Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29...

93
Got Mott? Nanoscale Explorations of Electronic Transitions J H ff Jenny Hoffman XiangFeng Wang XiangFeng Wang Gang Wu Xianhui Chen USTC Yi Yin Contributors: Liz Main Adam Pivonka Changhyun Ko Shriram Ramanathan H dSh l fE i i USTC Martin Zech Tess Williams Jeehoon Kim Al F l Ilija Zeljkovic Anjan Soumyanarayanan Nick Litombe Mi h lY Harvard School of Engineering & Applied Sciences Alex Frenzel Thanks to: Michael Y ee Harvard Physics

Transcript of Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29...

Page 1: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Got Mott? Nanoscale Explorationsof Electronic Transitions

J H ffJenny Hoffman

XiangFeng WangXiangFeng WangGang Wu

Xianhui ChenUSTCYi Yin

Contributors: Liz MainAdam Pivonka

Changhyun KoShriram Ramanathan

H d S h l f E i i

USTCMartin Zech

Tess WilliamsJeehoon KimAl F l

Ilija ZeljkovicAnjan Soumyanarayanan

Nick LitombeMi h l Y Harvard School of Engineering

& Applied SciencesAlex Frenzel

Thanks to:

Michael YeeHarvard Physics

Page 2: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Correlated Electron Materials• High-Tc superconductors: ρ = 0 up to T = 135 Kelvin

• Multi-ferroics: magneto-electric-elastic coupling• Heavy fermion materials: m* = 1000 m

• Colossal magnetoresistance: B-field changes electrical conductivity by 1000xg p ρ p

• Graphene: m* = 0• Heavy fermion materials: m = 1000 me

• Topological insulators: dissipationless spin;fractional charges; magnetic monopoles

Jannik Meyer Science 309, 391 (2005)

fractional charges; magnetic monopoles

Hoffman Lab

Physics World Zahid HasanJARA, RWTH Aachen

Metals: electronic Bloch states are homogeneous, no spatial variation

Correlated electron materials eak screening spatial inhomogeneit

We need local probes to study these materials.

Correlated electron materials: weak screening, spatial inhomogeneity

Page 3: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Scanning Tunneling Ultra‐high vacuum

Hoffman Lab Local Probes

MicroscopegSTMForce Microscope

coming on line soon!• spin‐polarized tunneling• atom‐moving

cuprate high‐Tcsuperconductor

122 ironpnictide

topologicalinsulator

1111 ironpnictide

metal‐insulatortransition

Page 4: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 5: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 6: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

100 Years of Superconductors

120

140 HgBaCaCuO

TlSrBaCuO

100

K]

BiCaSrCu2O9

YBa2Cu3O7

60

80

pera

ture

[K

3

77K LN2

40Tem

p

V Si

LaBaCuO4

1900 1920 1940 1960 1980 20000

20

4.2K LHeNbCNb3Sn

HgPb

NbNNb

V3Si Nb3Ge

1900 1920 1940 1960 1980 2000Year of Discovery

Page 7: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprate High‐Tc SuperconductorBi2Sr2CaCu2O8+d (Tc

max ~ 93 K)E h C i i l i d

CuO2

BiO

SrO

Each Cu is singly occupiedhalf-filled band, should be metal?

Strong Coulomb repulsionMott insulatorCuO2

CuO2

CaMott insulator

BiO

SrO

CuO2

BiO

SrOCuO2

CuO2

Ca

BiO

SrO

Page 8: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band TheoryE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

Brillouin zone edge:

2s highest unique wavevector k(larger k’s aren’t sampled by the atomsso they are aliased back to smaller k’s)

1sλmin kmax

Page 9: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band Theory: MetalE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

Brillouin zone edge:

2s highest unique wavevector k(larger k’s aren’t sampled by the atomsso they are aliased back to smaller k’s)

1sλmin kmax

Page 10: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band Theory: InsulatorE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

Brillouin zone edge:

2s highest unique wavevector k(larger k’s aren’t sampled by the atomsso they are aliased back to smaller k’s)

