

2

T(u(t)− vh(t))

2. (5.19)

avec E(0) ≤ C(∇u0)h2 au temps initial en utilisant le resultat du lemme 46. Le resultat final (5.18) sera demontre si nous pouvonsmontrer que E′(t) ≤ C||∇u0||2L2h. Or nous allons voir que c’est affaire de calculs elementaires.

On a E(t) = 12

∫Ω u(t)

2 + 12

∫Ω vh(t)

2 −∫Ω vh(t)u(t). Donc

E′(t) =d

dt

(1

2

Tu(t)2

)

︸ ︷︷ ︸=A1

+

−1

2

j

k∈I+(j)

mjk(vj − vk)2

︸ ︷︷ ︸=A2

+∑

j

(∑k+ mjkvj −

∑k− mjkvk

sj

)∫

Ωj

u(t)

︸ ︷︷ ︸=A3

+∑

j

uj(−∑

k+

mjkujk +∑

k−

mjkujk)

︸ ︷︷ ︸=A4

.

ou ujk denote la valeur moyenne de la solution exacte au temps t sur l’interface ∂Ωj ∩ ∂Ωk. Le premier terme A1 est nul car lanorme L2 de la solution de l’equation d’advection est constante pour un domaine sans bord

A1 =d

dt

Ω

u2

2=

Ωu∂tu = −

Ωua · ∇u = −

Ωa · ∇u

2= 0.

Le deuxieme terme A2 est negatif ou nul. Les termes suivants A3 et A4 sont a priori tels que leur somme est homogene a≈∫Ω(a.∇(uwh) = 0. On peut alors anticiper qu’une reecriture adaptee permet de mettre en evidence que leur somme est petite en

un sens a definir. Verifions.Comme

∑k+ mjk =

∑k− mjk, alors

A3 = −∑

j

k−

mjk(vj − vk)ujk

︸ ︷︷ ︸=A5

+∑

j

k−

mjk(vj − vk)

(

ujk −∫Ωju

sj

)

︸ ︷︷ ︸=A6

. (5.20)

Une integration par partie discrete, c’est a dire une permutation des indices de sommation, montre que A5 = −A4. Par ailleurs une

inegalite de la forme αβ ≤ 14α2 + β2 montre que A6 ≤ − 1

2A2 +

∑j

∑k− mjk

(ujk −

∫Ωj

u

sj

)2

. One obtient alors

E′(t) +1

2

j

k∈I+(j)

mjk(vj − vk)2 ≤ 1

2

j

k−

mjk

(

ujk −∫Ωju

sj

)2

.

Le resultat du lemme 48 pour p = 2 montre que E′(t) + 12

∑j

∑k∈I+(j)mjk(vj − vk)

2 ≤ Ch||∇u0||2L2 . Il s’ensuit que

E(t) +1

2

∫ t

0

j

k∈I+(j)

mjk(vj(s)− vk(s))2ds ≤ Ch2 ‖∇u0‖2L2 + Ch ‖∇u0‖2L2 T. (5.21)

Le resultat est demontre avec de plus une estimation sur les differences de la solution semi-discrete qui sera utilisee dans ce quisuit.

Remarque 11. La structure de la preuve de l’inegalite (5.18) s’appuie d’une part sur la dissipation de l’energie L2 ce qui estune propriete courante pour une methode numerique et d’autre part sur la structure d’un schema de Volumes Finis qui peut secaracteriser par la relation

∑k+ mjk =

∑k− mjk qui est fondamentale dans les methodes de Volumes Finis. En resume le point

cle de la preuve est la transformation (5.20).

Preuve final du theoreme 3. Le theoreme de convergence 3 s’obtient par inegalite triangulaire a partir de l’inegalite (5.17) et del’inegalite (5.18).

5.3 Convergence dans L1

On fera l’hypothese queu0 ∈ BV(T )

ce qui permet de traiter les cas des fonctions indicatrices, lesquelles sont liees au calcul numerique de la propa-gation d’interfaces par des schemas de Volumes Finis.La strategie generale de preuve de convergence est identique au cas precedent. D’abord se ramener au schema semi-discret ce quine pose pas de difficultes a partir du resultat du lemme 41 et du fait que W 1,1 est dense dans BV . D’ou une premiere estimation

‖unh − vh(n∆t)‖L1(T ) ≤ C |u0|BV(T ) (Th)12 , n∆t ≤ T. (5.22)

L’estimation en espace va etre montree pour des fonctions indicatrices.

Page 77: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.3. CONVERGENCE DANS L1 77

5.3.1 Cas des fonctions indicatricesLa donnee initiale u0 = 1ω est prise comme la fonction indicatrice d’une partie ω ⊂ T

u0(x) = 1 pour x ∈ ω, et u0(x) = 1 pour x 6∈ Θ.

On supposera le perimetre ω borne, auquel cas|u0|BV = |ω| <∞.

On commence par regulariser/convoluer la donner initiale u0 a l’aide d’un noyau positif ou nul, borne, de masse unite et a supportcompact

uε0(x) = (ϕε ∗ u0) (x) =1

ε

y∈Tϕ

(x− y

ε

)u0(y)dy.

Un resultat classique [19] montre que‖uε0 − u0‖L1(T ) ≤ Cε|ω|. (5.23)

On a egalement que

∇uε0 =1

ε2

y∈T∇ϕ

(x− y

ε

)u0(y)dy

d’ou l’on tire a partir de la definition d’une fonction BV que

‖∇uε0‖L∞(T ) ≤ C|u0|BV (T )

εet ‖∇uε0‖L1(T ) ≤ C |u0|BV (T ) .

Il s’ensuit une inegalite qui va jouer un role dans la suite

‖∇uε0‖L2(T ) ≤ C|u0|BV (T )

ε12

. (5.24)

La solution du schema semi-discret issu de uε0 est vεh(t) = eAhtΠhuε0. La solution du schema semi-discret issu de u0 est vh(t) =

eAhtΠhu0.

Lemme 43. L’erreur entre la solution numerique semi-discrete et la solution exacte peut se majorer par l’erreur entre les solutionsregularisees plus un reste

‖vh(t)− u(t)‖L1(T ) ≤ ‖vεh(t)− uε(t)‖L1(T ) + Cε|ω|. (5.25)

Demonstration. On a l’inegalite triangulaire

‖vh(t)− u(t)‖L1(T ) ≤ ‖vh(t)− vεh(t)‖L1(T ) + ‖vεh(t)− uε(t)‖L1(T ) + ‖uε(t)− u(t)‖L1(T ) .

On a ‖uε(t)− u(t)‖L1(T ) ≤∥∥uε0 − u0

∥∥L1(T )

. Or on a aussi∥∥vh(t)− vεh(t)

∥∥L1(T )

≤∥∥vh(0)− vεh(0)

∥∥L1(T )

en utilisant la stabilite

unitaire dans L1 du schema semi-discret, laquelle peut soit se voir comme une consequence de la propriete generale (4.23) qui etendau semi-discret les proprietes de stabilite des schemas explicites, soit se re-demontrer directement. Puis

∥∥vh(t)− vεh(t)∥∥L1(T )

≤∥∥uε0 − u0

∥∥L1(T )

. Donc

‖vh(t)− u(t)‖L1(T ) ≤ ‖vεh(t)− uε(t)‖L1(T ) + 2 ‖uε0 − u0‖L1(T )

La preuve est terminee grace a (5.23).

