INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A...

648
1 ! Deflected Shape of Structures ! Method of Consistent Deformations ! Maxwells Theorem of Reciprocal Displacement INTRODUCTION: STRUCTURAL ANALYSIS

Transcript of INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A...

Page 1: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Deflected Shape of Structures! Method of Consistent Deformations! Maxwell�s Theorem of Reciprocal

Displacement

INTRODUCTION: STRUCTURAL ANALYSIS

Page 2: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

-M

P

+M

-M

Deflection Diagrams and the Elastic Curve

∆ = 0θ = 0

fixed support

∆ = 0

roller or rockersupport

P

θ

inflection point

Page 3: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

-M

P

∆ = 0

pined supportθ

Page 4: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

Moment diagram

P

inflection point

inflection point

� Fixed-connected joint

fixed-connected joint

Page 5: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

P

� Pined-connected jointpined-connected

joint

Moment diagram

Page 6: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

P

inflection point

Moment diagram

Page 7: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

-M

+Mx

M

P2

P1

A B C D

inflection point

Page 8: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

x-M

+M

P1

P2

inflection point

Page 9: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

+

AB

C

AB

C

P

=

AB

C

P

∆´B

fBB x RB

1∆´B + fBB RB = ∆B = 0

Method of Consistent DeformationsBeam 1 DOF

RBAy

Ax = 0

MA

Page 10: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

w

w

=+

+

=∆1

∆2

∆´1

∆´2

R1

R2

×R2

Compatibility Equations.

∆´1 + f11R1 + f12R2 = ∆1 = 0

×R1

f12f22

0

0

Beam 2 DOF

∆´2 + f21R1 + f22R2 = ∆2 = 0

1

1

14

3

52

∆´1 ∆´2

f11 f21

+f11 f12

f12 f22

Page 11: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

wP1 P2

=

wP1 P2

++

+1

1

f32f22

1

Compatibility Equations.

θ´1 + f11M1 + f12R2 + f13R3 = θ1 = 0

×R2

×R3

=

θ1

∆2

∆3

f31

f33f23f13

24

61

53

∆´2 θ´1∆´3

Beam 3 DOF

∆´2 + f21M1 + f22R2 + f23R3 = ∆2 = 0

∆´3 + f31M1 + f32R2 + f33R3 = ∆3 = 0

×M1

θ´1

∆´2

∆´3

+

f11 f12 f13

f21 f22 f23

f31 f32 f33

M1

R2

R3

0

0

0

f12

f21f11

Page 12: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

If ∆1 = ∆2=��= ∆n = 0 ;

or [∆´] + [f][R] = 0

[R] = - [f]-1[∆´]

Compatibility Equation for n span.

∆´1 + f11R1 + f12R2 + f13R3 = ∆ 1∆´2 + f21R1 + f22R2 + f23R3 = ∆2

∆´n + fn1R1 + fn2R2 + fnnRn = ∆n

∆ ´1

∆´2 +

f11 f12 R1

R2 =

0

0

∆´ n

f13

f21 f22 f23

f n 1 f n 2 fn n R n 0

[fij] = Flexibility matrix dependent on

Equilibrium Equations

[Q] = [K][D] + [Qf]

Stiffness matrix

Fixed-end force matrix

Solve for displacement [D];

[D] = [K]-1[Q] - [Qf]

GJEAEI1,1,1

ijij f

k 1=

Page 13: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

A B

A B

EI

1=i 2=j

Mj = mj

f12 = fij

f11 = fii

f22 = fjj

Mi = mi

Maxwell�s Theorem of reciprocal displacements

1

1

f21 = fji

∫=EIdxMmf jiij

∫=EIdxmm ji

∫=EIdxMmf ijji

∫=EIdxmm ij

jiij ff =

Page 14: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

Example 1

Determine the reaction at all supports and the displacement at C.

AB

C

50 kN

6 m 6 m

Page 15: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

50 kN

=∆´B

+

fBB

1 kN

x RB

AB

C

50 kN

6 m 6 m

SOLUTION

RB

MA

RA

0' =+∆ BBBB Rf -----(1)Compatibility equation :

� Principle of superposition

∆´B

x RBfBB

Page 16: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

Conjugate beam

Conjugate beam

50 kN

∆´B

Real beam

50 kN

300 kN�m

6 m 6 m

/EI300 900/EI

6 + (2/3)6 = 10 m9000/EI

� Use conjugate beam in obtaining ∆∆∆∆´B and fBB

900/EI

12 /EI72/EI

(2/3)12 = 8 m576/EI

fBB

1 kN

Real beam

1 kN

12 kN�m

72/EI

∆´B = M´B = -9000/EI ,

fBB = M´´B = 576/EI,

BA

Page 17: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

RB = +15.63 kN, (same direction as 1 kN)

0)576(9000: =+−↑+ BREIEI

50 kN

∆´B

50 kN

300 kN�m

x RB = 15.63 kN=

AB

C

50 kN

15.63 kN34.37 kN34.37 kN�m

fBB

1 kN1 kN

12 kN�m

+

� Substitute ∆´B and fBB in Eq. (1)

Page 18: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

93.6/EI

-113/EI

6 m 6 m

AB

C

50 kN

Use conjugate beam in obtaining the displacement

113 kN�m

34.4 kN15.6 kN

EIEIEIM C

776)6(223)2(281' −=−=

↓−==∆ ,776'EI

M CC

Real Beam

Conjugate Beam

M (kN�m) x (m)

3.28 m 6 m 12 m

93.6

-113

223/(EI)

4 m2 m

M´C

V´C 223/(EI)

281/(EI)

∆C

Page 19: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m

Example 2

Determine the reaction at all supports and the displacement at C. Take E = 200GPa and I = 5(106) mm4

Page 20: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

+

10 kN

=

1 kN

Compatibility equation: ∆´B + fBBRB = ∆B = 0

x RB

∆´B

fBB

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m

Page 21: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

Conjugate Beam

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m

Real Beam

10 kN

40 kN�m

� Use conjugate beam in obtaining ∆´B

26.66/EI

177.7/EI

x (m)

V (kN) 10 10

+

x (m) M (kN�m)

40

-

40/3EI = 13.33/EI∆´B = M´B = 177.7/EI

Page 22: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22Conjugate Beam

AC

B

4 m

3EI 2EI

2 m 2 m

Real Beam1 kN

4/(2EI)=2EI

� Use conjugate beam for fBB

1 kN

8 kN�m

x (m)V (kN)-

-1 -1

x (m) M (kN�m)

84

+

83EI= 2.67

EI4/(3EI)=1.33EI

60.44/EI

12/EIfBB = M´B = 60.44/EI

Page 23: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

+

10 kN

=

1 kNx RB

∆´B

fBB

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m

Compatibility. equation: ∆´B + fBBRB = ∆B = 0

RB = +2.941 kN, (same direction as 1 kN)

0)44.60(7.177: =+−

−↑+ BREIEI

Page 24: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m 2.94 kN7.06 kN

16.48 kN�m

7.06

-2.94 -2.94

+- x (m)V (kN)

∆C

-16.48

11.76

-

+ x (m) M (kN�m)

2.33 m

1.67 m

� The quantitative shear and moment diagram and the qualitative deflected curve

Page 25: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

10 kN

AC

B

4 m

3EI 2EI

2 m 2 m

↓−

=−= ,85.18)222.3(413.6)555.0(263.3EIEIEI

2.941 kN7.059 kN

16.48 kN�m

∆C

� Use the conjugate beam for find ∆∆∆∆C

Real beam

↓−=×

−==∆ ,85.18

)5200(85.18' mmM CC

16.483EI

11.763EI

11.762EI

2.335 m

1.665 m

Conjugate beam

6.413EI

3.263EI

(1.665)/3=0.555 m

1.665+(2/3)(2.335) = 3.222 m

M´C

Page 26: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

Example 3

Draw the quantitative Shear and moment diagram and the qualitative deflectedcurve for the beam shown below.EI is constant. Neglect the effects of axial load.

A B4 m4 m

5 kN/m

Page 27: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

αBBαAB

αBAαAA

θ´Bθ´Aθ´A

1 kN�m

5 kN/m

1 kN�m

A B4 m4 m

5 kN/m

SOLUTION

� Principle of superposition

θ´B

=+

αAA αBA

AM×

αBB

BM×αAB

+

Compatibility equations:

θA θB

AM×

BM×

AM×

BM×

)1('0 −−−++== BABAAAAA MfMfθθ

)2('0 −−−++== BBBABABB MfMfθθ

Page 28: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

� Use formula provided in obtaining θ´A, θ´B, αAA, αBA, αBB, αAB

Note: Maxwell�s theorem of reciprocal displacement, αAB = αBA

1 kN�m

αAA αBA8 m

1 kN�m

αBBαAB

8 m

EIEIEILM o

AA667.2

3)8(1

3===α

EIEIEILM o

BA333.1

6)8(1

6===α

EIEIEILM o

BB667.2

3)8(1

3===α

EIEIEIwL

B67.46

384)8)(5(7

3847'

33

===θ

EIEIEIwL

A60

128)8)(5(3

1283'

33

===θ

4 m4 mθ´Bθ´Aθ´A

5 kN/m

θ´B

EIEIEILM o

AB333.1

6)8(1

6===α

Page 29: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

αBBαAB

Real Beam1 kN�m

αBBαAB

8 m

αBA

Real Beam1 kN�m

αAA αBAαAA

8 m

Conjugate Beam

4/EI1/EI

(1/8)(1/8)

2.67/EI1.33/EI

(1/8) (1/8)

Conjugate Beam

1/EI4/EI

1.33/EI2.67/EI

EIV AAA

667.2' −==α

EIV BBB

667.2' ==α

EIV AAB

333.1' −==α

EIV BBA

333.1' ==α

� Use conjugate beam for αAA, αBA, αBB, αAB

Page 30: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

1 kN�m

5 kN/m

1 kN�m

A B4 m4 m

5 kN/m

=+

+

θA θB

BM×

EIAA667.2

AM×

EIV BBA

333.1' ==α

EIB67.46' =θ

EIA60' =θ

EIAB333.1

=αEIBB667.2

Solve simultaneous equations,

MA = -18.33 kN�m, +

MB = -8.335 kN�m, +

Compatibility equation

+ 0)333.1()667.2(60=++ BA M

EIM

EIEI

+ 0)667.2()333.1(67.46=++ BA M

EIM

EIEI

Page 31: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

MA = -18.33 kN�m,

MB = -8.335 kN�m,

A B4 m4 m

5 kN/m

18.33 kN�m 8.335 kN�m

RBRA

RB = 3.753 kN,

Ra = 16.25 kN,

+ ΣMA = 0: 0355.8)8()2(2033.18 =−+− BR

ΣFy = 0:+3.753

020 =−+ BA RR

Page 32: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

A B4 m4 m

5 kN/m

18.33 kN�m 8.36 kN�m

3.75 kN16.25 kN

Vdiagram

Mdiagram

DeflectedCurve

-3.75

16.25

3.25 m

-18.33

6.67

-8.36

8.08

� Quantitative shear and bending diagram and qualitative deflected curve

Page 33: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

Example 4

Determine the reactions at the supports for the beam shown and draw thequantitative shear and moment diagram and the qualitative deflected curve.EI is constant.

A

C

4 m4 m

2 kN/m

B

Page 34: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

1 kN

)2(0''')1(0'''

−−−=++∆−−−=++∆

CCCBBCC

CCBBBBB

RfRfRfRf

Compatibility equations:

� Principle of superposition

A

C

4 m4 m

2 kN/m

B

4 m4 m BA

C

2 kN/m

B'∆C'∆

A

C

4 m4 m B

BBf ' CBf '

1 kNAC4 m4 m B

BR×

CR×BCf ' CCf '

Page 35: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35A

C

A

C

B

A

C

2 kN/m

1 kN

� Solve equation

A

C

4 m4 m

2 kN/m

B

1 kN

EIB64' −=∆ EIC

33.149' −=∆

EIf BB

33.21' = EIf CB

33.53' =

EIf BC

33.53' = EIf CC

67.170' =

)1(033.5333.2164−−=++− CB R

EIR

EIEI

Compatibility equations:

)2(067.17033.5333.149−−=++− CB R

EIR

EIEI

↓−=

↑=

,29.0,71.3

kNRkNR

C

B

BR×

CR×

Page 36: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

� Diagram

A

C

4 m4 m

2 kN/m

B

3.71 kN 0.29 kNkNAy 58.471.329.08 =−+=

mkNM A

•=−+=

48.3)4(71.3)8(29.0)2(8

x (m)

V (kN)4.58

0.29

-3.422.29 m

x (m)

M (kN�m)

-3.48

1.76

-1.16

x (m)Deflected shape

Point of inflection

Page 37: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

Example 5

Draw the quantitative Shear and moment diagram and the qualitative deflectedcurve for the beam shown below.(a) The support at B does not settle(b) The support at B settles 5 mm.Take E = 200 GPa, I = 60(106) mm4.

16 kN

2 m 2 m 4 m

AB C

Page 38: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

16 kN

2 m 2 m 4 m

AB C

16 kN

SOLUTION

� Principle of superposition

∆´B

1 kN

fBB

BR×

∆´B

fBB

BR×=

+

∆B = 5 mm

Compatibility equation : BBBBB Rf+∆==∆ '0 -----(1) : no settlement+

BBBBB Rfm +∆=−=∆ '005.0 -----(2) : with settlement+

Page 39: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

16 kN

∆´B

Real beam

A B C

� Use conjugate beam method in obtaining ∆´B

2 m 2 m 4 m12 kN

M´diagram

16

Conjugatebeam

EI24

EI24

EI72

34

32

2 m 4 m

24

EI40

EI56

4 kN

0)4(40)34(32'' =−+−

EIEIM B

EI16

EI32

EI40

V´´B

M´´B

34 4

32

+ ΣMB = 0:

↓−==∆ ,33.117'''EI

M BB

∆´B

Real beam

Page 40: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

Real beam

1 kN4 m 4 m

AB

CfBB

� Use conjugate beam method in obtaining fBB

0.5 kN 0.5 kN

m´diagram

-2Conjugate

beam

EI2

−EI4

−EI4

− EI4

EI4

v´´B

m´´B

EI4

− EI4

34 4

32

0)4(4)34(4'' =+−−

EIEIm B

+ ΣMB = 0:

↑== ,67.10''EI

mf BBB

fBB

Page 41: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

� Substitute ∆´B and fBB in Eq. (1)

,67.1033.1170; BREIEI

+−=↑+ RB = 11.0 kN,

xRB = 11.0 kN

=16 kN

AB C

11.0 kN= 6.5 kN = 1.5 kNRCRA

no settlement

↓−=∆ ,33.117'EIB

↑= ,67.10EI

fBB

16 kN

12 kN 4 kN∆´B 1 kN

+

0.5 kN 0.5 kN

fBB

Page 42: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

� Substitute ∆´B and fBB in Eq. (2)

BREIEI

m 67.1033.117005.0; +−=−↑+

BREIm 67.1033.117)005.0( +−=−

RB = 5.37 kN,

BR67.1033.117)60200)(005.0( +−=×−

xRB = 5.37

=16 kN

AB C

5.37 kN= 9.31 kN = 1.32 kNRCRA

with 5 mm settlement

↓−=∆ ,33.117'EIB

↑= ,67.10EI

fBB

16 kN

12 kN 4 kN∆´B 1 kN+

0.5 kN 0.5 kN

fBB

Page 43: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

� Quantitative shear and bending diagram and qualitative deflected curve

16 kN

AB C

2 m 2 m 4 m11 kN 6.5 kN 1.5 kN

Vdiagram

6.5

-9.5

1.5

Mdiagram

13

-6

+-

DeflectedCurve

16 kN

∆B = 5 mmA

B C

2 m 2 m 4 m5.37 kN 9.31 kN 1.32 kN

Vdiagram

9.31

-6.69-1.32

Mdiagram

18.625.24+

DeflectedCurve ∆B = 5 mm

Page 44: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

Example 6

Calculate supports reactions and draw the bending moment diagrams for (a)D2 = 0 and (b) D2 = 2 mm.

4 m 6 m

w 2 kN/m1 2 3

Page 45: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

+

2 kN/m

=

Compatibility equation:

∆´2 + f22R2 = ∆2

∆´2

1

f22

×R2

4 m 6 m

w 2 kN/m1 2 3

↓−=−=

+××−−=

+−−=∆

,2.6)200)(200(

248

)1041024(24

)4)(2(

)2(24

'

:

323

3232

mm

EI

LLxxEI

wxprovidednsformulatioUse

↑+==

−−×

××−=

−−=

,48.0)200)(200(

2.19

)4610(106

461

)(6

222

22222

mm

EI

xbLLEIPbxf

Page 46: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

4 m 6 m

w 2 kN/m1 2 3

12.92 kN4.83 kN2.25 kN

Compatibility.equation:

-6.2 + 0.48R2 = -2R2 = 8.75 kN

4 m 6 m

w 2 kN/m1 2 3

For ∆2 = 2 mmFor ∆2 = 0

Compatibility equation:

-6.2 + 0.48R2 = 0 R2 = 12.92 kN

x (m) V (kN)

2.25

-5.75

7.17

-4.83

+--

1.125 m

2.415 m

x (m) V (kN)

2.375 m

3.25 m

-++

-

4.75 5.5

-3.25-6.5

x (m) M (kN�m)

1.27

-7

5.85

+-

+

x (m) M (kN�m)

5.64

3

10.56

++

6.5 kN4.75 kN 8.75 kN

Page 47: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

L

w

Basic Beams: Single span

wL/2

- wL/2

V

wL2/8

M

APPENDIX

wL/2wL/2L/3L/3

1

EIwL

3845 4

Page 48: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

� Find ∆∆∆∆1 by Castigliano�s

w

L

L/2 L/2

x1 x2

1 2 3P

22PwL

+22PwL

+

22PwL

+x2

w

V2

M2

22PwL

+x1 V1

M1w

+ ΣΜ = 0;

21

21

1

1

21

1

)22

(2

0)22

(2

MxPwLwxM

xPwLwxM

=++−=

=+−+

Page 49: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

0

∫∫ ∂∂

+∂

∂=∆=∆

2/

0

22

22/

0

11

1max1 )()(

LL

EIdxM

PM

EIdxM

PM

∫ ∂∂

=2/

0

11

1 )(2L

EIdxM

PM

21

21

1 )22

(2

MxPwLwxM =++−=

11

21

2/

0

1 ))22

(2

()2

(2 dxxPwLwxxEI

L

++−

= ∫

EIwL

3845 4

=

Page 50: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

L

L /2 L /2

P

1

P/2 P/2

V

P/2

- P/2

+

-

PL/4

M

EILfPf

EIPL

4848

3

1111

3

11 =→==δ

Single span

Page 51: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

L = 2l

l = L/2 l = L/2

1w

1.25 wl0.375 wl 0.375 wl

0.375 wl

-0.375 wl-0.625 wl

0.625 wl

+-

+-

0.070 wl2 0.070 wl2

-0.125 wl2

+ +

-

EIwl

185

4

max =∆

EIwl

185

4

max =∆

Double span

Page 52: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

l = L/3 l = L/3 l = L/3

1 w 2

1.1wl1.1wl0.4wl 0.4wl

∆max = wl4

145 EI

V0.4wl

- 0.4wl- 0.6wl

0.5wl

-0.5wl

0.6wl

+

-

+-

+

-

0.08 wl2 0.08 wl2

0.025 wl2

-0.1 wl2 -0.1 wl2

+

- -++M

Triple span

Page 53: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Comparison Between Indeterminate andDeterminate

! Influence line for Statically IndeterminateBeams

! Qualitative Influence Lines for Frames

INFLUENCE LINES FOR STATICALLY INDETERMINATE BEAMS

Page 54: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

AB CED

RA AB CED

RA

Indeterminate Determinate

Comparison between Indeterminate and Determinate

11

Page 55: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

AB CED

RAA

B CEDRA

AB CED

ME AB CED

ME

AB CED

VD AB CED

VD

1 1

1

Indeterminate Determinate

11

1

Page 56: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

f1j

fjj

∆´1 = f1j

+

11 2 3j4

Redundant R1 applied

1

1

=

f11

fj1

×R1×R1

f11

Influence Lines for Reaction

Compatibility equation:

011111 =∆=+ Rff j

)1(11

11 ffR j−=

)(11

11 f

fR j=

Page 57: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

11 2 3j4

1

=+

×R2

Redundant R2 applied

fjjf2j

1

fj2

f22

Compatibility equation.

0' 22222 =∆=+∆ Rf

022222 =∆=+ Rff j

)1(22

22 ffR j−=

)(22

22 f

fR j=

Page 58: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

1 2 3j4

fj4

1

1

Influence Lines for Shear

444

)1( jE ff

V =

f44

1

1

Page 59: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

444

)1( jE fMα

=

1 2 3j4

Influence Lines for Bending Moment

1 1

α44

fj4

1 1

Page 60: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

R3 )(33

33 f

fR j=

R2 )(22

22 f

fR j=

R1)(

11

11 f

fR j=

1 2 3j4

1

1

� Influence line of Reaction

1

Using Equilibrium Condition for Shear and Bending Moment

111

11 =ff

11

41

ff

11

1

ff j

122

22 =ff

22

2

ff j

22

42

ff

133

33 =ff

33

3

ff j

33

43

ff

Page 61: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

1 2 3j4

4V4

V4 = R1

R1V4

M41

� Unit load to the right of 4

� Influence line of Shear

V4 = R1

V4 = R1 - 1

1

R2 R3R1

1

1

1

R1

1x

V4

M41

� Unit load to the left of 4

V4 = R1 - 1

01;0 41 =−−=Σ↑+ VRFy

1R1

0;0 41 =−=Σ↑+ VRFy

Page 62: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

1 2 3j4

� Influence line of Bending moment

M4 = - l + x + l R1

M4 - 1 (l-x) - l R1 = 0 + Σ M4 = 0:

R1

1x

V4

M4l1

� Unit load to the left of 4

M4 = l R1

R1V4

M4

� Unit load to right of

l

4

1

1

R2 R3R1

1

l1 l2

l

M4

4

1R1

1 1M4 = - l + x + l R1

M4 - l R1 = 0 + Σ M4 = 0:

M4 = lR1

Page 63: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

Influence Line of VI

Maximum positive shear Maximum negative shear

Qualitative Influence Lines for Frames

I

1

1

Page 64: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

Influence Line of MI

Maximum positive moment Maximum negative moment

I

11

Page 65: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

A D G

15 m15 mAy GyDy

MA

Dy

1.0

Ay

1.0

Gy

1.0

Influence Line for MOF

Page 66: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

MH

MA

1

1

A H G

15 m15 m

D

Page 67: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

RA

1.0

RB

1.0

MB

1

MG

1

A E

G

B C D

Page 68: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

VG1

VF1

VH1

A E

G

B C D

Page 69: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

Example 1

Draw the influence line for- the vertical reaction at A and B- shear at C- bending moment at A and C

EI is constant . Plot numerical values every 2 m.

A BC D

2 m 2 m 2 m

Page 70: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

BBf BBf BBf 1=BBf

� Influence line of RB

1

A BC D

2 m 2 m 2 m

ABf CBf DBfBBf

Page 71: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

Real BeamA BC D

2 m 2 m 2 m

Conjugate Beam

� Find fxB by conjugate beam

11

6 kN�m

x

=−+EI

xEIEI

x 18726

3

EI6

EI18

EI18

EI72

3x

32xV´x

M´x

x

EI72

EI18

EIx

2

2

EIx

Page 72: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

x (m)

0

2

4

6

Point

B

D

C

A

x

fxB / fBB

1

0.518

0.148

0

A BC D

2 m 2 m 2 m

1

fBB

fxB

0

72/EI37.33/EI10.67/EI

EIx

EIEIxMf xxB

18726

'3

−+==

EI72

EI33.37

EI67.10

0

/72 = 0.518

/72 = 0.148

1

37.33

10.670

Influence line of RB

17272

==BB

BB

ff

fxB

Page 73: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

1 kN

Influence line of RA

A BC D

2 m 2 m 2 m

AA

CA

ff

AA

DA

ff

1=AA

AA

ff

Page 74: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

Conjugate Beam

xV´x

M´x

EIB y

18' =

EIx

2

2

EIx

3x

32x

A BC D

2 m 2 m 2 m

Real Beam

1 kN

� Find fxA by conjugate beam

1 kN

6 kN�m

EIM A

72' =

x

EIB y

18' =

=−EIx

EIx

618 3

EI18

EI6

Page 75: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

Point

B

D

C

A

fxA / fAA

0

0.482

0.852

1.0

EIx

EIxMf xxA 6

18'3

−==

x (m)

0

2

4

6

x

A BC D

2 m 2 m 2 m

1 kNfAA fxA

72/EI 61.33 /EI34.67 /EI

fxA

0

EI67.34

EI33.61

EI72

34.67

61.3372

1 kN

Influence line of RA

/72 = 1.0/72=0.852

/72 = 0.4821=

AA

AA

ff

Page 76: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

AB

BA

y

RRRRF

−==−+

=Σ↑+

101

;0

A BC D

2 m 2 m 2 m

1x

RA

MA

RB

0.148.518

1RB

1RB

0.4820.852

1.01 kN

RA

Alternate Method: Use equilibrium conditions for the influence line of RA

RA = 1- RB

Page 77: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

VC

1

RB

0.1480.518

1

A BC D

2 m 2 m 2 mRA

MA

RB

0.8520.482

-0.148

1 x

1

Using equilibrium conditions for the influence line of VC

VC = 1 - RB

� Unit load to the left of C

RB

1 x

VC

MC

01

;0

=+−+

=Σ↑+

BC

y

RVF

RBVC

MC

VC = - RB

0;0

=++

=Σ↑+

CB

y

VRF

� Unit load to the left of C

Page 78: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

BA

BA

A

RxMRxM

M

6606)6(1

;0

++−==+−−−

A BC D

2 m 2 m 2 mRA

MA

RB

1 x

1

MA

1

RB

0.1480.518

1

-1.112 -0.892

Using equilibrium conditions for the influence line of MA

+

Page 79: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

MC

C

1

RB

0.1480.518

1

A BC D

2 m 2 m 2 m

1 x

RA

MA

RB

0.074

1

Using equilibrium conditions for the influence line of MC

0.592 RB

1 x

VC

MC

� Unit load to the left of C

RBVC

MC

4 m

MC = 4RB

+04

;0=+−

BC

C

RMM

� Unit load to the left of C

4 m

MC = -4 + x + 4RB

04)4(1;0

=+−−−=Σ

BC

C

RxMM+

Page 80: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

Example 2

Draw the influence line and plot numerical values every 2 m for- the vertical reaction at supports A, B and C- Shear at G and E- Bending moment at G and E

EI is constant.

A B CD E F

2@2=4 m 4@2 = 8 m

G

Page 81: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

Influence line of RA

1

A B CD E F

2@2=4 m 4@2 = 8 m

G

1=AA

AA

ff

AA

DA

ff

AA

EA

ff

AA

FA

ff

Page 82: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

4 /EI

1

A B CD E F

4 m 6 m2 m

� Find fxA by conjugate beam

Real beam

0.51.5

0

18.67/EI

64/EI

4/EI

4/EI

Conjugate beam

EI33.5

EI67.10

0

EI67.10 EI

Mf AAA64' ==

Page 83: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

x1x2

=−EI

xEI

x 13

1 33.512

EIEIEIx 67.18646

32 −+=

V´ x1

M´ x1

x1EIx

21

EI33.5

EIx

4

21

32 1x

31x

Conjugate beam

4/EI

4 m 8 m

64/EI

EI33.5

EI67.18

M´ x2

V´ x2

x2

EIx2

EIx2

22

32x

32 2x

EI67.18

EI64

Page 84: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

CtoBforEI

xEI

xMf xxA ,33.512

'3

1 −==

EI28

EI64

BtoAforEIEI

xEI

xMf xxA ,6467.186

' 23

22 +−==

fxA

0

0

EI16

EI10

EI14

x (m)

0

2

4

6

Point

C

F

E

D

B

A

8

12

G 10

fxA / fAA

0

-0.1562

-0.25

-0.2188

0

1

0.4375

x1x2

1

fAA fxA

A B CD E FG

4 m 6 m2 m

EI10−

EI16−

EI14−

EI28

EI64

1

Influence line of RA

-0.219 -0.25 -0.156

0.438

1=AA

AA

ff

Page 85: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

A B CD E FG

4 m 6 m2 m

Using equilibrium conditions for the influence line of RB

RB RCRA

x1

RA

1 -0.219 -0.25 -0.156

10.438

RB

1

0.4850.8751.07810.59

RB

0

0.485

0.875

1.078

1

0.5939

0

x (m)

0

2

4

6

Point

C

F

E

D

B

A

8

12

G 10

RA

0

-0.1562

-0.25

-0.2188

0

0.4375

1

AB

AB

C

RxR

RxRM

812

8

0128;0

−=

=−+−=Σ+

Page 86: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

A B CD E FG

4 m 6 m2 m

RA

1 -0.219 -0.25 -0.156

10.438

RB RCRA

x1

x (m)

0

2

4

6

Point

C

F

E

D

B

A

8

12

G 10

RA

0

-0.1562

-0.25

-0.2188

0

0.4375

1

RC

1

0.6719

0.375

0.1406

0

-0.0312

0 RC

1

10.672

0.3750.141

-0.0312

Using equilibrium conditions for the influence line of RC

18

5.0

08)8(14;0

+−=

=−−−=Σ+

xRR

RxRM

AC

CA

B

Page 87: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

A B CD E FG

4 m 6 m2 m

� Check ΣFy = 0

RB RCRA

x1

RA

1 -0.219 -0.25 -0.156

10.438

RB

1

0.490.8751.081

0.59

RC1

10.672

0.3750.141

-0.0312

1

;0

=++

=Σ↑+

CBA

y

RRRF

RC

1

0.6719

0.375

0.1406

0

-0.0312

0

Point

C

F

E

D

B

A

G

RA

0

-0.1562

-0.25

-0.2188

0

0.4375

1

RB

0

0.485

0.875

1.078

1

0.5939

0

ΣR

1

1

1

1

1

1

1

Page 88: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

VG

RA

1 -0.219 -0.25 -0.156

10.438

1x

VG = RA

RA

AVG

MG

� Unit load to the right of G

0.438

-0.219 -0.25 -0.156-0.5621

A B CD E FG

4 m 6 m2 m

Using equilibrium conditions for the influence line of VG

VG = RA - 1

RA

1x

AVG

MG

� Unit load to the left of G

01;0 =−−=Σ↑+ GAy VRF

Page 89: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

VE

RC1

10.672

0.3750.141

-0.0312

1x

0.6250.328

0.0312

-0.141-0.375

1

A B CD E FG

4 m 6 m2 m

Using equilibrium conditions for the influence line of VE

RCVE

ME

� Unit load to the left of E

VE = - RC

0;0 =+=Σ↑+ ECy VRF

VE = 1 - RC

� Unit load to the right of E

RC

1 x

VE

ME

01;0 =+−=Σ↑+ CEy RVF

Page 90: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

MG

RA

1 -0.219 -0.25 -0.156

10.438

1x

-0.438 -0.5 -0.312

1

A B CD E FG

4 m 6 m2 m

Using equilibrium conditions for the influence line of MG

0.876

MG = -2 + x + 2RA

� Unit load to the left of G

RA

1x

AVG

MG2 m

02)2(1;0

=−−+=Σ

AG

G

RxMM+

MG = 2RA

� Unit load to the right of G

RA

AVG

MG2 m

02;0

=−=Σ

AG

G

RMM+

Page 91: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

RC1

10.672

0.3750.141

-0.0312

ME

1x

1.5

0.6881

4 m 6 m2 m

A B CD E FG

Using equilibrium conditions for the influence line of ME

-0.125

0.564

RCVE

ME

4 m

� Unit load to the left of E

ME = 4RC

+ ΣME = 0;