1sλmin kmax

Page 11: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band Theory: MetalE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

Brillouin zone edge:

2s highest unique wavevector k(larger k’s aren’t sampled by the atomsso they are aliased back to smaller k’s)

1sλmin kmax

Page 12: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band Insulator: Peierls TransitionE

Molecule: Crystal:

E

Add momentum information:

3s

2p

k

Brillouin zone edge:

2s highest unique wavevector k(larger k’s aren’t sampled by the atomsso they are aliased back to smaller k’s)

1snew λmin doubles kmax halves

Page 13: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Band Theory: MetalE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

2s

1s

Page 14: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Add e‐e CorrelationsE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

2s

U

e

U

e e e e e e e

1s

Page 15: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Add e‐e CorrelationsE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

2s

U

e

U

e e e e e e e

1s

Page 16: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Add e‐e CorrelationsE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

2s

U

e

U

e e e e e e e

1s

Page 17: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Mott InsulatorE

Single atom: Crystal:

E

Add momentum information:

3s

2p

k

2s

U

e e e e e e e e

U

1s

Page 18: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Mott Transition

localized

delocalizeddelocalized

furtherdelocalized

Page 19: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprates: Doped Mott InsulatorsBi2Sr2CaCu2O8+d (Tc

max ~ 93 K)E h C i i l i d

CuO2

BiO

SrO

Each Cu is singly occupiedhalf-filled band, should be metal?

Strong Coulomb repulsionMott insulatorCuO2

CuO2

CaMott insulator

BiO

SrO

CuO2

BiO

SrOCuO2

CuO2

Ca

BiO

SrO

Page 20: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprates: Doped Mott InsulatorsBi2Sr2CaCu2O8+d (Tc

max ~ 93 K)E h C i i l i d

CuO2

BiO

SrO

Each Cu is singly occupiedhalf-filled band, should be metal?

Strong Coulomb repulsionMott insulatorCuO2

CuO2

CaMott insulator

BiO

SrO

CuO2

BiO

SrOCuO2

CuO2

Ca

BiO

SrO

Page 21: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprates: Doped Mott InsulatorsBi2Sr2CaCu2O8+d (Tc

max ~ 93 K)E h C i i l i d

CuO2

BiO

SrO

Each Cu is singly occupiedhalf-filled band, should be metal?

Strong Coulomb repulsionMott insulatorCuO2

CuO2

CaMott insulator

BiO

SrO

CuO2

BiO

SrOCuO2

CuO2

Ca

electronic interactions: drive holes apart

BiO

SrOspin interactions: drive holes together

Page 22: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprate Phase Diagram

ates

007)

3-dim cuprate phase diagram1.2

0 8mΩ

cm)

“strange metal”energy (meV)

dens

ity o

f sta

Boy

er, N

at P

hys

(20

T (K)0 200 400 600 800

0.8

0.4

0resi

stiv

ity (m

T

santiferromagneticinsulator

energy (meV)

dens

ity o

f sta

tes

Bd-wave

superconductor

energy (meV)

x (doping)doped Mott insulatorbecomes metal

Page 23: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprate Phase Diagram

3-dim cuprate phase diagram“strange metal”

“H b d ”

T

“Here be dragons”

antiferromagneticinsulator

Bd-wave

superconductor

x (doping)doped Mott insulatorbecomes metal

Page 24: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprate Phase Diagram

3-dim cuprate phase diagram“strange metal”

“H b d ”

T

“Here be dragons”

antiferromagneticinsulator

Bd-wave

superconductor

x (doping)doped Mott insulator

Page 25: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Interest in High‐Tc Cuprates

funding agency f t ti t i ?frustration sets in?

