lec.3 Ztransform

download lec.3 Ztransform

of 25

Transcript of lec.3 Ztransform

  • 8/8/2019 lec.3 Ztransform

    1/25

    1

    CISE318

    Lecture 3: Z-transform

    Dr. Amar KhoukhiTerm 092

    CISE318_Topic 3 (c) Khoukhi 2010 1

    Read Sections 2.1-2.4 of text book

    Outlines

    Series and their convergence.

    Wh do we use Z-transform?

    Definition of Z-transform

    Z-Transform of simple functions

    Properties of Z-transform

    Inverse Z-transform

    Long division

    CISE318_Topic 3 (c) Khoukhi 2010 2

    Partial fraction expansion

    Solving Difference equations

  • 8/8/2019 lec.3 Ztransform

    2/25

    2

    Objectives

    Understand the definition of discrete time systems

    Appreciate the use Z-transform to solve lineardifference equations

    Understand the inverse Z-transform

    Appreciate the use Z-transform to describe linear

    CISE318_Topic 3 (c) Khoukhi 2010 3

    time-invariant discrete-time systems To be able to obtain inverse Z-transform

    To be able to solve difference equations

    Series

    For what values of a the series is defined?

    What is the value of series?

    ........1

    ....1

    2

    2

    N

    N

    aaaB

    aaaA

    CISE318_Topic 3 (c) Khoukhi 2010 4

    ........21

    ........

    2

    N

    NaaaD

    aaaC

  • 8/8/2019 lec.3 Ztransform

    3/25

    3

    Answers

    1 N

    1,1

    1........1

    11

    11....1

    2

    2

    N

    N

    afordefineda

    aaaB

    aforN

    aforaaaaA

    CISE318_Topic 3 (c) Khoukhi 2010 5

    ?........21

    1,11

    1........

    2

    32

    N

    N

    NaaaD

    afordefinedaa

    aaaC

    What is Z-transform?

    Z-transform is a tool that helps us to solve lineardifference e uations

    Z-transform models such as pulse transfer

    function are commonly used to describe:

    linear time-invariant discrete-time systems

    Difference Z-transform Algebraic

    CISE318_Topic 3 (c) Khoukhi 2010 6

    Equation Equation

    Solution of theAlgebraicEquation

    Inverse Z-transformSolution of

    The DifferenceEquation

  • 8/8/2019 lec.3 Ztransform

    4/25

    4

    Why do we use Z-transform

    With Z-transform, it is easier to

    ompu e e response o scre e- me sys em

    Analyze discrete-time system

    Stability

    Performance

    Steady state error

    CISE318_Topic 3 (c) Khoukhi 2010 7

    .

    Design digital controllers

    More useful for computer systems

    Definition of Z-transform

    ,

    Main tool is z-transform

    0

    )()()]([k

    kzkfzFkfZ

    The Z-transform of a sequence {f(k)} is defined as

    CISE318_Topic 3 (c) Khoukhi 2010 8

    f(k) F(z) , where z is complex

    Analogous to Laplace transform for s-domain

  • 8/8/2019 lec.3 Ztransform

    5/25

    5

    Series

    0

    1ifConverge

    A?isWhatconverge?seriesthedoesWhen

    ....

    a

    aaaaAk

    CISE318_Topic 3 (c) Khoukhi 2010 9

    111

    aA

    Examples of Z-transformUnit Step

    u(k)

    Example 1

    00

    01)(

    k

    kkustepunit

    . . .. . .