Lemme 44. On a la formule

‖uε(t)− vεh(t)‖L1(T ) = ‖uε(t)‖2L2(T ) − ‖vεh(t)‖2L2(T ) + ‖uε(t)− vεh(t)‖2L2(T ) +O(ε|ω|)

ou le terme O(ε|ω|) est independant du temps.

Demonstration. Le support du noyau de convolution ϕ est compact, aussi uε0(x) = u0(x) sauf eventuellement dans une region dontl’aire peut se majorer en Aε = Per(ω)O(ε). Cela etant vrai pour ω de la forme d’un disque ou d’un carre, nous l’admettons sansdemonstration pour le cas general. Apres advection on a la meme propriete entre uε(t) et u(t).Dans les regions ou uε(t) = 1

|uε(t)− wεh(t)| = 1− wεh(t).

En effet wεh(t) ≤ 1 car le schema semi-discret verifie aussi le principe du maximum : cela qui peut se voir comme une consequencede la propriete generale (4.23) qui etend au semi-discret les proprietes de stabilite des schemas explicites, soit se re-demontrerdirectement.Dans les regions ou uε(t) = 0 on a par un principe similaire

|uε(t)− wεh(t)| = wεh(t).

Ces deux situations peuvent se resumer par

|uε(t)− wεh(t)| = (uε(t)− wεh(t))× (2uε(t)− 1) ,

qui est valide presque partout excepte dans un domaine d’aire Aε = O(ε|ω|). On a donc

‖uε(t)− vεh(t)‖L1(T ) =

Ω(uε(t)− wεh(t))× (2uε(t)− 1) +O(ε|ω|).

Or l’initialisation de la donnee initiale en valeur moyenne et la conservativite (lemme 12) du schema font que∫Ω

(uε(t)− wεh(t)

)= 0.

Il reste alors les termes(uε − wεh

)2uε = |uε|2 −

∣∣wεh∣∣2 +

∣∣uε − wεh

∣∣2 que l’on retrouve directement dans le resultat. La preuve estterminee.

Page 78: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

78 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Theoreme 4. Soient T > 0 et h ≤ 1. Il existe une constante C > 0 telle que

‖uε(t)− vεh(t)‖L1(T ) ≤ C |u0|12

BV (T )h

12 , t ≤ T.

Demonstration. En effet l’inegalite (5.17) en norme L2 combinee avec (5.24) l’estimation sur le gradient egalement en norme L2

implique

‖uε(t)− vεh(t)‖2L2(T ) ≤ C ‖∇uε0‖2L2(T )

(h2 + th

)≤ C

|u0|2BV (T )

ε

(h2 + th

).

D’autre partd

dt

(‖uε(t)‖2

L2(T ) − ‖vεh(t)‖2L2(T )

)=

1

2

j

k∈I+(j)

mjk(vεj − vεk)

2

car la norme L2 de uε est constante, et le schema est dissipatif. Le terme dissipatif est exactement le terme A2 dans la preuve dulemme 42, et dont l’integrale en temps peut se majorer par (5.21). Donc on peut ecrire

‖uε(t)‖2L2(T ) − ‖vεh(t)‖2L2(T ) ≤

(‖uε0‖2L2(T ) − ‖vεh(0)‖2L2(T )

)+ Ch2 ‖∇uε0‖2L2 + Cth ‖∇uε0‖2L2 .

On a immediatement que

‖uε0‖2L2(T ) − ‖vεh(0)‖2L2(T ) = (uε0 − vεh(0), uε0 + vεh(0))L2(T ) ≤ ‖uε0 − vεh(0)‖L1(T ) × ‖uε0 + vεh(0)‖L∞(T ) .

D’ou grace a (5.34) et au fait que les donnees sont bornees dans L∞ :∥∥uε0

∥∥2L2(T )

−∥∥vεh(0)

∥∥2L2(T )

≤ Ch∥∥∇uε0

∥∥L1(T )

puis∥∥uε0

∥∥2L2(T )

−∥∥vεh(0)

∥∥2L2(T )

≤ Ch |u0|BV (T ). Donc on peut ecrire

‖uε(t)‖2L2(T ) − ‖vεh(t)‖2L2(T ) ≤ Ch |u0|BV (T ) + C

h2 + th

ε|u0|2BV (T ) .

En regroupant ces diverses expressions on obtient

‖u(t)− vh(t)‖L1(T ) ≤ Ch |u0|BV (T ) + Ch2 + th

ε|u0|2BV (T ) + Cε |u0|BV (T ) .

Une valeur optimale du parametre de convolution est ε =√h. On obtient

‖u(t)− vh(t)‖L1(T ) ≤ C(h+ h

32 + th

12 + h

12

)|u0|BV (T ) .

On obtient alors le resultat pour h ≤ 1 et t ≤ T donne.

5.3.2 Donnees generalesLe resultat du theoreme de convergence dans L1 pour une fonction indicatrice peut s’etendre aux fonctions de BV a partir del’inegalite de la co-aire (2.1).

5.4 Convergence du schema de diffusion

On analyse a present la version implicite du schema (3.49) pour l’equation de la chaleur. Il s’ecrit pour toutn ≥ 0

un+1j − unj

∆t− 1

sj

k

ljkun+1k − un+1

j

djk= 0, ∀j. (5.26)

Les elements caracteristiques du maillage du tore T sont l’aire de la maille courante notee sj > 0, la longueurde l’interface entre les mailles voisines notee ljk > 0 : la distance entre les centres de gravite xj et xk de deux

mailles voisines, initialement denotee djk, sera note djk > 0 pour alleger la notation. On envisage l’initialisationponctuelle

u0j = u0(xj), ∀j. (5.27)

On pourrait tout aussi bien etudier les variantes explicites ou semi-discretes avec des resultats similaires.Comme note precedemment, la matrice du systeme lineaire qui permet de calculer un+1

h en fonction de unh estinversible. On peut le retrouver comme consequence de la decroissance de la norme L2.

Lemme 45 (Stabilite inconditionnelle en norme quadratique). Soit vh = (vj) donne. Soit uh = (uj) une

solution deuj−vj

∆t+ 1

sj

∑k ljk

uk−uj

djk= 0, ∀j. Alors pour tout ∆t > 0

‖uh‖L2(T ) ≤ ‖vh‖L2(T ) .

Page 79: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.4. CONVERGENCE DU SCHEMA DE DIFFUSION 79

Demonstration. Le schema se recrit

uj −∆t

sj

k

ljkuk − ujdjk

= vj .

Multipliant par uj et sommant sur toutes les mailles on trouve

j

sju2j −∆t

j

(uj∑

k

ljkuk − ujdjk

)=∑

j

sjujvj

ce qui implique apres quelques manipulations

j

sju2j +∆t

j<k

ljk

djk(uj − uk)2 =

1

2

j

sju2j +

1

2

j

sjv2j −

j

sj (uj − vj)2

ou∑

j<k =∑

j

∑k, j<k est une somme double sur toutes les interfaces entre maille d’indice j et mailles

d’indices k. D’ou1

2

j

sju2j +∆t

j<k

ljk

djk(uj − uk)2 +

j

sj (uj − vj)2 =1

2

j

sjv2j (5.28)

ce qui termine la preuve.