J Supercond Nov Magn 21, 113 (2008)

Page 26: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

A New Revolution in SuperconductivityKamihara et al, J. Am. Chem. Soc. 130, 3296 (Feb 23, 2008)

LaFeAsO1‐xFx

Tc=26K

insulatinglayer

conductinglayer

Page 27: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

History of Iron‐Pnictide SuperconductivityLaO

PrFeAsO1-xFx

NdFeAsO1-xFx

SmFeAsO1-xFx

SmFeAsO1-x

GdFeAsO1-x

Gd1-xThxFeAsO

O

Tb1-xThxFeAsO

Tc (K) 1111FeAs

SmFeAsO1-xFx

CeFeAsO1-xFx

GdF A O F

DyFeAsO1-xFx

TbFeAsO1-xFx

Ba K Fe As

Sr1-xKxFe2As2

122Ba

FeAs

e-dopedLaFeAsO1-xFx

GdFeAsO1-xFxBa1-xKxFe2As2 Eu1-xKxFe2As2

BaCo Fe As

As

hole-dopedLa1-xSrxFeAsO Eu1-xLaxFe2As2

Ca1-xNaxFe2As2

Li1-xFeAs

BaCoxFe2-xAs2

SrCoxFe2-xAs2BaNixFe2-xAs2

FeSe0.5Te0.5

α-FeSe1-xBaNi2P2

LaO1-xNiBiLaOFePLaO1-xFxFeP

LaONiP

α-FeSe

SrNi2As2SrNi2As2

20082006‐7

Page 28: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Structure ComparisonCuprate Superconductors Iron-Pnictide Superconductors

collinear antiferromagnetantiferromagneticsemimetalMott insulator

Page 29: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Phase Diagram ComparisonCuprate Superconductors Iron-Pnictide Superconductors

Ba(CoxFe1-x)2As2

re “non‐Fermi”

(structural transition)

(magnetic transition)

(superconducting transition)

Tempe

ratu

AF

non Fermiliquid

Pseudo‐gap

Fermiliquid?

(superconducting transition)

tetragonal

Carrier concentration

T AFins. h Superconductor AF

orthorhombic

orthorhombic

Tcmax ~ 135 K Tc

max ~ 57 K

Page 30: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 31: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vortex Pinning ComparisonIron-Pnictide SuperconductorsCuprate Superconductors

Ba(CoxFe1-x)2As2(Tc = 22K)

H* (wherevortices

Hc230

B(T)

YBCO

vorticesmove)

20

10

Yamamoto, APL 94, 062511 (2009)

0 30 60 90 T(K)

• strong pinning, speculation that it f l i i it

Iron-Pnictides:e-e- e-e-

e-e-e-e-e-

comes from nanoscale pinning sites,e.g. Co dopant inhomogeneities

need a local tool !

Ineed to

pin vortices

Page 32: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 33: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Scanning Tunneling Microscopy

Sample

EETip

EF (sample) EF (tip)

GΩTip

vacuumSample

Sample LDOSunder tip

TIP DOSV

Page 34: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Scanning Tunneling Microscopy

eVSample ( ) LDOS( )

F

eV

E

I V E dE∝ ∫

EETip

EF (tip)

EF (sample)

GΩTip

vacuumSample

Sample LDOSunder tip

TIP DOSV

Page 35: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Scanning Tunneling Microscopy

Sample LDOS( )dI eVdV

∝ 0/z ze−

Tip EEmodulate by dV

EF (tip)

GΩTip

EF (sample)

Samplevacuum

VSample LDOSunder tip

TIP DOS

Page 36: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Types of STM Measurements

dI/dV Spectr m

Local Density ofStates (x, y, E)

dI/dV Spectrum

OS

DO

S

Energy

DO

dI/dV Mx y

Eenergy

dI/dV Map

Constantcurrent

Topography2 Å

mode:

0 Å

dIdV∫

Page 37: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Hoffman Lab Scanning Tunneling Microscope

Optimized for the study of quasi-two-dimensional correlated electron materials:

• floating room, floating table for vibration isolation

• home-built continuous flow, low vibration 3He fridge, g

• in situ low temperature sample cleaver

• 3 axis magnetic field (9 T vertical 3 T in plane)• 3-axis magnetic field (9 T vertical, 3 T in plane)

• tracks the same atomically resolved locations over the full range of field

Page 38: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Where are we?