ME = - 4 + x+ 4RC

� Unit load to the right of E

RC

1 x

VE

ME4 m

04)4(1;0

=+−−−=Σ+

CE

E

RxMM

Page 92: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

Example 3

For the beam shown(a) Draw quantitative influence lines for the reaction at supports A and B, andbending moment at B.(b) Determine all the reactions at supports, and also draw its quantitative shear,bending moment diagrams, and qualitative deflected curve for

- Only 10 kN downward at 6 m from A- Both 10 kN downward at 6 m from A and 20 kN downward at 4 m from A

10 kN

AC

B

4 m

2EI 3EI

2 m 2 m

20 kN

Page 93: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

411

fCA

fAAfEA

fDA

1

/fAA /fAA /fAA

/fAA

fCA

fAAfEA

fDA

AC

B

4 m

2EI 3EI

2 m 2 m

Influence line of RA

Page 94: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42Conjugate Beam

AC

B

4 m

2EI 3EI

2 m 2 m1Real Beam

� Find fxA by conjugate beam

1 kN

8 kN�m

x (m)V (kN)1 1

+

x (m) M (kN�m)

84

+

2EI

fAA = M´A = 60.44/EI

60.44/EI

12/EI

1.33EIEI67.2

Page 95: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

EI67.2

2EI

60.44/EI

Conjugate Beam12/EI

1.33EI

37.11/EI 17.77/EI 4.88/EI60.44/EI

0

RA = fxA/fAA

0.614 0.294 0.081

1

0

fxA

A C B

� Quantitative influence line of RA

Page 96: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

A B

4 m 2 m 2 m

Using equilibrium conditions for the influence line of RB and MB

RB = 1 - RA

10.386

0.706 0.919

0

MB = 8RA - (8-x)(1)0

-1.352-1.088 -1.648

0

RA RB

MB

RA

0.614 0.294 0.081

1

0

1x

Page 97: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

A B

4 m 2 m 2 m

Using equilibrium conditions for the influence line of VB

RA

0.614 0.294 0.081

1

0

-1-0.386

-0.706-0.919

0 VB = RA -1

RA

1x

VB = RA - 1

Page 98: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

A B

4 m 2 m 2 m

C

Using equilibrium conditions for the influence line of VC and MC

RA

RA

0.614 0.294 0.081

1

0

1x

RB

MB

MC = 4RAMC = 4RA - (4-x)(1)

MC

VC = RAVC = RA - 1

VC1

-0.386 -0.706

0.3240.4561.176

0.294 0.081 0

Page 99: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

A B

4 m 2 m 2 m

10 kN

RA

0.614 0.294 0.081

1

0

10(0.081)=0.81 kN

MA (kN�m)+

-

-13.53

4.86

V (kN)

-9.19

0.81 0.81

-

The quantitative shear and bending moment diagram and qualitative deflected curve

RB=9.19 kN

MB= 13.53 kN�m

Page 100: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

A B

4 m 2 m 2 m

10 kNThe quantitative shear and bending moment diagram and qualitative deflected curve

20 kN

20(.294) +1(0.081)= 6.69 kN

V (kN)

-23.31

6.69 6.69

--13.31 -23.31

MA (kN�m)+

-

-46.48

26.760.14

RA

0.614 0.294 0.081

1

0

RB=23.31 kN

MB=46.48 kN�m

Page 101: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

Example 1

Draw the influence line for - the vertical reaction at B

A BC D

2 m 2 m 2 m

APPENDIX�Muller-Breslau for the influence line of reaction, shear and moment�Influence lines for MDOF beams

Page 102: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

1 kN

Influence line of RA

A BC D

2 m 2 m 2 m

1=AA

AA

ff AA

CA

ff

AA

DA

ff

Page 103: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

Conjugate Beam

xV´x

M´x

EIB y

18' =

EIx

2

2

EIx

3x

32x

A BC D

2 m 2 m 2 m

Real Beam

1 kN

� Find fxA by conjugate beam

1 kN

6 kN�m

EIM A

72' =

x

EIB y

18' =

6 /EIEI18

=−EIx

EIx

618 3

Page 104: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

Point

B

D

C

A

fxA / fAA

0

0.482

0.852

1.0

x (m)

0

2

4

6

x

A BC D

2 m 2 m 2 m

1 kNfAA fxA

72/EI 61.33 /EI34.67 /EI

EIx

EIxMf xxA 6

18'3

−==

fxA

0

EI67.34

EI33.61

EI72

34.67

61.3372

1 kN

Influence line of RA

/72 = 1.0/72=0.852

/72 = 0.4821=

AA

AA

ff

Page 105: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

� Influence line of RB

1

A BC D

2 m 2 m 2 m

1=BB

BB

ff

BB

AB

ff

BB

CB

ff

BB

DB

ff

Page 106: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

Real BeamA BC D

2 m 2 m 2 m

Conjugate Beam

� Find fxB by conjugate beam

11

6 kN�m

x

=−+EI

xEIEI

x 18726

3

EI6

EI18

EI18

EI72

3x

32xV´x

M´x

x

EI72

EI18

EIx

2

2

EIx

Page 107: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

55

x (m)

0

2

4

6

Point

B

D

C

A

x

fxB / fBB

1

0.518

0.148

0

A BC D

2 m 2 m 2 m

1

fBB

fxB

0

72/EI37.33/EI10.67/EI

/72 = 0.518

/72 = 0.148/72 = 1

1

37.33

10.670

fBB

Influence line of RB

fBB= 1

72

EIx

EIEIxMf xxB

18726

'3

−+==

fxB

0

EI72

EI33.37

EI67.10

Page 108: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

Example 2

For the beam shown(a) Draw the influence line for the shear at D for the beam(b) Draw the influence line for the bending moment at D for the beamEI is constant.Plot numerical values every 2 m.

A B CD E

2 m 2 m 2 m 2 m

Page 109: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

A B CD ED

2 m 2 m 2 m 2 m

The influence line for the shear at D

1 kN

1 kN

DVD

1 kN

1 kNDD

ED

ff

1=DD

DD

ff

Page 110: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

A B CD E

2 m 2 m 2 m 2 m

2 kN�m

1 kN

1 kN2 k

1 kN

1 kN2 kN�m

1 kN2 kN1 kN

� Using conjugate beam for find fxD

1 kN

1 kN

Page 111: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

A B CD E

2 m 2 m 2 m 2 m

1 kN1 kN

Real beam

V( kN)

x (m)1

-1

M (kN �m) x (m)

4

Conjugate beam

4/EI

M´D

1 kN

1 kN2kN

Page 112: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

2 m 2 m 2 m 2 m

M´D

Conjugate beam

4/EI

AB

CD E

4/EI

0

8/EI

m38

� Determine M´D at D

EI316

EI38

128/3EI

4/EI

8/EI

m38

EI316

EI340

Page 113: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

=−=− )2)(3

8()32)(2(4

EIEIEI

EIEIEIEI 352)2)(

340(

3128)

32)(2( =−+=

EIEIEI 376)2)(

340()

32)(2( −=−=

128/3EI

2 m 2 m 2 m 2 m

Conjugate beam

4/EI

AB

CD E

EI38

EI340

V´DL

M´DL

2/EI2/EI

32

EI340

EI340 V´DR

M´DR

2/EI

32

128/3EI

2/EI2/EI

V´E

M´E

32

EI38

Page 114: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

128/3EI = M´D = fDD

V ´x (m) θ

fxD = M ´ x (m) ∆

EI376

EI340

−EI334

EI32

EI316

EI38

EI352

EI4

Influence line of VD = fxD/fDD

76

52

4

0.406 =128

/128 = -0.594 /(128/3) = -0.094

Conjugate beam

EI38128/3EI

2 m 2 m 2 m 2 m

4/EI

AB

CD E

EI340

Page 115: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

A B CD E

2 m 2 m 2 m 2 m

The influence line for the bending moment at D

1 kN �m1 kN �m

αDD

MD

DD

EDfα

DD

DDfα

Page 116: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

1 kN�m

0.5 kN1 kN�m

0.5 kN1 kN0.5 kN

2 m 2 m 2 m 2 m

0.5 kN 0.5 kN

0.5 kN1 k

A B CD E

1 kN �m1 kN �m

� Using conjugate beam for find fxD

Page 117: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

2 m 2 m 2 m 2 m

Real beamA B CD E

0.5 kN1 kN0.5 kN

1 kN �m1 kN �m

V (kN)

x (m)0.5

1

M (kN �m) x (m)

2

2/EI

Conjugate beam

Page 118: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

66

2/EI

4/EI

m38

EI38

2/EI

0

4/EI

m38

2 m 2 m 2 m 2 m

2/EI

Conjugate beam

EI34

EI38

EI332

EI34

Page 119: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

EIEIEI 326)2)(4()

32)(1( =+=

=−=− )2)(3

4()32)(1(2

EIEIEI

2 m 2 m 2 m 2 m

2/EI

Conjugate beam

EI332

EI34

EI4

M´D

V´D

1/EI1/EI

32

EI4

1/EI1/EI

V´E

M´E

32

EI34

Page 120: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68/(32/3) = -0.188-2Influence line of MD

813.03226

=

xD

xDfα

αDD = 32/3EI

2 m 2 m 2 m 2 m

2/EI

Conjugate beam

43EI

4EI

323EI

x (m)V ´ θEI4

EI38

EI31

EI34

EI317

EI5

fxD = M ´x (m) ∆

-2/EI

θD = 0.469 + 0.531 = 1 rad

θDL = 5/(32/3) = 0.469 rad.θDR = -17/32 = -0.531 rad.

26/3EI

Page 121: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

Example 3

Draw the influence line for the reactions at supports for the beam shown in thefigure below. EI is constant.

A DB C

5 m 5 m 5 m 5 m5 m 5 m

GE F

Page 122: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

Influence line for RD

A DB C GE F

5 m 5 m 5 m 5 m5 m 5 m

1

fBDfCD fDD fED fFD

fXD

1

fXD/fDD = Influence line for RD

DD

BD

ff 1=

DD

DD

ff

DD

CD

ff

DD

ED

ff

DD

FD

ff

Page 123: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71Conjugate beam

15 + (2/3)(15)

EI5.112

EI15

� Use the consistency deformation method

1

+

x RG

- Use conjugate beam for find ∆´G and fGG

∆´G + fGGRG = 0 ------(1)

1

Real beam

15 m 15 m

A G

1

15

1

Real beam

30 mA G

1

30

1

A G3@5 =15 m 3@5 =15 m

fGG

∆´G

1

=

112.5/EI

EIM CC

5.2812'' ==∆

Conjugate beam

20 m

EI15 EI

450

EIMf GGG

9000''' ==

EI450

Page 124: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

x RG = -0.3125 kN

090005.2812=+ GR

EIEI

↓−= ,3125.0 kNRG

Substitute ∆´G and fGG in (1) :

1

A G5.625

0.6875 0.3125

11

15

=

1

+

1

30

Page 125: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

73

8.182 m

6.818 m

EI16.35

EI98.15

EI01.23

)3

(2

3125.0 22

2 xx−

22 '13.28xMx

EI=+

)2

(6875.0625.5 12

11 xEI

xx −=

)3

2(2

6875. 12

1 xEI

x+

1

fBDfCD fDD fED fFD

A G3@5 =15 m 3@5 =15 m

Real beam5.625

0.6875 0.3125

� Use the conjugate beam for find fXD

28.13EIx1

x2

x1 = 5 m -----> fBD = M´1= 56/EI

x1 = 10 m -----> fCD = M´1= 166.7/EI

x1 = 15 m -----> fDD = M´1= 246.1/EI

x2 = 5 m -----> fFD = M´2= 134.1/EI

x2 = 10 m -----> fED = M´2= 229.1/EI

x2 = 15 m -----> fDD = M´2= 246.1/EI

A G Conjugate beamEI625.5

EI688.4−

Ax1

(5.625-0.6875x1)/EI

V´1

M´1

EI625.5 EI

xx 211 6875.0625.5 −EI

x2

6875.0 21

G

x2

0.3125x2

V´2M´2

EI13.28

EIx

23125.0 2

2

Page 126: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

74

� Influence Line for RD

Influence Line for RD

0.228 0.677 1.0 0.931 0.545

1

fXD

EI56

EI7.166

EI1.246

EI2.229

EI1.134

1

fXD/fDD

1.24656

1.2467.166

1.2461.246

1.2462.229

1.2461.134

Page 127: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

75

Influence line for RG

A DB C GE F

5 m 5 m 5 m 5 m5 m 5 m

fXG

1fBG fCG

fGGfEGfFG

fXG/fGG

1GG

BG

ff

GG

CG

ff

GG

EG

ff

GG

FG

ff 1=

GG

GG

ff

Page 128: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

76Conjugate beam

20 m

EI450

EI30

� Use consistency deformations

1

=

∆´D + fDDRD = 0 ------(2)

- Use conjugate beam for find ∆´D and fDD

1

+1

Real beam

30 mA G

1

30

1

Real beam

15 m 15 m

A G

1

15

X RD

fXG

13@5 =15 m 3@5 =15 m

∆´D

fDD

Conjugate beam15 + (2/3)(15)

EI15

EI5.112

450/EI

EI9000

Page 129: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

77

EIEIEIEIMD

5.2812)15(4509000)3

15(5.112'' =−+==∆EIEI

MfDD1125)15

32(5.112'' =×==

↓=−==+ ,5.25.2,011255.2812 kNkNRREIEI DDSubstitute ∆´D and fDD in (2) :

x RD = -2.5 kN

=

1

11

30+

11

15

1.5

7.5

2.5

15 mV´

M´EI

5.112

EI5.1

450/EI

EI9000

M´´

V´´

EI15 EI

5.112

Page 130: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

78

EIEIfBG

5.62)532(75.18

−=×−==

� Use the conjugate beam for find fXG

Real beam

1fBG fCG

fGGfEGfFG

3@5 =15 m 3@5 =15 m1.5

7.5

2.5

fGG = M´G = 1968.56/EI

168.75/EI

EIEIfCG

06.125)67.6(75.18−=−==

A G Conjugate beam

EI5.7−

EI15

10 m

15 + (10/3) = 18.33 m

25 + (2/3)(5) = 28.33 m

EI5.112

EI75

EI75.18

A5 m

V´1

M´1

EI5.7−

EI75.18

A6.67 m

V´2

M´2

EI75.18

EI5.7−

EI75.18−

Page 131: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

79

=−+ 33

23 75.16856.1968)

3(

2x

EIEIxx

x = 5 m -----> fFG = M´= 1145.64/EI

x = 10 m -----> fEG = M´ = 447.73/EI

Influence line for RG-0.064-0.032

0.227 0.582 1.0

M´ Gx

fGG = M´G = 1968.56/EI

168.75/EI

x

V´2

2

2x

1

fXG

EI5.62−

EI125−

EI73.447

EI64.1145

EI56.1968

56.19685.62−

56.1968125−

56.196873.447

56.196864.1145

56.196856.1968

1

fXG/fGG

Page 132: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

80

Using equilibrium condition for the influence line for Ay

A DB C GE F

5 m 5 m 5 m 5 m5 m 5 m

1x

MA

Ay RD RG

Unit load

1 1

Influence Line for RD

0.228 0.678 1.0 0.929 0.542

Influence line for RG-0.064-0.032

0.227 0.582 1.0

0.386Influence line for Ay

0.804

-0.156 -0.124

1.0

CDAy RRRF −−==Σ↑+ 1:0

Page 133: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

81

Using equilibrium condition for the influence line for MA

A DB C GE F

5 m 5 m 5 m 5 m5 m 5 m

1x

MA

Ay RD RG

x 15

x 30

RD

0.228 0.678 1.0 0.929 0.542

1x5 10 15 20 25 30

RG-0.064-0.032

0.227 0.582 1.0

Influence line for MA

2.541.75

-0.745 -0.59

CDA RRxM 30151:0 −−=Σ+

Page 134: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! General Case! Stiffness Coefficients! Stiffness Coefficients Derivation! Fixed-End Moments! Pin-Supported End Span! Typical Problems! Analysis of Beams! Analysis of Frames: No Sidesway! Analysis of Frames: Sidesway

DISPLACEMENT METHOD OF ANALYSIS: SLOPE DEFLECTION EQUATIONS

Page 135: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

Slope � Deflection Equations

settlement = ∆j

Pi j kw Cj

Mij MjiwP

θj

θi

ψ

i j

Page 136: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

Degrees of Freedom

L

θΑ

A B

M

1 DOF: θΑ

PθΑ

θΒΒΒΒ

A BC 2 DOF: θΑ , θΒΒΒΒ

Page 137: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

L

A B

1

Stiffness

kBAkAA

LEIkAA

4=

LEIkBA

2=

Page 138: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

L

A B1

kBBkAB

LEIkBB

4=

LEIkAB

2=

Page 139: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

Fixed-End ForcesFixed-End Moments: Loads

P

L/2 L/2

L

w

L

8PL

8PL

2P

2P

12

2wL12

2wL

2wL

2wL

Page 140: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

General Case

settlement = ∆j

Pi j kw Cj

Mij MjiwP

θj

θi

ψ

i j

Page 141: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

wP

settlement = ∆j

(MFij)∆ (MF

ji)∆

(MFij)Load (MF

ji)Load

+

Mij Mji

θi

θj

+

i jwPMij

Mji

settlement = ∆jθj

θi

ψ

=+ ji LEI

LEI θθ 24

ji LEI

LEI θθ 42

+=

,)()()2()4( LoadijF

ijF

jiij MMLEI

LEIM +++= ∆θθ Loadji

Fji

Fjiji MM

LEI

LEIM )()()4()2( +++= ∆θθ

L

Page 142: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

Mji Mjk

Pi j kw Cj

Mji Mjk

Cj

j

Equilibrium Equations

0:0 =+−−=Σ+ jjkjij CMMM

Page 143: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

+

1

1

i jMij Mji

θi

θj

LEIkii

4=

LEIk ji

2=

LEIkij

2=

LEIk jj

4=

iθ×

jθ×

Stiffness Coefficients

L

Page 144: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

[ ]

=

jjji

ijii

kkkk

k

Stiffness Matrix

)()2()4( ijF

jiij MLEI

LEIM ++= θθ

)()4()2( jiF

jiji MLEI

LEIM ++= θθ

+

=

F

ji

Fij

j

iI

ji

ij

MM

LEILEILEILEI

MM

θθ

)/4()/2()/2()/4(

Matrix Formulation

Page 145: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

[D] = [K]-1([Q] - [FEM])

Displacementmatrix

Stiffness matrix

Force matrixwP(MF

ij)Load (MFji)Load

+

+

i jwPMij

Mji

θj

θi

ψ ∆j

Mij Mji

θi

θj

(MFij)∆ (MF

ji)∆

Fixed-end momentmatrix

][]][[][ FEMKM += θ

]][[])[]([ θKFEMM =−

][][][][ 1 FEMMK −= −θ

L

Page 146: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

L

Real beam

Conjugate beam

Stiffness Coefficients Derivation: Fixed-End Support

MjMi

L/3

θi

LMM ji +

EIM j

EIMi

θι

EILM j

2

EILMi

2

)1(2

0)3

2)(2

()3

)(2

(:0'

−−−=

=+−=Σ+

ji

jii

MM

LEI

LMLEI

LMM

)2(0)2

()2

(:0 −−−=+−=Σ↑+EI

LMEI

LMF jiiy θ ij

ii

LEIM

LEIM

andFrom

θ

θ

)2(

)4(

);2()1(

=

=

LMM ji +

i j

Page 147: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

Conjugate beam

L

Real beam

Stiffness Coefficients Derivation: Pinned-End Support

Mi θi

θj

LM i

LMi

EIM i

EILMi

2

32L

θi θj

0)3

2)(2

(:0' =−=Σ+ LLEI

LMM ii

j θ

i j

0)2

()3

(:0 =+−=Σ↑+ jii

y EILM

EILMF θ

LEIM

EILM

ii

i3)

3(1 =→==θ

)6

(EI

LM ij

−=θ)

3(

EILM i

i =θ

Page 148: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

Fixed end moment : Point Load

Real beam

8,0

162

22:0

2 PLMEI

PLEI

MLEI

MLFy ==+−−=Σ↑+

P

M

M EIM

Conjugate beamA

EIM

B

L

P

A B

EIM

EIML2

EIM

EIML2

EIPL

16

2

EIPL4 EI

PL16

2

Page 149: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

L

P

841616PLPLPLPL

=+−

+−

8PL

8PL

2P

2PP/2

P/2

-PL/8 -PL/8

PL/8

-PL/16-PL/8

-

PL/4+

-PL/16-PL/8-

Page 150: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

Uniform load

L

w

A B

w

M

M

Real beam Conjugate beam

A

EIM

EIM

B

12,0

242

22:0

23 wLMEI

wLEI

MLEI

MLFy ==+−−=Σ↑+

EIwL8

2

EIwL

24

3

EIwL

24

3

EIM

EIML2

EIM

EIML2

Page 151: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

Settlements

M

M

L

MjMi = Mj

LMM ji +L

MM ji +

Real beam

2

6LEIM ∆

=

Conjugate beam

EIM

A B

EIM

,0)3

2)(2

()3

)(2

(:0 =+−∆−=Σ+L

EIMLL

EIMLM B

EIM

EIML2

EIMEI

ML2

Page 152: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

wP

A B

A B+θA θB

(FEM)AB(FEM)BA

Pin-Supported End Span: Simple Case

BA LEI

LEI θθ 24

+ BA LEI

LEI θθ 42

+

)1()()/2()/4(0 −−−++== ABBAAB FEMLEILEIM θθ

)2()()/4()/2(0 −−−++== BABABA FEMLEILEIM θθ

BABABBA FEMFEMLEIM )()(2)/6(2:)1()2(2 −+=− θ

2)()()/3( BA

BABBAFEMFEMLEIM −+= θ

wP

AB

L

Page 153: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

AB

wP

A B

A BθA θB

(MF AB)load

(MF BA)load

Pin-Supported End Span: With End Couple and Settlement

BA LEI

LEI θθ 24

+ BA LEI

LEI θθ 42

+

L

(MF AB)∆

(MF BA) ∆

)1()()(24−−−+++== ∆

FABload

FABBAAAB MM

LEI

LEIMM θθ

)2()()(42−−−+++= ∆

FBAload

FBABABA MM

LEI

LEIM θθ

2)(

21])(

21)[(3:

2)1()2(2lim AF

BAloadFABload

FBABBAA

MMMMLEIMbyinateE ++−+=

−∆θθ

MA

wP

AB

Page 154: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

Fixed-End MomentsFixed-End Moments: Loads

P

L/2 L/2

P

L/2 L/2

8PL

8PL

163)]

8()[

21(

8PLPLPL

=−−+

12

2wL12

2wL

8)]

12()[

21(

12

222 wLwLwL=−−+

Page 155: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

Typical Problem

0

0

0

0

A C

B

P1P2

L1 L2

wCB

P

8PL

8PL w12

2wL

12

2wL

8024 11

11

LPLEI

LEIM BAAB +++= θθ

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

128042 2

222

22

wLLPLEI

LEIM CBCB −

−+++= θθ

L L

Page 156: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

MBA MBC

A C

B

P1P2

L1 L2

wCB

B

CB

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

BBCBABB forSolveMMCM θ→=−−=Σ+ 0:0

Page 157: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

A C

B

P1P2

L1 L2

wCB

Substitute θB in MAB, MBA, MBC, MCB

MABMBA

MBC

MCB

0

0

0

0

8024 11

11

LPLEI

LEIM BAAB +++= θθ

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

128042 2

222

22

wLLPLEI

LEIM CBCB −

−+++= θθ

Page 158: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

A BP1

MAB

MBA

L1

A CB

P1P2

L1 L2

wCB

ByR CyAy ByL

Ay Cy

MABMBA

MBC

MCB

By = ByL + ByR

B CP2

MBCMCB

L2

Page 159: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

Example of Beams

Page 160: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

10 kN 6 kN/m

A C

B 6 m4 m4 m

Example 1

Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.

Page 161: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

PPL8 wwL2

30FEM

PL8

wL2

20

MBA MBC

B

Substitute θB in the moment equations:

MBC = 8.8 kN�m

MCB = -10 kN�m

MAB = 10.6 kN�m,

MBA = - 8.8 kN�m,

[M] = [K][Q] + [FEM]

10 kN 6 kN/m

A C

B 6 m4 m4 m

0

0

0

0

8)8)(10(

82

84

++= BAABEIEIM θθ

8)8)(10(

84

82

−+= BABAEIEIM θθ

30)6)(6(

62

64 2

++= CBBCEIEIM θθ

20)6)(6(

64

62 2

−+= CBCBEIEIM θθ

0:0 =−−=Σ+ BCBAB MMM

EI

EIEI

B

B

4.2

030

)6)(6(10)6

48

4(2

=

=+−+

θ

θ

Page 162: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

10 kN 6 kN/m

A C

B 6 m4 m4 m

MBC = 8.8 kN�m

MCB= -10 kN�m

MAB = 10.6 kN�m,

MBA = - 8.8 kN�m,

= 5.23 kN = 4.78 kN = 5.8 kN = 12.2 kN

10 kN�m8.8 kN�m

10.6 kN�m8.8 kN�m

10 kN

10.6 kN�m

8.8 kN�m

A B

ByLAy

2 m

6 kN/m8.8 kN�m

10 kN�mB

CyByR

18 kN

Page 163: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

10 kN 6 kN/m

A C

B 6 m4 m4 m

10 kN�m10.6 kN�m

5.23 kN 12.2 kN

4.78 + 5.8 = 10.58 kN

V (kN)x (m)

5.23

- 4.78

5.8

-12.2

+-

+

-

M (kN�m) x (m)

-10.6

10.3

-8.8 -10- -

+-

EIB4.2

Deflected shape x (m)

Page 164: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

10 kN 6 kN/m

A C

B 6 m4 m4 m

Example 2

Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.

Page 165: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

PPL8 wwL2

30FEM

PL8

wL2

20

[M] = [K][Q] + [FEM]

10 kN 6 kN/m

A C

B 6 m4 m4 m

)1(8

)8)(10(8

28

4−−−++= BAAB

EIEIM θθ

)2(8

)8)(10(8

48

2−−−−+= BABA

EIEIM θθ

)3(30

)6)(6(6

26

4 2

−−−++= CBBCEIEIM θθ

)4(20

)6)(6(6

46

2 2

−−−−+= CBCBEIEIM θθ

10

10

0

0

0

308

62:)1()2(2 −=− BBAEIM θ

)5(158

3−−−−= BBA

EIM θ

Page 166: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

MBA MBC

B

)5(158

3−−−−= BBA

EIM θ

)3(30

)6)(6(6

4 2

−−−+= BBCEIM θ

0:0 =−−=Σ+ BCBAB MMM

EI

EIEI

B

B

488.7

)6(030

)6)(6(15)6

48

3(2

=

−−−=+−+

θ

θ

EI

EIEIinSubstitute

A

BAB

74.23

108

28

40:)1(

−=

−+=

θ

θθθ

Substitute θA and θB in (5), (3) and (4):

MBC = 12.19 kN�m

MCB = - 8.30 kN�m

MBA = - 12.19 kN�m)4(

20)6)(6(

62 2

−−−−= BCBEIM θ

Page 167: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

10 kN 6 kN/m

A C

B 6 m4 m4 m

MBA = - 12.19 kN�m, MBC = 12.19 kN�m, MCB = - 8.30 kN�m

= 3.48 kN = 6.52 kN = 6.65 kN = 11.35 kN

12.19 kN�m

12.19 kN�m8.30 kN�m

10 kN

12.19 kN�m

A B

ByLAy

2 m

6 kN/m12.19 kN�m

8.30 kN�mC

CyByR

18 kN

B

Page 168: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

Deflected shape x (m)EIB49.7

10 kN 6 kN/m

A C

B 6 m4 m4 m

V (kN)x (m)

3.48

- 6.52

6.65

-11.35

M (kN�m) x (m)

14

-12.2-8.3

11.35 kN3.48 kN

6.52 + 6.65 = 13.17 kN

EIA74.23−

Page 169: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

Example 3

Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.

Page 170: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI(4)(62)/12 (4)(62)/12 (10)(8)/8(10)(8)/8

15

12

)1(8

)8)(10(8

)2(28

)2(4−−−++= BAAB

EIEIM θθ

)2(8

)8)(10(8

)2(48

)2(2−−−−+= BABA

EIEIM θθ

0 10

10

)2(8

)8)(10)(2/3(8

)2(3:2

)1()2(2 aEIM BBA −−−−=− θ

)3(12

)6)(4(6

)3(4 2

−−−+= BBCEIM θ

Page 171: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI(4)(62)/12 (4)(62)/12(3/2)(10)(8)/8

EIEIMM

B

BBCBA

/091.13151275.2:0

==+−==−−

θθ

15

12

)2(8

)8)(10)(2/3(8

)2(3 aEIM BBA −−−−= θ

)3(12

)6)(4(6

)3(4 2

−−−+= BBCEIM θ

mkNEIM

mkNEI

EIM

mkNEI

EIM

BCB

BC

BA

•−=−=

•=−=

•−=−=

91.10126

)3(2

18.1412)091.1(6

)3(4

18.1415)091.1(8

)2(3

θ

Page 172: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

MBA = - 14.18 kN�m, MBC = 14.18 kN�m, MCB = -10.91 kN�m

14.18

140.18 kN�m

10 kN

A B

ByLAy = 6.73 kN= 3.23 kN

14.18 kN�m

10.91 kN�m

4 kN/m

C

CyByR

24 kN

14.18 10.91

= 11.46 kN= 12.55 kN

Page 173: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

11.46 kN3.23 kN

10.91 kN�m

V (kN)x (m)

3.23

-6.73

12.55

-11.46

+-

+-

2.86

M (kN�m) x (m)

12.91

-14.18

5.53

-10.91

+

-+

-

6.77 + 12.55 = 19.32 kN

θB = 1.091/EIDeflected shape x (m)

Page 174: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

Example 4

Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.

12 kN�m

Page 175: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

12 kN�m

wL2/12 = 12 wL2/12 = 121.5PL/8 = 15

MBA

MBCB

12 kN�mMBA

MBC

EIB273.3

−=θ

EIA21.7

−=θ

)1(158

)2(3−−−−= BBA

EIM θ

)2(126

)3(4−−−+= BBC

EIM θ

)3(126

)3(2−−−−= BCB

EIM θ

8)8)(10(

8)3(2

8)2(4

++= BAABEIEIM θθ

0 -3.273/EI

012:int =−−− BCBA MMBJo

012)122()1575.0( =−+−−− BEIEI θ

mkNEI

EIM BA •−=−−= 45.1715)273.3(75.0

mkNEI

EIM BC •=+−= 45.512)273.3(2

mkNEI

EIM CB •−=−−= 27.1512)273.3(

Page 176: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

10 kN

A B

4 kN/m

C

24 kN

17.45 kN�m5.45 kN�m

15.27 kN�m

2.82 kN 13.64 kN10.36 kN7.18 kN

12 kN�m10 kN 4 kN/m

A C

B13.64 kN2.82 kN

15.27 kN�m

17.54 kN

mkNEI

EIM BA •−=−−= 45.1715)273.3(75.0

mkNEI

EIM BC •=+−= 45.512)273.3(2

mkNEI

EIM CB •−=−−= 27.1512)273.3(

Page 177: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

10 kN 4 kN/m

A C

B6 m4 m4 m

2EI 3EI

12 kN�m

13.64 kN2.82 kN

15.27 kN�m

17.54 kN

V (kN)x (m)3.41 m+

-+

-

2.82

-7.18

10.36

-13.64

M (kN�m) x (m)+

- -+

11.28

-17.45

-5.45-15.27

7.98

Deflected shape x (m)

EIB273.3

=θEIA

21.7−=θ

EIB273.3

−=θ

EIA21.7

−=θ

Page 178: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

Example 5

Draw the quantitative shear, bending moment diagrams, and qualitativedeflected curve for the beam shown. Support B settles 10 mm, and EI isconstant. Take E = 200 GPa, I = 200x106 mm4.