On retrouve bien que si vh ≡ 0, alors l’unique solution du systeme lineaire est uh ≡ 0. Or c’est un des criterespossibles pour caracteriser l’invisibilite du systeme lineaire qui permet de determiner uh en fonction de vh. Doncle systeme lineaire est inversible.Pour poursuivre l’analyse numerique on empreinte une idee tres courante dans les formulations variationnellespour les problemes elliptiques qui est de recrire (5.26) sous une forme mixte, c’est a dire en faisant apparaitreexplicitement des discretisations d’operateurs differentiels du premier ordre. On obtient

un+1j − unj

∆t− 1

sj

k

ljkpn+1jk = 0, ∀j,

pn+1jk −

un+1k − un+1

j

djk= 0, ∀(j, k).

On note bien sur que pn+1kj = −pn+1

jk . Puis on reprend l’idee de la consistance au sens des Differences Finies, quiest d’introduire la solution exacte dans le schema est d’evaluer l’erreur de troncature. Le point important estque l’on effectue cette etude de consistance pour les deux equations discretes separement.On prend vnj = u(xj , tn)dx qui est la valeur au point xj de la solution exacte et

qnjk =1

ljk

∂Ωj∩∂Ωk

∇u(x, tn) · njkdσ

qui est la projection en moyenne sur les segments d’interface. La valeur ponctuelle est correctement definie pourune fonction continue ce qui sera le cas pour la regularite envisagee dans le lemme qui suit. On definit alorsdeux erreurs de troncature

rnj =vn+1j − vnj

∆t− 1

sj

k

ljkqn+1jk , ∀j,

tnjk = qn+1jk −

vn+1k − vn+1

j

djk, ∀(j, k).

Le terme tnjk evalue la consistance du flux numerique. Ces deux erreurs de troncature rnh =(rnj)jet tnh =(

tnjk

)jk

ne vivent pas dans les memes espaces, mais peuvent toutes deux s’estimer dans des normes quadratiques

Page 80: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

80 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

adaptees. Comme auparavant on prendra ‖rh‖2L2(T ) =∑

j sjr2j . On definit

|||th|||2L2(T ) =∑

jk

ljkdjkt2jk.

On remarque sj = O(h2) et ljkdjk = O(h2) ce qui fait que ce sont deux normes de type L2.

Proposition 20 (Consistance des erreurs de troncature). Supposons que la solution soit u ∈ W2,∞ ([0, T ]× T ).Supposons le maillage triangulaire et satisfaisant la condition du lemme 14.Alors il existe C qui depend de u et de ses derivees telle que

‖rnh‖L2(T ) ≤ C (∆t+ h) et |||tnh|||L2(T ) ≤ Ch, n∆t ≤ T.

Cette preuve est loin d’etre optimale, ne serait-ce que parce que la regularite de la solution est evaluee dansdes espaces de type L∞ et que l’erreur est mesuree dans L2. Mais la structure de la preuve est interessante enelle-meme car la dependance des estimations par rapport aux elements caracteristiques du maillage apparaitclairement. Les conditions sur le maillage sont elles-aussi restrictives.On consultera [15] pour des developpements complementaires.

Demonstration. On a

rnj =u(xj , tn+1)− u(xj , tn)

∆t− 1

sj

∂Ωj

∇u(x, tn+1) · njdσ

=u(xj , tn+1)− u(xj , tn)

∆t− 1

sj

Ωj

∆u(x, tn+1)dx

=u(xj , tn+1)− uj(x, tn)

∆t− 1

sj

Ωj

∂tu(x, tn+1)dx

=

(u(xj , tn+1)− u(xj , tn)

∆t− ∂tu(xj , tn+1)

)+

1

sj

Ωj

(∂tu(xj , tn+1)− ∂tu(x, tn+1)) dx.

Or ∂ttu ∈ L∞([0, T ]× T ). On a alors pour le terme entre parenthese∣∣∣∣u(xj , tn+1)− u(xj , tn)

∆t− ∂tu(xj , tn+1)

∣∣∣∣ ≤1

2∆t ‖∂ttu(tn+1)‖L∞([0,T ]×T ) .

Comme on a aussi ∇∂tu ∈ L∞([0, T ]× T ) le terme sous l’integrale s’estime par

|∂tu(xj , tn+1)− ∂tu(x, tn+1)| ≤ h ‖∇∂tu‖L∞([0,T ]×T )

avec diam(Ωj) ≤ h. Donc

∣∣rnj∣∣ ≤ 1

2∆t ‖∂ttu(tn+1)‖L∞(T ) + h ‖∇∂tu‖L∞([0,T ]×T ) .

Comme ‖rnh‖L2(T ) ≤ ‖rnh‖L∞(T ) |T |12 , on obtient une premiere estimation

‖rnh‖L2(T ) ≤

1

2‖∂ttu(tn+1)‖L∞(T )

︸ ︷︷ ︸=c1

∆t+ ‖∇∂tu‖L∞([0,T ]×T )︸ ︷︷ ︸=c2

h

|T |

12 ≤ C(∆t+ h). (5.29)

avec C = max (c1, c2) |T |12 .

On evalue a present le deuxieme terme. On a

tnjk =(qn+1jk −∇u(xjk, tn+1) · njk

)+

(∇u(xjk, tn+1) · njk −

vn+1k − vn+1

j

djk

).

Page 81: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.4. CONVERGENCE DU SCHEMA DE DIFFUSION 81

Or

qnjk −∇u(xjk, tn+1) · njk =1

ljk

∂Ωj∩∂Ωk

(∇u(x, tn+1)−∇u(xjk, tn+1)) · njkdσ

Comme la matrice Hessienne des derivees secondes de u est bornee, ∇2u ∈ L∞([0, T ]× T )4, on en deduit que∣∣qnjk −∇u(xjk, tn+1) · njk

∣∣ ≤∥∥∇2u

∥∥L∞([0,T ]×T )4

h.

Le dernier terme a estimer est

∇u(xjk, tn+1) · njk −vn+1k − vn+1

j

djk= ∇u(xjk, tn+1) · njk −

u(xk, tn+1)− u(xj , tn+1)

djk

ou le point xjk est situe entre xj et xk, et ou djk est precisement la distance entre en xj et xk. Bien quebidimensionnelle, la situation est identique a celle de la figure 3.6 en dimension un d’espace. Il s’ensuit que

∣∣∣∣∣∇u(xjk, tn+1) · njk −vn+1k − vn+1

j

djk

∣∣∣∣∣ ≤∥∥∇2u

∥∥L∞([0,T ]×T )4

h.

Cela implique que∣∣∣tnjk∣∣∣ ≤ 2

∥∥∇2u∥∥L∞([0,T ]×T )4

h. Or

‖tn‖L2(T ) ≤ maxjk

(∣∣tnjk∣∣)√∑

jk

ljkdjk ≤ maxjk

(∣∣tnjk∣∣)√∑

j

sj maxj

(∑k ljkdjk

sj

).

Avec les hypotheses usuelles sur le maillage, on obtient

‖tn‖L2(T ) ≤ K∥∥∇2u

∥∥L∞([0,T ]×T )4

h (5.30)

ou K > 0 ne depend que du maillage.La preuve est terminee.

A present que la consistance est etablie, il reste a utiliser une nouvelle fois la stabilite pour obtenir la convergence.

Theoreme 5. Soit T > 0 un temps final donne. Sous les hypotheses precedentes, il existe une constante C > 0telle que

‖unh − vnh‖L2(T ) ≤ C(∆t+ h). (5.31)

Demonstration. On definit les differences enj = vnj − unj et fnjk = qjkn − pnjk qui verifient

en+1j − enj

∆t− 1

sj

k

ljkfn+1jk = rnj , ∀j,

fn+1jk −

en+1k − en+1

j

djk= tnjk, ∀(j, k).