Page 39: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Laboratory Design

Wilson Architects

Page 40: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Laboratory Design

Wilson Architects

Page 41: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vibration Results

10000

100000

workshopoffice

1000

10000 residentialop theatrevc-Avc-Bvc-Cav

e)

100vc-Dvc-Evc-Fvc-Gvc-Hs

(1/3

-oct

a

1

10vc-Hvc-Ivc-Jvc-Kvc-L

M

μin/

s

SFM

1 2 4 8 16 32 64 128 256

0.1

vc-M SFM STM SP-STM

1 2 4 8 16 32 64 128 256

frequency (Hz)This allows us to image samples with atomic resolution !!

Page 42: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 43: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Ba(CoxFe1‐x)2As2 Samplessingle crystals grown by Prof. XianHui Chen

1.2

1.4

BaFe2-x

CoxAs

2 ab plane)

0.020.04

Ba(CoxFe1‐x)2As2 ab plane 

1.0

1.2 2 x x 2

·cm

)

0.060.080.09

0.6

0.8

vity

(m

0.100.1250.30

0.4

resi

sitiv

we’re studying

0.0

0.2r

this one!Tc = 25.3 K

0 100 200 300T (K)

X. F. Wang, T. Wu, G. Wu, arXiv:0806.2452Phys. Rev. Lett.

Page 44: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Atomic Resolution Topography

Ba(Co Fe1 )2As2Ba Ba(CoxFe1‐x)2As2

(x=0.1 nominal, Tc=25.3K)AsFe

5 nmÅ

3.9 Å 5 nm3.9 Å

Page 45: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Gap Mapping

7

6

7(nS)

4

5

dI/dV 

3

1

2

5 nm

-20 -10 0 10 200

5 nm

Sample Bias (mV) 8.0 meV4.5 meV

Δ = 6.25 ± 0.73 meV (12% variation)measurements at T=6K; kBT = 0.5 meVdV modulation = 1.5 meV

Page 46: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Topography

1.5 Å

0 Å0 Å

20 nm

Page 47: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vortices at 9T

3.0 nS

dI/dV at 5 mV

(approximate(approximatecoherence

peak energy)

0.5 nS0.5 nS

20 nm

Page 48: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vortices at 6T

3.0 nS

dI/dV at 5 mV

(approximate(approximatecoherence

peak energy)

0.5 nS0.5 nS

20 nm

Page 49: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Flux Measurement

3.0 nS9 T 6 T

0.5 nS0.5 nS

Page 50: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Flux Measurement

3.0 nS9 T 6 T

0.5 nS0.5 nS

average vortex area = 228 nm2

φ(9T) 2 05 × 10−15 T m2

average vortex area = 362 nm2

φ(6T) 2 17 × 10−15 T m2φ(9T) = 2.05 × 10 15 T∙m2

Single magnetic flux quantum:  Φ0 = 2.07 × 10−15 T∙m2

φ(6T) = 2.17 × 10−15 T∙m2

Page 51: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Gap Mapping

7

6

7(nS)

4

5

dI/dV 

3

1

2

5 nm

-20 -10 0 10 200

5 nm

Sample Bias (mV) 8.0 meV4.5 meV

Δ = 6.25 ± 0.73 meV (12% variation)measurements at T=6K; kBT = 0.5 meVdV modulation = 1.5 meV

Page 52: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Correlation Comparison

B (C F ) ACuprate Superconductors Iron-Pnictide Superconductors

6

7Ba(CoxFe1-x)2As2

Bi2Sr2CaCu2O8+d

5

6

3

4

1

2McElroy, PRL 94, 197005 (2005)

-20 -10 0 10 200

Measure of Correlation:σ = δΔ / Δ = 12% variation

2Δ/kBTC = 5.3

σ = δΔ / Δ = 21% variation

2Δ/kBTC = 6-10

Page 53: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vortex pinning possibilities(1) no strong pinnersinter-vortex forces dominate

(2) strong pinners existlow anisotropy

(3) strong pinners existhigh anisotropyinter vortex forces dominate

lattice formationlow anisotropy

vortices bend slightlyto accommodate pinners

high anisotropyvortices pancake

each pancake pins independently

ideal caseideal casefor applications

NbSe2 Bi2Sr2CaCu2O8

Page 54: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Are Vortices Pinned to Surface Impurities?