    -2 -1 0 1 2 3 4

    k

    CISE318_Topic 3 (c) Khoukhi 2010 10

    -

    100 1

    1)()}({

    zzzkukuZ

    k

    k

    k

    k

  • 8/8/2019 lec.3 Ztransform

    6/25

    6

    Examples of Z-transform Example 2

    CISE318_Topic 3 (c) Khoukhi 2010 11

    Examples of Z-transformUnit Ramp Example 3

    00

    0)(

    k

    kkTkrrampunit

    The Z-transform of unit ramp r(k) is

    Tzkk

    CISE318_Topic 3 (c) Khoukhi 2010 12

    200 1 zkk

  • 8/8/2019 lec.3 Ztransform

    7/25

    7

    Example 4

    >33210k

    01-231f(k)

    Find the Z-transform of the sequence

    CISE318_Topic 3 (c) Khoukhi 2010 13

    321

    01231)()(

    zzzzkfzF kk

    Example 5

    Find the Z-transform of the sequence

    >33210k

    11111f(k)

    kk

    CISE318_Topic 3 (c) Khoukhi 2010 14

    1

    321

    00

    1

    1....1

    zzzz

    kk

  • 8/8/2019 lec.3 Ztransform

    8/25

    8

    Example 6

    Find the Z-transform of the sequence

    >33210k

    (0.5)k0.1250.250.51f(k)

    )2(5.0)()(000

    zzzkfzF kk

    k

    kk

    k

    k

    CISE318_Topic 3 (c) Khoukhi 2010 15

    5.05.01)2(1....8421 11

    zzzzzz

    Properties of Z-transformLinearity

    )}({)( 11 kfZzFLet

    )}({)( 22

    zFakaZ

    Then

    numbersrealanyarebanda

    kfZzF

    CISE318_Topic 3 (c) Khoukhi 2010 16

    )()()}()({

    )()()}()({

    2121

    2121

    zFbzFakfbkfaZ

    zFzFkfkfZ

  • 8/8/2019 lec.3 Ztransform

    9/25

    9

    Example 7

    >33210k

    11118f(k)

    1 k

    -

    CISE318_Topic 3 (c) Khoukhi 2010 17

    10 1 zk

    Example 8

    Find the Z-transform of the sequence

    >33210k

    22222f(k)

    10

    2)()(

    zkfzF k

    k

    CISE318_Topic 3 (c) Khoukhi 2010 18

  • 8/8/2019 lec.3 Ztransform

    10/25

    10

    Properties of Z-transform

    zFkZLet

    )()}({

    dz

    zdFzTkfkTZ

    CISE318_Topic 3 (c) Khoukhi 2010 19

    )()}({ zeFkfeZ aTakT

    Properties of Z-transform

    )()}({ zFkfZLet

    stepunitshiftedtheis)(

    )()}()({

    nkuwhere

    zFznkunkfZn

    CISE318_Topic 3 (c) Khoukhi 2010 20

  • 8/8/2019 lec.3 Ztransform

    11/25

    11

    Z-transform Properties mnfmfnfnf

    m

    2121

    Convolution definition

    zmnfmf

    zmnfmf

    mnfmfZnfnfZ

    n

    n

    n

    m

    m

    21

    21

    2121

    Take z-transform

    Z-transform definitionInterchange summation

    Substitute r= nm

    CISE318_Topic 3 (c) Khoukhi 2010 21

    zFzF

    zrfzmf

    zrfmf

    r

    rm

    m

    m r

    mr

    m n

    21

    21

    21

    Z-transform definition

    Example 9

    Ratio of polynomial z-domain functions

    13

    12][

    2

    zzzX

    Divide through by the highest

    power of z

    Factor denominator into first-order factors

    22 zz

    21

    21

    21

    231

    21][

    zz

    zzzX

    2121][

    zzzX

    CISE318_Topic 3 (c) Khoukhi 2010 22

    Use partial fraction decomposition

    to get first-order terms

    11 12

    1

    zz

    1

    2

    1

    10

    1

    2

    11

    ][

    z

    A

    z

    ABzX

  • 8/8/2019 lec.3 Ztransform

    12/25

    12

    Example 9 (cont)

    Find B0 by polynomial2

    1212

    3

    2

    1 1212 zzzz

    division

    Express in terms of B0

    15

    23

    1

    12

    z

    zz

    11

    1

    12

    11

    512][

    zz

    zzX

    21

    CISE318_Topic 3 (c) Khoukhi 2010 23

    Solve for A1 and A2

    8

    2

    1

    121

    2

    11

    21

    9211

    1

    1

    21

    2

    2

    11

    1

    1

    z

    z

    z

    zzA

    zzzA

    Example 9 (cont)