(5.32)

La condition initiale (5.27) devient e0j = 0 pour tout j. Il n’y a pas de condition initiale pour f0jk. On peutalors reprendre l’analyse de la stabilite qui donne lieu a (5.28) sous la forme suivante : on multiplie la premiereequation de (5.32) par ∆tsje

n+1j et on somme ; dans le meme temps multiplie la deuxieme equation de (5.32)

par ∆tljkdjkfn+1jk et on somme. On obtient

1

2

j

sj∣∣en+1

j

∣∣2 +∆t∑

j<k

ljk

djk

∣∣en+1j − en+1

k

∣∣2 +∑

j

sj∣∣en+1

j − enj∣∣2

=1

2

j

sj∣∣enj∣∣2 +∆t

j

sjrnj e

n+1j +∆t

jk

ljkdjktnjkf

n+1jk

Page 82: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

82 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

=1

2

j

sj∣∣enj∣∣2 +∆t

j

sjrnj

(en+1j − enj

)+∆t

j

sjrnj e

nj +∆t

jk

ljkdjk∣∣tnjk∣∣2 +∆t

jk

ljktnjk

(en+1k − en+1

j

)

(5.33)apres elimination des fn+1

jk par la deuxieme equation de (5.32). On a les differentes inegalites de type Minkovski 1

∆t∑

j

sjrnj

(en+1j − enj

)≤ 1

2

j

sj∣∣en+1

j − enj∣∣2 + 1

2∆t2

j

sj∣∣rnj∣∣2 ,

∆t∑

j

sjrnj e

nj ≤

1

2∆t∑

j

sj∣∣rnj∣∣2 + 1

2∆t∑

j

sj∣∣enj∣∣2 ,

et

∆t∑

jk

ljktnjk

(en+1k − en+1

j

)≤ 1

2∆t∑

j<k

ljk

djk

∣∣en+1j − en+1

k

∣∣2 + 1

2∆t∑

jk

ljkdjk∣∣tnjk∣∣2 .

En inserant ces inegalites dans l’expression precedente (5.33) on obtient apres quelques simplifications evidentes

1

2

j

sj∣∣en+1

j

∣∣2 ≤ 1

2(1 + ∆t)

j

sj∣∣enj∣∣2 + 1

2

(∆t+∆t2

)∆t∑

j

sj∣∣rnj∣∣2 + 1

2∆t∑

jk

ljkdjk∣∣tnjk∣∣2

ou plus simplement

∥∥en+1h

∥∥2L2(T )

≤ (1 + ∆t) ‖enh‖2L2(T ) +∆t((1 + ∆t)

∥∥rn+1h

∥∥2L2(T )

+ |||tn+1h |||2L2(T )

).

Utilisant a present les estimations de consistance, on obtient∥∥en+1

h

∥∥2L2(T )

≤ e∆t ‖enh‖2L2(T )+K∆t (∆t+ h)

2pour

une constante K > 0 qui depend de u, et pour 0 < ∆t < 1. D’ou ‖enh‖2L2(T ) ≤ ∆tK

∑n−1p=0 e

p∆t (∆t+ h)2. Soit

un temps final donne T > 0. Pour n∆t ≤ T on peut ecrire ‖enh‖2L2(T ) ≤ Q (∆t+ h)

2. La preuve est terminee.

Remarque 12. Le resultat de convergence (5.31) est encore vrai pour u ∈ H2([0, T ]×T ). On peut se referer autheoreme 3.4 page 55 de [15] pour les idees principales. C’est un peu plus technique en ce qui concerne l’etudedes erreurs de troncature, mais est strictement identique en ce qui concerne le schema lui-meme.

5.5 Quelques resultats d’approximation

On demontre quelques inegalites d’interpolation de base qui sont utiles pour l’analyse numerique des methodesde Volumes Finis.La premiere inegalite, lemme 46, est un resultat classique qui mesure l’erreur de projection en moyenne. Ladeuxieme inegalite, lemme 48, est tout aussi classique. Elle mesure l’erreur entre la valeur moyenne dans lesmailles par rapport a la valeur moyenne sur les segments aux interfaces des mailles.Les mailles en dimension deux d’espace sont supposees convexes. La longueur caracteristique du maillage h estpar definition plus grandes que tous les bords de mailles. Le maillage est pris regulier. Enfin le nombre de voisinsest borne par une constante independante de h.

Lemme 46 (Inegalite de type Poincare-Wirtinger). Soit Πh l’operateur de projection en moyenne. Alors ilexiste une constante C > 0 telle que

‖u−Πhu‖Lp(Ω) ≤ Ch‖∇u‖Lp(Ω) (5.34)

pour tout u ∈W 1,p(Ω).

1. On entend par la toute inegalite de la forme ab ≤ ε2a2 + 1

2εb2 pour ε > 0 bien choisi, a et b etant quelconques.

Page 83: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

5.5. QUELQUES RESULTATS D’APPROXIMATION 83

Demonstration. L’inegalite (5.34) ne fait que preciser la dependance par rapport au maillage de la constante de l’inegalite dePoincare-Wirtinger dans Lp(Ω).Le cas p = ∞ est evident aussi on considere 1 ≤ p <∞. On a

‖u−Πhu‖pLp(Ω)=∑

j

x∈Ωj

∣∣∣∣∣u(x)−1

sj

y∈Ωj

u(y)dy

∣∣∣∣∣

p

dx =∑

j

1

spj

x∈Ωj

∣∣∣∣∣

y∈Ωj

(u(x)− u(y))dy

∣∣∣∣∣

p

dx.

L’inegalite de Holder pour 1p+ 1q= 1 implique

∣∣∣∫y∈Ωj

(u(x)− u(y))dy∣∣∣ ≤

(∫y∈Ωj

|u(x)− u(y)|p dy) 1

ps

1q

j . D’ou

‖u−Πhu‖pLp(Ω)≤∑

j

1

sj

x∈Ωj

y∈Ωj

|u(x)− u(y)|pdxdy. (5.35)

Or u(x)− u(y) =∫ 10 ∇u (tx+ (1− t)y) dt · (x− y) d’ou l’on tire |u(x)− u(y)|p ≤ hp

∫ 10 |∇u (tx+ (1− t)y)|p dt. Il s’ensuit que

x∈Ωj

y∈Ωj

|u(x)− u(y)|pdxdy ≤ hp∫

x∈Ωj

y∈Ωj

∫ 1

0|∇u (tx+ (1− t)y)|p dtdxdy

puis en utilisant un principe de symetrie

x∈Ωj

y∈Ωj

|u(x)− u(y)|pdxdy ≤ 2hp∫

y∈Ωj

∫ 1

12

(∫

x∈Ωj

|∇u (tx+ (1− t)y)|p dx)

dydt.

Le terme entre parenthese s’evalue aisement grace a un changement de variables. On pose z = tx + (1 − t)y, pour t et y donnes.On remarque que z ∈ Ωj et que tdx = z ce qui implique que t2dx = dz. On a alors

x∈Ωj

|∇u (tx+ (1− t)y)|p dx ≤ 1

t

z∈Ωj

|∇u (z)|p dz ≤ 4

x∈Ωj

|∇u (x)|p dx

qui est une majoration independant de t ∈ [0, 1] et y ∈ Ωj . Cela implique que∫

x∈Ωj

y∈Ωj

|u(x)− u(y)|pdxdy ≤ 8sjhp

x∈Ωj

|∇u (x)|p .

Une insertion de cette inegalite dans (5.35) et une simplification donnent

‖u−Πhu‖Lp(Ω) ≤ 81p h‖∇u‖Lp(Ω).