3.0 nS9 T

0.5 nS0 0.5 nS10 nm

Page 55: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Are Vortices Pinned to Surface Impurities?Raw Data Idealized Data

9 T vortex, radius ξ0 = 2.76 nm

impurity

15 Histogram of Distancesf(x)=AxP

Fit: P = 0.96±0.1

5

10

6 T

0 5 10 15 20 250

5

Vortex-Impurity Distance (nm)

Linear fit!Vortices are not pinnedVortices are not pinnedto visible surface impurities

Page 56: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Vortex pinning possibilities(1) no strong pinnersinter-vortex forces dominate

(2) strong pinners existlow anisotropy

(3) strong pinners existhigh anisotropyinter vortex forces dominate

lattice formationlow anisotropy

vortices bend slightlyto accommodate pinners

high anisotropyvortices pancake

each pancake pins independently

NbSe2 Bi2Sr2CaCu2O8Ba(CoxFe1-x)2As2

Page 57: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Length Scales in Superconducting VorticesB

I Φ = 2.07 x 10-15 T·m2

B(r) = field penetration

ns(r) = density of

B(r) = field penetration

Cooper pairs

r = distance fromt t

vortex center ξ λ

vortex center“coherence length”= distance over which

Cooper pairs are broken(superconductivity is destroyed)

“penetration depth”= distance over which

magnetic field decays

Page 58: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 59: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Magnetic Force Microscope

Fiber opticPros and Cons of MFM

Tip Geometry

Fiber opticinterferometer~0.1 pm/(Hz)1/2

d Con: Imperfectly knownPro: Up to 20 nm spatial resolution

Other signals

z

∇F

Si cantileverd

Magnetic tipOther signalsCon: See atomic forces tooPro: Simultaneous topography

I isample

InvasivenessCon: Tip exerts force on vortexPro: Tip exerts force on vortex

Force between tip and sample:

( )= ∇ ⋅F m BFrequency modulation imaging

(directly measures force gradient):

1 dFΔ

( )

Vertical force gradient imagingHorizontal force manipulation

0

12

tsdFk dz

ωωΔ −

=

Page 60: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Hoffman Lab Force Microscope• 2 K to above 340 K• 5 T vertical field• lateral coarse motion (3 mm x 3 mm) allows imaging of isolated features in addition to bulk materials• high-resolution, easily modelable tips fabricated in house via focused ion beam

Radius of curvature : 15-25 nmRadius of curvature : 15-25 nmCone half-angles : 1-3°

Aspect ratios : 12-1812 cm

Versatility:Versatility:• vertical or lateral force measurement• magnetic tips for magnetic imaging and manipulation• conducting tips for local conductivity imaging and switching• vertical cantilevers for friction imaging

built by Dr. Jeehoon Kim

Page 61: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 62: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Preliminary: Vortex Manipulation in NdO1‐xFxFeAs

( ) (b) ( ) (d)

Safe height: Drag vortex: Safe height:

Scan athigher force,higher T

(a) (b) (c) (d)

2μm

will histogram pinning forces

will measurepinning anisotropy

Page 63: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Nb vortices: Pinning Force Histogram

z=576nm z=518nm z=461nm z=403nm z=346nm z=288nm z=230nm z=173nmA B C D E F G H

Δ f=0.63Hz Δ f=0.73Hz Δ f=0.85Hz Δ f=0.97Hz Δ f=1.22Hz Δ f=1.50Hz Δ f=2.02Hz

2μ m

Δ f=2.79Hz

12

Fdepin ranges from8

10

17 Gauss 4 Gausstic

es

depin g4 to 12 pN

at 5.5 K

vo

rtic

es

2

4

6 4 Gauss

# vo

rt

E. W. J. Straver, J. E. Hoffman,O. M. Auslaender, D. Rugar, K. A. Moler, Appl. Phys. Lett. 93, 172514 (2008).

→F

z (pN)