    Express X[z] in terms of B0, A1, and A2

    Use table to obtain inverse z-transform

    11 1

    2

    11

    2][

    zz

    zX

    nununnx

    n

    81

    92

    CISE318_Topic 3 (c) Khoukhi 2010 24

    2

    With the unilateral z-transform, or the bilateral z-transform withregion of convergence, the inverse z-transform is unique

  • 8/8/2019 lec.3 Ztransform

    13/25

    13

    Properties of Z-transformInitial and final value theorems

    )()}({ zFkfZLet

    )(lim)0(

    TheoremvalueFinal

    zFf

    TheoremvalueInitial

    z

    CISE318_Topic 3 (c) Khoukhi 2010 25

    1.zatpolesingleapossiblyexcept

    circleunitinsideareF(z)ofpolesallprovided

    1

    z

    Example 10

    What is f(0) and f() if6.0

    )(2

    zzF

    2

    0.6(0) lim ( ) 0 ' '

    0.5 0.06( )

    z z

    z f F z L Hopital sRule

    z zTo find f we need to check for applicability of

    final value Theorem

    ..

    CISE318_Topic 3 (c) Khoukhi 2010 26

    21

    ( ) 0.3, 0.2

    ( 1)( 0.6)( ) lim( 1) ( )

    0.5 0.0z

    Poles of F z are we can use the Theorem

    z z f z F z

    z z

    10

    6 z

  • 8/8/2019 lec.3 Ztransform

    14/25

    14

    Example 11

    What is f(0) and f() if23

    7.0)(

    2

    zzF

    ofityapplicabilforchecktoneedweffindTo

    zz

    zzFf

    zz

    )(

    023

    7.0)(lim)0(

    2

    CISE318_Topic 3 (c) Khoukhi 2010 27

    unboundedisf

    TheoremtheuseNOTcanwearezFofPoleseoremva uena

    )(

    2,1)(

    Example 12

    ?}{ kTeZisWhat akT

    2)1(}{

    :

    zzTkTZ

    Solution

    aTakT

    CISE318_Topic 3 (c) Khoukhi 2010 28

    2)1(}{

    ze

    zeTkTeZ

    aT

    aTakT

  • 8/8/2019 lec.3 Ztransform

    15/25

    15

    Example 13

    6g n n u n u n

    2 26 6

    2 2 55

    6 6 6 6

    1 16

    11 1

    1 6

    11 1

    n u n n u n u n

    z z zG z

    z z zz z

    z

    z z z z z

    CISE318_Topic 3 (c) Khoukhi 2010 29

    5

    2 25 55

    6

    25

    11 6

    1 11 1

    6 5

    1

    zz z

    z z z z z z z

    z z

    z z

    Find the z-transform of the unit pulse or impulse sequence

    Example 14

    otherwise0

    nxn

    00

    101][)(n

    n

    n

    n

    nn

    nzzxxzzx

    This follows trivially from Equation

    CISE318_Topic 3 (c) Khoukhi 2010 30

    1...001)}({ 21 zzkZ

  • 8/8/2019 lec.3 Ztransform

    16/25

    16

    Example 15Find the z-transform of the unit step sequence

    0

    1

    00

    )()(n

    n

    n

    n

    n

    n

    n zzzxzx

    0for0

    nnuxn

    From the definition

    CISE318_Topic 3 (c) Khoukhi 2010 31

    11

    11

    z

    z

    z

    Exercise 1

    Find the Z-transform of the sequence

    >2210k

    1100f(k)

    ?)( zF

    CISE318_Topic 3 (c) Khoukhi 2010 32

  • 8/8/2019 lec.3 Ztransform

    17/25

    17

    Exercise 2

    Find the Z-transform of the sequence

    >2210k

    0-111f(k)