La constante peut-etre prise independant de p, soit C = 8. La preuve est terminee.

Soit u ∈ W 1,p(Ωj), p ∈ [1,∞]. On note uj la valeur moyenne dans la maille Ωj et ujk la valeur moyenne sur lebord Σjk

uj =1

sj

Ωj

u(x)dx, ujk =1

ljk

Σjk

u(x)dσ, ∀k.

Soit Aj une mesure de la difference dans une norme de type Lp

Aj =

h

k∈I(j)

ljk |ujk − uj |p

1p

. (5.36)

Lemme 47. On a l’inegalite Aj ≤ Ch ‖∇u‖Lp(Ω), ou la constante C ne depend pas de u ni des parametres dumaillage.

Demonstration. On note Θ = Ωj , puis enleve les indices j pour plus de lisibilite. Soit

v = u− 1

Θ

Θu(x)dx

dont la valeur moyenne est nulle dans Θ. En considerant que le bord de Θ est constitue d’un nombre fini de segments de droites delongueur lk, on a (par exemple en utilisant la convexite de la fonction v 7→ |v|p)

k

lk|vk|p ≤∫

∂Θ|v(x)|pdσ (5.37)

ou les vk sont les valeurs moyennes de v sur chacun des segments.

Page 84: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

84 CHAPITRE 5. ANALYSE NUMERIQUE DES METHODES DE VOLUMES FINIS

Ω

yx

n

ωO

Figure 5.6 – Disque ω a l’interieur d’une maille convexe Ω polygonale. On a bien (x− y,n(x)) ≥ 0 pour toutx ∈ ∂Ω et tout y ∈ ω.

Un peu de geometrie : a une translation pres, on peut toujours supposer que l’origine appartient a Ω qui est convexe par hypothese,et que l’origine est centre d’un disque ω ⊂ Ω de rayon r−. Notons que pour des maillages reguliers, ce rayon minimum est borneinferieurement par r− ≥ ch, c > 0 independant de h. La maille Θ etant convexe, on a que

(x− y,n(x)) ≥ 0, ∀x ∈ ∂Θ et ∀y ∈ Θ.

Soit y = chn(x) ∈ ω. Alors on a une inegalite geometrique

(x,n(x)) ≥ ch, ∀x ∈ ∂Θ. (5.38)

Soit alors le champ de vecteurs y(x) = |v(x)|px pour lequel on peut utiliser la formule de Stokes∫∂Θ (y,n) dσ =

∫Θ ∇ · ydx, ou

encore ∫

∂Θ(x,n) |v(x)|pdσ =

Θ

(2|v(x)|p + p|v(x)|p−1signe(v(x)) (∇v(x),x)

)dx

Donc

ch

∂Θ|v(x)|pdσ ≤ 2 ‖v‖p

Lp(Θ)+ hp

Θ|v(x)|p−1|∇v|dx.

Or l’inegalite de Holder pour |v(x)|p−1 ∈ Lq(Θ) et |∇v| ∈ Lp(Θ) indique que∫

Θ|v|p−1|∇v|dx ≤ ‖v‖

pq

Lp(Θ)‖|∇v||‖Lp(Θ) .

L’inegalite (5.34) applique a v dans Θ montre que ‖v‖Lp(Ω) ≤ Ch‖∇v‖Lp(Ω). D’ou

ch

∂Θ|v(x)|pdσ ≤

(2Cphp + phh

pq

)‖∇v‖p

Lp(Ω)= (2Cp + p)hp‖∇v‖p

Lp(Ω)

puis en reprenant (5.34)(

h∑

k

lk|vk|p) 1

p

≤(2Cp + p

c

) 1p

h‖∇v‖Lp(Ω).

Le resultat est demontre pour une constante C =(

2Cp+pc

) 1p

que l’on peut majorer independamment de p.

Soit

A =

j

Apj

p

. (5.39)

Lemme 48. On a l’inegalite A ≤ Ch ‖∇u‖Lp(Ω) (evident).

Page 85: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Chapitre 6

Schemas non lineaires

L’idee d’utiliser des methodes non lineaires pour la discretisation d’equations aux derivees partielles lineairessemble tout a fait paradoxale au premier abord. En effet la perte du principe de linearite amene une complexiteimportante dans la construction des schemas non lineaires. Comme les hypotheses du theoreme de Lax nesont tout simplement plus valables, les preuves de convergence sont aussi partielles, moins efficaces et moinspuissantes sur le plan mathematique que les preuves de convergence des schemas numeriques lineaires,Le point essentiel est que ces methodes numeriques sont pour certaines situations tres nettement plus perfor-mantes que les schemas lineaires correspondants. Cela est particulierement le cas lorsque les schemas construitssont utilises comme brique de base pour la discretisation de problemes non lineaires plus complexes comme pourla mecanique des fluides et les systemes de lois de conservation lineaires.Tout part d’un theoreme celebre du a Godounov.

Theoreme 6. Un schema lineaire pour l’advection qui satisfait le principe du maximum pour tout pas de tempsrestreint par la condition CFL est d’ordre un au plus.

Demonstration. Un schema d’ordre plus grand ou egal a deux est exact pour les fonctions quadratiques telle quela fonction x 7→ y(x) = −α(x− x0)2 de la figure 6.1 (les parametres α > 0 et x0 sont arbitraires). L’advectionde cette fonction fait augmenter la valeur du point haut. Donc un schema d’ordre deux ou plus viole localementle principe du maximum.

Le schema modele etudie pour contourner cette difficulte prend la forme d’un schema de Volumes Finis endimension un d’espace pour une grille reguliere

un+1j − unj

∆t+ a

unj+ 1

2

− unj− 1

2

∆x= 0, a > 0. (6.1)

Les notations sont les notations usuelles. Par exemple xj+ 12est la position du point a l’interface entre les cellules

j et j + 1. L’indice de temps sera eventuellement laisse de cote. On notera alors u = un, u = un+1 ainsi queu∗j+ 1

2

= unj+ 1

2

pour tout j ∈ Z.

Le schema (6.1)

uj − uj∆t

+ au∗j+ 1

2

− u∗j− 1

2

∆x= 0, a > 0

se recrit sous forme explicite

uj = uj − ν(u∗j+ 1

2

− u∗j− 1

2

), ν = a

∆t

∆x. (6.2)

Les flux numeriques u∗j+ 1

2

doivent etre construits : ce sont donc les inconnues pour tout ce qui concerne la

construction effective du schema.

85

Page 86: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

86 CHAPITRE 6. SCHEMAS NON LINEAIRES

0

u(x)

x

a

x

Figure 6.1 – La courbe en trait plein (et pointille) est reconstruite a partir des valeurs ponctuelles de la solutiondiscrete. Ici la reconstruction est a l’ordre deux avec un polynome du second degre. Apres advection exacte dela solution reconstruite, le point haut de la parabole inversee va se deplacer a la verticale de x0, et pourra memeatteindre le cercle en hachure pour un temps donne. Le principe du maximum sera contredit.