12 kN�m 10 kN 6 kN/m

A CB

6 m4 m4 m

2EI 3EI10 mm

Page 179: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

12 kN�m 10 kN 6 kN/m

A CB

6 m4 m4 m

2EI 3EI10 mm

[FEM]∆

A

B

2

6LEI∆

2

6LEI∆

BC

2

6LEI∆

2

6LEI∆

P w

[FEM]load

8PL

8PL

30

2wL30

2wL

)1(8

)8)(10(8

)01.0)(2(68

)2(28

)2(42 −−−+++=

EIEIEIM BAAB θθ

)2(8

)8)(10(8

)01.0)(2(68

)2(48

)2(22 −−−−++=

EIEIEIM BABA θθ

)3(30

)6)(6(6

)01.0)(3(66

)3(26

)3(4 2

2 −−−+−+=EIEIEIM CBBC θθ

)4(30

)6)(6(6

)01.0)(3(66

)3(46

)3(2 2

2 −−−−−+=EIEIEIM CBCB θθ

-12

0

0

Page 180: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

12 kN�m 10 kN 6 kN/m

A CB

6 m4 m4 m

2EI 3EI10 mm

Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN� m2 :

)1(8

)8)(10(8

)01.0)(2(68

)2(28

)2(42 −−−+++=

EIEIEIM BAAB θθ

)2(8

)8)(10(8

)01.0)(2(68

)2(48

)2(22 −−−−++=

EIEIEIM BABA θθ

)1(10758

)2(28

)2(4−−−+++= BAAB

EIEIM θθ

)2(10758

)2(48

)2(2−−−−++= BABA

EIEIM θθ

)2(2/12)2/10(10)2/75(758

)2(3:2

)1()2(2 aEIM BBA −−−−−−−+=− θ

16.5

Page 181: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

+ ΣMB = 0: - MBA - MBC = 0 (3/4 + 2)EIθB + 16.5 - 192.8 = 0

θB = 64.109/ EI

Substitute θB in (1): θA = -129.06/EI

Substitute θA and θB in (5), (3), (4):

MBC = -64.58 kN�m

MCB = -146.69 kN�m

MBA = 64.58 kN�m,

MBA MBC

B

12 kN�m 10 kN 6 kN/m

A CB

6 m4 m4 m

2EI 3EI10 mm

MBC = (4/6)(3EI)θB - 192.8

MBA = (3/4)(2EI)θB + 16.5

Page 182: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

12 kN�m 10 kN 6 kN/m

A CB

6 m4 m4 m

64.58 kN�m 64.58 kN�m

= -1.57 kN= 11.57 kN

146.69 kN�m

= 47.21 kN= -29.21 kN

10 kN

A B

ByLAy

12 kN�m64.58 kN�m

2 m

6 kN/m

C

CyByR

18 kN

B

64.58 kN�m

146.69 kN�m

MBC = -64.58 kN�m

MCB = -146.69 kN�m

MBA = 64.58 kN�m,

Page 183: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

12 kN�m 10 kN 6 kN/m

A C

B6 m4 m4 m

2EI 3EI

V (kN)x (m)

11.57 1.57

-29.21-47.21

-+

M (kN�m) x (m)

1258.29 64.58

-146.69

+

-

47.21 kN

146.69 kN�m

11.57 kN

1.57 + 29.21 = 30.78 kN

10 mmθA = -129.06/EI

θB = 64.109/ EIθA = -129.06/EI

Deflected shape x (m)

θB = 64.109/ EI

Page 184: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

Example 6

For the beam shown, support A settles 10 mm downward, use the slope-deflectionmethod to(a)Determine all the slopes at supports(b)Determine all the reactions at supports(c)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape. (3 points)Take E= 200 GPa, I = 50(106) mm4.

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

Page 185: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

)1(3

)2(4−−−= CCB

EIM θ

)2(1005.43

)5.1(23

)5.1(4−−−+++= ACCA

EIEIM θθ

)2(2

122

1002

)5.4(33

)5.1(3:2

)2()2(2 aEIM CCA −−−+++=− θ

)3(1005.43

)5.1(43

)5.1(2−−−+−+= ACAC

EIEIM θθ12

0.01 m

C

AmkN •=

××

1003

)01.0)(502005.1(62

mkN •100MF

10 mm

6 kN/m

A C

5.412

)3(6 2

= 4.5MF

w

Page 186: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

)1(3

)2(4−−−= CCB

EIM θ

)2(2

122

1002

)5.4(33

)5.1(3 aEIM CCA −−−+++= θ

10 mm

MCBMCA

C

0=+ CACB MM

02

122

1002

)5.4(33

)5.48(=+++

+C

EI θ

radEIC 0015.006.15

−=−

)3(1005.43

)5.1(4)06.15(3

)5.1(212 −−−+−+−

= AEI

EIEI θSubstitute θC in eq.(3)

radEIA 0034.022.34

−=−

� Equilibrium equation:

Page 187: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

radEIC 0015.006.15

−=−

=θ radEIA 0034.022.34

−=−

mkNEI

EIEIM CBC •−=−

== 08.20)06.15(3

)2(23

)2(2 θ

mkNEI

EIEIM CCB •−=−

== 16.40)06.15(3

)2(43

)2(4 θ

kN08.203

08.2016.40=

+kN08.20

B C40.16 kN�m20.08 kN�m

6 kN/m

AC

12 kN�m

40.16 kN�m

18 kN

8.39 kN26.39 kN

Page 188: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

55

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

6 kN/m

AC

12 kN�m

40.16 kN�m8.39 kN26.39 kN

B C40.16 kN�m20.08 kN�m

20.08 kN20.08 kN

V (kN)

x (m)

26.398.39

-20.08

+-

M (kN�m)

x (m)20.08

-40.16

12

radC 0015.0−=θ

radA 0034.0−=θ

Deflected shapex (m)

radC 0015.0=θ

radA 0034.0=θ

Page 189: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

Example 7

For the beam shown, support A settles 10 mm downward, use theslope-deflection method to(a)Determine all the slopes at supports(b)Determine all the reactions at supports(c)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape.Take E= 200 GPa, I = 50(106) mm4.

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

Page 190: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

5.412

)3(6 2

=

6 kN/m

AC4.5

mkN •=

××

1003

)01.0)(502005.1(620.01 m

C

A

100

34 CEI∆

∆C

CB

34

3)2(6

2CC EIEI ∆

=∆

)2(3

43

)2(4−−−∆−= CCCB

EIEIM θ

)3(1005.43

)5.1(23

)5.1(4−−++∆++= CACCA EIEIEIM θθ

)4(1005.43

)5.1(43

)5.1(2−−+−∆++= CACAC EIEIEIM θθ

12

)1(3

43

)2(2−−−∆−= CCBC

EIEIM θ

)3(2

122

1002

)5.4(323

)5.1(3:2

)4()3(2 aEIEIM CCCA −−−+++∆+=− θ

CC EIEI

∆=∆

23)5.1(6∆C

C

A

CEI∆

Page 191: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

� Equilibrium equation:

)3

()( CBBCCBy

MMC +−=

6 kN/m

AC

12 kN�m

MCA

18 kN

AyB C

MCBMBC

By3

393

)5.1(1812)( +=

++= CACA

CAyMMC

C

MCB MCA

(Cy)CA(Cy)CB

*)1(0:0 −−−=+=Σ CACBC MMM

*)2(0)()(:0 −−−=+=Σ CAyCByy CCC

)5(15.628333.0167.4*)1( −−−−=∆− CC EIEIinSubstitute θ

)6(75.101167.35.2*)2( −−−−=∆+− CC EIEIinSubstitute θ

mmEIradEIandFrom CC 227.5/27.5200255.0/51.25)6()5( −=−=∆−=−=θ

Page 192: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

� Solve equation

radEIC 00255.051.25

−=−

mmEIC 227.527.52

−=−

=∆

Substitute θC and ∆C in (4)

radEIA 000286.086.2

−=−

Substitute θC and ∆C in (1), (2) and (3a)

mkNM BC •= 68.35

mkNMCB •= 67.1

mkNMCA •−= 67.1

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

35.68 kN�m

kN

Ay

55.56

68.3512)5.4(18

=

−−=

kNBy

45.12

55.518

=

−=

Page 193: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

10 mm

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

35.68 kN�m

12.45 kN 5.55 kN

Deflected shape

x (m)

radC 00255.0−=θ

mmC 227.5−=∆

radA 000286.0−=θ

radC 00255.0=θradA 000286.0=θ

mmC 227.5=∆

M (kN�m)

x (m)1214.57

1.67

-35.68

-+

V (kN)

x (m)0.925 m12.45

-5.55

+

Page 194: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

Example of Frame: No Sidesway

Page 195: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

Example 6

For the frame shown, use the slope-deflection method to (a) Determine the end moments of each member and reactions at supports(b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame.

10 kN

C

12 kN/m

A

B

6 m

40 kN

3 m

3 m

1 m

2EI

3EI

Page 196: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

10 kN

C

12 kN/m

A

B

6 m

40 kN

3 m

3 m

1 m

2EI

3EIPL/8 = 30

PL/8 = 30

� Equilibrium equations

10

MBC

MBA

)3(18366

)2(3−−−++= BBC

EIM θ

*)1(010 −−−=−− BCBA MM

05430310 =−+− BEIθ

EIEIB667.4

)3(14 −

=−

=θ)1(30

6)3(2

−−−+= BABEIM θ

mkNMmkNM

mkNM

BC

BA

AB

•=•−=

•=

33.4933.39

33.25

36/2 = 18

(wL2/12 ) =3636

� Slope-Deflection Equations

)2(306

)3(4−−−−= BBA

EIM θ

Substitute (2) and (3) in (1*)

)3()1(667.4 toinEI

Substitute B−

Page 197: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

10 kN

C

12 kN/m

A

B

6 m

40 kN

3 m

3 m

1 m

2EI

3EI39.33

25.33

49.33

A

B

40 kN

39.33

25.33

C

12 kN/m

B49.33

17.67 kN

27.78 kN

Bending moment diagram

-25.33

27.7

-39.3

Deflected curve

-49.33

20.58

10

θB = -4.667/EIθB

θB

MAB = 25.33 kN�m

MBA = -39.33 kN�m

MBC = 49.33 kN�m

Page 198: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

A

B

C

D

E

25 kN

5 m

5 kN/m

60(106) mm4

240(106) mm4 180(106)

120(106) mm4

3 m 4 m3 m

Example 7

Draw the quantitative shear, bending moment diagrams and qualitativedeflected curve for the frame shown. E = 200 GPa.

Page 199: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

66

A

B

C

D

E

25 kN

5 m

5 kN/m

60(106) mm4

240(106) mm4 180(106)

120(106) mm4

3 m 4 m3 m0

BAABEIEIM θθ

5)2(2

5)2(4

+=0

BABAEIEIM θθ

5)2(4

5)2(2

+=

75.186

)4(26

)4(4++= CBBC

EIEIM θθ

75.186

)4(46

)4(2−+= CBCB

EIEIM θθ

CCDEIM θ5

)(3=

104

)3(3+= CCE

EIM θ

0=+ BCBA MM

)1(75.18)68()

616

58( −−−−=++ CB EIEI θθ

0=++ CECDCB MMM

)2(75.8)49

53

616()

68( −−−=+++ CB EIEI θθ

EIEIandFrom CB

86.229.5:)2()1( =−

= θθ

PL/8 = 18.75 18.75

6.667 (wL2/12 ) = 6.667+ 3.333

Page 200: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

MAB = −4.23 kN�m

MBA = −8.46 kN�m

MBC = 8.46 kN�m

MCB = −18.18 kN�m

MCD = 1.72 kN�m

MCE = 16.44 kN�m

Substitute θB = -1.11/EI, θc = -20.59/EI below

0

0BAAB

EIEIM θθ5

)2(25

)2(4+=

BABAEIEIM θθ

5)2(4

5)2(2

+=

75.186

)4(26

)4(4++= CBBC

EIEIM θθ

75.186

)4(46

)4(2−+= CBCB

EIEIM θθ

CCDEIM θ5

)(3=

104

)3(3+= CCE

EIM θ

Page 201: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68

MAB = -4.23 kN�m, MBA = -8.46 kN�m, MBC = 8.46 kN�m, MCB = -18.18 kN�m,MCD = 1.72 kN�m, MCE = 16.44 kN�m

A

B

5 m

C E

20 kN

A

B

5 m

4.23 kN�m

2.54 kN

(8.46 + 4.23)/5 = 2.54 kN

8.46 kN�m

C

25 kN

B 3 m 3 m2.54 kN 2.54 kN

8.46 kN�m(25(3)+8.46-18.18)/6 = 10.88 kN

14.12 kN18.18 kN�m

16.44 kN�m

(20(2)+16.44)/4= 14.11 kN

5.89 kN

0.34 kN

28.23 kN

14.12+14.11=28.23 kN1.72 kN�m

(1.72)/5 = 0.34 kN

10.88 kN

10.88 kN

2.54-0.34=2.2 kN

2.2 kN

Page 202: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

Shear diagram

-2.54

-2.54

10.88

-14.12

14.11

-5.89

0.34

+

-

-

+-

+

2.82 m

1.18 m

Deflected curve

1.18 m

0.78 m2.33 m1.29 m

1.67m

1.29 m

0.78 m

Moment diagram

1.18 m

3.46

24.18

1.72

-18.18 -16.44

4.23

-8.46-8.46

2.33 m

+

-

+

- -

+

θB = −5.29/EI

θC = 2.86/EI1.67m

Page 203: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

Example of Frames: Sidesway

Page 204: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71

A

B C

D

3m

10 kN

3 m

1 m

Example 8

Determine the moments at each joint of the frame and draw the quantitativebending moment diagrams and qualitative deflected curve . The joints at A andD are fixed and joint C is assumed pin-connected. EI is constant for each member

Page 205: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

A

B C

D

3m

10 kN

3 m

1 m

MABMDC

Ax Dx

Ay Dy

� Boundary Conditions

θA = θD = 0

� Equilibrium Conditions

� Unknowns

θB and ∆

- Entire Frame

*)2(010:0 −−−=−−=Σ→+

xxx DAF

*)1(0:0 −−−=+=Σ BCBAB MMM

� Overview

B- Joint B

MBCMBA

Page 206: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

73

)3(3

)(3−−−= BBC

EIM θ

)4(1875.0375.021375.0 −−−∆=∆−∆= EIEIEIM DC

)1(4

64

)1)(3(104

)(222

2

−−−∆

++=EIEIM BAB θ

5.625 0.375EI∆

A

B C

D3m

10 kN

3 m

1 m

(5.625)load

(1.875)load

(0.375EI∆)∆

(0.375EI∆)∆

(0.375EI∆)∆

(0.375EI∆)∆

:0=Σ+ CM

MDC

D

C

4 m

Dx

MAB

MBA

A

B

4 m

Ax

10 kN

∆ ∆

(1/2)(0.375EI∆)∆

:0=Σ+ BM

)5(563.11875.0375.0 −−−+∆+= EIEIA Bx θ4

)( BAABx

MMA +=

)6(0468.04

−−−∆== EIMD DCx

)2(4

64

)1)(3(104

)(422

2

−−−∆

+−=EIEIM BBA θ

5.625 0.375EI∆

� Slope-Deflection Equations

Page 207: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

74

� Solve equation

*)2(010 −−−=−− xx DA*)1(0 −−−=+ BCBA MM

)3(3

)(3−−−= BBC

EIM θ

)4(1875.0 −−−∆= EIM DC

)1(375.0625.54

)(2−−−∆++= EIEIM BAB θ

)5(563.11875.0375.0 −−−+∆+= EIEIA Bx θ

)6(0468.0 −−−∆= EIDx

)2(375.0625.54

)(4−−−∆+−= EIEIM BBA θ

Equilibrium Conditions:

Slope-Deflection Equations:

Horizontal reaction at supports:

Substitute (2) and (3) in (1*)

2EI θB + 0.375EI ∆ = 5.625 ----(7)

Substitute (5) and (6) in (2*)

)8(437.8235.0375.0 −−−−=∆−− EIEI Bθ

From (7) and (8) can solve;

EIEIB8.446.5

=∆−

)6()1(8.446.5 toinEI

andEI

Substitute B =∆−

MAB = 15.88 kN�mMBA = 5.6 kN�mMBC = -5.6 kN�mMDC = 8.42 kN�mAx = 7.9 kNDx = 2.1 kN

Page 208: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

75

A

BC

D

Deflected curve

A

BC

D

Bending moment diagram

MAB = 15.88 kN�m, MBA = 5.6 kN�m, MBC = -5.6 kN�m, MDC = 8.42 kN�m, Ax = 7.9 kN, Dx = 2.1 kN,

A

B C

D

3m

10 kN

3 m

1 m

15.88

5.6

8.42

7.9 kN 2.1 kN

15.88

5.6

8.42

∆ = 44.8/EI ∆ = 44.8/EI

θB = -5.6/EI5.6

7.8

Page 209: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

76

B C

DA

3m4 m

10 kN4 m

2 m

pin

2 EI

2.5 EI EI

Example 9

From the frame shown use the slope-deflection method to:(a) Determine the end moments of each member and reactions at supports(b) Draw the quantitative bending moment diagram, and also draw thequalitative deflected shape of the entire frame.

Page 210: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

77

B

C

DA

3m4 m

10 kN4 m

2 m

2EI

2.5EI EI

Ax Dx

Ay Dy

MDCMAB

∆ CD C´∆BC

� Overview

� Boundary Conditions

θA = θD = 0

� Equilibrium Conditions

� Unknowns

θB and ∆

- Entire Frame

*)2(010:0 −−−=−−=Σ→+

xxx DAF

*)1(0:0 −−−=+=Σ BCBAB MMM

B- Joint B

MBCMBA

Page 211: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

78

B

C

DA 3m4 m

10 kN4 m

2 m

2EI

2.5EI EI36.87° = ∆ tan 36.87° = 0.75 ∆

= ∆ / cos 36.87° = 1.25 ∆

∆∆BC

∆ CD C´

∆BC

∆CD

C

36.87°

)1(5375.04

)(2−−−+∆+= EIEIM BAB θ

)2(5375.04

)(4−−−−∆+= EIEIM BBA θ

)3(2813.04

)2(3−−−∆−= EIEIM BBC θ

)4(375.0 −−−∆= EIM DC

C

BB´

∆BC= 0.75 ∆

0.375EI∆

6EI∆/(4) 2 = 0.375EI∆

B

A

∆´ B´

(6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆0.5625EI∆

D

C

C´∆CD= 1.25 ∆

(1/2) 0.75EI∆

(1/2) 0.5625EI∆

PL/8 = 5

5

(6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆

0.75EI∆

� Slope-Deflection Equation

Page 212: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

79

B

C

DA

3m4 m

10 kN4 m

2 m

pin2 EI

2.5 EI EI

Dx= (MDC-(3/4)MBC)/4 ---(6)

MBC

4

Ax = (MBA+ MAB-20)/4 -----(5)

B CMBC

C

D

MBC/4MDC

MBC

4

A

B

MBA

10 kN

MAB

� Horizontal reactions

Page 213: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

80

� Solve equations

*)2(010 −−−=−− xx DA*)1(0 −−−=+ BCBA MM

Equilibrium Conditions:

Slope-Deflection Equation:

Horizontal reactions at supports:

Substitute (2) and (3) in (1*)

Substitute (5) and (6) in (2*)

From (7) and (8) can solve;

EIEIB56.1445.1 −

=∆=θ

)6()1(56.1445.1 toinEI

andEI

Substitute B−

=∆=θ

MAB = 15.88 kN�mMBA = 5.6 kN�mMBC = -5.6 kN�mMDC = 8.42 kN�mAx = 7.9 kNDx = 2.1 kN

)1(4

654

)(22 −−−∆

++=EIEIM BAB θ

)2(4

654

)(42 −−−∆

+−=EIEIM BBA θ

)3(4

)75.0)(2(34

)2(32 −−−

∆−=

EIEIM BBC θ

)4(5

)25.1)(5.2(32 −−−

∆=

EIM DC

)5(4

)20(−−−

−+= ABBA

xMMA

)6(443

−−−−

=BCDC

x

MMD

)7(050938.05.2 −−−=−∆+ EIEI Bθ

)8(05334.00938.0 −−−=−∆+ EIEI Bθ

Page 214: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

81

BC

DA

Deflected shape

θB=1.45/EI

θB=1.45/EI

Bending-moment diagram

BC

DA 11.19

1.91

5.35

5.46

1.91

∆ ∆

MAB = 11.19 kN�m MBA = 1.91 kN�m MBC = -1.91 kN�m MDC = 5.46 kN�m

Ax = 8.28 kN�m Dx = 1.72 kN�m

B

C

DA

3m4 m

10 kN4 m

2 m

pin2 EI

2.5 EI EI11.19 kN�m

8.27 kN

5.46

1.91

1.91

0.478 kN1.73

0.478 kN

Page 215: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

82

Example 10

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected curve.

A

BC

D

3 m

3m

4m

20 kN/mpin

2EI

3EI

4EI

Page 216: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

83

A

BC

D

3 m

3m

4m

20 k

N/m

2EI

3EI

4EI

[FEM]load

� Overview

∆ ∆

� Boundary Conditions

θA = θD = 0

� Equilibrium Conditions

� Unknowns

θB and ∆

- Entire Frame

*)2(060:0 −−−=−−=Σ→+

xxx DAF

*)1(0:0 −−−=+=Σ BCBAB MMM

B- Joint B

MBCMBA

Page 217: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

84

A

BC

D

3 m

3m

4m

20 k

N/m

2EI

3EI

4EI

[FEM]load

wL2/12 = 15

wL2/12 = 15

A

B C

D

∆ ∆

[FEM]∆∆∆∆

6(2EI∆)/(3) 2= 1.333EI∆

6(2EI∆)/(3) 2= 1.333EI∆ 6(4EI∆)/(4) 2

= 1.5EI∆

1.5EI∆

BBCEIM θ3

)3(3=

∆++= EIEI B 333.115333.1 θ ----------(1)

∆+−= EIEI B 333.115667.2 θ ----------(2)

BEIθ3= ----------(3)

∆= EI75.0 ----------(4)

∆+++= EIEIEIM BAAB 333.1153

)2(23

)2(4 θθ0

∆+−+= EIEIEIM BABA 333.1153

)2(43

)2(2 θθ0

∆+= EIEIM DDC 75.04

)4(3 θ0

(1/2)(1.5EI∆)

� Slope-Deflection Equation

Page 218: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

85

C

Dx

MDC

4 m

D

MAB

A

B

60 kN

MBA

1.5 m

1.5 m

Ax + ΣMC = 0:

:0=Σ+ BM

)6(188.04

−−−∆== EIMD DCx

)5(30889.0333.13

)5.1(60

−−−+∆+=

++=

EIEIA

MMA

Bx

ABBAx

θ

� Horizontal reactions

Page 219: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

86

� Solve equation

*)1(0 −−−=+ BCBA MM

Equilibrium Conditions

Equation of moment

Horizontal reaction at support

Substitute (2) and (3) in (1*)

Substitute (5) and (6) in (2*)

From (7) and (8), solve equations;

EIEIB67.3451.5

=∆−

)6()1(67.3451.5 toinEI

andEI

Substitute B =∆−

)7(15333.1667.5 −−−=∆+ EIEI Bθ

)8(30077.1333.1 −−−−=∆−− EIEI Bθ

*)2(060 −−−=−− xx DA

)1(333.115333.1 −−−∆++= EIEIM BAB θ

)2(333.115667.2 −−−∆+−= EIEIM BBA θ

)3(3 −−−= BBC EIM θ

)4(75.0 −−−∆= EIM DC

)6(188.0 −−−∆= EIDx

)5(30889.0333.1 −−−+∆+= EIEIA Bx θ

mkNM AB •= 87.53mkNM BA •= 52.16

mkNM BC •−= 52.16mkNM DC •= 0.26

Ax = 53.48 kNDx = 6.52 kN

Page 220: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

87

A

C

DMoment diagram

D

A

B C

Deflected shape

∆ ∆

A

BC

D

3 m

3m

4m20 k

N/m 16.52 kN�m

53.87 kN�m

53.48 kN

6.52 kN26 kN�m

5.55 kN

5.55 kN

26.

16.52

mkNM AB •= 87.53mkNM BA •= 52.16

mkNM BC •−= 52.16mkNM DC •= 0.26

Ax = 53.48 kNDx = 6.52 kN

53.87

B16.52

Page 221: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Member Stiffness Factor (K)! Distribution Factor (DF)! Carry-Over Factor! Distribution of Couple at Node! Moment Distribution for Beams

! General Beams! Symmetric Beams

! Moment Distribution for Frames: No Sidesway! Moment Distribution for Frames: Sidesway

DISPLACEMENT MEDTHOD OF ANALYSIS: MOMENT DISTRIBUTION

Page 222: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

Internal members and far-end member fixed at end support:

C D

K(BC) = 4EI/L2, K(CD) = 4EI/L3

COF = 0.5

1

Member Stiffness Factor (K) & Carry-Over Factor (COF)

P

A C

w

B EI D

CB

L1 /2 L1/2 L2 L3

LEIK 4

=LEIkCC

4= L

EIkDC2

=

COF = 0.5

B C

Page 223: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

Far-end member pinned or roller end support:

C D

K(AB) = 3EI/L1, K(BC) = 4EI/L2, K(CD) = 4EI/L3

COF = 00

1LEIK 3

= LEIkAA

3=

P

A C

w

BEI

D

CB

L1 /2 L1/2 L2 L3

Page 224: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

K(CD) = 4EI/L3

Joint Stiffness Factor (K)

P

A C

w

BEI

D

CB

L1 /2 L1/2 L2 L3

K(AB) = 3EI/L1 K(BC) = 4EI/L2,

Kjoint = KT = ΣΣΣΣKmember

Page 225: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

01DF DFBC DFCB DFCDDFBA)

Notes:- far-end pined (DF = 1)- far-end fixed (DF = 0)

B C DA

Distribution Factor (DF)

P

A C

w

BEI

D

CB

L1 /2 L1/2 L2 L3

KKDF

Σ=

KAB/(K(AB) + K(BC) ) KBC/(K(AB) + K(BC) )

K(BC)/(K(BC) + K(CD) )

K(CD)/(K(BC) + K(CD) )

Page 226: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

CB(DFBC) CB( DFBC)

CB(DFBC) CB( DFBC)

CO=0.5CO=0

Distribution of Couple at Node

CB

B

A CB D

CB

L1 /2 L1/2 L2 L3

(EI)3(EI)2(EI)1

B C DA01DF DFBC DFCA DFCDDFBA

Page 227: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

50(.333)50(.333)

50(.667) 50(.667) CO=0.5CO=0

B C DA

01DF 0.667 0.5 0.50.333

L1= L2 = L3

50 kN�m

B

16.67

A CB3EI2EI

4 m 4 m 8 m 8 m

3EID

50 kN�m

Page 228: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

P

A C

w

B DL1 /2 L1/2 L2 L3

B C DA01DF DFBC DFCB DFCDDFBA

L1= L2 = 8 m, L3 = 10 m

Distribution of Fixed-End Moments

MF

B

MF

MF(DFBC) MF( DFBC)

MF(DFBC) MF( DFBC)

MF

0

MF

0.5 0

B

(EI)13(EI)2(EI)1

Page 229: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

P

A C

w

B DL1 /2 L1/2 L2 L3

B

145.6

8.4

5.6

8.4

4.2

B C DA01DF 0.6 0.5 0.50.4

L1= L2 = 8 m, L3 = 10 m

1630

0

30 16

14

0.5 0

wL22/12=161.5PL1/8=30 wL3

2/12=25

EI

B

Page 230: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

Moment Distribution for Beams

Page 231: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

20 kN

A CB3EI2EI

4 m 4 m 8 m

3 kN/m

Example 1

The support B of the beam shown (E = 200 GPa, I = 50x106 mm4 ).Use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams,and qualitative deflected shape.

Page 232: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

20 kN

A CB3EI2EI

3 kN/m

4 m 4 m 8 m

K1 = 3(2EI)/8 K2 = 4(3EI)/8

161630

DF 0.3331 0.667 0

K1/(K1+ K2) K2/(K1+ K2)

[FEM]load 16 -16-30

4.662 9.338Dist. 4.669CO

-25.34 -11.3325.34ΣΣΣΣ

20 kNA B B C

24 kN

13.17 kN 6.83 kN

11.33 kN�m25.34 kN�m

10.25 kN13.75 kN

0.5 0 0.5 0CO

Page 233: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

20 kN

A CB3EI2EI

3 kN/m

4 m 4 m 8 m

161620+10

+ ΣMB = 0: -MBA - MBC = 0

(0.75 + 1.5)EIθB - 30 + 16 = 0

θB = 6.22/EI

MBC = 25.33 kN�m

MBA = -25.33 kN�m,

MBA MBC

B

Note : Using the Slope Deflection

)1(308

)2(3−−−−= BBA

EIM θ

)2(168

)3(4−−−+= BBC

EIM θ

mkNEIM BCB •−=−= 33.11168

)3(2 θ

Page 234: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

20 kN

A C

B

3 kN/m

4 m 4 m 8 m

V (kN)x (m)

6.83

-13.17

13.75

-10.25

+-

+-4.58 m

M (kN�m) x (m) M (kN�m) x (m)

-11.33

-25.33

27.326.13+

-+ -

Deflected shape x (m)

11.336.83 kN 13.17 + 13.75 = 26.92 kN 10.25 kN

Page 235: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

10 kN

A C

5 kN/m

B3EI2EI

4 m 4 m 8 m 8 m

3EID

50 kN�m

Example 2

From the beam shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape.

Page 236: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

10 kN

A C

5 kN/m

B2EI

4 m 4 m 8 m 8 m

3EID

50 kN�m

26.67 26.6715 400.5 0.50.5

Joint couple -16.65 -33.35

K1 = 3(2EI)/8 K2 = 4(3EI)/8 K3 = 3(3EI)/8

0.571DF 0.3331 0.4280.667 1

K1/(K1+ K2) K2/(K1+ K2) K2/(K2+ K3) K3/(K2+ K3)

50(.333)

50(.667)

50(.333)

50(.667) CO=0.5CO=050 kN�m

B

Page 237: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

10 kN

A C

5 kN/m

B2EI

4 m 4 m 8 m 8 m

3EID

50 kN�m

26.67 26.6715 400.5 0.50.5

-26.667FEM 40-15 26.667 1.905 1.437Dist. -3.885 -7.782

2.218 1.673Dist. -0.317 -0.636

0.181 0.137Dist. -0.369 -0.740

Joint couple -16.65 -33.35CO -16.675

-3.891CO 0.953

-0.318 1.109CO

K1 = 3(2EI)/8 K2 = 4(3EI)/8 K3 = 3(3EI)/8

-43.28 43.25 -36.22 -13.78ΣΣΣΣ

0.571DF 0.3331 0.4290.667 1

K1/(K1+ K2) K2/(K1+ K2) K2/(K2+ K3) K3/(K2+ K3)

Page 238: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

10 kN

A B

ByLAy

36.22 kN�m43.25 kN�m

C D

DyCyR

40 kN

13.78 kN�m

B C

CyLByR

40 kN43.25 kN�m

10 kN

A C

5 kN/m

B2EI

4 m 4 m 8 m 8 m

3EID

50 kN�m

13.78 43.2536.22 43.25

= 25.41 kN = 14.59 kN= 0.47 kN = 9.53 kN

= 12.87 kN = 27.13 kN

Page 239: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

10 kN

AC

5 kN/m

B2EI 3EID

50 kN�m

4 m 4 m 8 m 8 m

M(kN�m) x (m)

21.29

1.88

-36.22

13.7830.32

-43.25Deflected shape

x (m)

V (kN) x (m)0.47

-9.53

12.87

-14.59-27.13

25.41

2.57 m

2.92 m

9.53+12.87=22.4 kN0.47 kN 14.59 kN

27.13+25.41=52.54 kN

Page 240: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

3 m 3 m 9 m 3 m

50 kN�m

B

A

40 kN 40 kN

C

D

10 kN/m2EI

EI

Example 3

From the beam shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape.