#

0 10 20 30 40 500

Fz (pN)

Page 64: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

YBa2Cu3O7‐d vortices: Probe Bulk Pinning

mapanisotropy deduce

anisotropy of bulkpinning

fitfitanisotropy

O. M. Auslaender, L. Luan, E. W. J. Straver,J. E. Hoffman, N. C. Koshnick, E. Zeldov,D. A. Bonn, R. Liang, W. N. Hardy, K. A. Moler,Nature Physics 5, 35 (2009).

Page 65: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

High‐Tc Cuprate‐Pnictide Conclusions

Cuprate: Pnictide:Cuprate:Bi2Sr2CaCu2O8+d

Pnictide:BaCoxFe2‐xAs2

phase diagram (structural transition)

mpe

rature “non‐Fermi”

liquidPseudo‐gap

Fermili id?

(magnetic transition)

(superconductor)

orthorhombic

tetragonal

Carrier concentration

Te AFins.

gap liquid?

Superconductor

AF

ground state antiferromagnetic Mott insulator

itinerant antiferromagnetsemimetal

superconducting Δ ~ 33 meV Δ = 6 25 meVsuperconductinggap, Δ

Δ  33 meV2Δ/kBTc ~ 6‐10

Δ = 6.25 meV2Δ/kBTc = 5.73

gap inhomogeneity σ ~ 7 meVσ/Δ ~ 21%

σ = 0.73 meVσ/Δ = 12%σ/Δ  21% σ/Δ = 12%

gap symmetry d‐wave s±

Page 66: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Cuprate: Pnictide:

High‐Tc Cuprate‐Pnictide Conclusions

Cuprate:Bi2Sr2CaCu2O8+d

Pnictide:BaCoxFe2‐xAs2

coherence length, ξ0 2.2 nm 2.7 nm

Anisotropy ~50 1‐3

vortex pinning

vortices pinned to vortices NOT pinned tovortices pinned tosurface impurities

vortices NOT pinned tosurface impurities

• Local probes access nanoscale inhomogeneity “see” correlations• Image and manipulate magnetic vortices• Surface probes can access bulk properties

Page 67: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 68: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 Metal‐Insulator TransitionT (K)

Tetragonal Metal

4

105

Heating CoolingV4+

103

104

R (Ω

)Monoclinic Insulator

340 K

102

10R

300 320 340 360 380

10

T (Kelvin)

Also transitions as a function of• stress (~38 kbar)

ti l it ti• optical excitation• applied voltage or current (~107 V/m ??)

up to 5 orders of magnitude change in conductivity

Page 69: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 70: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 Metal‐Insulator Transition: PhysicsT (K)

Tetragonal Metal

3dπ (V-O-V)

EF

3d|| (V-V)

Monoclinic Insulator

340 K Band insulator?

?

E

• Goodenough, Phys. Rev. 117, 1442 (1960)• Wentzcowitch, PRL 72, 3389 (1994)

?

?3dπ (V-O-V)

k

Mott insulator?EF

3d|| (V-V)

0.7 eV

U

• Zylbersztejn & Mott, PRB 11, 4383 (1975)Goodenough, J.Solid State Chem 3, 490 (1971)

e e e e

Page 71: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 QuestionsMott vs. Peierls (electronic vs. structural)? (Mott may be more interesting)( ) ( y g)• m* increases, approaching metal insulator transition

Qazilbash, Science 318, 1750 (2007)

• Δt = 80 fs, limited by exactly ½ period of structural phononCavalleri, PRB 70, 161102 (2004)

Can Mott exist w/o Peierls? (Mott would be even faster, wouldn’t crack crystal)• 46 years (1959 – 2005): answer is NO46 years (1959 2005): answer is NO• Raman spectroscopy yes?