Le principe de base est d’imposer le principe du maximum sous la forme

min(uj , uj−1) ≡ mj ≤ uj ≤Mj ≡ max(uj , uj−1), (6.3)

qui est adapte aux cas des vitesses d’advection positive a > 0. a > 0. Si la vitesse est negative (a < 0) il fautprendre min(uj , uj+1) ≡ mj ≤ uj ≤Mj ≡ max(uj , uj+1).Le choix d’une inegalite telle que (6.3) peut se justifier en considerant que : a) comme la solution exacteu(x, t) = u0(x−at) se deplace de la gauche vers la droite, les contraintes sur la valeur au nouveau pas de tempsdoivent etre recherchees sur la gauche ; b) le schema lineaire upwind uj = (1 − ν)uj + νuj−1 verifie deja unetelle inegalite sous CFL.Nous detaillons ci-dessous quelques solutions de ce probleme, puis montrons la convergence pour des donneesBV .

6.1 La methode Muscl

Cette methode est basee sur les idees de Van Leer [36].L’idee fondamentale part de la consideration que la solution numerique au debut du pas de temps uj peuts’interpreter comme la valeur moyenne dans la maille de la solution exacte au meme temps. De ce fait le schemaupwind

uj − uj∆t

+ auj − uj−1

∆x= 0, avec u∗

j+ 12

= uj

peut se decomposer en deux etapes.Dans une premiere etape on reconstruit une approximation de la solution exacte a partir des valeurs moyennes(uj). Dans une deuxieme etape on transporte exactement cette solution reconstruite, et on la projette sur lemaillage comme dans l’illustration de la figure 6.2. Cette idee est inspiree des techniques de solveurs de Riemannet de projection dans la methode de Godounov.Mais bien sur la precision numerique d’une reconstruction constante par morceaux est faible.

Principe 9. Les methodes de type MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws)sont construites a partit d’une une approximation/reconstruction d’ordre plus eleve.

Page 87: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

6.1. LA METHODE MUSCL 87

u

xjj−1 j+1 j+2

Figure 6.2 – La courbe en trait plein est reconstruite a partir de la solution discrete constante par maillerepresentee par les marches d’escalier. Puis cette solution reconstruite est advectee, en trait pointilles.

Une possibilite est de chercher la reconstruction sous la forme

uj(x) = uj + dj(x− xj)

ce qui revient a reconstruire une valeur de la pente [31] . On pourrait considerer une approximation centree

dj =12(uj+1+uj)−

12(uj+uj−1)

xj+1

2−x

j− 12

mais ce n’est pas la solution retenue. On prefere reintroduire un decentrement de

la derivee sous la forme

uj(x) = uj + dj+ 12(x− xj) avec dj+ 1

2=uj+1 − uj

∆xpour xj < x < xj+1. (6.4)

Cela termine la premiere etape de reconstruction. La seconde etape d’advection se passe comme suit : la massetotale qui passe au travers de xj+ 1

2au cours d’un pas de temps est

∫ xj+1

2

xj+1

2−a∆t

uj(x)dx = a∆t uj (yj) , yj = xj+ 12− 1

2a∆t.

Cette formule est exacte pour une fonction lineaire. Donc

∫ xj+1

2

xj+1

2−a∆t

uj(x)dx = a∆t

(uj + dj+ 1

2(xj+ 1

2− 1

2a∆t− xj)

)= a∆t

(uj +

1

2(1− ν)(uj+1 − uj)

).

Apres quelques simplifications on obtient

∆xuj = ∆xuj −∫ x

j+12

xj+1

2−a∆t

uj(x)dx+

∫ xj+1

2

xj− 1

2−a∆t

uj−1(x)dx

avec le flux

uj+ 12= uj +

1

2(1− ν)(uj+1 − uj), ∀j. (6.5)

Ce schema est connu, ce qui montre au moins la validite de la methode de reconstruction. Cependant il y a unemauvaise nouvelle.

Proposition 21. Le schema avec le flux (6.5) est le schema de Lax-Wendroff dont on sait qu’il est uniformementstable dans L2 sous CFL (mais pas dans L∞). Etant un schema lineaire, il ne verifie pas le principe du maximum.

Page 88: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

88 CHAPITRE 6. SCHEMAS NON LINEAIRES

Demonstration. Evident a partir du chapitre 4 et du theoreme 6.

On ajoute alors une idee, qui est de modifier la valeur de la derivee discrete dj+ 12de facon a retrouver le principe

du maximum. Pour cela on multiplie dj+ 12par un facteur 1

2 (1− ν)ϕj+ 12avec ϕj+ 1

2≥ 0. Cela correspond a

uj+ 12= uj +

1

2(1− ν)(uj+1 − uj)ϕj+ 1

2, ∀j. (6.6)

Definition 21. Le facteur de correction ϕj+ 12est appele un limiteur ou limiteur de pente.

On cherche ϕj+ 12comme une fonction du rapport de pente local rj+ 1

2, soit

ϕj+ 12= ϕ(rj+ 1

2), rj+ 1

2=uj − uj−1

uj+1 − uj.

On ajoute les contraires suivantes.Une premiere contrainte est

ϕ(1) = 1, (6.7)

ce qui permet de retrouver le flux du schema de Lax-Wendroff (6.6) pour r = 1.Une deuxieme contrainte s’ecrit

ϕ(r) = 0 ∀r ≤ 0. (6.8)

L’idee est que si r ≤ 0, alors il y a changement dans le signe de la pente ce qui traduit une extremum local,et donc soit une possibilite de violation du principe du maximum soit meme des oscillations numeriques (desinstabilites). Une troisieme contrainte qui ne sera pas etudiee car elle est moins necessaire que les deux premieresest de se restreindre a des formules telles que ϕ(r) = rϕ

(1r

).

Les solutions a ces contraintes sont souvent exprimees a l’aide de la fonction suivante.

Definition 22 (Fonction minmod). La valeur de la fonction (a, b) 7→ minmod(a, b) est donnee par— Si ab ≤ 0 alors minmod(a, b) = 0.— Si a > 0 and b > 0, alors minmod(a, b) = min(a, b).— Si a < 0 et b < 0, alors minmod(a, b) = max(a, b).

Cela definit par recurrence minmod : Rp → R pour tout p ≥ 2

minmod(a) = minmod(minmod(b), c)) pour a = (b, c) ∈ Rp, b ∈ R

p−1, c ∈ R.

Lemme 49. Soit un limiteur de pente r 7→ ϕ(r) tel que

0 ≤ ϕ(r) ≤ 2minmod (1, r) . (6.9)

Alors le schema (6.1) avec le flux (6.6) verifie le principe du maximum.

Demonstration. On a

uj = uj − ν(uj +

1

2(1− ν)(uj+1 − uj)ϕj+ 1

2− uj−1 −

1

2(1− ν)(uj − uj−1)ϕj− 1

2

)

= uj − ν(1 +

1

2(1− ν)

(ϕj+ 1

2

rj+ 12

− ϕj− 12

))(uj − uj−1)

ou encore

uj = (1− Cj)uj + Cjuj−1, Cj = ν +ν(1− ν)

2

(ϕj+ 1

2

rj+ 12

− ϕj− 12

).

Page 89: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

6.2. LA METHODE PAR INTERVALLES 89

Le principe du maximum est verifie des que 0 ≤ Cj ≤ 1 c’est a dire

0 ≤ ν + ν(1− ν)2

(ϕj+ 1

2

rj+ 12

− ϕj− 12

)≤ 1.

Supposons (6.9) verifie. Alors 0 ≤ ϕj− 12≤ 2 et 1 − 1−ν

2 ϕj− 12≥ 1 − (1 − ν) ≥ 0 donc 0 ≤ Cj . On a aussi que

(6.9) implique 0 ≤ ϕj+ 12≤ 2rj+ 1

2d’ou 1 + 1−ν

2

ϕj+1

2

rj+1

2

≤ 1 + (1− ν) = 2− ν. Donc

ν +ν(1− ν)

2

ϕj+ 12

rj+ 12

≤ 2ν − ν2 ≤ 1, ∀ν ∈ [0, 1].