Page 241: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

3 m 3 m 9 m 3 m

50 kN�m

B

A

40 kN

C

D

10 kN/m2EI

EI

DF 0.800 0.20 1

K1/(K1+ K2) K2/(K1+ K2)

30 30 101.25

K1 = 4(2EI)/6 K2 = 3(EI)/9

0.5 0.5

Dist. -9 -2.25

Joint couple 40 10

Dist.FEM 30 101.25-30CO 20 -60

-4.5CO

1 45.5 49 -120ΣΣΣΣ

-120

120 kN�m 40 kN

Page 242: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

3 m 3 m 9 m 3 m

50 kN�m

B

A

40 kN 40 kN

C

D

10 kN/m2EI

EI

= 27.75 kN = 12.25 kN

1

120 1204945.5

= 37.11 kN = 52.89 kN

= 40 kNByLAy

45.5 kN�m

40 kN

A B1 kN�m

CyLByR

49 kN�m

B C

90 kN120 kN�m

120 kN�m

C D

CyR

40 kN

Page 243: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

50 kN�m

B

A

40 kN 40 kN

C

D

10 kN/m2EI

EI

3 m 3 m 9 m 3 m12.25+37.11 = 49.36 kN

27.75 kN52.89+40 = 92.89 kN

V (kN) x (m)

27.75

-12.25

37.11 40

-52.893.71 m

+ +

--

+

M(kN�m) x (m)

-45.5 -49

-120

19.8437.75

--

+-

+ 1

Deflected shape

x (m)

Page 244: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

20 kN

A CB3EI2EI

4 m 4 m 8 m

12 kN�m 3 kN/m15 kN�m

Example 4

The support B of the beam shown (E = 200 GPa, I = 50x106 mm4 ) settles 10 mm.Use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape.

Page 245: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

20 kN

A CB

2EI

12 kN�m 3 kN/m15 kN�m

3EI4 m 4 m 8 m10 mm 161630

0.50.5

12 kN�m15 kN�m

[FEM]∆∆

A

B ∆BC

2

)2(6LEI ∆

375.92

)2(6)2(622 =

∆−

∆LEI

LEI

125.28)3(62 =

∆LEI 125.28)3(6

2 =∆

LEI

DF 0.3331 0.667 0

K1/(K1+ K2) K2/(K1+ K2)

Joint couple -12 5 10

5[FEM]load 16 -16-30[FEM]∆ -28.125 -28.125 9.375

-6CO

12.90 25.85Dist. 12.92CO

-8.72 -26.20-12 23.72ΣΣΣΣ

K1 = 3(2EI)/8 K2 = 4(3EI)/8

Page 246: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

20 kN

A CB

2EI

12 kN�m 3 kN/m15 kN�m

3EI

4 m 4 m 8 m10 mm16(16)load(20+10)load

Note : Using the slope deflection

)2(75.18208

)2(48

)2(2−−−+−+= BABA

EIEIM θθ

)2(2/12375.9308

)2(3:2

)1()2( aEIM BBA −−−−+−=− θ

)1(75.18208

)2(28

)2(4−−−−++= BAAB

EIEIM θθ

-12

(9.375 )∆

28.125

(28.125)∆

18.75-9.375

+ ΣMB = 0: - MBA - MBC + 15 = 0

(0.75 + 1.5)EIθB - 38.75 - 15 = 0

θB = 23.9/EI

MBC = 23.72 kN�m

MBA = -8.7 kN�m,

MBA MBC

B

15 kN�m

mkN

EIM BCB

•−=

−−=

2.26

125.28168

)3(2 θ

)3(125.28168

)3(4−−−−+= BBC

EIM θ

)4(125.28168

)3(2−−−−−= BCB

EIM θ

Page 247: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

4 m 4 m 8 m

20 kN

A CB2EI

12 kN�m 3 kN/m15 kN�m

3EI

= 11.69 kN = 12.31 kN= 7.41 kN = 12.59 kN

23.725 8.725 26.205

20 kN

A B

ByLAy

12 kN�m8.725 kN�m 26.205 kN�m

23.725 kN�m

B C

CyByR

24 kN

Page 248: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

Deflectedshape x (m)

20 kN

A CB2EI

12 kN�m 3 kN/m15 kN�m

3EI

4 m 4 m 8 m

26.2057.41 kN 12.59+11.69 = 24.28 kN 12.31 kN

V (kN)x (m)

7.41

-12.59

11.69

-12.31

+-

+-3.9 m

M (kN�m) x (m) M (kN�m) x (m)

12

-0.93

41.64

-8.725

-26.205-23.725

+

--

10 mm θB = 23.9/EI

Page 249: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

Example 5

For the beam shown, support A settles 10 mm downward, use the momentdistribution method to(a)Determine all the reactions at supports(b)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape.Take E= 200 GPa, I = 50(106) mm4.

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

Page 250: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

6 kN/m

B A

C3 m 3 m2EI 1.5EI

12 kN�m

10 mm

0.01 mC

A mkN •=

××

1003

)01.0)(502005.1(62

MF∆

100-(100/2) = 50

4.5

4.5+(4.5/2) = 6.75

DF 0.640 0.36 1

K1/(K1+ K2) K2/(K1+ K2)

-40.16 12-20.08 40.16ΣΣΣΣ

K1 = 4(2EI)/3 K2 = 3(1.5EI)/3

0.50.5

Joint couple 12

6CO

-20.08CO-22.59Dist. -40.16

[FEM]∆ 50[FEM]load 6.75

Page 251: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

kN08.203

08.2016.40=

+kN08.20

B C40.16 kN�m20.08 kN�m

6 kN/m

AC

12 kN�m

40.16 kN�m

18 kN

8.39 kN26.39 kN

6 kN/m

B A

C3 m 3 m2EI 1.5EI

12 kN�m

-10.16 12-20.08 40.16ΣΜΣΜΣΜΣΜ

Page 252: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

6 kN/m

AC

12 kN�m

40.16 kN�m8.39 kN26.39 kN

B C40.16 kN�m20.08 kN�m

20.08 kN20.08 kN

M (kN�m)

x (m)20.08

-40.16

12

Deflected shape

x (m)

V (kN)

x (m)

26.398.39

-20.08

+-

Page 253: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

Example 6

For the beam shown, support A settles 10 mm downward, use the momentdistribution method to(a)Determine all the reactions at supports(b)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape.Take E= 200 GPa, I = 50(106) mm4.

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

Page 254: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

10 mm

6 kN/m

B A

C

12 kN�m

10 mmR

� Overview

B A

*)1(0' −−−=+ CRR

Page 255: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

� Artificial joint applied 6 kN/m

B A

C3 m 3 m2EI 1.5EI

12 kN�m

10 mm

0.01 mC

A mkN •=

××

1003

)01.0)(502005.1(62

MF∆

100-(100/2) = 50

4.5

4.5+(4.5/2) = 6.75

DF 0.640 0.36 1

K1/(K1+ K2) K2/(K1+ K2)

-40.16 12-20.08 40.16ΣΣΣΣ

K1 = 4(2EI)/3 K2 = 3(1.5EI)/3

0.50.5

Joint couple 12

6CO

-20.08CO-22.59Dist. -40.16

[FEM]∆ 50[FEM]load 6.75

Page 256: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

kN08.203

08.2016.40=

+kN08.20

B C40.16 kN�m20.08 kN�m

6 kN/m

AC

12 kN�m

40.16 kN�m

18 kN

8.39 kN26.39 kN

6 kN/m

B A

C3 m 3 m2EI 1.5EI

12 kN�m

-40.16 12-20.08 40.16ΣΜΣΜΣΜΣΜ

C

40.16 kN�m40.16 kN�m

26.39 kN20.08R

039.2608.20:0 =+−−=Σ↑+ RFy

kNR 47.46=

Page 257: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

B A C

3 m 3 m2EI 1.5EI 0.50.5

� Artificial joint removed

∆C

B

EI75

=∆→1003

)2(62 =

∆CEI

100 753

)75)(5.1(62 =EI

EI∆C

A75-(75/2)= 37.5

DF 0.640 0.36 1-100 -100[FEM]∆ +37.5

22.5Dist. 4020CO

-60-80 60ΣΣΣΣ

B C60 kN�m80 kN�m

AC60 kN�m

46.67 kN46.67 kN 20 kN20 kN C 20 kN46.67R´

kNRFy 67.66':0 ==Σ↑+

Page 258: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

� Solve equation

*)1(67.66'47.46 inkNRandkNRSubstitute ==

6970.0067.6647.46

−==+

CC

6 kN/mB A C2EI 1.5EI

12 kN�m

35.68 kN�m

12.45 kN 5.55 kN

6970.0−=×C

6 kN/mB

A

C

12 kN�m

R = 46.47 kN

20.08 kN�m

20.08 kN10 mm

8.39 kN

BA

R´ = 66.67 kN

∆80 kN�m

46.67 kN 20 kN

Page 259: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

10 mm

6 kN/m

B A C

3 m 3 m2EI 1.5EI

12 kN�m

35.68 kN�m

12.45 kN 5.55 kN

Deflected shape

x (m)

M (kN�m)

x (m)1214.57

1.67

-35.68

-+

V (kN)

x (m)0.925 m12.45

-5.55

+

Page 260: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

P P

A CB DL´ L L´

real beam

Symmetric Beam

� Symmetric Beam and Loading

θ θ

+ ΣMC´ = 0: 0)2

)(()(' =+−LL

EIMLVB

EIMLVB 2' == θ

θLEIM 2

=

The stiffness factor for the center span is, therefore,

LEIK 2

=

L2

L2

V´C

V´B

MEI

LMEI

conjugate beam

Page 261: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

+ ΣMC´ = 0: 0)3

2)(2

)((21)(' =+−

LLEIMLVB

EIMLVB 6' == θ

θLEIM 6

=

The stiffness factor for the center span is, therefore,

� Symmetric Beam with Antisymmetric Loading

P

P

ACB

D

L´ L L´

real beam

θ

θ

conjugate beam

V´C

V´BB´

MEI

MEI

)2

)((21 L

EIM

)2

)((21 L

EIM

L32

LEIK 6

=

Page 262: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

Example 5a

Determine all the reactions at supports for the beam below. EI is constant.

A

B4 m

D

C6 m 4 m

15 kN/m

Page 263: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

A

B4 m

D

C6 m 4 m

15 kN/m

,4

33)(

EILEIK AB ==

622

)(EI

LEIK BC ==

,1)()(

)( ==AB

ABAB K

KDF ,692.0

)6/2()4/3()4/3()(

)()(

)( =+

=+

=EIEI

EIKK

KDF

BCAB

ABBA

308.0)6/2()4/3(

)6/2()()()(

)( =+

=+

=EIEI

EIKK

KDF

BCAB

BCBC

[FEM]load 0 -16 +45

-20.07 -8.93Dist.

wL2/12 = 45wL2/15 = 16

DF 0.692 0.3081.0

A B4 m

30 kN83

B C

90 kN

3 m 3 mDC

4 m

30 kN8336.07 kN�m 36.07 kN�m

0.98 kN 29.02 kN

-36.07 +36.07ΣΜ

45 kN 45 kN 29.02 kN 0.98 kN

wL2/12 = 45wL2/15 = 16 wL2/15 = 16

Page 264: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

A B4 m

30 kN83

B C

90 kN

3 m 3 mDC

4 m

30 kN8336.07 kN�m 36.07 kN�m

29.02 kN 45 kN 45 kN 29.02 kN 0.98 kN0.98 kN

A

B4 m

D

C6 m 4 m

15 kN/m

74.02 kN 74.02 kN 0.98 kN0.98 kN

M (kN�m) x (m)

+

--

-36.07 -36.07

31.42

Deflectedshape

V(kN) x (m)

-29.02

45

-45

29.02

-0.98

0.98

Page 265: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

Example 5b

Determine all the reactions at supports for the beam below. EI is constant.

A

B

DC

15 kN/m

15 kN/m

4 m 3 m 4 m3 m

Page 266: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

A

B

DC

15 kN/mFixed End Moment

wL2/15 = 16 11wL2/192 = 30.938

5wL2/192 = 14.063

A

B

DC

15 kN/m

wL2/15 = 165wL2/192 = 14.063

11wL2/192 = 30.938

A

B

DC

15 kN/m

15 kN/m16.87516

16.875 16

Page 267: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

A B4 m

30 kN83

B C

45 kN

45 kN

DC4 m

30 kN

83

A

B

DC

15 kN/m

15 kN/m

4 m 3 m 4 m3 m

[FEM]load 0 -16 16.875

-0.375 -0.50Dist.

DF 0.429 0.5711.0

,75.04

33)( EIEI

LEIK AB === EIEI

LEIK BC ===

666

)(

,1)( =ABDF ,429.0175.0

75.0)( =+

=BADF 571.0175.0

1)( =+

=BCDF

16.87516

16.875 16

-16.37516.375ΣΜ

16.375 kN�m 16.375 kN�m

24.09 kN5.91 kN 27.96 kN27.96 kN 24.09 kN

5.91 kN

16.87516

Page 268: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

A B4 m

30 kN83

B C

45 kN

45 kN

16.375 kN�m 16.375 kN�m

24.09 kN5.91 kN 27.96 kN27.96 kN

DC4 m

30 kN

83

24.09 kN5.91 kN

A

B

DC

15 kN/m

15 kN/m52.05 kN 52.05 kN 5.91 kN5.91 kN

V(kN) x (m)

5.91 5.91

-24.09 -24.09

27.96 27.96

-16.375

M (kN�m) x (m)

16.375

Deflected shape

Page 269: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

Moment Distribution Frames: No Sidesway

Page 270: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

AB C

D

4 m

48 kN 8 kN/m40 kN�m

5 m5 m

3EI

2.5EI 2.5EI

Example 6

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports(b) Draw its quantitative shear and bending moment diagrams,and qualitative deflected shape.

Page 271: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

40 kN�m

AB C

D

4 m

48 kN 8 kN/m

5 m5 m

3EI

2.5EI 2.5EI45 25

KAB = KBC = 3(2.5EI)/5 = 1.5 EI

KBD = 4(3EI)/4 = 3EI

0.50.5

0.5

0.25 0.25DF 0.51 0 1

A B D C

BA BCMember BDAB DB CB

5 5Dist. 10

5CO

-10 -10Joint load -20

-10CO-45FEM 25

20 00 -5ΣΣΣΣ -50 -10

40 kN�m

Page 272: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

AB C

D

48 kN 8 kN/m40 kN�m

3EI

2.5EI 2.5EI2010

50

16 kN24 kN

50 kN�m

48 kNA B 0

14 kN 34 kN

3.75

5820

40 kNB C 3.75

3.75

3.75

40 kN�m

20

10

50243458 kN

14 kN 16 kN

Member BD DB CBBC20 0

AB0 -5ΣΣΣΣ

BA-50 -10

5

3.75 kN

3.75 kN10 kN�m

5

58

58

Page 273: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

Moment diagram Deflected shape

AB C

D

4 m

48 kN 8 kN/m40 kN�m

5 m5 m

3EI

2.5EI 2.5EI

58 kN

14 kN 16 kN

1635

5020

10

5

5

50

20

10

Page 274: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

Moment Distribution for Frames: Sidesway

Page 275: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

55

Single Frames

A

B C

D

P∆∆

A

BC

D

P

Artificial joint applied(no sidesway)

A

BC

D

Artificial joint removed(sidesway)

0 = R + C1R´

x C1

RR´

x C1

R

Page 276: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

0 =R2 + C1R2´ + C2R2´´

0 =R1 + C1R1´ + C2R2´´

P2

P1

P3

P4

∆2

∆1

P2

P1

P3

P4

R2

R1

R2

R1

R1´x C1

∆´∆´R2´

R1´x C1

R2´

x C1

R2´´

x C2

R1´´

R2´´

x C2

R1´´

x C2

∆´´ ∆´´

Multistory Frames

Page 277: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

A

B C

D

5 m

16 kN

1 m 4 m

Example 7

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and

qualitative deflected shape.EI is constant.

Page 278: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

A

BC

D

+

artificial joint removed( sidesway)

A

BC

D

16 kN

=

artificial joint applied(no sidesway)

x C1

A

B C

D

5 m

16 kN

1 m 4 m

5 m

R´R

� Overview

R + C1R´ = 0 ---------(1)

Page 279: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

� Artificial joint applied (no sidesway)

A

BC

D

16 kN

Ra = 4 mb = 1 m

Pb2a/L2 = 2.56

Pa2b/L2 = 10.24

Fixed end moment:

Equilibrium condition :

ΣFx = 0:+ Ax + Dx + R = 0

Page 280: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

5 m

1 m 4 m

5 m

A

BC

D

16 kN

R

2.5610.24

0.5

0.5

0.5

0.50 0.50DF 0.500 0.50 0FEM -2.5610.24Dist. 1.28 -5.12-5.12 1.28CO -2.56-2.56 0.64 0.64Dist. 1.28 -0.32-0.32 1.28

CO -0.16-0.16 0.64 0.64Dist. 0.08 -0.32-0.32 0.08CO -0.16-0.16 0.04 0.04

Dist. 0.08 -0.02-0.02 0.08

5.78 1.32-2.88 2.72ΣΣΣΣ -5.78 -2.72

A B C D

2.5610.24

Ax = 1.73 kNDx = 0.81 kN

5.78 kN�m

2.88 kN�m

2.72 kN�m

1.32 kN�m

A

B

5 m

D

C

5 m

1.32-2.88 2.72-5.78

ΣFx = 0:+ 1.73 - 0.81 + R = 0

R = - 0.92 kN

Equilibrium condition :

Page 281: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

� Artificial joint removed ( sidesway)

Fixed end moment:

5 m

5m

5 m

A

B C

D

∆ ∆

100 kN�m

100 kN�m

100 kN�m

100 kN�m

Since both B and C happen to be displaced the same amount ∆, and AB and DChave the same E, I, and L so we will assume fixed-end moment to be 100 kN�m.

Equilibrium condition :

ΣFx = 0:+ Ax + Dx + R´ = 0

Page 282: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

5 m

5m

5 m

A

B C

D

∆ ∆

100 kN�m

100 kN�m

100 kN�m

100 kN�m0.5

0.5

0.5

0.50 0.50DF 0.500 0.50 0

A B C D

FEM 100100 100 100Dist. -50-50-50 -50CO -25.0-25.0 -25.0 -25.0Dist. 12.512.5 12.5 12.5

CO 6.56.5 6.5 6.5Dist. -3.125-3.125-3.125 -3.125CO -1.56-1.56 -1.56 -1.56

Dist. 0.780.78 0.78 0.78CO 0.390.39 0.39 0.39

Dist. -0.195-0.195-0.195 -0.195

-60 8080 60ΣΣΣΣ 60 -60

Ax = 28 kNDx = 28 kN

60 kN�m

80 kN�m

A

B

5 m

60 kN�m

80 kN�m

D

C

5 m

100 kN�m

100 kN�m

100 kN�m

100 kN�m

ΣFx = 0:+

-28 - 28 + R´ = 0

R´ = 56 kN

Equilibrium condition:

Page 283: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

-0.92 + C1(56) = 0

R + C1R´ = 0

Substitute R = -0.92 and R´= 56 in (1) :

C1 =0.9256

A

B C

D

16 kN

R

1.73 kN 0.81

2.72

5.785.78

2.88

2.72

1.32

x C1

A

BC

D

+

28 28

6060

60

80

60

80

A

BC

D

5 m

16 kN

1 m 4 m

5 m=

3.714.79

4.79

1.57

3.71

2.63

1.27 kN1.27

Page 284: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

Bending moment diagram (kN�m)

A

BC

D

5 m

16 kN

1 m 4 m

5 m

3.714.79

4.79

1.57

3.71

2.63

1.27 kN 1.27 kN

8.22

3.71

2.99 kN13.01 kN∆ ∆

Deflected shape

1.57

4.794.79

3.71

2.63

Page 285: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

Example 8

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape.

A

BC

D

3 m

3m

4m

20 kN/mpin

2EI

3EI

4EI

Page 286: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

66

A

BC

D

3 m , 2EI

3m, 3EI

4m , 4EI

20 kN/m

=

A

B C

D

artificial joint applied(no sidesway)

� Overview

R + C1R´ = 0 ----------(1)

x C1+

A

B C

D

artificial joint removed(sidesway)

R R´

Page 287: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

R

A

B C

D

3 m , 2EI

3m , 3EI

4m, 4EI

20 kN/m

0.471 0.529DF 1.000 1.00 0FEM 15.00 -15.00Dist. 7.9357.065CO 3.533

0.5 0.5

0.5

15

15

KCD = 3(4EI)/4 = 3EI

KBA = 4(2EI)/3 = 2.667EI

KBC = 3(3EI)/3 = 3EI

A B C D

Ax = 33.53 kN

7.9418.53ΣΣΣΣ -7.94

7.94 kN�m

18.53 kN�m

A

B

3 m60

� Artificial joint applied (no sidesway)

Dx = 0

0

D

C

4 m

ΣFx = 0: +

60 - 33.53 - 0 + R = 0

R = - 26.47 kN

Page 288: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68

� Artificial joint removed ( sidesway)

� Fixed end moment

A

B C

D

3 m, 2EI

3m, 3EI

4m, 4EI

6(2EI∆)/(3) 2

6(2EI∆)/(3) 2

3(4EI∆)/(4) 2

∆ ∆

Assign a value of (FEM)AB = (FEM)BA = 100 kN�m

1003

)2(62 =

∆EI

∆AB = 75/EI

100 kN�m

100 kN�m

A

B C

D

3 m, 2EI

3m, 3EI

4m, 4EI

100 kN�m

100 kN�m 3(4EI)(75/EI)/(4) 2 = 56.25 kN�m

∆ ∆

6(4EI)∆/(4) 2

Page 289: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

A

B C

D

3 m

3m

4m

0.471 0.529DF 1.000 1.00 0

CO -28.55

0.50.5

0.5

A B C D

Ax = 43.12kN

ΣFx = 0:+

-43.12 - 14.06 + R´ = 0

R´ = 57.18 kN

100

100

56.25

FEM 100 56.25 100Dist. -52.9-47.1 0

14.06 kN

∆ ∆

-52.976.45ΣΣΣΣ 52.9 56.25

56.25 kN�m

D

C

4 m

52.9. kN�m

76.45 kN�m

A

B

3 m

Page 290: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

=

A

BC

D

3 m

3m

4m

20 kN/m

16.55 kN�m

53.92 kN�m

53.49 kN

6.51 kN

26.04 kN�m

R + C1R´ = 0

-26.47 + C1(57.18) = 0

C1 =26.4757.18

x C1+

A

B C

D

52.9

52.9 kN�m

76.45 kN�m

43.12 kN

14.06

56.25

R

A

B C

D

33.53 kN

7.94 kN�m7.94 kN�m

18.53 kN�m

0

0

Substitute R = -26.37 and R´= 57.18 in (1) :

5.52 kN

5.52 kN

Page 291: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71

A

C

DMoment diagram

D

A

B C

Deflected shape

∆ ∆

A

BC

D

3 m

3m

4m

20 kN/m

16.55 kN�m

53.92 kN�m

53.49 kN

6.51 kN

26.04 kN�m

5.52 kN

5.52 kN 26.04

53.92

16.55

B16.55

Page 292: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

BC

DA

3m4 m

10 kN

4 m

Example 8

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape.

EI is constant.

Page 293: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

73

B C

DA

10 kN

=

artificial joint applied(no sidesway)

x C1

BC

DA

3m4 m

10 kN

4 m

R

+

B C

DA

artificial joint removed(sidesway)

R + C1R´ = 0 ---------(1)

� Overview

Page 294: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

74

� Artificial joint applied (no sidesway)

B C

DA

10 kNR

00

ΣFx = 0:+

10 + R = 0

R = - 10 kN

Equilibrium condition :

Page 295: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

75

� Artificial joint removed (sidesway)

� Fixed end moment

R´B

C

DA

3m4 m

4 m= ∆ tan 36.87° = 0.75 ∆= 0.75(266.667/EI) = 200/EI

∆CD = ∆ / cos 36.87° = 1.25 ∆ = 1.25(266.667/EI) = 333.334/EI

∆AB = ∆

∆BC

∆CD

C

36.87°

C´∆ CD

36.87°

∆BC

R´B

C

DA

3m4 m

4 m

6EI∆AB/(4) 2

6EI∆AB/(4) 2

6EI∆BC/(4) 2

3EI∆CD/(5) 2

6EI∆CD/(5) 2

Assign a value of (FEM)AB = (FEM)BA = 100 kN�m : 1004

62 =∆ ABEI

∆AB = 266.667/EI

100 kN�m 100 kN�m

Page 296: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

76

R´B

C

DA

100 kN�m

100 kN�m

6EI∆BC/(4) 2 = 6(200)/42 = 75 kN�m

3EI∆CD/(5) 2 = 3(333.334)/52 = 40 kN�m

∆BC= 200/EI, ∆CD = 333.334/EI

Equilibrium condition :

ΣFx = 0:+ Ax + Dx + R´ = 0

Page 297: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

77

R´B

C

DA

3m4 m

4 m

0.50 0.50DF 0.6250 0.375 1

KBA = 4EI/4 = EI, KBC = 4EI/4 = EI, KCD = 3EI/5 = 0.6EI

100

100

40

7575

0.5

0.5

0.5

A B C D

FEM 100 100 40 -75 -75Dist. -12.5-12.5 13.125 21.875

CO -2.735 1.953 -2.735Dist. -0.977-0.977 1.026 1.709

-81.0591.02ΣΣΣΣ 81.05 -56.48 56.48

B C81.05

56.48

43.02 kN

34.38 kN34.38 kN

C

D

34.38 kN

34.38 kN

56.48

39.91 kNΣFx = 0:+

-43.02 - 39.91 + R´ = 0

R´ = 82.93 kN

A

B

91.02

81.0534.38 kN

34.38 kN

Dist. -5.469-5.469 2.344 3.906CO -6.25 10.938 -6.25

Page 298: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

78

BC

DA

3m4 m

10 kN

4 m

5.19 kN

9.77

6.81

10.98

4.15 kN

9.77 6.81

4.15 kN

4.81 kN=

B C

DA

10 kN

00

00

0

R

x C1= 10/82.93+

B C

A 43.02 kN

81.05

56.48

91.02

34.38 kN

81.05 56.48

D

34.38 kN

39.91 kN

C1 = 10/82.93

-10 + C1(82.93) = 0Substitute R = -10 kN and R´= 82.93 kN in (1) :

R + C1R´ = 0 ---------(1)

Page 299: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

79

BC

DA

Bending moment diagram(kN�m)

BC

DA

3m4 m

10 kN

4 m

5.19 kN

9.77

6.81

10.98

4.15 kN

9.77 6.81

4.81 kN4.15 kN

BC

DA

Deflected shape

10.98

6.81

9.77

9.77

Page 300: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

80

BC

DA

4 m3 m

2m2 m 3 m

40 kN

20 kN

4EI

3EI

4EI

Example 9

From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams,and

qualitative deflected shape.EI is constant.