    ?)( zF

    CISE318_Topic 3 (c) Khoukhi 2010 33

    Inverse Z-transform

    Several methods are available to obtaininverse Z-transform

    Partial fraction expansion

    Power series method

    Inversion Formula

    CISE318_Lesson5 (c) Khoukhi 2009 34

  • 8/8/2019 lec.3 Ztransform

    18/25

    18

    z-Transforms of Common Functions

    Impulse

    Step

    Ram

    1

    1z

    z

    2

    z

    1)( tf

    ttf )(

    1

    s

    1

    2

    1

    00

    01)(

    t

    ttf

    CISE318_Lesson5 (c) Khoukhi 2009 35

    Exponential

    Sine

    z

    aez

    z

    1)(Cos2

    Sin2 zaz

    az

    atetf )(

    )sin()( ttf

    s

    as

    1

    22

    1

    s

    z-transform Table (2)

    numnnnn n

    )1)...(2)(1(

    No. zX nx

    1 mz

    10

    m !

    nunrn

    )cos(

    nnun cos

    nnun

    sin

    22)cos2(

    )cos(

    zz

    zz

    22 )cos2(

    )]cos(cos[

    zz

    zrz

    22)cos2(

    )sin(

    zz

    zz

    11a

    12a

    12b

    CISE318_Lesson5 (c) Khoukhi 2009 36

    nunrn

    )cos( je

    nunr n )cos(

    2

    )5.0()5.0(

    z

    zre

    z

    zrejj

    a 1cos

    22 2

    )(

    azz

    BAzz

    22

    222 )2

    a

    AaBBzAr

    22

    1tan

    aA

    BAa

    12b

    12c

  • 8/8/2019 lec.3 Ztransform

    19/25

    19

    Partial Fraction Expansion

    In Partial fraction ex ansion method F z is ex ressed as the sum of

    In Inverse Z-transform, we expand F(z)/z thenmultiply by z to get the expansion of F(z)