La preuve est terminee.

Un tres grand nombre de formules satisfaisant a (6.7), (6.8) et (6.9) a ete propose et teste dans la litterature.Nous considererons principalement les suivantes.

Definition 23. Le flux minmod correspond au limiteur

ϕ(r) = minmod(1, r). (6.10)

Definition 24. Le flux Superbee correspond au limiteur

ϕ(r) = minmod(1,max(1, 2r),max(2, r)). (6.11)

6.2 La methode par intervalles

Le principe de construction (developpe dans la these de Lagoutiere) est initialement different de l’approcheMuscl, cependant les resultats au final sont tres proches. Son extension a des equations plus compliquees estparfois plus simple que l’approche par limitation de pente.L’idee premiere que est ϕj+ 1

2permet d’interpoler entre un schema dit tres diffusif et de precision faible (ϕj+ 1

2=

0) et un schema de precision plus eleve (ϕj+ 12= 1). Donc un principe de construction pourrait etre de chercher

ϕj+ 12le plus grand possible tout en gardant le principe du maximum.

Inserant (6.2) dans (6.3), on a une formulation equivalente pour le principe du maximum

mj ≤ uj − ν(uj+ 1

2− uj− 1

2

)≤Mj

ou encore1

ν(uj −Mj) + uj− 1

2≤ uj+ 1

2≤ 1

ν(uj −mj) + uj− 1

2. (6.12)

Il n’est bien sur pas possible de determiner uj+ 12independamment de uj− 1

2car les inegalites sont couplees.

Nous considerons alors arbitrairement que les flux doivent satisfaire a la double inegalite

uj+ 12∈ [mj+1,Mj+1] , ∀j. (6.13)

Il s’ensuit que (6.12) est satisfait des que la double inegalite suivante est satisfaite

aj ≤ uj+ 12≤ bj ⇒ uj+ 1

2∈ [aj , bj ] (6.14)

ou

aj =1

ν(uj −Mj) +Mj and bj =

1

ν(uj −mj) +mj .

Lemme 50. Supposons la condition CFL ν ∈]0, 1] satisfaite. Alors l’intervalle commun a (6.13) et (6.14) n’estpas vide. Plus precisement

uj ∈ Ij+ 12≡ [mj+1,Mj+1] ∩ [aj , bj ] 6= ∅. (6.15)

Page 90: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

90 CHAPITRE 6. SCHEMAS NON LINEAIRES

Demonstration. Il suffit de montrer que aj ≤ uj ≤ bj . La premiere inegalite aj ≤ uj se ramene a

1

ν(uj −Mj) +Mj ≤ uj that is

(1

ν− 1

)(uj −Mj) ≤ 0.

Or c’est toujours vrai car(1ν− 1)≥ 0 grace a la condition CFL et on a uj −Mj ≤ 0.

De facon similaire uj ≤ bj est equivalent

uj ≤1

ν(uj −mj) +mj that is

(1

ν− 1

)(uj −mj) ≥ 0

qui est toujours vrai sous CFL. La preuve est terminee.

Lemme 51. Tout flux de la forme (6.15) peut se recrire sous la forme (6.6) avec un limiteur

0 ≤ ϕ(r) ≤ minmod

(2

ν,

2r

1− ν

). (6.16)

Demonstration. Evident.

La formule (6.16) contient une dependance possible par rapport au pas de temps par l’intermediaire du nombrede Courant. Ce n’est pas le cas de la formule (6.9).

Definition 25. Le flux downwind est la valeur de uj+ 12qui la plus proche de l’inconnue uj+1, tout en respectant

la contrainte (6.3). Le limiteur correspondant est

ϕ(r) = minmod

(2

ν,

2r

1− ν

). (6.17)

Ce limiteur prend le nom de limiteur UltraBee dans [31]. Pour des questions de stabilite numerique, il n’est pasrecommande de le programmer a l’aide de la fonction limiteur (6.17), mais plutot sous la forme

uj+ 12= Argminv∈I

j+12

|v − uj+1| .

6.3 Convergence pour des donnees BV

En dimension un d’espace, le principe du maximum precedent a pour consequence un controle des oscillationsnumeriques.

Lemme 52 (Inspire de Harten [21]). Soit un schema (6.1) pour lequel le principe du maximum (6.3) est satisfait.Alors on a l’inegalite ∑

j∈Z

|uj − uj−1| ≤∑

j∈Z

|uj − uj−1|. (6.18)

Demonstration. Le principe du maximum (6.3) se recrit uj = uj +Cj(uj−1−uj) avec Cj ∈ [0, 1]. Donc uj −uj−1 = (1−Cj)(uj −uj−1) + Cj−1(uj−1 − uj−2) et

|uj − uj−1| ≤ (1− Cj) |uj − uj−1|+ Cj−1 |uj−1 − uj−2|Alors ∑

j

|uj − uj−1| ≤∑

j

(1− Cj) |uj − uj−1|+∑

j

Cj−1 |uj−1 − uj−2| =∑

j

|uj − uj−1| .

La preuve est terminee.

Il se trouve que l’inegalite discrete (6.18) est un avatar de la semi-norme BV.

Lemme 53. Soit un schema de la forme (6.1) verifiant le principe du maximum (6.3) avec une initialisation en moyenne pourune donnee initiale u0 ∈ BV (R). Alors on a l’inegalite

j∈Z

∣∣unj+1 − unj∣∣ ≤ BV (u0), n ≥ 0.

Page 91: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

6.3. CONVERGENCE POUR DES DONNEES BV 91

Demonstration. Il suffit de montrer que A =∑j

∣∣∣u0j+1 − u0j

∣∣∣ ≤ BV (u0).

Or on a A =∑j

(u0j+1 − u0j

)ψj+ 1

2avec ψ

j+ 12= 1 pour u0j+1 − u0j ≥ 0 et ψ

j+ 12= −1 pour u0j+1 − u0j < 0. Donc

A = −∑

j∈Z

u0j

(ψj+ 1

2− ψ

j− 12

)= −

R

u0(x)ψ′(x)dx

avec ψ′(x) =ψj+1

2

−ψj− 1

2

∆x. Cela definit (a une constante pres) la fonction ψ par

ψ(xj+ 1

2) = ψ

j+ 12= ±1

et ψ(x) continue et affine sur tout intervalle de la forme [xj− 1

2, xj+ 1

2]. Donc |ψ(x)| ≤ 1 pour tout x. Donc A ≤ BV (u0). La preuve

est terminee.

Pour finir nous montrons la convergence des schemas TVD. Soit vnj = 1∆x

∫ (j+1)∆x

j∆xu(n∆t, x)dx la moyenne de

la solution exacte dans la maille j et au temps n∆t. On pose vn = (vnj ).