Page 301: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

81

BC

DA

4 m3 m

2m2 m 3 m

40 kN

20 kN

4EI

3EI

4EI

=x C1

� Overview

R + C1R´ = 0 ----------(1)

CB

DA

2m2 m 3 m

40 kN

20 kN

artificial joint applied(no sidesway)

R

artificial joint removed(no sidesway)

+

B C

DA

2m2 m 3 m

Page 302: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

82

� Artificial joint applied (no sidesway)

B C

DA

2m2 m 3 m

40 kN

20 kN R15+(15/2)= 22.5 kN�m

PL/8 = 15

Equilibrium condition :

ΣFx = 0:+ Ax + Dx + R = 0

Fixed end moments:

Page 303: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

83

B C

DA

2m2 m 3 m

40 kN

20 kNR

0.60 0.40DF 1.000 1.00 022.5 15

KBA = 4(4EI)/3.6 = 4.444EI, KBC = 3(3EI)/3 = 3EI,

0.5 0.5

0.5

A B C D

Dist. -9.0-13.5CO -6.75

FEM 22.5

13.5-6.75ΣΣΣΣ -13.5

15.5 kN24.5 kN23.08 kN 7.75 kN

ΣFx = 0:+

23.08 + 20 -7.75 + R´ = 0

R´ = - 35.33 kN

24.5 kN

24.5 kN13.5 kN�m

6.75 kN�m

B

A

B C

40 kN13.5

C

D

15.5 kN

0

15.5 kN

Page 304: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

84

B C

DA

� Artificial joint removed (sidesway)

Fixed end moments:

3(3EI)∆BC/(3) 2

6(4EI)∆CD/(4.47) 2

3(4EI)∆CD/(4.472) 2

6(3EI)∆BC/(3) 2

6(4EI)∆AB/(3.61) 2

6(4EI)∆AB/(3.606) 2

Assign a value of (FEM)AB = (FEM)BA = 100 kN�m : 10061.3

)4(62 =∆ ABEI , ∆AB = 54.18/EI

B C

DA

3 m

4EI 4EI

3.606

m 4.472 m

3EI

100 kN�m

100 kN�m

Page 305: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

85

B C

DA

33.69

o

26.5

33.69o

C´∆ CD

C

∆AB = 54.3/EI

B

EIEIEICBBC /59.52/05.30/54.22'' =+==∆

3(3EI)∆BC/(3) 2 = 3(3EI)(52.59/EI) /(3) 2 = 52.59 kN�m

3(4EI)∆CD/(4.472) 2 = 3(4EI)(50.4/EI)/(4.472) 2 = 30.24 kN�m

100 kN�m

100 kN�m B C

DA

BB´CC´

C´∆ = ∆ABcos 33.69° = 45.08/EI

26.57°

∆ tan 33.69 = 30.05/EI

∆ tan 26.57 = 22.54/EI∆ tan 26.57 = 22.54/EI

∆ tan 33.69 = 30.05/EI

C´∆ CD

C

∆CD = ∆/cos 26.57°= 50.4/EI

Page 306: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

86

B C

DA

4 m3 m

2m2 m 3 m

4EI

3EI

4EI

23.8523.8568.34 kN

0.5 0.5

0.5

0.60 0.40DF 1.000 1.00 0

A B C D

Dist. -18.96 -28.45FEM 100 100 30.24-52.59

-71.5585.78ΣΣΣΣ 71.55 30.24

19.49 kN

ΣFx = 0:+

-68.34 - 19.49 + R´ = 0

R´ = 87.83 kN

CO -14.223

23.85 kN

71.55 kN�mB

85.78kN�m

A

23.85 kN

C

D

23.85 kN

30.24 kN�m

23.85 kN

B C71.55

100

100

52.59

30.24

Page 307: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

87

-35.33 + C1(87.83) = 0

x C1

Substitute R = -35.33 and R´= 87.83 in (1) :

C1 = 35.33/87.83B C

DA

40 kN

20 kN35.33 kN

6.75 kN�m23.08 kN

24.5 kN

13.5 kN�m

7.75 kN

0

15.5 kN

+

90.59 kNB C

D

A

71.55 kN�m

85.78 kN�m

68.34 kN23.85 kN

19.485 kN

23.85 kN

30.24 kN�m

=B

C

DA

40 kN20 kN

15.28 kN�m

27.76 kN�m4.41 kN

14.91 kN15.59 kN

25.09 kN

12.16 kN�m

Page 308: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

88

Bending moment diagram

BC

DA

BC

DA

40 kN20 kN

15.28 kN�m

27.76 kN�m

4.41 kN

14.91 kN15.59 kN

25.09 kN

12.16 kN�m

37.65

Deflected shape

B

DA

C

12.1627.76

15.28

Page 309: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Fundamentals of the Stiffness Method! Member Local Stiffness Matrix! Displacement and Force Transformation Matrices! Member Global Stiffness Matrix! Application of the Stiffness Method for Truss

Analysis! Trusses Having Inclined Supports, Thermal Changes

and Fabrication Errors! Space-Truss Analysis

TRUSSES ANALYSIS

Page 310: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

2-Dimension Trusses

Page 311: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

Fundamentals of the Stiffness Method

� Node and Member Identification

� Global and Member Coordinates

� Degrees of Freedom

12

3 4

2

1

3

(x1, y1)

(x3, y3)

(x2, y2)

(x4, y4)

1

23

4

56

78

34

56

78

x

y

�Known degrees of freedom D3, D4, D5, D6, D7 and D8� Unknown degrees of freedom D1 and D2

Page 312: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

AE/LAE/L

x djAE/L x d´j

AE/L

x diAE/LAE/L x d´i

Member Local Stiffness Matrix

x´y´

i

j

q´i

q´j

AE/L

AE/L

jii dL

AEdL

AEq ''' −=

AE/LAE/Ld´ i = 1

d´ j = 1

x di

x dj

jij dL

AEdL

AEq ''' +−=

−=

j

i

j

i

dd

LAE

qq

''

1111

''

−=

1111

]'[L

AEk

[q´] = [k´][d´] ----------(1)

q´j

q´i

x´y´

x´y´

Page 313: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

x´y´

m

i

j

(xi,yi)

(xj,yj)x

y

Displacement and Force Transformation Matrices

θy

θx

22 )()(cos

ijij

ijijxx

yyxx

xxL

xx

−+−

−=

−== θλ

22 )()(cos

ijij

ijijyy

yyxx

yyL

yy

−+−

−=

−== θλ

Page 314: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

x

y

Global

m

i

jdjx

djy

dix

diy

djx

djyx´y´

m

i

j

Local

d´i

d´j

dix

diy

d´j

d´i

� Displacement Transformation Matrices

yiyxixi ddd θθ coscos' +=

=

jy

jx

iy

ix

yx

yx

j

i

dddd

dd

λλλλ00

00''

θy

θx

yjyxjxj ddd θθ coscos' +=

=

yx

yxTλλ

λλ00

00][

λx λy

[d´] = [T][d] ----------(2)

Page 315: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

x

y

θy

θx

m

i

j

x

y

Global

x´y´

m

i

j

Local

q´i

q´j

� Force Transformation Matrices

θy

θx

xiix qq θcos'=

yiiy qq θcos'=

xjjx qq θcos'=

yjjy qq θcos'=

=

j

i

y

x

y

x

jy

jx

iy

ix

qq

qqqq

''

00

00

λλ

λλ

=

y

x

y

x

TT

where

λλ

λλ

00

00

][

λx

λy

[q] = [T]T[q´] ----------(3)

qjx

qjy

qix

qiy

Page 316: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

Member Global Stiffness Matrix

[ q ] = [ T ]T ([k´][d´] + [q´F] ) = [ T ]T [ k´ ][T][d] + [ T ]T [q´F] = [k][d] + [qF]

[ k ] [ k ] = [ T ]T[ k´ ][T]

[qF] = [ T ]T [q´F]

[q] = [T]T[q´] ----------(3)

Substitute ( [q´] = [k´][d´] + [q´F] ) into Eq. 3, yields the result,

λyλx

λxλx

−λyλx

−λxλx

λyλy

λxλy

−λyλy

−λxλy

λyλx

λxλx

−λyλx

−λxλx

λyλy

λxλy

−λyλy

−λxλy

V U VU

[ k ] = AEL

VUV

U

00λyλx

λyλx00-11

1-1

AEL[ k ] =

00

λy

λx

λy

λx

00

Page 317: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

[Qa] = [K][D] + [QF]

[Qk] = [K11][Du] + [K12][Dk] + [QF]

Reaction Boundary Condition

Unknown DisplacementJoint Load

Equilibrium Equation:

Partitioned Form:

Application of the Stiffness Method for Truss Analysis

[Du] = (([Qk] - [QF]) - [K12][Dk])[Ku] -1

Qk

Qu

Du

Dk

=K12

K22

K11

K21

+QF

k

QFu

Page 318: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

+

−=

jF

iF

j

i

j

i

qq

dd

LAE

qq

''

''

1111

''

jy

jx

iy

ix

yx

yx

dddd

λλλλ00

00

+

−=

jF

iF

jy

jx

iy

ix

yx

yx

j

i

qq

DDDD

LAE

qq

''

0000

1111

''

λλλλ

Member Forces

x

y

θy

θx

x´y´

m

i

j

q´i

q´j

Page 319: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

+

−−

−−=

jF

iF

jy

jx

iy

ix

yxyx

yxyx

j

i

qq

DDDD

LAE

qq

''

''

λλλλλλλλ

Dyi

Dxi

Dyj

Dxj

q´j = AEL −λx −λy λx λy qj´

F+

x

y

θy

θx

x´y´

m

i

j

Member Forces

q´i

q´j

Page 320: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

Member Forces

Dyi

Dxi

Dyj

Dxj

qm = AEL −λx −λy λx λy qj´F+

x

y

θy

θx

x´y´

m

i

j

Member Forces

qm

Page 321: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

3 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

Example 1

For the truss shown, use the stiffness method to:(a) Determine the deflections of the loaded joint.(b) Determine the end forces of each member and reactions at supports.Assume EA to be the same for each member.

Page 322: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

1

2

3

434

56

78

1

2

(0,0)(-4,-3)

(-4,3)

(4,-3)

31

23 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

Member

#1

#2

λx λy

#3

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

31

2

-4/5 = -0.8

-4/5 = -0.8

4/5 = 0.8

-3/5 = -0.6

3/5 = 0.6

-3/5 = -0.6

Page 323: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

-0.48

1.08-0.48

1.92-0.48

0.64

0.36

-0.481

2

1 2

[K] = AE5

1

2

3

434

56

78

1

2

31

2

0.48

0.64

0.36

0.48-0.48

-0.64

-0.36

-0.48

-0.48

-0.64

-0.36

-0.48[ k ]1 =

2 3 41

AE5

23

4

1

[ k ]2 =

2 5 61

AE5

25

6

1

-0.48

0.64

0.36

-0.480.48

-0.64

-0.36

0.48

0.48

-0.64

-0.36

0.48

[ k ]3 =

2 7 81

AE5

27

8

1

-0.48

0.64

0.36

-0.480.48

-0.64

-0.36

0.48

0.48

-0.64

-0.36

0.48

31

2

34

56

78

Member

#1

#2

#3

λx

-0.8

- 0.8

0.8

λy

-0.6

0.6

-0.6

λx2 λx λy λy

2

0.64 0.48 0.36

0.64 -0.48 0.36

0.64 -0.48 0.36

0.48

0.64

0.36

0.48

-0.48

0.64

0.36

-0.48

Page 324: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

34

56

78

1

2

31

2

Global

Q1 = -50

Q2 = -80

D1

D2

D1

D2=

-250.65/AE

-481.77/AE

3 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

1

2

1

-0.48

2

-0.48

1.08

1.92

= AE5

80 kN

50 kN

0

0+1

2

Page 325: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

1

2

3

434

56

78

1

2

31

2

Local

= -97.9 kN (C)

[q´F]1 = AE5 0.8 0.6 -0.8 -0.6 D2=

D1=

D4=D3=

-481.77/AE-250.65/AE

0.00.0

= +17.7 kN (T)

D2=D1=

D6=D5=

-481.77/AE-250.65/AE

0.00.0

= -17.7 kN (C)

80 kN

50 kN 36.87o

97.9 kN

17.7 kN

17.7 kN

#1 -0.8 -0.6#2 -0.8 0.6#3 0.8 -0.6

[q´F]2 = AE5 0.8 -0.6 -0.8 0.6

[q´F]3 = AE5 -0.8 +0.6 +0.8 -0.6 D2=

D1=

D8=D7=

-481.77/AE-250.65/AE

0.00.0

Member

#1#2#3

λx λy

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 326: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

80 kN

50 kN 36.89o

97.9 kN

17.7 kN

17.7 kN

80 kN

50 kN

Member

#1#2#3

λx

-0.8-0.80.8

λy

-0.60.6-0.6

1

2

3

434

56

78

1

2

31

2

97.9(0.8)=78.32 kN

97.9(0.6)=58.74 kN

17.7(0.8)=14.16 kN

17.7(0.6)=10.62 kN

17.7(0.8)=14.16 kN

17.7(0.6)=10.62 kN

ΣFx ´ = 0:+ 17.7 + 17.7 +50cos 36.89 - 97.9cos73.78 - 80cos53.11 = 0, O.K

Check :

Page 327: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

Example 2

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the deflections of the loaded joint.The support B settles downward 2.5 mm. Temperature in member BDincrease 20 oC. Take α = 12x10-6 /oC, AE = 8(103) kN.

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

∆B = 2.5 mm

Page 328: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

∆B = 2.5 mm

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

Member

#1

#2

λx λy

#3

-4/4 = -1

-4/5 = -0.8

0

0

-3/5 = -0.6

-3/3 = -1

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

Page 329: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

0.096

0.128

0.072

0.096

0

0

0.333

0

0

0.25

0

0

0

0.25

0

00

-0.25

0

0

0

-0.25

0

0[k]1 = 8x103

2 3 41

234

1

[k]3 = 8x103

2 7 81

278

1

0

0

0.333

00

0

-0.333

0

0

0

-0.333

0

Member

#1

#2

#3

λx

-1

- 0.8

0

λy

0

-0.6

-1

λx2/L λx λy/L λy

2/L

0.25 0 0

0.128 0.096 0.072

0 0 0.333

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

[k]2 = 8x103

2 5 61

256

1

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

1

23

4

56

78

[K] = 8x103

21

21

0.096

0.378

0.405

0.096

Page 330: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

∆B = 2.5 mm

1.536 kN

1.152 kN

2+20oC1.536 kN

1.152 kN

2+20oC

1.92 kΝ =α(∆T1)AE = (12x10-6)(20)(8x103)

1.92 kN

1.536 kN

1.152 kN

1.536 kN

1.152 kN

12

34

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

∆B = 2.5 mm

+20o C

-1.536

1.536-1.152

1.152

+

1

2

6

5

q1

q2

q1

q5

q2

q6

-1.536

-1.152+1

2

0

-2.5x10-3

5

6-0.096

-0.128

-0.072

-0.096+ 8x103

5 6

= 8x103

21

21

0.096

0.128

0.072

0.096 d1

d2

d1

d5 = 0d2

d6 = -2.5x10-3

0.096

0.128

0.072

0.096

= 8x103

2 5 61

256

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

[q] = [k]m[d] + [qF]Member 2:

q1

q2

-1.536

-1.152+1

2= 8x103

21

0.096

0.128

0.072

0.096 d1

d2

1.92

1.44+

Page 331: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

[Q] = [K][D] + [QF]

Global:

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

∆B = 2.5 mm

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

Q1 = -4

Q2 = -8= 8x103

21

21

0.096

0.378

0.405

0.096 D1

D2

-1.536

-1.152+1.92

1.44+

D1

D2

-0.8514x10-3 m

-2.356x10-3 m=

Page 332: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

Member

#1

#2

#3

λx λy

Local12

3 4

2

1

3

1

23

4

56

78

[q´F]1 = 8x103 1.0 0.0 -1.0 0.04

= -1.70 kN (C)

D2=D1=

D4=D3=

0.00.0

-0.8514x10-3

-2.356x10-3

-1.92+[q´F]2 = 8x103 0.8 0.6 -0.8 -0.65

= -2.87 kN (C)

D2=D1=

D6=D5=

-0.00250.0

-0.8514x10-3

-2.356x10-3

= -6.28 kN (C)

D2=D1=

D8=D7=

0.00.0

-0.8514x10-3

-2.356x10-3[q´F]3 = 8x103 0.0 1.0 0.0 -1.0

3

2+20oC

1.92 kN

1.92 kN

-1 0

- 0.8 -0.6

0 -1

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 333: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

4 kN

8 kN

6.28 kN

1.70 kN

2.87 kN

12

3 4

2

1

3

1

23

4

56

78

Member

#1

#2

#3

cosθx

-1

- 0.8

0

cosθy

0

-0.6

-1

[q´]m

-1.70

-2.87

-6.28

4 kN

8 kN

2

1

3

1.70 kN

6.28 kN

2.87(0.8) = 2.30 kN

2.87(0.6) = 1.72 kN

Page 334: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

∆ AD = + 3 mm

AB

C

3 m

D

8 kN

4 kN

4 m 4 m∆ = - 4 m

m

Example 3

For the truss shown, use the stiffness method to:(a) Determine the end forces of each member and reactions at supports.(b) Determine the displacement of the loaded joint.Take AE = 8(103) kN.

Page 335: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = - 4 mm

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

Member

#1

#2

λx λy

#3

#4

#5

-4/5 =-0.8

0

4/5 = 0.8

4/4 = 1

4/4 = 1

-3/5 = -0.6

-3/3 = -1

-3/5 = -0.6

0

0

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

Page 336: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

[k]1 = 8x103

2 3 41

234

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

0.096

0.128

0.072

0.096

[k]2 = 8x103

2 5 61

256

1

0

0

0.333

00

0

-0.333

0

0

0

0.333

0

0

0

-0.333

0

[k]3 = 8x103

2 7 81

278

1

-0.096

0.128

0.072

-0.0960.096

-0.128

-0.072

0.096

0.096

-0.128

-0.072

0.096-0.096

0.128

0.072

-0.096

Member

#1

#2

λy

#3

λx

-0.8

0

0.8

-0.6

-1

-0.6

λx2/L λy

2/Lλxλy/L

0.128 0.0720.096

0 0.3330

0.128 0.072-0.096

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

5 m

3 m 5 m

4 m 4 m

Page 337: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

5 m

3 m 5 m

4 m 4 m

Member

#4

#5

λyλx

1

1

0

0

λx2/L λy

2/Lλxλy/L

0

0.25

0

00

-0.25

0

0

0

0.25

0

0

0

-0.25

0

0

0

0.25

0

00

-0.25

0

0

0

0.25

0

0

0

-0.25

0

0[k]5= 8x103

6 7 85

678

5

0.25 00

0.25 00

Global Stiffness Matrix

[K] = 8x103

2 5 71

257

1

34 6

8

[k]4= 8x103

4 5 63

456

3

Page 338: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

Global Stiffness Matrix

0.2560.0 0.477

0.0 0.00.0

0.0 0.0-0.128 0.096

-0.1280.096

0.50-0.25

-0.250.378

[K] = 8x103

2 5 71

257

1

[k]1 = 8x103

2 3 41

234

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

0.096

0.128

0.072

0.096

[k]2 = 8x103

2 5 61

256

1

0

0

0.333

00

0

-0.333

0

0

0

0.333

0

0

0

-0.333

0

[k]3 = 8x103

2 7 81

278

1

-0.096

0.128

0.072

-0.0960.096

-0.128

-0.072

0.096

0.096

-0.128

-0.072

0.096-0.096

0.128

0.072

-0.096

0

0.250

-0.25

0

00

0

0

0.25

0

-0.250

0

0

0[k]4= 8x103

4 5 63

456

3

0

0.250

-0.25

0

00

0

0

0.25

0

-0.250

0

0

0[k]5= 8x103

6 7 85

678

5

Page 339: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

∆AE/L = 10.67 kN

∆ AD = + 3 mm1

3.84 kN

2.88 kN

3.84 kN

2.88 kN

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = - 4 mm

1

2

21

4

3

534

56

78

Global Fixed end forces

0.00.0

257

1∆AE/L = 4.8 kN

4.8 kN

∆AE/L = 10.67 kN

10.67 kN∆ = -4 m

m

2 Fixed End3.84 kN

2.88 kN-3.84-2.88 + 10.67 = 7.79

Page 340: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = -4 mm

Global:

1

2

21

4

3

534

56

78

[Q] = [K][D] + [QF]

Q1 = 4

Q5 = 0Q2 = -8

Q7 = 0

= 8x103

2 5 71

257

1

-0.250.500.00.0

0.378-0.250.096

-0.128

-0.1280.00.0

0.256

0.0960.0

0.4770.0 D1

D5

D2

D7

-3.84

0.07.79

0.0

+

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

8 kN

4 kN

Page 341: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

-4.8+D2

D1

00

= -1.54 kN (C)

1

2

21

4

3

534

56

78

Member forces

= -3.17 kN (C)

10.67+

[q´F]1 = 8x103 0.8 0.6 -0.8 -0.65

[q´F]2 = 8x103 0.0 1.0 0.0 -1.03

D2

D1

0D5

Member

#1

#2

λiyλix

-0.8 -0.6

0 -1

1

4.8 kN

4.8 kN∆ AD

= + 3 mm

10.67 kN

10.67 kN

2

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 342: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

1

2

21

4

3

534

56

78

00

0D5

[q´F]4 = 8x103 -1.0 0.0 1.0 0.04

= 5.23 kN (T)

0D5

0D7

[q´F]5 = 8x103 -1.0 0.0 1.0 0.04

= 5.23 kN (T)

D2

D1

0D7

[q´F]3 = 8x103 -0.8 0.6 0.8 -0.65

= -6.54 kN (C)

Member λx λy

#3#4

#5

0.8 -0.61 0

1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 343: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

1

2

21

4

3

534

56

78

-0.8

0

0.81

1

-0.6

-1

-0.60

0

Member

#1

#2

λx

#3#4

#5

λy [q´]

4 kN8 kN

3.17 kN

3.17 kN

6.54 kN

6.54 kN

1.54 kN

1.54 kN

5.23 kN5.23 kN

4 kN8 kN

0.92 kN

4 kN

3.17 kN 3.92 kN

-1.54

-3.17

-6.545.23

5.23

Page 344: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

Special Trusses (Inclined roller supports)

Page 345: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

λix = cos θi

λiy = sin θi

λjx = cos θj

λjy = sin θj

[ q* ] = [ T ]T[ q´ ] 1

2

3*

4*

56

78

3

2

4

5

1

x *

y *

θi

x

y

θj

1

i

j

q´i

q´j

q*3

q1

q*4

q2

q´iq´j

[T]T

00λiyλix

λjyλjx00 [ T ] = [[ T ]T]T =

=00

λiy

λix

λjy

λjx

00

1

i

j1

2

3*

4*

Transformation Matrices

Page 346: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

[ k ] = [ T ]T[ k´ ][T]

λjyλjx

λjxλjx

−λiyλjx

−λixλjx

λjyλjy

λjxλjy

−λiyλjy

−λixλjy

λiyλix

λixλix

−λjyλix

−λjxλix

λiyλiy

λixλiy

−λjyλiy

−λjxλiy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

00λiyλix

λjyλjx00-11

1-1

AEL[ k ]m =

00

λiy

λix

λjy

λjx

00

Page 347: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

Example 5

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint. AE is constant.

3 m

4 m

45o

30 kN

Page 348: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Member 1:

15

63*

4*

[q*]θi = 0,λix = cos 0 = 1,λiy = sin 0 = 0

θij = -45o = 135o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

[q*] = [T*]T[q´] + [T*]T[q´F]

q5

q3*

q6

q4*

q´iq´j

[T*]T

=0001

-0.7070.707

00

q´i q´j

i j1

Page 349: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

15

63*

4*

[q*]θi = 0 ;λix = cos 0 = 1,λiy = sin 0 = 0

θij = -45o = 135o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

0-0.707

00.707

00

10

AE4

1-1

-11[k*]1 =

0001

-0.7070.707

00

Member 1:

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

q´i q´j

i j1

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[ ]TL

AETk T

−=

1111

][*][

Page 350: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

Member 2:q´i

q´j

i

j

22

1

2

3*4*

θi = -90o = 270o,λix = cos(-90o) = 0,λiy = sin(-90o) = -1

90o+45o

=135o

90o

θj = -135o = 215o ,λix = cos (-135o) = -0.707,λiy = sin(- 135o) = -0.707

0-0.707

0-0.707

-10

00

AE3

1-1

-11[k*]2 =

00-10

-0.707-0.707

00

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[ ]TL

AETk T

−=

1111

][*][

Page 351: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

[ ]TL

AETk T

−=

1111

][][

36.87o

Member 3:

θi = θj = 36.87o ;λix = λjx = cos (36.87o) = 0.8,λiy = λjy = sin(36.87o) = 0.6

00.6

00.8

0.60

0.80

AE5

1-1

-11[k]3 =

00

0.60.8

0.60.800

3

1

2

5

63

q´i

q´j

i

j36.87o

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Page 352: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

5

6 4*

Global Stiffness:

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1[K] = AE 2

3*

11

00.0960.128

2

-0.23570.40530.096

0.2917-0.2357

03*

Page 353: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

Global :

[Q] = [K][D] + [QF]

Q1 = 30

Q3*= 0

Q2 = 0D1

D3*

D2 = AE 23*

11

00.0960.128

2

-0.23570.40530.096

0.2917-0.2357

03*

D1

D3*

D2 =352.5

-127.3-157.5AE

1

3 m

4 m45o

30 kN

3 m

4 m45o

2

1

3

1

2

5

63*

4*

5

6 4*

Page 354: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

[q´F]1 = AE 00

0D3*

-1 0 0.707 -0.7074

= -22.50 kN, (C)

D2

D1

0D3*

[q´F]2 = AE 0 1 -0.707 -0.7073

= -22.50 kN, (C)

00

D2

D1

[q´F]3 = AE -0.8 -0.6 0.8 0.65

= 37.50 kN, (T)

D1

D3*

D2 =352.5

-127.3-157.5AE

1

Member Forces :

Member

#1

λiyλix λjx λjy

#2

#3

1 0 0.707 -0.707

0 -1 -0.707 -0.707

0.8 0.6 0.8 0.6

3 m

4 m45o

2

1

3

1

2

5

63*

4*

5

6 4*

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 355: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

36.87o 45o45o

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Member

Member Force (kN)

[q´]2[q´]1 [q´]3

-22.50 -22.50 37.50

22.50 kN

22.50 kN

37.50 kN

22.50 kN

7.50 kN31.82 kN

Reactions :

3 m

4 m45o

30 kN

Page 356: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

Example 6

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint. AE is constant.

3 m

4 m

45o

30 kN

4 m

Page 357: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

15

63*

4*

[q*]θi = 0o,λix = cos 0o = 1,λiy = sin 0o = 0

θij = -45o

λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

[q*] = [T*]T[q´] + [T*]T[q´F]

q5

q3*

q6

q4*

q´iq´j

[T*]T

=0001

-0.7070.707

00

q´i q´j

i j1

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78Member 1:

Page 358: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

3 m

4 m 4 m

15

63*

4*

[q*]θi = 0o,λix = cos 0o = 1,λiy = sin 0o = 0

θij = -45o = 315o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

0-0.707

00.707

00

10

AE4

1-1

-11[k*]1 =

0001

-0.7070.707

00

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

q´i q´j

i j1

2

1

3

4

5

12

5

6 3*4*

78Member 1:

[ ]TL

AETk T

−=

1111

][*][

Page 359: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

q´i

q´j

i

j

22

1

2

3*4*

θi = -90o,λix = cos(-90o) = 0,λiy = sin(-90o) = -1

90o

θj = -135o = 215o,λix = cos (-135o) = -0.707,λiy = sin(- 135o) = -0.707

0-0.707

0-0.707

-10

00

AE3

1-1

-11[k*]2 =

00-10

-0.707-0.707

00

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78Member 2:

[ ]TL

AETk T

−=

1111

][*][

90o+45o

=135o

Page 360: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

36.87o

Member 3:

θi = θj = 36.87o ;λix = λjx = cos (36.87o) = 0.8,λiy = λjy = sin(36.87o) = 0.6

00.6

00.8

0.60

0.80

AE5

1-1

-11[k]3 =

00

0.60.8

0.60.800

3

1

2

5

63

q´i

q´j

i

j36.87o

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

[ ]TL

AETk T

−=

1111

][*][

Page 361: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

3 m

4 m 4 m

θi = θij = 0o; λix = λjx = cos 0o = 1, λiy = λjy = sin 0o = 0

00

01

00

10

AE4

1-1

-11[k]1 =

0001

0100

q´i q´j

i j1

2

1

3

4

5

12

5

6 3*4*

78Member 4:

47

8

[q]1

2

[k]4 = AE 278

17

00.25

0-0.25

8

0000

1

0-0.25

00.25

2

0000

[ ]TL

AETk T

−=

1111

][*][

Page 362: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

Member 5:

θi = - 8.13o;λix = cos (- 8.13o) = 0.9899,λiy = sin(- 8.13o) = -0.1414

00.6

00.8

-0.14140

0.98990

AE5

1-1

-11

5

q´i

q´j

i

j36.87o

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

53*4*

7

8

[k*]5 =00

-0.14140.9899

0.60.800

[k*]5 = AE

4* 83*

4*78

3*

0.0960.128

0.02263-0.1584

0.0720.096

0.01697-0.1188

-0.1188-0.1584-0.0280.196

0.016970.022630.004-0.028

7

θ j = 36.87o ;

λ jx = cos (36.87o ) = 0.8,

λ jy = sin

(36.87o ) = 0.6

[ ]TL

AETk T

−=

1111

][*][

8.13o

Page 363: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

550 -0.2357-0.2357

0

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

[k*]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m 4 m

2

1

3

4

5

Global Stiffness:1

2

5

6 3*4*

78

5

6 4*

78

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

[k]4 = AE 278

17

00.25

0-0.25

8

0000

1

0-0.25

00.25

2

0000

[k*]5 = AE

4* 83*

4*78

3*

0.0960.128

0.02263-0.1584

0.0720.096

0.01697-0.1188

-0.1188-0.1584-0.0280.196

0.016970.022630.004-0.028

7

[K] = AE 23*

11 2

0.0960.378

0.40530.096

3*

0.4877

Page 364: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

Global :30 kN

4 m 4 m

3 m2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

[Q] = [K][D] + [QF]

Q1 = 30

Q3*= 0

Q2 = 0D1

D3*

D2

D1

D3*

D2 =86.612

-13.791-28.535AE

1

= AE 23*

11

00.0960.378

2

-0.23570.40530.096

0.4877-0.2357

03*

Page 365: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

D1

D3*

D2 =86.612

-13.791-28.535AE

1

[q´F]1 = AE 00

0D3*

-1 0 0.707 -0.7074

= -2.44 kN, (C)

D2

D1

0D3*

[q´F]2 = AE 0 1 -0.707 -0.7073

= -6.26 kN, (C)

00

D2

D1

[q´F]3 = AE -0.8 -0.6 0.8 0.65

= 10.43 kN, (T)

Member Forces :

Member

#1

λiyλix λjx λjy

#2

#3

1 0 0.707 -0.707

0 -1 -0.707 -0.707

0.8 0.6 0.8 0.6

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 366: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

Member

#4

λiyλix λjx λjy

#5

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

D1

D3*

D2 =86.612

-13.791-28.535AE

1

D2

D1

00

[q´F]4 = AE -1 0 1 04

= -21.65 kN, (C)

0D3*

00

[q´F]5 = AE -0.9899 0.141 0.8 0.65

= 2.73 kN, (T)1 0 1 0

0.9899 -0.141 0.8 0.6

Member Forces :

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 367: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

36.87o 45o45o

81.87o

36.87o

Member

Member Force (kN)

[q´]1 [q´]2 [q´]3 [q´]4 [q´]5

-2.44 -6.26 10.43 -21.65 2.73

Reactions :30 kN

4 m 4 m

3 m2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

6.26 kN10.43 kN

21.65 kN

2.73 kN

2.44 kN 2.44 kN5.90 kN

6.26 kN

19.47 kN

1.64 kN

6.54 kN

Page 368: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

AB

C

3 m

D

8 kN

4 kN

4 m36.87o

4 m

λjyλjx

λjxλjx

−λiyλjx

−λixλjx

λjyλjy

λjxλjy

−λiyλjy

−λixλjy

λiyλix

λixλix

−λjyλix

−λjxλix

λiyλiy

λixλiy

−λjyλiy

−λjxλiy

Vi Uj VjUi

[ k *]m = AEL

Vi

Uj

Vj

Ui

Example 7

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint.Take AE = 8(103) kN.