H.T. Kim, APL 86, 242101 (2005)

• Local IR microscopy (electrical) & x-ray diffraction (structural) yes?Local IR microscopy (electrical) & x ray diffraction (structural) yes?Qazilbash, unpublished APS March talk (2010)

Can it be entirely E-field driven or need heat too ? (would like zero quiescent current)• 3-terminal (field-effect) devices show transition (but questions of breakdown voltage…)

Stefanovich, JPCM 12, 8837 (2000)Qazilbash, APL 92, 241906 (2008)

• thermal modeling says Joule heating is not enough to drive transitiong y g gGopalakrishnan, J. Mat. Sci. 44, 5345 (2009)

Page 72: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Bulk vs. LocalLocal geometry:

Bulk thermal transitioncantilever: k 40 N/m

104

105

Heating Cooling

Cr/Aucoated tip

n‐type Sicantilever: kc ~ 40 N/m

2

103

R (Ω

)

VO2

PdRR ~102

VO2 SiO

Single Point IV (conducting AFM):

300 320 340 360 380

102

T (Kelvin)

n-type SiV

n‐type SiSiOx

Single Point IV (conducting AFM):

293 K101

102

298K

Look for bulk voltage transition

note

10-1

100

I (m

A)

100 x 100 μm2

multiple jumps

0 1 2 3 410-2

V (V)

μ

500 x 500 μm2

Page 73: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Training & Repeatability

293 K293 K

Training voltage: Typically one or several high voltage sweeps necessary before IV hysteresis loops roughly stabilize with ~5% jitter

Page 74: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Topography

40 nm

0 500 nm

Page 75: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 3.45 V

171 μA

0 500 nm

Page 76: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 3.95 V

171 μA

500 nm0

seed grain is the one with highest conductivity in the insulating state

Page 77: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 4.44 V

171 μA

500 nm0

Page 78: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 4.93 V

171 μA

500 nm0

Page 79: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 5.43 V

171 μA

500 nm0

Page 80: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 4.93 V

171 μA

500 nm0

Page 81: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 4.44 V

171 μA

500 nm0

Page 82: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 3.95 V

171 μA

500 nm0

Page 83: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Imaging the Metal‐Insulator Transition

Current mapTip bias: 3.45 V

171 μA

500 nm0

Page 84: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 QuestionsMott vs. Peierls (electronic vs. structural)? (Mott may be more interesting)• m* increases, approaching metal insulator transition

Qazilbash, Science 318, 1750 (2007)

• Δt = 80 fs, limited by exactly ½ period of structural phononCavalleri, PRB 70, 161102 (2004), , ( )

Can Mott exist w/o Peierls? (Mott would be even faster, wouldn’t crack crystal)• 46 years (1959 – 2005): answer is NO• Raman spectroscopy yes?

H.T. Kim, APL 86, 242101 (2005)

• Local IR microscopy (electrical) & x-ray diffraction (structural) yes?Q ilb h bli h d APS M h t lk (2010)Qazilbash, unpublished APS March talk (2010)

AFM detects structural; CAFM detect electronic; simultaneous independent info

Can it be entirely E-field driven or need heat too ? (would like zero quiescent current)Can it be entirely E field driven or need heat too ? (would like zero quiescent current)• 3-terminal (field-effect) devices show transition (but questions of breakdown voltage…)

Stefanovich, JPCM 12, 8837 (2000)Qazilbash, APL 92, 241906 (2008)

• thermal modeling says Joule heating is not enough to drive transitionGopalakrishnan, J. Mat. Sci. 44, 5345 (2009)

scanning gate microscopy

Page 85: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation ?