Theoreme 7. Sous les hypotheses precedentes, tout schema dont le flux peut s’ecrire sous la forme (6.6) ou(6.15) est convergent dans L1 avec l’estimation

||un − vn||1 ≤ CBV (u0)√T∆x, n∆t ≤ T. (6.19)

Demonstration. Nous allons utiliser le resultat de comparaison du lemme 15.Soit wn la solution numerique du schema upwind (lineaire donc) avec la meme initialisation w0 = u0. On a

||un − vn||1 ≤ ||un − wn||1 + ||wn − vn||1. (6.20)

Notons

rnj =un+1j − unj

∆t+ a

unj − unj−1

∆x=

aunj − u∗

j+ 12

∆x

aunj−1 − u∗

j− 12

∆x

l’erreur d’approximation entre un et wn. Soit T l’operateur de decalage (translation discrete) vers la gauche Tzj = zj−1. On a

rn = (I − T )sn et snj = aunj −u∗

j+12

∆x. Par construction ||sn||1 ≤ a∆x

∑j

|u0j−u

0j−1|

∆x. Mais

|u0j − u0j−1| =∣∣∣∣∣1

∆x

∫ (j+1)∆x

j∆x(u0(x)− u0(x−∆x))dx

∣∣∣∣∣

≤ 1

∆x

∫ (j+1)∆x

j∆x|u0(x)− u0(x−∆x)| dx.

Donc ||sn||1 ≤ aBV (u0). Aussi la difference en = un − wn est solution de la recurrence

e0 = 0, en+1 = ((1− ν)I + νT ) en +∆t(I − T )sn.

On retrouve exactement la forme du principe de comparaison. Le resultat est demontre.

Remarque 13. L’estimation (6.19) est sous-optimale et assez pauvre. En effet la pratique est que les schemas non lineaires sontplus efficaces que le schema upwind pour lequel on sait deja qu’il converge a l’ordre moitie pour une donnee une fois derivable (ilsuffit de reprendre l’analyse pour etendre a ce cadre les resultats precedemment obtenus). Son interet est donc de garantir uneconvergence minimale des schemas non lineaires dont l’analyse est delicate.

Page 92: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

92 CHAPITRE 6. SCHEMAS NON LINEAIRES

Page 93: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

Bibliographie

[1] G. Allaire, Analyse numerique et optimisation, Editions de l’Ecole Polytechnique, 2012.

[2] G. Allaire, X. Blanc, F. Golse et B. Despres, Transport et diffusion, cours de l’Ecole polytechnique, 2013.

[3] D. Bouche, J.-M. Ghidaglia, F. Pascal, Error estimate and the geometric corrector for the upwind finitevolume method applied to the linear advection equation, SIAM J. Numer. Anal., 43(2), p. 578-603, 2005.

[4] F. Boyer, Aspects theoriques et numeriques de l’equation de transport, Universite de Aix-Marseille, en lignehttp ://www.cmi.univ-mrs.fr/ fboyer/en/accueil.

[5] Brenner, V. Thomee et L. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial ValueProblems, Lecture Notes in Math. 434, Springer-Verlag, Berlin, New York, 1975.

[6] H. Brezis, Analyse Fonctionelle, Masson Paris (1983).

[7] J.G. Charney, R. Fjortoft et J. von Neumann, Numerical integration of the barotropic vorticity equation,vol. 2, 4, 237-254, Tellus, 1950.

[8] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[9] A. Cohen, Approximation variationnelle des fonctions, Master de la modelisation, LJLL-UPMC.

[10] R. Courant, K. O. Fredrichs et H. Lewy (1928), ”Uber die Differenzengleichungen der MathematischenPhysik”, Math. Ann, vol.100, p.32, 1928.

[11] R. Dautray et J.L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques.Vol. 9. (French) [Mathematical analysis and computing for science and technology. Vol. 9] Evolution :numerique, transport, 1985.

[12] Despres, Bruno Lax theorem and finite volume schemes. Math. Comp. 73 (2004), no. 247, 1203-1234.

[13] B. Despres, Uniform asymptotic stability of Strang’s explicit compact schemes for linear advection, SiamJ. Numer. Anal., Vol. 47, No. 5, pp. 3956-3976

[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 of Applied MathematicalSeries, Springer, New York, 2004.

[15] R. Eymard, T. Gallouet, et R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, P. G.Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 2000, pp. 713-1020.

[16] P. Frey et P.L. George, Mesh generation. Application to finite elements. Second edition. ISTE, London ;John Wiley & Sons, Inc., Hoboken, NJ, 2008.

[17] V. Girault et P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Berlin-Heidelberg-New York-Tokyo, Springer-Verlag 1986

[18] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser Verlag, Basel, 1984.

[19] E. Godlewski et P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws,Appl. Math. Sci. 118, Springer-Verlag, New York, 1996

[20] S. Godunov et Ryaben’kii, Introduction to the theory of difference schemes, Fizmatgiz, 1962.

[21] Harten, Ami On a class of high resolution total-variation-stable finite-difference schemes. With an appendixby Peter D. Lax. SIAM J. Numer. Anal. 21 (1984), no. 1, 123.

93

Page 94: M´ethodes num´eriques pour les EDP instationnaires : … · le second pilier s’appuie sur les mod`eles d’EDP et leurs liens avec la mod´elisation des ph´enom`enes r´eels.

94 BIBLIOGRAPHIE

[22] F. Hermeline, Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoi Meshes for the Ap-proximation of Vlasov-Poisson and Vlasov-Maxwell Equations, Journal of Computational Physics, Volume106, Issue 1, May 1993, Pages 1-18

[23] A. Iserles et G. Strang, The optimal accuracy of difference schemes, Trans. of the AMS, Vol. 277, 2, 198,779–803, 1983.

[24] S. Jaouen et F. Lagoutiere, Numerical transport of an arbitrary number of components. Comput. MethodsAppl. Mech. Engrg. 196 (2007), no. 33-34, 3127-3140.

[25] T. Kato, Perturbation theory for linear operators, Springer, 1995.

[26] Flux-corrected transport. Principles, algorithms, and applications. Edited by D. Kuzmin, R. Lohner et S.Turek. Scientific Computation. Springer-Verlag, Berlin, 2005.

[27] P.D. Lax et B. Wendroff, On the stability of difference schemes, Comm. Pure and Appl. Math., 15 1962,363–371.

[28] P. Lesaint et P. A. Raviart, On a finite element method for solving the neutron transport equation, inMathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York,1974, pp. 89-123

[29] R.J. LeVeque, Numerical methods for conservation laws, (ETHZ Zurich, Birkhauser, Basel 1992).

[30] Pietro Perona and Jitendra Malik (November 1987). ”Scale-space and edge detection using anisotropicdiffusion”. Proceedings of IEEE Computer Society Workshop on Computer Vision, pp. 16-22.

[31] S. Osher et P.K. Sweby, Recent developments in the numerical solution of nonlinear conservation laws. Thestate of the art in numerical analysis (Birmingham, 1986), 681-701, Inst. Math. Appl. Conf. Ser. New Ser.,9, Oxford Univ. Press, New York, 1987.

[32] W. Reed et T. Hill. Triangular mesh methods for the neutron transport equation. Technical Report Tech.Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[33] Richtmyer R. D. Richtmyer et K. W. Morton, Difference methods for initial-value problems, IntersciencePublishers, 1957.

[34] G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys, 41,147–520, 1962.

[35] V. Thomee, Stability of difference schemes in the maximum-norm, J. Differential Equations, 1 (1965), pp.273-292.

[36] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’smethod [J. Comput. Phys. 32 (1979), no. 1, 101-136].

[37] R.F. Warming et R.M. Beam, Recent advances in the development of implicit schemes for the equationsof gas dynamics, Seventh International Conf. on Numerical Methods in Fluid Dynamics, 429–433, LectureNotes in Physics, Springer, 1981.

[38] B. Wendroff et A. B. White, A supraconvergent scheme for nonlinear hyperbolic systems, Comput. Math.Appl., 18, pp 761-767 (1989).