Page 369: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

Member 1:

λix = cos 73.74o = 0.28,λiy = sin 73.74o = 0.96

[q*] = [T*]T[q´] + [T*]T[q´F]

λjx = cos 36.87o = 0.8,λjy = sin 36.87o = 0.6

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

x *

y *

73.74o

x

y

36.87o

1

i

j1

2

3*

4*1

i

j

q´i

q´j

q3*

q1

q4*

q2

q´iq´j

=00

0.960.28

0.60.8

00

[T*]T

3

2

4

5

1

1

2

56

78

3*

4*

Page 370: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

[k]1 = 8x103

4* 1 23*

4*

12

3*

0.0960.128

-0.1536-0.0448

0.0720.096

-0.1152-0.0336

-0.0336-0.04480.053760.01568

-0.1152-0.15360.184320.05376

000.960.280.60.800

[k]1 =00

0.960.28

0.60.8

00

8x103

51

-1-11

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

1

2

56

78

3*

4*

[ ]TL

AETk T

−=

1111

][][

Page 371: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

x *

y*

36.87x

yMember 2:

λix = cos 36.87o = 0.8,λiy = sin 36.87o = 0.6

[q*] = [T*]T[q´] + [T*]T[q´F]

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λjx = cos 0o = 1,λjy = sin 0o = 0

q3*

q5

q4*

q6

q´iq´j

[T*]T

[k] = [TT] AEL

[T]1-1

-11

q´i q´j

i j2

=00

0.60.8

0100

i j2 5

6

3*

4*

[k]2 = 8x103

4* 5 63*

4*

56

3*

00.25

-0.15-0.2

0000

0-0.20.120.16

0-0.150.090.12

3

2

4

5

1

1

2

56

78

3*

4*

Page 372: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

x

y

270o 1

2

784

Member 3:

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λx = cos 323.13o = 0.8,λy = sin 323.13o = -0.6

Member 4:

[k]4 = 8x103

2 7 81

278

1

-0.0960.1280.096

-0.128

0.072-0.096-0.0720.096

0.096-0.128-0.0960.128

-0.0720.0960.072

-0.096

λx = cos 270o = 0, λy = sin 270o = -1

[k]3 = 8x103

0000

0.3330

-0.3330

00

00

2 5 61

256

10.333

0

-0.3330

x

y

323.13o3

1

2

56

3

2

4

5

1

1

2

56

78

3*

4*

Page 373: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

x

yMember 5:

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λx = cos 0o = 1,λy = sin 0o = 0

00.25

0-0.25

0000

00.25

0-0.25

00

00

[k]5 = 8x103

6 7 85

678

5

5 78

56

3

2

4

5

1

1

2

56

78

3*

4*

Page 374: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

660.17568

-0.2-0.20.5

00

0 0

-0.0336-0.0448

-0.0448 -0.03360.0

0.2560.4740.0

[k]1 = 8x103

4* 1 23*

4*

12

3*

0.0960.128

-0.1536-0.0448

0.0720.096

-0.1152-0.0336

-0.0336-0.04480.053760.01568

-0.1152-0.15360.184320.05376

[k]4 = 8x103

2 7 81

278

1

-0.0960.1280.096

-0.128

0.072-0.096-0.0720.096

0.096-0.128-0.0960.128

-0.0720.0960.072

-0.096

00.25

0-0.25

0000

00.25

0-0.25

00

00

[k]5 = 8x103

6 7 85

678

5

[k]2 = 8x103

4* 5 63*

4*

56

3*

00.25

-0.15-0.2

0000

0-0.20.120.16

0-0.150.090.12

[k]3 = 8x103

0000

0.3330

-0.3330

00

00

2 5 61

256

10.333

0

-0.3330

[K] = 8x103

2 3* 51

23*

5

1

3

2

4

5

1

12

56

78

3*

4* 6

784*

Page 375: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

3

2

4

5

1

2

3*

4*

56

78A

BC

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

1

Global: [Q] = [K][D] + [QF]

D1

D3*

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

Q1 = 4

Q3*= 0

Q2 = -8

Q5 = 0

D1

D3*

D2

D5

0.17568-0.2

-0.20.5

00

0 0

-0.0336-0.0448

-0.0448 -0.03360.0

0.2560.4740.0

= 8x103

2 3* 51

23*

5

1

8 kN

4 kN

Page 376: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

2

3*

4*

56

78

1

Member forces

D1

D3*

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

0D3*

D2

D1

[q´F]1 = 8x103 -0.28 -0.96 0.8 0.65

= 0.46 kN, (T)

0D3*

0D5

[q´F]2 = 8x103 -0.8 -0.6 1 04

= -0.16 kN, (C)

Member

#1

#2

λiyλix λjx λjy

0.28 0.96 0.8 0.6

0.8 0.6 1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 377: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

D1

D*3

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

3

2

4

5

1

2

3*

4*

56

78

1

[q´F]3 = 8x103 D2

D1

0D5

0 1 0 -13

= -5.55 kN

D2

D1

00

[q´F]4 = 8x103 -0.8 0.6 0.8 - 0.65

= -4.54 kN

0D5

00

[q´F]5 = 8x103 -1 0 1 04

= -0.16 kN

Member

#3

λiyλix λjx λjy

#4

#5

0 -1 0 -1

0.8 -0.6 0.8 -0.6

1 0 1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 378: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

y*

x *

36.87o

36.87o 36.87o

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

2

3*

4*

56

78

1

0.46 -0.16 -5.55 -4.54 -0.16

0.46 kN

5.55 kN0.36 kN

4.54 kN

3.79 kN

2.72 kN

Member

Member Force (kN)

[q]2[q]1 [q]3 [q]4 [q]5

0.16 kN 0.16 kN

5.55 kN

Page 379: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71

Space-Truss Analysis

Page 380: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

+

−=

Fj

Fi

j

i

j

i

qq

dd

LEA

qq

''

''

1111

''

[ ] [ ]F

jz

jy

jx

iz

iy

ix

q

dddddd

TL

EA '1111

+

−=

[ ]

=

zyx

zyxT

where

λλλλλλ000

000,

[q´] = [k´][d´] + [q´F]

= [k´][T][d] + [q´F]

Member Local Stiffness [k´]:

Page 381: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

73

Member Global Stiffness [km]:

[km]= [T]T[k´] [T]

[ ]

=zyx

zyx

z

y

x

z

y

x

m LEAk

λλλλλλ

λλλ

λλλ

000000

1111

000

000

Page 382: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

74

Global equilibrium matrix:

[Q] = [K][D] + [QF]

QI

QII

Du

Dk

KI,II

KII,II

KI,I

KII,I

Reaction Support Boundary Condition

Unknown DisplacementJoint Load

QFI

QFII

= +

Fixed End Forces

Page 383: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

75

q´j

q´i

i

j

m

i

j

m

=EAL

λxλx

λzλx

λyλx

λxλy

λyλy

λzλy

λxλz

λyλz

λzλz

λxλx

λzλx

λyλx

λxλy

λyλy

λzλy

λxλz

λyλz

λzλz

−λxλx

−λzλx

−λyλx

−λxλy

−λyλy

−λzλy

−λxλz

−λyλz

−λzλz

−λxλx

−λzλx

−λyλx

−λxλy

−λyλy

−λzλy

−λxλz

−λyλz

−λzλz

diy

dix

djx

diz

djy

djz

qiy

qix

qjx

qiz

qjy

qjz

qjy

qjx

qjzqiy

qix

qiz

+

−=

Fj

Fi

j

i

j

i

qq

dd

LEA

qq

''

''

1111

''

[ ] [ ] [ ]F

jz

jy

jx

iz

iy

ix

zyxzyxmj q

dddddd

LEAq '' +

−−−= λλλλλλ

Page 384: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

76

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Example 6

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member.(a) Determine the deflections of the loaded joint.Take E = 200 GPa, A = 1000 mm2.

Page 385: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

77

λ1 = (-4/11.18)i + (3/11.18)j + (-10/11.18)k

= -0.3578 i + 0.2683 j - 0.8944 k

λ2 = (+4/11.18)i + (3/11.18)j + (-10/11.18)k= +0.3578 i + 0.2683 j - 0.8944 k

λ3 = (+4/11.18)i + (-3/11.18)j + (-10/11.18)k

= +0.3578 i - 0.2683 j - 0.8944 k

= -0.3578 i - 0.2683 j - 0.8944 k

λ4 = (-4/11.18)i + (-3/11.18)j + (-10/11.18)k

Member

#1

#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944

+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944

-0.3578 -0.2683 -0.8944

λm = λxi + λyj + λzk

12

34

12

3

(0, 0, 10)

(-4, 3, 0)

(4, 3, 0)

(4, -3, 0)

(-4, -3, 0)4

1

2

53

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 386: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

78

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

Member Stiffness Matrix [k]6x6

[k]m =[k12]3x3

[k22]3x3

[k11]3x3

[k21]3x3

2 31

23

1

+0.80-0.240

+0.320

+0.320-0.096

+0.128

-0.240+0.072

-0.096

[k11]1 =AEL

2 31

23

1

+0.80-0.240

-0.320

-0.320+0.096

+0.128

-0.240+0.072

+0.096

[k11]2 =AEL

2 31

23

1

+0.80+0.240

-0.320

-0.320-0.096

+0.128

+0.240+0.072

-0.096

[k11]3 =AEL

2 31

23

1

+0.80+0.240

+0.320

+0.320+0.096

+0.128

+0.240+0.072

+0.096

[k11]4 =AEL

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

[KI,I] =AEL

Page 387: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

79

12

34

12

3

(0, 0, 10)

(-4, 3, 0)

(4, 3, 0)

(4, -3, 0)

(-4, -3, 0)4

1

2

53

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

0.0-80

60

D3

D2

D1

0.00.0

0.0+

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

=AEL

[Q] = [K][D] + [QF]

Page 388: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

80

Global equilibrium matrix:

[Q] = [K][D] + [QF]

QI

QII

Du

Dk

KI,II

KII,II

KI,I

KII,I

Reaction Support Boundary Condition

Unknown DisplacementJoint Load

QFI

QFII

= +

Fixed End Forces

(AE/L) = (1x10-3)(200x106)/(11.18) = 17.89x103 kN

0.0-80

60

D3

D2

D1

0.00.0

0.0+

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

=AEL

0.0 mm-15.53 mm

6.551 mm=

D3

D2

D1

= LAE

0.0-277.8

+117.2

Page 389: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

81

Member forces:

q´F+

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

dyi

dxi

dxj

dzi

dyj

dzj

[q´j]m = AEL −λx −λy −λz λx λy λz

D3

D2

D1

[ 0 ]

= +116.5 kN (T)

+0.3578 -0.2683 +0.8944[q´j]1 =AEL

0.0

117.2

-277.8L

AE

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 390: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

82

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

= +32.61 kN (T)-0.3578 -0.2683 +0.8944[q´j]2 =AEL

0.0

117.2

-277.8L

AE

= -116.5 kN (T)-0.3578 +0.2683 +0.8944[q´j]3 =AEL

0.0

117.2

-277.8L

AE

= -32.61 kN (T)+0.3578 +0.2683 +0.8944[q´j]4 =AEL

0.0

117.2

-277.8L

AE

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 391: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

83

5

32.6 kN116.5 kN

116.5 kN

32.6 kN

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

[q´j]m

116.5 32.6

-32.6-116.5

12

34

80 kN60 kN

R5x = (-32.6)(-0.3578) = 11.66 kN

R5y = (-32.6)(-0.2683) = 8.75 kN

R5z = (-32.6)(-0.8944) = 29.16 kN

Page 392: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Development: The Slope-DeflectionEquations

! Stiffness Matrix! General Procedures! Internal Hinges! Temperature Effects! Force & Displacement Transformation! Skew Roller Support

BEAM ANALYSIS USING THE STIFFNESSMETHOD

Page 393: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

Slope � Deflection Equations

settlement = ∆j

Pi j kw Cj

Mij MjiwP

θj

θi

ψ

i j

Page 394: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

� Degrees of Freedom

L

θΑ

A B

M

1 DOF: θΑ

PθΑ

θΒΒΒΒ

A BC 2 DOF: θΑ , θΒΒΒΒ

Page 395: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

L

A B

1

� Stiffness Definition

kBAkAA

LEIkAA

4=

LEIkBA

2=

Page 396: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

L

A B1

kBBkAB

LEIkBB

4=

LEIkAB

2=

Page 397: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

� Fixed-End ForcesFixed-End Forces: Loads

P

L/2 L/2

L

w

L

8PL

8PL

2P

2P

12

2wL12

2wL

2wL

2wL

Page 398: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

� General Case

settlement = ∆j

Pi j kw Cj

Mij MjiwP

θj

θi

ψ

i j

Page 399: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

wP

settlement = ∆j

(MFij)∆ (MF

ji)∆

(MFij)Load (MF

ji)Load

+

Mij Mji

θi

θj

+

i jwPMij

Mji

settlement = ∆jθj

θi

ψ

=+ ji LEI

LEI θθ 24

ji LEI

LEI θθ 42

+=

,)()()2()4( LoadijF

ijF

jiij MMLEI

LEIM +++= ∆θθ Loadji

Fji

Fjiji MM

LEI

LEIM )()()4()2( +++= ∆θθ

L

Page 400: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

Mji Mjk

Pi j kw Cj

Mji Mjk

Cj

j

� Equilibrium Equations

0:0 =+−−=Σ+ jjkjij CMMM

Page 401: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

+

1

1

i jMij Mji

θi

θj

LEIkii

4=

LEIk ji

2=

LEIkij

2=

LEIk jj

4=

iθ×

jθ×

� Stiffness Coefficients

L

Page 402: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

[ ]

=

jjji

ijii

kkkk

k

Stiffness Matrix

)()2()4( ijF

jiij MLEI

LEIM ++= θθ

)()4()2( jiF

jiji MLEI

LEIM ++= θθ

+

=

F

ji

Fij

j

iI

ji

ij

MM

LEILEILEILEI

MM

θθ

)/4()/2()/2()/4(

� Matrix Formulation

Page 403: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

[D] = [K]-1([Q] - [FEM])

Displacementmatrix

Stiffness matrix

Force matrixwP(MF

ij)Load (MFji)Load

+

+

i jwPMij

Mji

θj

θi

ψ ∆j

Mij Mji

θi

θj

(MFij)∆ (MF

ji)∆

Fixed-end momentmatrix

][]][[][ FEMKM += θ

]][[])[]([ θKFEMM =−

][][][][ 1 FEMMK −= −θ

L

Page 404: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

L

Real beam

Conjugate beam

� Stiffness Coefficients Derivation

MjMi

L/3

θi

LMM ji +

EIM j

EIMi

θι

EILM j

2

EILMi

2

)1(2

0)3

2)(2

()3

)(2

(:0'

−−−=

=+−=Σ+

ji

jii

MM

LEI

LMLEI

LMM

)2(0)2

()2

(:0 −−−=+−=Σ↑+EI

LMEI

LMF jiiy θ ij

ii

LEIM

LEIM

andFrom

θ

θ

)2(

)4(

);2()1(

=

=

LMM ji +

i j

Page 405: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

� Derivation of Fixed-End Moment

Real beam

8,0

162

22:0

2 PLMEI

PLEI

MLEI

MLFy ==+−−=Σ↑+

P

M

M EIM

Conjugate beamA

EIM

B

L

P

A B

EIM

EIML2

EIM

EIML2

EIPL

16

2

EIPL4 EI

PL16

2

Point load

Page 406: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

L

P

841616PLPLPLPL

=+−

+−

8PL

8PL

2P

2PP/2

P/2

-PL/8 -PL/8

PL/8

-PL/16-PL/8

-

PL/4+

-PL/16-PL/8-

Page 407: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

Uniform load

L

w

A B

w

M

M

Real beam Conjugate beam

A

EIM

EIM

B

12,0

242

22:0

23 wLMEI

wLEI

MLEI

MLFy ==+−−=Σ↑+

EIwL8

2

EIwL

24

3

EIwL

24

3

EIM

EIML2

EIM

EIML2

Page 408: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

Settlements

M

M

L

MjMi = Mj

LMM ji +L

MM ji +

Real beam

2

6LEIM ∆

=

Conjugate beam

EIM

A B

EIM

,0)3

2)(2

()3

)(2

(:0 =+−∆−=Σ+L

EIMLL

EIMLM B

EIM

EIML2

EIMEI

ML2

Page 409: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

� Typical Problem

0

0

0

0

A C

B

P1P2

L1 L2

wCB

8024 11

11

LPLEI

LEIM BAAB +++= θθ

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

128042 2

222

22

wLLPLEI

LEIM CBCB −

−+++= θθ

P

8PL

8PL

L

w12

2wL

12

2wL

L

Page 410: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

MBA MBC

A C

B

P1P2

L1 L2

wCB

B

CB

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

BBCBABB forSolveMMCM θ→=−−=Σ+ 0:0

Page 411: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

A C

B

P1P2

L1 L2

wCB

Substitute θB in MAB, MBA, MBC, MCB

MABMBA

MBC

MCB

0

0

0

0

8024 11

11

LPLEI

LEIM BAAB +++= θθ

8042 11

11

LPLEI

LEIM BABA −++= θθ

128024 2

222

22

wLLPLEI

LEIM CBBC ++++= θθ

128042 2

222

22

wLLPLEI

LEIM CBCB −

−+++= θθ

Page 412: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

A BP1

MAB

MBA

L1

A CB

P1P2

L1 L2

wCB

ByR CyAy ByL

Ay Cy

MABMBA

MBC

MCB

By = ByL + ByR

B CP2

MBCMCB

L2

Page 413: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

2EI EI

Stiffness Matrix

� Node and Member Identification

� Global and Member Coordinates

� Degrees of Freedom

�Known degrees of freedom D4, D5, D6, D7, D8 and D9� Unknown degrees of freedom D1, D2 and D3

1 21 2 31

2 3

7

8

9

4

5

6

1

2 3

7

8

9

4

5

6

Page 414: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

i j

E, I, A, L

Beam-Member Stiffness Matrix

d4 = 1

AE/LAE/L AE/L AE/L

64

5

1

2

3

[k] =

1 2 3 4 5 6

3

2

1

4

6

5

d1 = 1

k11 = = k44

0

0

0

0

0

0

0

0

- AE/LAE/L

-AE/L AE/L

k41 k14

Page 415: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

d2 = 1

[k] =

1 2 3 4 5 6

3

2

1

4

6

5

0

0

0

0

0

0

0

0

- AE/LAE/L

-AE/L AE/L

6EI/L2

6EI/L2

d5 = 1

6EI/L2

6EI/L2

12EI/L312EI/L3 12EI/L3

12EI/L3

6EI/L2

12EI/L3

- 6EI/L2

- 12EI/L3

0

0

6EI/L2

-12EI/L3

0

0

- 6EI/L2

12EI/L3

k22 = = k55

= k52

k62 =

= k32 = k65

= k25

= k35

i j

E, I, A, L6

4

5

1

2

3

Page 416: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

[k] =

1 2 3 4 5 6

3

2

1

4

6

5

0

0

0

0

0

0

0

0

- AE/LAE/L

-AE/L AE/L

6EI/L2

12EI/L3

- 6EI/L2

- 12EI/L3

0

0

6EI/L2

-12EI/L3

0

0

- 6EI/L2

12EI/L3

4EI/L

6EI/L2 6EI/L2

2EI/L

0

0

2EI/L

-6EI/L2

0

0

-6EI/L2

4EI/L

d6 = 1

d3 = 1 2EI/L 4EI/L

6EI/L26EI/L26EI/L2

4EI/L 2EI/L

6EI/L2

k33 =

k23 = = k53

= k63 = k36

= k56 k26 =

= k66

i j

E, I, A, L6

4

5

1

2

3

Page 417: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

FFxi

FFyi

MFi

FFxj

FFyj

MFj

+

MFi MF

j

FFxjFF

xi

FFyi FF

yj

1

6EI/L2

6EI/L2

12EI/L312EI/L3

+

x ∆i

12EI/L3

6EI/L2

6EI/L2

12EI/L3

1

+

4EI/L 2EI/L

6EI/L26EI/L2

x θi

6EI/L2

4EI/L 2EI/L

6EI/L2

x δjAE/L

1

AE/L

+

AE/L AE/L

6EI/L2

6EI/L2

1

12EI/L312EI/L3

x ∆j

6EI/L2

6EI/L2

12EI/L3

12EI/L3

1

+

2EI/L

6EI/L26EI/L2

4EI/L

x θj

6EI/L2

2EI/L

6EI/L2

4EI/L

Fxi

Fyi

MiFxj

Fyj

Mj

� Member Equilibrium Equations

Mj

i jFxj

Fxi

Fyi Fyj

=

MiE, I, A, L

x δiAE/L AE/L

1

AE/LAE/L

Page 418: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

+

−−−−

−−−

=

Fj

Fyi

Fxj

Fi

Fyi

Fxi

j

j

j

i

i

i

j

yj

xj

i

yj

xi

MFFMFF

θ∆δθ∆δ

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAELAE

MFFMFF

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00/

22

2323

22

2323

Fjjjjiiij

Fyjjjjiiiyj

Fxijjjiiixj

Fijjjiiixi

Fyijjjiiiyi

Fxijjjiiixi

MθLEI∆LEIδθLEI∆LEIδMFθLEI∆δθLEI∆LEIδFFθ∆δLAEθ∆δLAEFMθLEI∆LEIδθLEI∆LEIδMFθLEI∆LEIδθLEI∆LEIδFFθ∆δLAEθ∆δLAEF

)/4()/6()0()/2()/6()0()/6()0()0()/6()/12()0(

)0()0()/()0()0()/()/2()/6()0()/4()/6()0()/6()/12()0()/6()/12()0(

)0()0()/()0()0()/(

22

223

22

2323

−=−−−=

−=−=−+=

+++−++=

[q] = [k][d] + [qF]

Fixed-end force matrix

End-force matrix

Stiffness matrix

Displacement matrix

Page 419: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

6x6 Stiffness Matrix

[ ]

−−−−

−−−

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAELAE

k

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00/

22

2323

22

2323

66

θi ∆j θj∆i δjδi

Mi

Vj

Mj

Vi

Nj

Ni

4x4 Stiffness Matrix

[ ]

−−−−

−−

LEILEILEILEILEILEILEILEILEILEILEILEILEILEILEILEI

k

/4/6/2/6/6/12/6/12/2/6/4/6/6/12/6/12

22

2323

22

2323

44

θi ∆j θj∆i

Mi

Vj

Mj

Vi

Page 420: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

Comment: - When use 4x4 stiffness matrix, specify settlement. - When use 2x2 stiffness matrix, fixed-end forces must be included.

2x2 Stiffness Matrix

θi θj

Mi

Mj[ ]

=× LEILEI

LEILEIk

/4/2/2/4

22

Page 421: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

21 312

1

2

3

4

5

6

General Procedures: Application of the Stiffness Method for Beam Analysis

wP P2y

M2M1

Local

1

2

Global

Page 422: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

Member

1

2

3

4

1

3

4

5

6

2

1

2

3

4

5

6

3121 2

Global

wP P2y

M2M1

Local

1

2

Page 423: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

(q´F4 )2

(q´F3 )2

(q´F1)2

(q´F2)2

w

2

P

(q´F4)1

(q´F3)1

(q´F2)1

(q´F1 )1

1[FEF]

1

2

3

4

5

6

3121 2

Global

Local

1

2

wP P2y

M2M1

Page 424: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

[q] = [T]T[q´]

1

2

3

4

5

6

3121 2

Global

Local

1

[k] = [T]T[q´] [T]

=

'4

'3

'2

'1

4

3

2

1

1000010000100001

qqqq

qqqq

1´ 4´2´ 3´12341

Page 425: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

[q] = [T]T[q´]

1

2

3

4

5

6

3121 2

Global

Local

2

[k] = [T]T[q´] [T]

=

'4

'3

'2

'1

6

5

4

3

1000010000100001

qqqq

qqqq

1´ 4´2´ 3´34562

Page 426: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

Stiffness Matrix:

21 312

1

2

3

4

5

6

[k]1 =

1

2

3

4

1 2 3 4

[k]2 =

3

4

5

6

3 4 5 6

Member 1

[K] =

1

23

4

5

6

1 2 3 4 5 6

Member 2

Node 2

1 2

Page 427: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

+

=

F

F

F

F

F

F

QQQQQQ

DDDDDD

QQQQQQ

6

5

1

4

3

2

6

5

1

4

3

2

6

5

1

4

3

2 234156

5 612 3 4

000

M1z

-P2y

M3z

KBA

KAB

KBB

KAA

21 312

1

2

3

4

5

6

ReactionQu

Joint LoadQk

Du=Dunknown

Dk = DknownQF

B

QFA

[ ] [ ][ ] [ ]FAuAAk QDKQ +=

[ ] [ ] [ ] [ ])(1 FAkAAu QQKD −+= −

[ ] [ ][ ] [ ]FqdkqForceMember +=:

Page 428: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

+

6

5

4

3

2

1

DDDDDD

Global:

21 312

1

2

3

4

5

6

1 2

2

3

4

51

6

(q´F6 )2

(q´F5 )2

(qF4)2

(qF3)2

w

2

P

(qF4)1

(qF3)1

(qF2)1

(qF1 )1

1[FEF]

=−=

=

24

23

12

MQPQ

MQ

y

4

3

2

DDD

+F

F

F

QQQ

4

3

2

2 3 4

Node 2

=

234

Member 1

123456

1 2 3 4 5 6

Member 2

Node 2=

6

5

4

3

2

1

QQQQQQ

+=+=

F

F

F4

F4

F

F3

F3

F

F

F

QQ

qqQqqQ

QQ

6

5

214

213

2

1

)()()()(

M1

-P2y

M2

0

00

Page 429: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

1 2 312

1

2

3

4

5

6

4

3

2

DDD

2 3 4

Node 2

=

234

=−=

=

F

F

F

QQQ

MQPQ

MQ

4

3

2

24

2y3

12

Page 430: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

Member 1:

21 312

1

2

3

4

5

6

P

qF4

qF3

qF2

qF1

1

[FEF]

4

3

2

1

qqqq

====

44

33

22

1 0

DdDdDd

d

+

F

F

F

F

qqqq

4

3

2

11234

1 2 3 4

= 1k

Page 431: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

21 312

1

2

3

4

5

6

Member 2:

qF6

qF5

qF4

qF3

w

2

[FEM]

6

5

4

3

qqqq

==

==

00

6

5

44

33

dd

DdDd

+

F

F

F

F

qqqq

6

5

4

31234

1 2 3 4

= 1k

Page 432: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

AC

B

9 m 3 m

10 kN1 kN/m

1.5 m

Example 1

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.(c) Draw the quantitative shear and bending moment diagrams.

Page 433: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

21Global

123

1Members

23

2

12

AC

B

9 m 3 m

10 kN1 kN/m

1.5 m

wL2/12 = 6.75wL2/12 = 6.75 PL/8 = 3.75PL/8 = 3.75

10 kN

1.5 m1.5 m

2

1 kN/m

9 m 1[FEF]

Page 434: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

4/3

2/3

2/3

21

123

9 m 3 m

[k]1= EI4/9

2/9

3

4/9

2/92

3

2[k]2 = EI

4/3

4/3

2/3

2/3

2 12

1

[K] = EI

2 12

1

(4/9)+(4/3)

21

123

Stiffness Matrix: θi θj

Mi

Mj[ ]

=× LEILEI

LEILEIk

/4/2/2/4

22

Page 435: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

A CB

10 kN1 kN/m

123

Equilibrium equations: MCB = 0MBA + MBC = 0

Global Equilibrium: [Q] = [K][D] + [QF]

=2.423/EI

0.779/EI

θC

θB

9 m 1.5 m1.5 m6.756.75

+-3.75

-6.75 + 3.75 = -3MBA + MBC = 0

MCB = 01

2

θC

θB

4/3

2/3

2/3 = EI

2 12

1

(4/9)+(4/3)

3.753.756.75

Page 436: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

= -6.40

6.92

Member 1 : [q]1 = [k]1[d]1 + [qF]1

MBA

MAB

2

3

= 0.779/EIθB

θA

0

+ -6.75

6.75

Substitute θB and θC in the member matrix,

1

23

wL2/12 = 6.75wL2/12 = 6.75

1 kN/m

9 m 1[FEF]

4.56 kN 4.44 kN

6.92 kN�m 6.40 kN�m

wL2/12 = 6.75wL2/12 = 6.75

= EI4/9

2/9

3

4/9

2/92

1 kN/m

19 m

Page 437: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

Member 2 : [q]2 = [k]2[d]2 + [qF]2

Substitute θB and θC in the member matrix,

MCB

MBC

1

2 = EI

4/3

4/3

2/3

2/3

2 1

= 0

6.40

θC

θB

= 2.423/EI

= 0.779/EI

2

12

[FEF]PL/8 = 3.75PL/8 = 3.75

10 kN

1.5 m1.5 m

2

7.13 kN 2.87 kN

6.40 kN�m

10 kN

2

PL/8 = 3.75PL/8 = 3.75

+-3.75

3.75

Page 438: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

A CB

10 kN1 kN/m

9 m 1.5 m1.5 m

6.92 kN�m

11.57 kN 2.87 kN4.56 kN

4.56 kN 4.44 kN 7.13 kN 2.87 kN

1 kN/m6.92 6.40

6.40

10 kN

M (kN�m) x (m)

-6.92 -6.40

3.48 4.32

V (kN) x (m)

4.56

-4.44 -2.874.56 m

7.13

θB = +0.779/EIθC = +2.423/EI

Page 439: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

20 kN

A CBEI2EI

4 m 4 m

9kN/m 40 kN�m

Example 2

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.

Page 440: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

1 2 3

0.5625

3

-0.375

-0.375

1

2

3

4

5

6

[K] = EI

3 4

3

4

Use 4x4 stiffness matrix,

[k]1

0.375EI

-0.75EI2EI

0.75EI - 0.375EI

0.375EI

0.75EI

EI

-0.75EI

2EI

0.75EI

0.75EI

-0.375EI

EI

-0.75EI

-0.75EI

1 2 3 4

1

2

34

[k]2

0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

3 4 5 6

3

4

5

6

2EI EI

1 2

1

2

5

6

θi ∆j θj

Mi

∆i

Vj

Mj

Vi

[ ]

−−−−

−−

=

LEILEILEILEILEILEILEILEILEILEILEILEILEILEILEILEI

k

/4/6/2/6/6/12/6/12/2/6/4/6/6/12/6/12

22

2323

22

2323

Page 441: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

20 kN9kN/m 40 kN�m

4 m 4 m

12 kN�m18 kN

12 kN�m

18 kN 18 kN

D4

D3

Global:

D4

D3=

9.697/EI

-61.09/EI

Q4 = 40

Q3 = -203

4 + -12

18 3

4

20 kN

40 kN�m

12 kN�m

1 2

1

2

3

4

5

6

1 2 3

2EI EI

[Q] = [K][D] + [QF]

0.5625

3

-0.375

-0.375= EI

3 4

3

4

Page 442: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

Member 1:

1

9 kN/m

A B12 kN�m

[qF]1

12 kN�m

18 kN 18 kN

1

9 kN/m

A B

[q]1

53.21 kN�m

48.18 kN67.51 kN�m

12.18 kN

1

1

2

3

4

1 2

2EI 12 kN�m 12 kN�m

18 kN 18 kN

q2

q1

q4L

q3L

67.51

48.18

53.21

-12.18

12

18

-12

18

12(2EI)/43

-0.75EI2EI

0.75EI - 0.375EI

0.375EI

0.75EI

EI

-0.75EI

2EI

0.75EI

0.75EI

-0.375EI

EI

-0.75EI

-0.75EI

1 2 3 4

1

2

34

[q]1 = [k]1[d]1 + [qF]1

d3 = -61.09/EI

d4 = 9.697/EI

d2 = 0

d1 = 0

Page 443: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

2B C

[q]2

Member 2:

[q]2 = [k]2[d]2 + [qF]2

2

3

4

5

6

2 3

EI

q4R

q3R

q6

q5

0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

3 4 5 6

3

4

5

6

0

0

0

0

d3 =-61.09/EI

d4 = 9.697/EI

d6 = 0

d5 = 0

18.06 kN�m

7.82 kN

13.21 kN�m

7.82 kN

-13.21

-7.818

-18.06

7.818

Page 444: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

V (kN) x (m)

-7.818

48.18

-7.818-

M (kN�m) x (m)

13.21

-18.08-

-67.51

-

1

9 kN/m

A B

[q]1

53.21 kN�m

48.18 kN67.51 kN�m

12.18 kN2

B C

[q]2

18.06 kN�m

7.82 kN

13.21 kN�m

7.82 kN

12.18+

53.21

+

20 kN

4 m 4 m

9kN/m 40 kN�m

7.818 kN

18.06 kN�m67.51 kN�m

48.18 kN

D3 = ∆B = -61.09/EI

D4 = θB = +9.697/EI

Page 445: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

20 kN

A CBEI2EI

4 m 2 m

9kN/m 40 kN�m10 kN

2 m

Example 3

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.

Page 446: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

55

Global1 2

1

2

3

4

5

6

1 2 3

20 kN

A CB EI2EI

9kN/m 40 kN�m10 kN

4 m 2 m 2 m

10 kN5 kN�m

5 kN

5 kN�m

5 kN

212 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1[FEF]

θi ∆j θj

Mi

∆i

Vj

Mj

Vi

[ ]

−−−−

−−

LEILEILEILEILEILEILEILEILEILEILEILEILEILEILEILEI

k

/4/6/2/6/6/12/6/12/2/6/4/6/6/12/6/12

22

2323

22

2323

44

Page 447: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

1 2

1

2

3

4

5

6

1 2 3 4 m 2 m 2 m

1

2

5

1 2

0.375

0.50.375 0.5 1

[K] = EI

3 4 6

3

46

0.5625

3

-0.375

-0.375

12(2EI)/43

[k]1 =-0.75EI2EI

0.75EI - 0.375EI

0.375EI

0.75EI

EI

-0.75EI

2EI/L

0.75EI

0.75EI

-0.375EI

EI

-0.75EI

-0.75EI

1 2 3 4

1

2

34

[k]2 =0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

3 4 5 6

3

4

5

6

Page 448: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

MBA+MBC = 40

VBL+VBR = -20

MCB = 0θB

∆B

θC

-12 + 5 = -7-5

θB

∆B

θC

= -7.667/EI

-116.593/EI

52.556/EI

Global: [Q] = [K][D] + [QF]

= EI

0.5625

3

-0.375

-0.375

0.375

0.50.375 0.5 1

3 4 6

3

46

20 kN

A CB

9kN/m 40 kN�m10 kN

21

1

2

3

4

5

6

1 2 3 10 kN5 kN�m

5 kN

5 kN�m

5 kN

212 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1[FEF]

20 kN

40 kN�m

5 kN�m5 kN�m

5 kN

12 kN�m

18 kN

+18 + 5 = 23

Page 449: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

0.375EI

= -0.75EI2EI

0.75EI - 0.375EI

0.375EI

0.75EI

EI

-0.75EI

2EI/L

0.75EI

0.75EI

-0.375EI

EI

-0.75EI

-0.75EI

1 2 3 4

1

2

34

=91.78

55.97

60.11

-19.97

91.78 kN�m

55.97 kN

Member 1: [q]1 = [k]1[d]1 + [qF]1

MAB

VA

MBA

VBL+

12

18

-12

18=-116.593/EI

=-7.667/EI

0

0

θB

∆B

1

1

2

3

4

1 2

12 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1

[FEF]

19.97 kN

60.11 kN�m4 m

9kN/m

1

12 kN�m

18 kN

12 kN�m

18 kN18 kN

Page 450: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

VC

MBC

VBR

MCB

+ 5

5

5 -5

=-20.11

-0.0278

0

10.03=52.556/EI

=-116.593/EI

=-7.667/EIθB

∆B

θC

0

10 kN5 kN�m

5 kN

5 kN�m

5 kN

2

[FEM]

10.03 kN

2 m

10 kN

2 m2

= 0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

3 4 5 6

3

4

5

6

0.0278 kN

20.11 kN�m

Member 2: [q]1 = [k]1[d]1 + [qF]1

223

5

6

3

45 kN�m

5 kN

5 kN�m

5 kN

Page 451: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

20 kN

4 m 2 m

9kN/m 40 kN�m10 kN

2 m

10.03 kN

91.78 kN�m

55.97 kN

V (kN) x (m)

55.97

-0.0278

19.97+

-10.03 -10.03-

91.78 kN�m

55.97 kN 19.97 kN60.11 kN�m4 m

9kN/m

110.03 kN0.0278 kN

20.11 kN�m2 m

10 kN2 m

2

91.78 kN�m

60.11 kN�m

20.11 kN�m

M (kN�m) x (m)

-91.78

-

+20.11

60.11

θB = -7.667/EI

θC = 52.556/EI

∆B = -116.593/EI

Page 452: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

40 kN

8 m 4 m 4 m

2EI EI

6 kN/m

AB

C∆B = -10 mm

Example 4

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative shear diagram, bending moment diagramand qualitative deflected shape.Take I = 200(106) mm4 and E = 200 GPa and support B settlement 10 mm.