    simple terms and the Z-Transform Table is used to invert each one of them

    CISE318_Lesson5 (c) Khoukhi 2009 37

    s s use o ensure a e o a neexpansion of F(z) contains the factor z innumerator

    Partial Fraction Expansion

    -their Z-transform

    Expand X(z) as the weighted sum of terms

    available in the TableBecause most of term in the Z-transform table has

    z in numerator, we will factor X(z)/z then

    CISE318_Lesson5 (c) Khoukhi 2009 38

    mu t p y y z to get z

  • 8/8/2019 lec.3 Ztransform

    20/25

    20

    Partial Fraction Expansion, Example 16

    21

    z

    ZFind

    2)2)(1(

    2)1(

    21)2)(1(

    2)(

    1

    1

    21

    zzz

    za

    z

    a

    z

    a

    zzz

    zFExpand

    CISE318_Lesson5 (c) Khoukhi 2009 39

    122)2(2)1(2)(2

    2

    1

    2)(

    2)2)(1(

    2)2(

    2

    2

    kkk

    z

    kfz

    z

    z

    zzF

    zzza

    Partial Fraction Expansion

    , Example 17 Simple pole case

    -

    pz

    ii

    n

    n

    z

    zFpza

    pz

    a

    pz

    a

    pz

    a

    z

    zFExpand

    i

    )()(

    )(

    2

    2

    1

    1

    CISE318_Lesson5 (c) Khoukhi 2009 40

    k

    nn

    kk

    n

    n

    papapakf

    pz

    za

    pz

    za

    pz

    zazF

    )(...)()()(

    )(

    2211

    2

    2

    1

    1

  • 8/8/2019 lec.3 Ztransform

    21/25

    21

    Partial Fraction ExpansionExample 18

    21

    z

    ZFind

    2)2)(1(

    2)1(

    21)2)(1(

    2)(

    1

    1

    21

    zzz

    za

    z

    a

    z

    a

    zzz

    zFExpand

    CISE318_Lesson5 (c) Khoukhi 2009 41

    122)2(2)1(2)(2

    2

    1

    2)(

    2)2)(1(

    2)2(

    2

    2

    kkk

    z

    kfz

    z

    z

    zzF

    zzza

    Inversion Formula

    kzzEofresidueskx

    1)()(

    az

    k

    az

    k

    zzXof

    polesall

    mtymultipliciwithpolesfor

    zzEazzzEofresidues

    polessimplefor

    k

    11

    )(

    )()()(

    1

    CISE318_Lesson5 (c) Khoukhi 2009 42

    General form is obtained

    az

    km

    m

    m

    az

    kzzEaz

    dz

    d

    mzzEofresidues

    1

    1

    11 )()(

    )!1(

    1)(

  • 8/8/2019 lec.3 Ztransform

    22/25

    22

    Example 19Inversion Formula

    )(1

    )(1

    1

    zzzXzX

    kk

    )()(

    2,10

    2,1,00

    )(

    1

    1

    zzEofresidueskx

    arepoleskfor

    arepoleskfor

    zzXof

    polesall

    k

    k

    CISE318_Lesson5 (c) Khoukhi 2009 43

    General form is obtained

    )2)(1()(

    1

    zzz

    zzkxk

    k

    More Examples

    )3)(2(

    198][

    zz

    zzX

    Find inverse z-transform-real unique poles

    Find the inverse z-transform of :

    )3)(2(

    198][

    zzz

    z

    z

    zX

    3

    )3/5(

    2

    )2/3()6/19(][

    zzzz

    zX

    5319 zz

    Step 1: Divide both sides by z :

    Step 2: Perform partial fraction:

    CISE318_Lesson5 (c) Khoukhi 2009 44

    33226 zz

    Step 4: Obtain inverse z-transform of each term from table (#1 & #6) :

    ][33

    52

    2

    3][

    6

    19][ nunnx

    nn

  • 8/8/2019 lec.3 Ztransform

    23/25

    23

    Find inverse z-transform repeat real poles

    Find the inverse z-transform of:3

    2

    )2)(1(

    )12112(][

    zz

    zzzzX

    Example 20

    v e o s es y z an expan :

    )2()2()2(1)2)(1(

    12112][ 22

    1

    3

    0

    3

    2

    z

    a

    z

    a

    z

    a

    z

    k

    zz

    zz

    z

    zX

    3)2)(1(

    12112

    1

    3

    2

    zzz

    zzk 2

    )2)(1(

    12112

    2

    3

    2

    0

    zzz

    zza

    Use covering method to find k and :0a

    CISE318_Lesson5 (c) Khoukhi 2009 45

    )2()2()2(

    2

    1

    3

    )2)(1(

    12112][ 22

    1

    33

    2

    z

    a

    z

    a

    zzzz

    zz

    z

    zX

    To find , multiply both sides by z and let :

    30030 22 aa2a z

    e ge :

    Find inverse z-transform repeat real poles

    To find let z = 0 : 12

    3

    44

    13

    8

    121

    1 aa

    1a

    Example 20, Cont.

    2

    3

    )2(

    1

    )2(

    2

    1

    3][23

    zzzzz

    zX

    23

    )2()2(2

    13][

    23

    z

    z

    z

    z

    z

    z

    z

    zzX

    Therefore, we find :

    Use pairs #6 & #10

    CISE318_Lesson5 (c) Khoukhi 2009 46

    ][)2(3)2(2

    )2(8

    )1(23][ nu

    nnnnx nnn

    ][2)12(4

    13

    2 nunn n

  • 8/8/2019 lec.3 Ztransform

    24/25

  • 8/8/2019 lec.3 Ztransform

    25/25

    Inverse Z-Transform by Power Series Expansion

    nznxzX

    Example 22

    The z-transform is power seriesn

    2112 z2xz1x0xz1xz2xzX

    12

    1112

    11

    z1z1z2

    11zzX

    2n1

    In expanded from

    Z-transforms of this form

    CISE318_Lesson5 (c) Khoukhi 2009 49

    z2

    z2

    z

    1n2

    1n1n

    2

    12nnx

    2n0

    1n2

    1

    0n1

    1n2nx

    can generally be inversed

    Especially useful for finite-length

    Example

    Homework problems

    Check the course webCT for the Homework

    CISE318_Topic 3 (c) Khoukhi 2010 50