Outlook

Page 86: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 micro‐bolometers for IR imaging

SiN + VO2

IR impinges here

y wire

50 μm0.5 μm

http://www.security-int.com

2.5 μm

http://www thermodelta hu

x wire monolithictransistor

http://www.thermodelta.hu

• pixels size as small as ~ 25 μmpixels size as small as 25 μm• pixel arrays up to 640 x 480

Page 87: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 tunable metamaterials

“I i ibilit l k”“Invisibility cloak”:fabricate copper patterns onstandard circuit boardwith fixed dielectric

Problem: narrow, fixed bandwidth

Proposal: use VO substrateProposal: use VO2 substratetunable dielectrictunable metamaterial bandwidth

David Smith, Duke University

Prototype:

Driscoll, APL 93, 024101 (2008)

Page 88: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

MemristorsV

ResistordV = RdI

Capacitordq = CdV

dφ=

Vdt

ApplicationsqI

I d t

dq = Idt

d

M i t

• Memory circuits

• Digital logic circuits

φ

Inductordφ = LdI

Memristordφ = Mdq

L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

(e.g. FPGA = Field ProgrammableGate Array)

• Analog circuitsD. Strukov, Nature 453, 80 (2008)

( )d M q dqϕ =∫ ∫Integral form

Analog circuits(e.g. neural learning networks)

/( ) d d dt VM q ϕ ϕ= = =

( )d M q dqϕ =∫ ∫Differential form

( )/

M qdq dq dt I

= = =

A memristor remembers its resistance, based on the history of charge flowing through it.

Page 89: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

VO2 MemristorsTiO2 (insulating)

10 O vacancies migrateMechanism 1:

TiO2-x (conducting)10 nm O vacancies migrate

when voltage is appliedoxygen migration

Mechanism 2: Ti4O7

conductive channel formation

TiO2

applyV

messy disordered10 nm

Kwon, Nat Nano 5, 148 (2010)

messy, disordered…problems with reproducibility

Mechanism 3:phase change

(mA

)potentially cleaner, reproducible

Cur

rent

Driscoll, APL 95, 043503 (2009)

5mm

Volts

Page 90: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Memristive Writing ?Step 1: “write” with 13 V tip bias

Cr/Aucoated tip

n‐type Si 293 K

VO2

t SiSiOx

Step 2: read current (local resistivity) with 3 V tip bias

Vn‐type Si x

Step 2: read current (local resistivity) with 3 V tip bias13 μA

10

5

500 nm 0

Page 91: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

OutlineHigh-Tc Superconductivityg p y

• Can we understand it? need to understand Mott• Can we use it? need to understand vortices

• scanning tunneling microscopevortex imaging in Ba(CoxFe1-x)2As2

• force microscopevortex manipulation in NdO1-xFxFeAs

Metal-insulator transition in VO2

• Can we understand it? isolate electronic & structuralCan we understand it? isolate electronic & structural• Can we use it? Mott manipulation

Outlook

Page 92: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

ConclusionsIron-Pnictide Superconductors

h th t l hi hl l t d• more homogeneous than cuprates less highly correlated• stronger vortex pinning

20 nm

Vanadium Oxide• controlled local transition (single grain, 10s of nanometers)• after training, hysteresis is repeatable

20 nm

Outlook• correlated electron systems local inhomogeneity need local probes• surface probes can access bulk properties e g vortex pinning

500 nm

• surface probes can access bulk properties, e.g. vortex pinning• passive imaging active manipulation

To Do Next• Quantify vortex pinning forces in iron-pnictide superconductors• “Write” the Mott transition in vanadium oxide & other systems• Image & manipulate other correlated systems, e.g. topological insulators

500 nm

Page 93: Jenny HffH - Harvard Universityhoffman.physics.harvard.edu/talks/2010-03-29-Harvard...2010/03/29  · Cu 3 O 7 60 80 p erature [77K LN 2 Tem 40 V Si LaBaCuO 4 1900 1920 1940 1960 1980

Scanning Tunneling Ultra‐high vacuum

Hoffman Lab Local Probes

MicroscopegSTMForce Microscope

coming on line soon!• spin‐polarized tunneling• atom‐moving

cuprate high‐Tcsuperconductor

122 ironpnictide

topologicalinsulator

1111 ironpnictide

metal‐insulatortransition