Page 453: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

[k]1 =4

8

8

4

1 2

1

2

EI8

1 2

1 2 3

2EI EI

1

2

42

2 3

2

3[K] = EI

8

12

2

4

4

2

2 3

2

3[k]2 = EI

8

Use 2x2 stiffness matrix:θi θj

Mi

Mj[ ]

=× LEILEI

LEILEIk

/4/2/2/4

22

Page 454: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

75 kN�m

6(2EI)∆/L2 = 75 kN�m10 mm

1 37.5 kN�m

6(EI)∆/L2 = 37.5 kN�m10 mm

2[FEM]∆∆∆∆

6(EI)∆/L2 = 37.5 kN�m

D2

D3

=-61.27/EI rad

185.64/EI rad

40 kN

2EI EI

6 kN/m

A

B C

∆B = -10 mm 1 2

1 2 3

[FEM]load

32 kN�mwL2/12 = 32 kN�m

6 kN/m

1 40 kN�mPL/8 = 40 kN�m 2

40 kN8 m 4 m 4 m

32 kN�m 40 kN�mPL/8 = 40 kN�m

75 kN�m 37.5 kN�m

+-32 + 40 + 75 -37.5 = 45.5Q2 = 0

Q3 = 0 -40 - 37.5 = -77.5

D2

D3

2

42

2 3

2

3

12

8EI

=

Global: [Q] = [K][D] + [QF]

Page 455: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

6(2EI)∆/L2 = 75 kN�m

[FEM]load

32 kN�mwL2/12 = 32 kN�m

6 kN/m

1

75 kN�m

6(2EI)∆/L2 = 75 kN�m10 mm

1[FEM]∆∆∆∆

6 kN/m

18 m

1

2

2EI

1

q1

q2

d1 = 0

d2 = -61.27/EI=

76.37 kN�m

-18.27 kN�m

Member 1: [q]1 = [k]1[d]1 + [qF]1

32 kN�mwL2/12 = 32 kN�m

75 kN�m

+32 + 75 = 107

-32 + 75 = 43

31.26 kN

76.37 kN�m

16.74 kN

18.27 kN�m

4

8

8

4

1 2

1

28EI

=

Page 456: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

Member 2: [q]2 = [k]2[d]2 + [qF]2

2

2 3

40 kN�mPL/8 = 40 kN�m 2

40 kN

37.5 kN�m

6(EI)D/L2 = 37.5 kN�m10 mm

2

[FEM]load

[FEM]∆∆∆∆

40 kN�m

37.5 kN�m

6(EI)D/L2 = 37.5 kN�m

PL/8 = 40 kN�m

=18.27 kN�m

0 kN�m

q2

q3

+40 - 37.5 = 2.5

-40 - 37.5 = -77.5

d2 = -61.27/EI

d3 = 185.64/EI

17.72 kN

18.27 kN�m

22.28 kN

40 kN

2

2

4

4

2

2 3

2

38EI

=

Page 457: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

66

Alternate method: Use 4x4 stiffness matrix

2EI EI

1 2

2

5

6

3

4

1

8EI

= 1.5

1.5

-0.375

12(2)/82

4

-1.5

8

1.5

-1.5

-1.5

-0.375

0.375

1.5

4

-1.5

8

1 2 3 41

2

3

4

[k]1

8EI

=0.75

0.75

-0.1875

12/82

2

-0.75

4

0.75

-0.75

-0.75

-0.1875

0.1875

0.75

2

-0.75

4

3 4 5 63

4

5

6

[k]2

2-0.75

-0.1875-0.75

0.1875-0.75

0.752

-0.754

-0.18750.75

1.5 4

1.54

0.375

-0.3751.5

1.58

-1.5

-0.375-1.5

00

00

00

00

-0.7512

0.5625-0.758

EI=[K]

123456

1 4 5 62 3

Page 458: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

Global: [Q] = [K][D] + [QF]

40 kN

8 m 4 m 4 m

2EI EI

6 kN/m

A

B C

∆B = -10 mm 1 2

2

5

6

3

4

1

40 kN40 kN�m

20 kN

40 kN�m

20 kN

232 kN�m

24 kN

32 kN�m

24 kN

6 kN/m

1[FEF]

53

2

1

D4

D6=

-61.27/EI = -1.532x10-3 rad

185.64/EI = 4.641x10-3 rad

+(200x200/8)(-0.75)(-0.01) = 37.5

(200x200/8)(0.75)(-0.01) = -37.5

D4

D6

Q4 = 0

Q6= 0

2

4

12

2+

8

-40

4 6

4

68EI

=

-0.75-0.75 D5 = -0.01)

8200200( ×

+ 46

5

D4

D6

Q4 = 0

Q6= 0

2

4

12

2

4 6

4

68EI

= +8

-40

Page 459: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68

+32

24

-32

24

q1

q2

q4

q3

1.5

1.5

-0.375

12(2)/82

4

-1.5

8

1.5

-1.5

-1.5

-0.375

0.375

1.5

4

-1.5

8

1 2 3 41

2

3

4

= (200x200)8

q1

q2

q4

q3=

76.37 kN�m

31.26 kN

-18.27 kN�m

16.74 kN

Member 1: [q]1 = [k]1[d]1 + [qF]1

1

2

3

4

1∆B = -10 mm 32 kN�m

24 kN

32 kN�m

24 kN

6 kN/m

1[FEF]load

d2 = 0

d1 = 0

d4 = -1.532x10-3

d3 = -0.01

6 kN/m

18 m

31.26 kN

76.37 kN�m

16.74 kN

18.27 kN�m

Page 460: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

Member 2:

+40

20

-40

20

q3

q4

q6

q5

d4 = -1.532x10-3

d3 = -0.01

d6 = 4.641x10-3

d5 = 0

0.75

0.75

-0.1875

12/82

2

-0.75

4

0.75

-0.75

-0.75

-0.1875

0.1875

0.75

2

-0.75

4

3 4 5 63

4

5

6

= (200x200)8

q3

q4

q6

q5=

18.27 kN�m

22.28 kN

0 kN�m

17.72 kN17.72 kN

18.27 kN�m

22.28 kN

40 kN

2

2

5

6

3

4

-10 mm = ∆B

40 kN40 kN�m

20 kN

40 kN�m

20 kN

2[FEF]

Page 461: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

40 kN

8 m 4 m 4 m

2EI EI

6 kN/m

A

B C

∆B = -10 mm31.26 kN

76.37 kN�m

16.74 + 22.28 kN 17.72 kN

V (kN)

x (m)+ +--

31.26

-16.74

22.28

-17.725.21 m

M (kN�m) x (m)

-76.37

5.06

-18.27

70.85

+

--

D6 = θC = 4.641x10-3 rad

d4 = θB = -1.532x10-3 rad

Deflected Curve

∆B = -10 mm

Page 462: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71

Example 5

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative shear diagram, bending moment diagramand qualitative deflected shape.Take I = 200(106) mm4 and E = 200 GPa and support C settlement 10 mm.

4 kN

8 m 4 m 4 m

2EI EI

0.6 kN/m

AB

C∆C = -10 mm

20 kN�m

Page 463: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

2EI EI

1 2-10 mm

2

5

6

3

4

1

2

51

Q3

Q6

Q4

0.75 2

0.7524

1.5

1.5

-0.375

12(2)/82

4

-1.5

8

1.5

-1.5

-1.5

-0.375

0.375

1.5

4

-1.5

8

1 2 3 41

2

3

4

[k]1

8EI

=

8EI

=0.75

0.75

-0.1875

12/82

2

-0.75

4

0.75

-0.75

-0.75

-0.1875

0.1875

0.75

2

-0.75

4

3 4 5 63

4

5

6

[k]2

D3

D6

D4

-0.1875

-0.75-0.75 D5 = -0.01

� Global: [Q] = [K][D] + [QF]

�Member stiffness matrix [k]4x4

0.5625-0.75

-0.7512

346

3 4 6

8EI

= )8

200200( ×+

346

5QF

3

QF6

QF4+

Page 464: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

73

4 kN4 kN�m

2 kN

4 kN�m

2 kN

23.2 kN�m

2.4 kN

3.2 kN�m

2.4 kN

0.6 kN/m

1[FEF]

4 kN

8 m 4 m 4 m2EI EI

0.6 kN/m

A

BC

10 mm

20 kN�m2EI EI

1 2

6

3

42

51

346

0.5625

0.75-0.75

-0.75122

0.752

3 4 6

48EI

=

D3

D6

D4 +9.375

37.537.5

2.4+2 = 4.4

-4.0-3.2+4 = 0.8+

D3

D6

D4

-377.30/EI = -9.433x10-3 m

+74.50/EI = +1.863x10-3 rad-61.53/EI = -1.538x10-3 rad=

Global: [Q] = [K][D] + [QF]

Q3 = 0

Q6 = 20Q4 = 0

Page 465: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

74

+3.2

2.4

-3.2

2.4

q1

q2

q4

q3

q1

q2

q4

q3=

43.19 kN�m

8.55 kN

6.03 kN�m

-3.75 kN

Member 1: [q]1 = [k]1[d]1 + [qF]1

d2 = 0

d1 = 0

d4 = -1.538x10-3

d3 = -9.433x10-3

0.6 kN/m

18 m

8.55 kN

43.19 kN�m

3.75 kN

6.03 kN�m

1

2

3

4

13.2 kN�m

2.4 kN

3.2 kN�m

2.4 kN

0.6 kN/m

1[FEF]load 8 m

1.5

1.5

-0.375

12(2)/82

4

-1.5

8

1.5

-1.5

-1.5

-0.375

0.375

1.5

4

-1.5

8

1 2 3 41

2

3

4

8200200×

=

Page 466: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

75

Member 2:

+4

2

-4

2

q3

q4

q6

q5

d4 = -1.538x10-3

d3 = -9.433x10-3

d6 = 1.863x10-3

d5 = -0.01

q3

q4

q6

q5=

-6.0 kN�m

3.75 kN

20.0 kN�m

0.25 kN0.25 kN

6.0 kN�m

3.75 kN

4 kN

2

10 mm2

5

6

3

4 4 kN4 kN�m

2 kN

4 kN�m

2 kN

2[FEF]

8 m

0.75

0.75

-0.1875

12/82

2

-0.75

4

0.75

-0.75

-0.75

-0.1875

0.1875

0.75

2

-0.75

4

3 4 5 63

4

5

6

8200200×

=

20 kN�m

Page 467: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

76

4 kN

8 m 4 m 4 m2EI EI

0.6 kN/m

A

BC

10 mm

20 kN�m

Deflected Curve

0.6 kN/m

18 m

8.55 kN

43.19 kN�m

3.75 kN

6.03 kN�m

V (kN)x (m)

+

8.553.75

-0.25

0.25 kN

6.0 kN�m

3.75 kN

4 kN

2

20 kN�m

M (kN�m) x (m)

-43.19

621+

-

20

D3 = -9.433 mm

D6 = +1.863x10-3 radD4 = -1.538x10-3 rad

D5 = -10 mm

Page 468: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

77

30 kN

A CB

EI2EI

4 m 2 m

9kN/mHinge

2 m

Example 6

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.E = 200 GPa, I = 50x10-6 m4.

Internal Hinges

Page 469: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

78

[K] = EI 1

2

1 2

0.0

0.0

1.0

2.0

A C

B

2EI

4 m 2 m 2 m

EI1 2

43

1

2

[k]1 =EI

2EI

2EI

EI

3 1

3

1[k]2 =

0.5EI

1EI

1EI

0.5EI

2 4

2

4

3 4

Use 2x2 stiffness matrix,θi θj

Mi

Mj[ ]

=× LEILEI

LEILEIk

/4/2/2/4

22

Page 470: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

79

0.0

0.0

D1

D2

15 kN�mB C

15 kN�m30 kN

2

12 kN�m

A B

12 kN�m 9kN/m

1[FEF]

= EI 1

2

1 2

0.0

0.0

1.0

2.0

D1

D2=

0.0006 rad

-0.0015 rad

-12

15+

Global matrix:

30 kN9kN/m

Hinge

A C

B1 2

43

12 kN�m 15 kN�m1

2

Page 471: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

80

Member 1:

q3

q1

12

-12+=

EI

2EI

2EI

EI

3 1

3

1

18

0.0=

d3

d1

= 0.0

= 0.0006

12 kN�m

A B

12 kN�m 9kN/m

1[FEF]A

B1

31

18 kN�m22.5 kN 13.5 kN

A B

9 kN/m

1

Page 472: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

81

B C30 kN

CB2

4

2

15 kN�mB C

15 kN�m 30 kN

2

q2

q4

= -0.0015

= 0.0

d2

d4

15

-15+=

0.5EI

1EI

1EI

0.5EI

2 4

2

4

0.0

-22.5=

Member 2:

22.5 kN�m

20.63 kN9.37 kN

Page 473: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

82

30 kN

A CB

EI2EI

4 m 2 m

9kN/mHinge

2 m

-20.63

V (kN) x (m)

22.59.37

-13.5

+

2.5 m

M (kN�m) x (m)

-18

10.13

-22.5

18.75

+-

+--

θBL= 0.0006 rad θBR= -0.0015 rad

13.5 kN22.5 kN

22.5 kN�mB C

30 kN

20.63 kN9.37 kN

A B18 kN�m

9 kN/m

9.37 kN13.5 kN

22.87 kN

Page 474: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

83

20 kN

A CBEI2EI

4 m 4 m

9kN/m

Hinge

Example 7

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.E = 200 GPa, I = 50x10-6 m4.

Page 475: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

84

A CB1 2

2EI EI 6

7

4

5

4

5

6

7

0.375

0.375

1.0

-0.75

-0.75 2.0

0.0

0[K] = EI 1

2

3

1 2 3

0.5625

[k]1 =0.75EI

EI-0.75EI

2EI/L

0.375EI0.75EI

0.75EI-0.375EI

2EI0.75EI

EI-0.75EI

-0.75EI- 0.375EI

0.375EI-0.75EI

4 5 1 24

51

2

0.375EI

0.375EI-0.1875EI

0.5EI -0.375EI

-0.375EI

[k]2 =

0.1875EI

-0.375EIEI0.375EI - 0.1875EI

0.1875EI

0.375EI0.5EI

-0.375EI EI

1 3 6 71

36

7

1

2

3

Page 476: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

85

Q1 = -20

Q3 = 0.0

Q2 = 0.0

D1

D3

D2

18

0.0

-12+

D1

D3

D2 =-0.02382 m

0.008933 rad

-0.008333 rad

[FEM]

12 kN�mA B

12 kN�m

18 kN18 kN1

9kN/m

20 kN

A CB

9kN/m

A CB1 2

6

7

4

5

2EI EI

Global:

= EI 1

2

3

1

0.5625

0.375

-0.75

2

-0.75

2.0

0.0

3

0.375

0

1.0

12 kN�m

18 kN

20 kN

1

2

3

Page 477: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

86

A B1

2EI1

24

5

[FEF]

12 kN�mA B

12 kN�m

18 kN18 kN1

9kN/m

+12

18

-12

18

Member 1:

q4

q5

q1

q2

=

0.75EI

EI

-0.75EI

2EI/L

0.375EI

0.75EI

0.75EI

-0.375EI

2EI

0.75EI

EI

-0.75EI

-0.75EI

- 0.375EI

0.375EI

-0.75EI

4 5 1 2

4

5

1

2

= 0.0

= 0.0

= -0.02382

= -0.00833

d5

d4

d2

d1

= 107.32

44.83

0.0

-8.83

A B

107.32 kN�m

8.83 kN44.83 kN

9kN/m

1

Page 478: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

87

Member 2:

CB2

EI1

3

6

7

44.66 kN�mB C

11.16 kN11.16 kN

2

+0

0

0

0

= -0.02382

= 0.008933

= 0.0

= 0.0

d3

d1

d7

d6

q1

q3

q7

q6

0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

=

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

1 3 6 71

3

6

7

= 0.0

-11.16

-44.66

11.16

Page 479: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

88

20 kN

A CB4 m 4 m

9kN/m

V (kN) x (m)

44.83

8.83

-11.16 -11.16

+

-

M (kN�m) x (m)

-107.32

-44.66-

-

A B

107.32 kN�m

8.83 kN44.83 kN

9kN/m

144.66 kN�m

B C

11.16 kN11.16 kN

2

θBL= -0.008333 rad θBR= 0.008933 rad

Page 480: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

89

30 kN

A C

BEI2EI

4 m 2 m

9kN/mHinge

40 kN�m

2 m

Example 8

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.40 kN�m at the end of member AB. E = 200 GPa, I = 50x10-6 m4.

Page 481: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

90

[K] = EI 1

2

1 2

0.0

0.0

1.0

2.0

A C

B

2EI

4 m 2 m 2 m

EI1 2

43

[k]1 =EI

2EI

2EI

EI

3 1

3

1[k]2 =

0.5EI

1EI

1EI

0.5EI

2 4

2

4

3 4

1

2

Use 2x2 stiffness matrix: θi θj

Mi

Mj[ ]

=× LEILEI

LEILEIk

/4/2/2/4

22

Page 482: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

91

15 kN�mB C

15 kN�m30 kN

2

12 kN�m

A B

12 kN�m 9kN/m

1[FEM]

Global matrix:

A C

B1 2

43

1

2

12 kN�m 15 kN�m

30 kN

A C

BEI2EI

9kN/mHinge

40 kN�m

Q1 = 40

Q2 = 0.0

D1

D2

-12

15+

D1

D2=

0.0026 rad

-0.0015 rad

= EI 1

2

1 2

0.0

0.0

1.0

2.0

40 kN�m

Page 483: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

92

12 kN�m

A B

12 kN�m 9kN/m

1[FEF]A

B1

31

40 kN�mA B38 kN�m

9 kN/m

1.5 kN37.5 kN

Member 1:

38

40=

q3

q1

= 0.0

= 0.0026

d3

d1

12

-12+=

EI

2EI

2EI

EI

3 1

3

1

Page 484: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

93

CB2

4

2

15 kN�mB C

15 kN�m 30 kN

2

Member 2:

q2

q4

= -0.0015

= 0.0

d2

d4

15

-15+=

0.5EI

1EI

1EI

0.5EI

2 4

2

4

0.0

-22.5=

22.5 kN�mB C

30 kN

20.63 kN9.37 kN

Page 485: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

94

9.37 kN

1.5 kN

30 kN

A C

B

4 m 2 m

9kN/mHinge

40 kN�m

2 m

-20.63

V (kN) x (m)

37.5

9.371.5+

M (kN�m) x (m)

-38

40

-22.5

+-

18.75+

--

θBL= 0.0026 radθBR=- 0.0015 rad

7.87 kN40 kN�mA B

38 kN�m

9 kN/m

1.5 kN37.5 kN

22.5 kN�mB C

30 kN

20.63 kN9.37 kN

Page 486: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

95

20 kN

A CBEI2EI

4 m 4 m

9kN/m

Hinge40 kN�m

Example 9

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.40 kN�m at the end of member AB. E = 200 GPa, I = 50x10-6 m4

Page 487: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

96

A CB1 2

6

7

4

51

2

3

20 kN

A CBEI2EI

4 m 4 m

9kN/m

Hinge40 kN�m

12 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1[FEM]θi ∆j θj

Mi

∆i

Vj

Mj

Vi

[ ]

−−−−

−−

LEILEILEILEILEILEILEILEILEILEILEILEILEILEILEILEI

k

/4/6/2/6/6/12/6/12/2/6/4/6/6/12/6/12

22

2323

22

2323

44

Page 488: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

97

1 22A CB

6

7

4

5

[K] = EI 1

2

3

1 2 3

6

7

4

5

0.5625

0.0

0

0.375

0.375

1.0

-0.75

-0.75

2.0

[k]1 = 0.75EI

EI-0.75EI

2EI

0.375EI0.75EI

0.75EI-0.375EI

2EI0.75EI

EI-0.75EI

-0.75EI- 0.375EI

0.375EI-0.75EI

4 5 1 24

51

2

1

0.375EI

0.375EI-0.1875EI

0.5EI -0.375EI

-0.375EI

[k]2 =

0.1875EI-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI0.5EI

-0.375EI EI

1 3 6 71

36

7

2EI EI1

2

3

Page 489: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

98

Q1 = -20

Q3 = 0.0

Q2 = 40

D1

D3

D2

18

0.0

-12+

D1

D3

D2 =-0.01316 m

0.0049333 rad

-0.002333 rad

A CB1 2

6

7

4

5

2EI EI

20 kN

EI

9kN/m

40 kN�m

20 kN

40 kN�m

12 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1[FEF]

= EI 1

2

3

1 2 3

0.5625

0.0

0

0.375

0.375

1.0

-0.75

-0.75

2.0

12 kN�m

18 kNGlobal:

1

2

3

Page 490: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

99

1

2EI

[q]1

1

12

1

2EI4

5

+12

18

-12

18

q4

q5

q1

q2

=

0.75EI

EI

-0.75EI

2EI

0.375EI

0.75EI

0.75EI

-0.375EI

2EI

0.75EI

EI

-0.75EI

-0.75EI

- 0.375EI

0.375EI

-0.75EI

4 5 1 2

4

5

1

2

= 87.37

49.85

40

-13.85

12 kN�m

18 kN

12 kN�m

18 kN

9 kN/m

1[FEF]

Member 1: [q]1 = [k]1[d]1 + [qF]1

13.85 kN

40 kN�m87.37 kN�m

49.85 kN

= 0.0

= 0.0

= -0.01316

= -0.002333

d5

d4

d2

d1

12 kN�m

18 kN

12 kN�m

18 kN1

Page 491: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

100

22 CB

1

3

EI 6

7

Member 2: [q]2 = [k]2[d]2 + [qF]2

+0

0

0

0

q1

q3

q7

q6

0.375EI

0.375EI

-0.1875EI

0.5EI

-0.375EI

-0.375EI

=

0.1875EI

-0.375EIEI

0.375EI - 0.1875EI

0.1875EI

0.375EI

0.5EI

-0.375EI

EI

1 3 6 71

3

6

7

= 0.0

-6.18

-24.69

6.18

24.69 kN�m

6.18 kN6.18 kN

= -0.01316

= 0.004933

= 0.0

= 0.0

d3

d1

d7

d6

22

[q]2

Page 492: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

101

20 kN

A CB

EI2EI

4 m 4 m

9kN/m 40 kN�m

24.69 kN�mB C

6.18 kN6.18 kN

A B

87.37 kN�m 13.85 kN49.85 kN

40 kN�m

M (kN�m) x (m)

-

-87.37

+40

--24.69

θBL= -0.002333 rad θBR = 0.004933 rad

49.85

-6.18

V (kN) x (m)-6.18

-13.85+

Page 493: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

102

� Fixed-End Forces (FEF)- Axial- Bending

� Curvature

Temperature Effects

Page 494: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

103

Tm> TR

� Thermal Fixed-End Forces (FEF)

Tl

Tt

2bt

mTTT +

=

Tt

Tb > Tt

βF

AFF

BF

BFBMF

AM

Rmaxial TTT −=∆ )(

tbbending TTT −=∆ )(

)()(dTyTy

∆=∆

y β

)(tandT

dTT tb ∆

=−

A

A B

σaxialσaxial

A B

σy

y

TR Tm

Tt

Tb

Tb - Tt

Room temp = TR

ct

cbd

TR

NA

Page 495: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

104

- Axial

A B

σaxialσaxial

FAF F

BF

dAFA

axialF

A ∫= σ

dAE axial∫= ε

dATE axial∫ ∆= )(α

axialTEA )(∆= α

AETTF RmAF

axial )()( −= α

dATE axial ∫∆= )(α

Tt

Tb > Tt

Tm> TR

Rmaxial TTT −=∆ )(

TR Tm

Page 496: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

105

- Bending

A B

σy

y

dAyMA

yFA ∫= σ

dATyE y∫ ∆= )(α

dAdTyyE∫

∆= )(α

∫∆

= dAydTE 2)(α

EId

TTF ulA

Fbending )()( −

= α

FBMF

AM

dAyE∫= ε

tbbending TTT −=∆ )(

)()(dTyTy

∆=∆

y β Tt

Tb

Page 497: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

106

ds´

dx

Afterdeformation

Before deformation

y dx

ds = dx y

ρ)()( θρ ddx =

)( θdy )(1dxdθ

ρ=

� Elastic Curve: Bending

Page 498: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

107

dxdTyyd )()( ∆

= αθ

dxdTd )()( ∆

= αθ

Tb

Tt

yy

dT∆

� Bending Temperature

dx

Tt

Tb

Tl > Tu

y

Tl > Tu

Tu

O

2bt

mTTT +

= dθ

MM

Tb

cb

ct

Tt

∆T = Tb - Tt

dT∆

EIM

dT

dxd

=∆

== )(1)( αρ

θ

Page 499: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

108

A CB

EI2EI

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm

Example 10

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.Room temp = 32.5oC, α = 12x10-6 /oC, E = 200 GPa, I = 50x10-6 m4.

Page 500: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

109

12 3

1 2

Mean temperature = (40+25)/2 = 32.5Room temp = 32.5oC

FEM+7.5 oC-7.5 oC

a(∆T /d)EI19.78 kN�m = 19.78 kN�m

A CB

EI2EI

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm

mkNEIdTF F

bending •=××−

×=∆

= − 78.19)502002)(182.0

2540)(1012()2)(( 6α

Page 501: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

110

[M1] = 3EIθ1 + (1.978x10-3)EI0

Element 1:

M1

M2

q1

q2

[q] = [k][d] + [qF]

+ 1.978

-1.978(10-3) EI= 1

2

2

1

2 1

2

1EI

Element 2:

M3

M1

q3

q1 + 0

0= 0.5

1

1

0.5

1 3

1

3EI

θ1 = -0.659x10-3 rad

12 3

A C

BEI2EI

4 m 4 m

1 2

19.78 kN�m19.78 kN�m182 mm

Page 502: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

111

Element 2:

M3

M1

q3

q1= + 0

0

0.5

1

1

0.5

1 3

1

3EI

= -0.659x10-3

= 0= 6.59 kN�m

-26.37 kN�m

= -0.659x10-3

= 0= -3.30 kN�m

-6.59 kN�m

Element 1:

M1

M2 = q1

q2 + 19.78

-19.78

1

2

2

1

2 1

2

1EI

4.95 kN4.95 kN

26.37 kN�m 6.59 kN�m

A B

6.59 kN�m 3.3 kN�m

B C

2.47 kN2.47 kN

12 3

A C

BEI2EI

4 m 4 m

1 2

19.78 kN�m19.78 kN�m182 mm

Page 503: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

112

A CB

4 m 4 m

+7.5 oC

-7.5 oC 3.3 kN�m

26.37 kN�m

4.95 kN2.47 kN

2.47 kN

M (kN�m) x (m)

26.37

6.59

-3.30

+-

V (kN) x (m)

-4.95-2.47

- -

θB = -0.659x10-3 radDeflected curve x (m)

Page 504: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

113

A CB

EI, AE2EI, 2AE

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm

Example 11

For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.(b) Draw the quantitative shear and bending moment diagramsand qualitative deflected shape.Room temp = 28 oC, a = 12x10-6 /oC, E = 200 GPa, I = 50x10-6 m4,A = 20(10-3) m2

Page 505: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

114

A

CB

EI2EI

4 m 4 m

T2 = 40oC

T1 = 25oC1

2 3

7

8

9

1 24

5

6

Element 1:

mkNm

mkNmLAE /)10(2

)4()/10200)(1020(2)2( 6

2623

=××

=−

mkNm

mmkNLEI

•=×××

=−

)10(20)4(

)1050)(/10200(24)2(4 34626

mkNm

mmkNLEI

•=×××

=−

)10(10)4(

)1050)(/10200(22)2(2 34626

kNm

mmkNLEI )10(5.7

)4()1050)(/10200(26)2(6 3

2

4626

2 =×××

=−

mkNm

mmkNL

EI /)10(75.3)4(

)1050)(/10200(212)2(12 33

4626

3 =×××

=−

Page 506: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

115

Fixed-end forces due to temperatures

Mean temperature(Tm) = (40+25)/2 = 32.5 oC ,TR = 28 oC

A CB

EI, AE2EI, 2AE

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm

mkNEIdTF F

bending •=××−

×=∆

= − 78.19)502002)(182.0

2540)(1012()2)(( 6α

19.78 kN�m19.78 kN�m

432 kN432 kNA B

+12 oC

-3 oC

kNmkNmAETF Faxial 432)/10200)(310202)(285.32)(1012()( 2626 =×−××−×=∆= −α

Page 507: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

116

FEM

+12 oC

-3 oC

19.78 kN�m

A B

19.78 kN�m

432 kN432 kN

Element 1:

[q] = [k][d] + [qF]

0

0

0

d1

d2

d3

q4

q6

q5

q1

q2q3

=

4

5

6

1

2

3

4 1

- 2x106

0.00

0.00

2x106

0.00

0.00

2

0.00

-3750

-7500

0.00

3750

-7500

3

0.00

7500

10x103

0.00

-7500

20x103

2x106

0.00

0.00

-2x106

0.00

0.00

5

0.00

3750

7500

0.00

-3750

7500

6

0.00

7500

20x103

0.00

-7500

10x103

432

-19.78

0.00

-432

0.00

19.78

+

A CB

EI, AE2EI, 2AE

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm1

2 3

7

8

9

1 24

5

6

Page 508: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

117

Element 2:

[q] = [k][d] + [qF]

d1

d3

d2

0

0

0

0

0

0

0

0

0

+

q1

q3

q2

q7

q8q9

- 1x106

0.00

0.00

1x106

0.00

0.00

0.00

-1875

-3750

0.00

1875

-3750

0.00

3750

5x103

0.00

-3750

10x103

1x106

0.00

0.00

-1x106

0.00

0.00

0.00

1875

3750

0.00

-1875

3750

0.00

3750

10x103

0.00

-3750

5x103

7 8 91 2 3

=

1

2

3

7

8

9

A CB

EI, AE2EI, 2AE

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm1

2 3

7

8

9

1 24

5

6

Page 509: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

118

D1

D3

D2 =0.000144 m

-719.3x10-6 rad

-0.0004795 m

Q1 = 0.0

Q3 = 0.0

Q2 = 0.0

D1

D3

D2

-432

19.78

0.0+= 1

2

3

1

3x106

0.0

0.0

2

0.0

5625

-3750

3

0.0

-3750

30x103

Global:

A CB

EI, AE2EI, 2AE

4 m 4 m

T2 = 40oC

T1 = 25oC

182 mm1

2 3

7

8

9

1 24

5

6

Page 510: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

119

= 144x10-6

= -479.5x10-6

= -719.3x10-6

Element 1:

0

0

0

d1

d2

d3

q4

q6

q5

q1

q2q3

=

4

5

6

1

2

3

4 1

- 2x106

0.00

0.00

2x106

0.00

0.00

2

0.00

-3750

-7500

0.00

3750

-7500

3

0.00

7500

10x103

0.00

-7500

20x103

2x106

0.00

0.00

-2x106

0.00

0.00

5

0.00

3750

7500

0.00

-3750

7500

6

0.00

7500

20x103

0.00

-7500

10x103

432

-19.78

0.00

-432

0.00

19.78

+

=

q4

q6

q5

q1

q2q3

144.0 kN

-23.38 kN�m

-3.60 kN

-144.0 kN

3.60 kN

9.00 kN�m

A B 1

2 3

4

5

6

A B144 kN

3.60 kN

23.38 kN�m

144 kN

3.60 kN

9 kN�m

Page 511: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

120

= 144x10-6

= -479.5x10-6

= -719.3x10-6

144 kN

-9 kN�m

-3.6 kN

-144 kN

3.6 kN

-5.39 kN�m

=

q1

q3

q2

q7

q8q9

B C 7

8 9

1

2

3

144 kNB C

3.60 kN

9 kN�m

144 kN

3.60 kN

5.39 kN�m

Element 2:

d1

d3

d2

0

0

0

0

0

0

0

0

0

+

q1

q3

q2

q7

q8q9

=

- 1x106

0.00

0.00

1x106

0.00

0.00

0.00

-1875

-3750

0.00

1875

-3750

0.00

3750

5x103

0.00

-3750

10x103

1x106

0.00

0.00

-1x106

0.00

0.00

0.00

1875

37500

0.00

-1875

3750

0.00

3750

10x103

0.00

-3750

5x103

7 8 91 2 3

1

2

3

7

8

9

Page 512: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

121

A CB

EI2EI

4 m 4 m

T2 = 40oC

T1 = 25oC

Isolate axial part from the system

RCRA

RA RA = RC+

Compatibility equation: dC/A = 0

RA = 144 kN

RC = -144 kN

0)4)(285.32(1012)4(2

)4( 6 =−×++ −

AER

AER AA

Page 513: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

122

A B

144 kN

3.60 kN

23.38 kN�m

144 kN

3.60 kN

9 kN�m

144 kN

B C3.60 kN

9 kN�m

144 kN

3.60 kN

5.39 kN�m

V (kN) x (m)

-3.6

-

M (kN�m) x (m)

23.388.98

-5.39

+-

D3 = -719.3x10-6 radDeflected curve x (m)

A CB

EI2EI

4 m 4 m

T2 = 40oC

T1 = 25oC

D2 = -0.0004795 mm

Page 514: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

123

Skew Roller Support

- Force Transformation- Displacement Transformation- Stiffness Matrix

Page 515: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

124

m

i

j

m

i

j

x´y´

x

y

� Displacement and Force Transformation Matrices

12

3

45

6

θyθx

Page 516: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

125

λx λy

i

jθy

θx

4´5´

θy

θx

m

i

j

x

y

12

3

45

6

Force Transformation

Lxx ij

x

−=λ

Lyy ij

y

−=λ

yx qqq θθ coscos 5'4'4 −=

xy qqq θθ coscos 5'4'5 −=

6'6 qq =

6

5

4

qqq

−=

10000

xy

yx

λλλλ

6'

5'

4'

qqq

=

6'

5'

4'

3'

2'

1'

6

5

4

3

2

1

1000000000000000010000000000

qqqqqq

λλλλ

λλλλ

qqqqqq

xy

yx

xy

yx

[ ] [ ] [ ]'qTq T=

Page 517: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

126x

y

θyθx

x

y

θyθx

d4 d 4 cos θ x

d 4 cos θ yθy

θx

d5

θx

θy

d 5 cos θ x

d 5 cos θ y

Displacement Transformation

j4´

6´j4

5

6λx λy

yx θdθdd coscos' 544 +=

xy θdθdd' coscos 545 +−=

66' dd =

6'

5'

4'

ddd

−=

10000

xy

yx

λλλλ

6

5

4

ddd

=

6

5

4

3

2

1

6'

5'

4'

3'

2'

1'

1000000000000000010000000000

dddddd

λλλλ

λλλλ

dddddd

xy

yx

xy

yx

[ ] [ ][ ]dTd ='

Page 518: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

127

[ ] [ ] [ ]'qTq T=

[ ] [ ][ ] [ ])'( FT qd'k'T +=

[ ] [ ][ ] [ ] [ ]FTT qTd'k'T '+=

[ ] [ ] [ ][ ][ ] [ ] [ ] [ ][ ] [ ]FFTT qdkqTdTk'Tq +=+= '

[ ] [ ] [ ][ ]TkTkTherefore T ', =

[ ] [ ] [ ]FTF qTq '=

[ ] [ ] [ ]'qTq T=

[ ] [ ][ ]dTd ='

[ ] [ ] [ ][ ]TkTk T '=

Page 519: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

128

i j

θjθi 4 *

5 * 6*

1*

2*3 *

λix = cos θi

λiy = sin θi

λjx = cos θj

λjy = sin θj

[q*] = [T]T[q´]

1

Stiffness matrix

i j

5´ 6´

2´3´

*6

5*

*4

*3

2*

*1

qqqqqq

=

1000000000000000010000000000

jxjy

jyjx

ixiy

iyix

λλλλ

λλλλ

1 4 5 62 31*2*3*4*5*6*

[ T ]T

6'

5'

4'

3'

2'

1'

qqqqqq

Page 520: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

129

[ ]

=

1000000000000000010000000000

jxjy

jyjx

ixiy

iyix

λλλλ

λλλλ

T

1 4 5 62 3123456

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAELAE

k

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00/

'

22

2323

22

2323

1

34

6

2

5

1 2 3 4 5 6

Page 521: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

130

[ k ] = [ T ]T[ k´ ][T] =

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 522: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

131

40 kN

4 m4 m 22.02 o

Example 12

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagramsand qualitative deflected shape.Take I = 200(106) mm4, A = 6(103) mm2, and E = 200 GPa for all members.Include axial deformation in the stiffness matrix.

Page 523: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

132

40 kN40 kN�m

20 kN

40 kN�m

20 kN

[ q´F ][FEF]

1Global

i j

1

i j

Local

40 kN

4 m4 m 22.02o

20sin22.02=7.520cos22.02=18.54

4

5

6

x*

x´1 *

2* 3 *

λix = cos 0o = 1, λiy = cos 90o = 0 λjx = cos 22.02o = 0.9271,

λjy = cos 67.98o = 0.3749

22.02 o

Page 524: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

133

x*

x´1

4

5

6

1 *

2* 3 *

� Transformation matrix

Member 1: [ q ] = [ T ]T[q´]

1

i j1´

Global Local

λix = cos 0o = 1, λiy = cos 90o = 0 λjx = cos 22.02o = 0.9271,

λjy = cos 67.98o = 0.3749

*3

2*

*1

6

5

4

qqqqqq

6'

5'

4'

3'

2'

1'

qqqqqq

−=

10000009271.03749.000003749.09271.0000000100000010000001

1´ 4´ 5´ 6´2´ 3´4561*

2*

3*

[ ]

=

1000000000000000010000000000

jxjy

jyjx

ixiy

iyix

TT

λλλλ

λλλλ

Page 525: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

134

[k´]1 = 103

1´2´ 3´4´5´6´

1´ 4´ 5´ 6´2´ 3´-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

1

i j1´

Local

� Local stiffness matrix

[ ]

−−−−

−−−

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAELAE

k

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00/

22

2323

22

2323

66

θi ∆j θj∆i δjδi

Mi

Vj

Mj

Vi

Nj

Ni

Page 526: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

135

Stiffness matrix [k´]:

[k´]1 = 103

1´2´ 3´4´5´6´

1´ 4´ 5´ 6´2´ 3´-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

Stiffness matrix [k*]: [ k* ] = [ T ]T[ k´ ][T]

[k*]1 = 103

4561*

2*

3*

4 1* 2* 3*5 6-139.00.3511.406129.0

1.40651.82

-56.25-0.869-3.75051.8221.90

-3.476

0.0003.75010.001.406

-3.47620.00

150.0

0.0000.000

-139.0-56.250.000

0.0000.93753.7500.351

-0.8693.750

0.0003.75020.001.406

-3.75010.00

x*

x´1

4

5

6

1 *

2* 3 * 1

i j1´

Global Local

4

5

6

2*

Page 527: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

136

Global Equilibrium:

Q1 = 0.0

Q3 = 0.0

D1*

D3*=

36.37x10-6 m

0.002 rad

[Q] = [K][D] + [QF]

= 1031*

3*

1*

129

1.406

3*

1.406

20.0

D1*

D3*

-7.5

-40+

x*

x´14

5

6

1 *

2* 3 *

4 m4 m 22.02 o

40 kN

x*

x´4

5

6

2*

40 kN40 kN�m

20 kN

40 kN�m

20 kN

[ q´F ]20sin22.02=7.5

20cos22.02=18.54

Page 528: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

137

Member Force : [q] = [k*][D] + [qF]

0

40.020

-7.5418.54-40.0

+

q4

q6

q5

q1*

q2*q3*

= 103

4561*

2*

3*

4 1* 2* 3*5 6-139.00.3511.406129.0

1.40651.82

-56.25-0.869-3.75051.8221.90

-3.476

0.0003.75010.001.406

-3.47620.00

150.0

0.0000.000

-139.0-56.250.000

0.0000.93753.7500.351

-0.8693.750

0.0003.75020.001.406

-3.75010.00

0

00

36.4x10-6

02x10-3

-5.06

6027.5

013.48

0

=

40 kN

13.48 kN

60 kN�m

27.5 kN

5.06 kN

4 m4 m 22.02 o

40 kN

x*

x´1

4

5

6

1 *

2* 3 *

40 kN40 kN�m

7.518.54

40 kN�m

20 kN

4

5

6

2*

Page 529: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

138

4 m4 m 22.02 o

40 kN

5.05 kN27.51 kN

60.05 kN�m

13.47 kN

40 kN

+

Bending moment diagram (kN�m)

Deflected shape

50.04

-

-60.05

0.002 rad

Page 530: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

139

40 kN

22.02o

8 m 4 m 4 m2EI, 2AE EI, AE

6 kN/m

Example 13

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagramsand qualitative deflected shape.Take I = 200(106) mm4, A = 6(103) mm2, and E = 200 GPa for all members.Include axial deformation in the stiffness matrix.

Page 531: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

140

40 kN

22.02 o8 m 4 m 4 m

2EI, 2AE EI, AE

6 kN/m

1 21

2

3

4

5

6

7 *

8 * 9 *

Global

21´

2´3´

5´6´

11´

Local

mkNm

mkNmL

AE

•×=

×=

3

262

10150)8(

)/10200)(006.0(

mkNm

mmkNLEI

•×=

×=

3

426

1020)8(

)0002.0)(/10200(44

mkNLEI

•×= 310102

kNm

mmkNLEI

3

2

426

2

1075.3)8(

)0002.0)(/10200(66

×=

×=

mkNm

mmkNLEI

/109375.0)8(

)0002.0)(/10200(1212

3

3

426

2

×=

×=

Page 532: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

141

[k]1 = [k´]1 = 2x103

456123

4 1 2 35 6-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

1 21

2

3

4

5

6

7 *

8 * 9 *

Global Local : Member 1

14

5

6

1

2

3

[ q ]

11´

[ q´]

[q] = [q´] Thus, [k] = [k´]

Page 533: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

142

Member 2: Use transformation matrix, [q*] = [T]T[q´]

q1´

q3´

q2´

q4´

q5´

q6´

q1

q3

q2

q7*

q8*q9*

0.92710.3749

-0.37490.9271

000

000

000

0 0

001

10

01

=

1237*

8*

9*

1´ 4´ 5´ 6´2´ 3´

0 0

001

000

000

000

1 21

2

3

4

5

6

7 *

8 * 9 *

λix = cos 0o = 1, λiy = cos 90o = 0 λjx = cos 22.02o = 0.9271,

λjy = cos 67.98o = 0.3749

21

2

3

x*

x´7*

8 * 9* [ q* ]

21´

2´3´

5´6´

[ q´ ]

Page 534: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

143

Stiffness matrix [k´]:

[k´]2 = 103

1´2´ 3´4´5´6´

1´ 4´ 5´ 6´2´ 3´-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

Stiffness matrix [k*]: [k*] = [T]T[k´][T]

[k*]2 = 103

1237*

8*

9*

1 7* 8* 9*2 3-139.00.3511.406129.0

1.40651.82

-56.25-0.869-3.47751.8221.90

-3.476

0.0003.75010.001.406

-3.47620.00

150.0

0.0000.000

-139.0-56.250.000

0.0000.93753.7500.351

-0.8693.750

0.0003.75020.001.406

-3.47710.00

21

23

x*

x´7 *

8 * 9 * [ q* ]

21´

2´3´

5´6´

[ q´ ]

Page 535: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

144

1 21

2

3

4

5

6

7 *

8 * 9 *

1

2

3

4

5

6

8 *

[k]1= 2x103

456123

4 1 2 35 6-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

[k*]2 = 103

1237*

8*

9*

1 7* 8* 9*2 3-139.00.3511.406129.0

1.40651.82

-56.25-0.869-3.47751.8221.90

-3.476

0.0003.75010.001.406

-3.47620.00

150.0

0.0000.000

-139.0-56.250.000

0.0000.93753.7500.351

-0.8693.750

0.0003.75020.001.406

-3.47710.00

Page 536: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

145

Global:

=-509.84x10-6 rad

18.15x10-6 m

0.00225 rad

58.73x10-6 mD3

D1

D9*

D7*

00

00 +

-32 + 40 = 80

-40-7.5

D3

D1

D9*

D7*

32 kN�m

24 kN

32 kN�m

24 kN

6 kN/m

1

40 kN6 kN/m

1 21

2

3

4

5

6

7*

8 *

9*

1

2

3

4

5

6

8 *

= 1030

0-139

450

101.406

600

1.406

1.406-139

129

010

1.40620

1 3 7* 9*

137*

9*

40 kN40 kN�m

7.518.54

40 kN�m

20 kN

40 kN�m

7.5

40 kN�m32 kN�m

Page 537: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

146

Member 1: [ q ] = [k ][d] + [qF]

0

3224

024-32

+

0

00

d1=18.15x10-6

0d3=-509.84 x10-6

q4

q6

q5

q1

q2q3

= 2x103

456123

4 1 2 35 6-150.00.0000.000150.0

0.0000.000

0.000-0.9375-3.7500.000

0.9375-3.750

0.0003.75010.000.000

-3.75020.00

150.0

0.0000.000

-150.00.0000.000

0.0000.93753.7500.000

-0.93753.750

0.0003.75020.000.000

-3.75010.00

-5.45 kN

21.80 kN�m20.18 kN

5.45 kN27.82 kN-52.39 kN�m

=

q4

q6

q5

q1

q2q3

6 kN/m

5.45 kN

20.18 kN

21.80 kN�m

5.45 kN

27.82 kN

52.39 kN�m

32 kN�m

24 kN

32 kN�m

24 kN

6 kN/m

114

5

6

1

2

3

Page 538: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

147

q1

q3

q2

q7*

q8*q9*

21

3

x*

x´7*

9 *

= 103

1237*

8*

9*

1 7* 8* 9*2 3-139.00.3511.406129.0

1.40651.82

-56.25-0.869-3.75051.8221.90

-3.476

0.0003.75010.001.406

-3.47620.00

150.0

0.0000.000

-139.0-56.250.000

0.0000.93753.7500.351

-0.8693.750

0.0003.75020.001.406

-3.75010.00

0

4020

-7.518.54-40

+

18.15x10-6

-509.84x10-6

0

58.73x10-6

00.00225

q1

q3

q2

q7*

q8*q9*

-5.45 kN

52.39 kN�m26.55 kN

0 kN14.51 kN0 kN�m

= 5.45 kN

26.55 kN

52.39 kN�m

14.51 kN

40 kN

20sin22.02=7.520cos22.02=18.54

40 kN40 kN�m

20 kN

40 kN�m

20 kN

[ q´F ]

2

2 8 *

Member 2: [ q ] = [k ][d] + [qF]

Page 539: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

148

5.45 kN26.55 kN

52.39 kN�m

14.51 kN

40 kN6 kN/m

5.45 kN

27.82 kN

52.39 kN�m

5.45 kN

20.18 kN

21.80 kN�m

40 kN

22.02o

8 m 4 m 4 m

6 kN/m

5.45 kN

20.18 kN

21.80 kN�m

14.51 kN54.37 kN

3.36 m

M (kN�m) x (m)

53.81

-21.8-

V (kN)x (m)

26.55

+20.18

+- -

-27.82

14.51cos 22.02o

=13.45 kN

-52.39-

12.14 +

-13.45

Page 540: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Simple Frames! Frame-Member Stiffness Matrix! Displacement and Force Transformation Matrices! Frame-Member Global Stiffness Matrix

! Special Frames! Frame-Member Global Stiffness Matrix

FRAME ANALYSIS USING THE STIFFNESSMETHOD

Page 541: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

Simple Frames

Page 542: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

Frame-Member Stiffness Matrix

0 0 00 - AE/LAE/L

4EI/L - 6EI/L2 2EI/L6EI/L2 00

6EI/L2 - 12EI/L3 6EI/L212EI/L3 00

0

2EI/L

-6EI/L2

0

- 6EI/L2

12EI/L3

0

-6EI/L2

4EI/L

0

6EI/L2

-12EI/L3

AE/L

0

0

-AE/L

0

0

m

x´y´

i

j

3´ 6´2´ 4´1´ 5´

[k´]

4´5´6´

1´2´3´

6EI/L24EI/L

6EI/L24EI/L

AE/L

AE/L

6EI/L2

6EI/L2

12EI/L3

12EI/L3

2EI/L

d 1́ = 1

AE/L

AE/L

d 2́ = 1

12EI/L3

12EI/L3

d 3́ = 1

2EI/L

6EI/L2

6EI/L2

6EI/L26EI/L2AE/L

2EI/L

6EI/L2

6EI/L2d 6́

= 1

6EI/L2

6EI/L22EI/L

6EI/L2

12EI/L3

12EI/L3

4EI/L4EI/L12EI/L3

12EI/L3

6EI/L2

6EI/L2AE/L

6EI/L2d 4́ = 1

d 5́ = 1AE/L

AE/L

Page 543: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

m

i

j

m

i

j

x´y´

x

y

Displacement and Force Transformation Matrices

12

3

45

6

θyθx

Page 544: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

λx

q4 = q4´ cos θx - q5´ cos θy

q5 = q4´ cos θy + q5´ cos θx

q6 = q6´

λy

i

jθy

θx

4´5´

θy

θx

m

i

j

x

y

12

3

45

6

Force Transformation

Lxx ij

x

−=λ

Lyy ij

y

−=λ

−=

6'

5'

4'

6

5

4

10000

qqq

λλλλ

qqq

xy

yx

=

6'

5'

4'

3'

2'

1'

6

5

4

3

2

1

1000000000000000010000000000

qqqqqq

λλλλ

λλλλ

qqqqqq

xy

yx

xy

yx

[ ] [ ] [ ]'qTq T=

Page 545: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

[q] = [T]T[q´]

= [T]T ( [k´][d´] + [q´F] )

= [T]T [k´][d´] + [T]T [q´F]

[q] = [T]T [k´][T][d] + [T]T [q´F] = [k][d] + [qF]

Therefore, [k] = [T]T [k´][T]

[qF] = [T]T [q´F]

[q] = [T]T[q´]

[d´] = [T][d]

[k] = [T]T [k´][T]

Page 546: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

[q] = [T]T[q´]= [T]T ( [k´][d´] + [q´F] ) = [T]T[k´][d´] + [T]T[q´F] = [T]T [k´][T][d] + [T]T [q´F]

Frame Member Global Stiffness Matrix

[k] [qF][ k ] = [ T ]T[ k´ ][T] =

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 547: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

5 kN

6 m

6 m

AB

C

Example 1

For the frame shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2

Page 548: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

5 kN

6 m

6 m

AB

C kN/m666.667(6m)

)m10)(60mkN1012(20012

3

462

6

3 =××

=

LEI

kN/m200006m

)mkN10)(200m10(600 2

626

=××

=

LAE

kN2000(6m)

)m10)(60mkN106(2006

2

462

6

2 =××

=

LEI

mkN80006m

)m10)(60mkN104(2004

462

6

•=××

=

LEI

mkN40006m

)m10)(60mkN102(2002

462

6

•=××

=

LEI

Global :

AB

C

1

2

78 9

4

6 5

12 3

Page 549: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

Global :

AB

C

1

2

78 9

4

6 5

12 3

A B14´

5´ 6´

2´ 3´

Local :

1´ 3´

2

Using Transformation Matrix:

� Member Stiffness Matrix

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Mi

Vj

Mj

Vi

Nj

Ni

θi ∆j θj∆i δjδi

Page 550: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

A B14´

5´ 6´

2´ 3´

Local :

[q] = [q´]

-> [k]1 = [k´]1

Stiffness Matrix: Member 1

Global:

AB

C

1

2

78 9

4

6 5

12 3

4 6 5 1 2 34

6

5

1

2

3

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[k]1 =

Page 551: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

Local:

1´ 3´

2

[q]2 = [ T ]T[ q´]2

q1´

q3´

q2´

q4´q5´

q6´

q1

q3

q2

q7

q8q9

[T]T

Stiffness Matrix: Member 2

=

123789

4´0000

0-1

5´000100

6´000001

1´0

0-1

000

2´100000

3´001000

90o

λjx = cos (-90o) = 0λjy = sin (-90o) = -1

λix = cos (-90o) = 0λiy = sin (-90o) = -1

Global:

AB

C

1

2

78 9

4

6 5

12 3

Page 552: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

[k]2 = [ T ]T[ k´ ]2[ T ]

1´ 2´ 3´ 4´ 5´ 6´1´

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[k´]2 =

1 2 3 7 8 9

666.667 20001

2

3

7

8

9

2000

0

0

-666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000

-2000

0

0

4000

4000

666.667 0

0

-2000

-2000

20000 0

0 8000

[k]2 =

Page 553: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

[k]14 6 5 1 2 3

4

6

5

1

2

3

20000

0

0

-20000

0

0

0666.667

20000

-666.667

2000

02000

80000

-2000

4000

-200000

020000

0

0

0-666.667

-20000

666.667

-2000

02000

40000

-2000

8000

1 2 3 7 8 9666.667 20001

2

3

7

8

9

2000

00

666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000-2000

0

0

4000

4000

666.667 0

0

-2000

2000

20000 0

0 8000

[k]2

Global Stiffness Matrix:

20000

0

-20000

0

0

0

8000

0

-2000

4000

0

-2000

0

4000

-20000

0

0

20666.667

-2000

2000

-2000

16000

20666.667

0

2000

[K]

4

5

1

2

3

4 5 1 2 3

Global:

AB

C

1

2

78 9

4

6 5

12 3

Page 554: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

AB

C

Q4 = 0Q5 = 0

Q1 = 5Q2 = 0

Q3 = 0

D4

D5

D1

D2

D3

+

0 0

0 0

0

D4

D5

D1

D2

D3

=

0.01316 m

0.01316 m9.199(10-4) rad

-9.355(10-5) m

-1.887(10-3) rad

5 kN

6 m

6 m

AB

C

1

2

Global:

1

2

78 9

4

6 5

12 3

5 kN

=

4

5

1

2

3

4 5 1 2 3-20000 0 0

20666.667 00

2000

2000

20666.667 -2000

-2000 16000

0-2000

4000

08000 0 -2000 4000

-200000

20000

0

0

[Q] = [K][D] + [QF]

Page 555: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

D4 = 0.01316

D5 = 9.199(10-4)

D6 = 0

D1 = 0.01316

D2 = -9.355(10-5)

D3 = -1.887(10-3)

15 kN

6 m

6 m

AB

C

2

q4

q5

q6

q1

q2

q3

0

0

-1.87

0

1.87

-11.22

Member 1

A B11

2 3

4

6 5

A B1

1.87 kN 11.22 kN�m1.87 kN

4 6 5 1 2 3

4

6

5

1

2

3

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[q]1 = [k]1[d]1 + [qF]1

Page 556: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

5 kN

1.87 kN 11.22 kN�m

5 kN1.87 kN

18.77 kN�m

Member 2

q1

q3

q2

q7

q8

q9

D1 = 0.01316

D3 = -1.887(10-3)

D2 = -9.355(10-5)

D7 = 0

D8 = 0

D9 = 0

5

11.22

-1.87

-5

1.87

18.77

1 2 3 7 8 9

666.667 20001

2

3

7

8

9

2000

0

0

-666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000

-2000

0

0

4000

4000

666.667 0

0

-2000

-2000

20000 0

0 8000

[q]2 = [k]2[d]2 + [qF]2

15 kN

6 m

6 m

AB

C

2 1

2 3

78 9

2 2

Page 557: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

AB

C

Bending moment diagram

A B1

1.87 kN 11.22 kN�m1.87 kN5 kN

6 m

6 m

AB

C

1.87 kN

18.77 kN�m5 kN

1.87 kN

AB

C

Shear diagram

5

5

+

-1.87-

+

18.77

11.22

-11.22

-

5 kN

1.87 kN 11.22 kN�m

5 kN

1.87 kN

18.77 kN�m

2

Page 558: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

Deflected shape

AB

C

AB

C

Bending moment diagram +

18.77

11.22

-11.22

-

D3=-0.00189 rad

D3=-0.00189 rad

D1=13.16 mmD4=13.16 mm

D4

D5

D1

D2

D3

=

0.01316 m

0.01316 m9.199(10-4) rad

-9.355(10-5) m

-1.887(10-3) rad

Global :

AB

C

1

2

78 9

4

6 5

12 3

D5=0.00092 rad

Page 559: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

4.5 m

6 m 6 m

3 kN/m

Example 2

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B(b) Determine all the reactions at supports(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2 for each member.

A

B C

Page 560: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

Global 2

1

1

2 3

4

56

7

8 9

2 7

8 9

1

2 3

[FEM] 9 kN�m

9 kN

9 kN�m

9 kN

3 kN/m

2

Members1

2 3

4

56 1

4.5 m

6 m 6 m

3 kN/m

Page 561: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

4.5 m

6 m 6 m

3 kN/m

7.5 m

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

mkNm

mkNmL

AE

/160005.7

)/10200)(10600( 2626

=

××=

mkNm

mmkNLEI

/33.341)5.7(

)1060)(/10200(12123

4626

3

=

××=

kNm

mmkNLEI

1280)5.7(

)1060)(/10200(662

4626

2

=

××=

mkNm

mmkNLEI

•=

××=

64005.7

)1060)(/10200(44 4626

mkNm

mmkNLEI

•=

××=

32005.7

)1060)(/10200(22 4626

Page 562: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

[ km ] = [ T ]T[ k´ ][T ] =

λx = cos θx

Member m:

θx

θy Uj

VjMj

Ui

Vi

Mim

λy = cos θy

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 563: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

4.5 m

6 m 6 m

3 kN/m

7.5 m

=

4

5

6

1

2

3

4 1

-10362.879

-7516.162

768

10362.879

768

7516.162

2

-7516.162

-5978.451

-1024

7516.162

5978.451

-1024

3

-768

1024

3200

768

-1024

6400

10362.879

-768

7516.162

-10362.879

-7516.162

-768

5

7516.162

5978.451

1024

-7516.162

-5978.451

1024

6

-768

1024

6400

768

-1024

3200

[k1]

Page 564: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

λx = cos 0o = 1.0, λy = cos 90o = 0

Member 2:

2 7

8 9

1

2 3

4.5 m

6 m 6 m

3 kN/m

7.5 mmkN

mmkNm

LAE

/200006

)/10200)(10600( 2626

=

××=

mkNm

mmkNLEI

/667.666)6(

)1060)(/10200(12123

4626

3

=

××=

kNm

mmkNLEI

2000)6(

)1060)(/10200(662

4626

2

=

××=

mkNm

mmkNLEI

•=

××=

80006

)1060)(/10200(44 4626

mkNm

mmkNLEI

•=

××=

40006

)1060)(/10200(22 4626

Page 565: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

[k2] =0

2EI/L

-6EI/L2

- 6EI/L2

6EI/L2

0

6EI/L2

-12EI/L3

0

0

0

0

-AE/L

0

0

0

6EI/L2

0

- 6EI/L2

- 12EI/L3

0

0

6EI/L2

2EI/L

0

-6EI/L2

0 - AE/L

0

0

4EI/L

12EI/L3

4EI/L

12EI/L3

AE/L

AE/L

3

8

9

2

7

1

3 92 71 8

[k2] =0

4000

-2000

- 2000

2000

0

2000

-666.667

0

0

0

0

-20000

0

0

0

2000

0

- 2000

- 666.667

0

0

2000

4000

0

-2000

0 - 20000

0

0

8000

666.667

8000

666.667

20000

20000

3

8

9

2

7

1

3 92 71 8

2 7

8 9

1

2 3

Page 566: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

=

4

5

6

1

2

3

4 1

-10362.879

-7516.162

768

10362.879

768

7516.162

2

-7516.162

-5978.451

-1024

7516.162

5978.451

-1024

3

-768

1024

3200

768

-1024

6400

10362.879

-768

7516.162

-10362.879

-7516.162

-768

5

7516.162

5978.451

1024

-7516.162

-5978.451

1024

6

-768

1024

6400

768

-1024

3200

[k1]

[k2] =0

4000

-2000

- 2000

2000

0

2000

-666.667

0

0

0

0

-20000

0

0

0

2000

0

- 2000

- 666.667

0

0

2000

4000

0

-2000

0 - 20000

0

0

8000

666.667

8000

666.667

20000

20000

3

8

9

2

7

1

3 92 71 8

Page 567: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

D1

D3

D2 =4.575(10-4) m

-5.278(10-4) rad

-1.794(10-3) m

Global:

1

21

2 3

4

5 6

7

8 9

4.5 m

6 m 6 m

3 kN/m

7.5 m9 kN

9 kN�m

9 kN

0

0

0

Q1

Q3

Q2

D1

D3

D2

0

9

9+1

2

3

1

30362.9

768

7516.16

2

7516.16

6645.12

976

3

768

976

14400=

9 kN�m

9 kN

Page 568: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

0

0

0

D1 = 4.575(10-4)

D2 = -1.794(10-3)

D3 = -5.278(10-4)

0

0

0

0

0

0

+ =

q4

q6

q5

q1

q2q3

4

5

6

1

2

3

5 1 2 34 6

k1

1

11.37 kN

11.37 kN

0.09 kN

1.19 kN�m

0.09 kN

0.50 kN�m 1

9.15 kN6.75 kN 1.19 kN�m

9.15 kN

6.75 kN

0.50 kN�m

9.15

0.50

6.75

-9.15

-6.75

-1.19

=

Page 569: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

Member 2:

2 7

8 9

1

2 3

0

9

9

0

9

-9

+=

q1

q3

q2

q7

q8q9

D1 = 4.575(10-4)

D2 = -1.794(10-3)

D3 = -5.278(10-4)

0

0

0

1

2

3

7

8

9

2 7 8 91 3

k2

9.15

1.19

6.75

-9.15

11.25

-14.70

=

9 kN�m

9 kN

9 kN�m

9 kN

3 kN/m

2[FEM]

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

Page 570: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

1

9.15 kN6.75 kN 1.19 kN�m

9.15 kN

6.75 kN

0.50 kN�m

3 kN/m

All Reactions

9.15 kN11.25 kN

14.70 kN�m

9.15 kN

6.75 kN

0.50 kN�m

Page 571: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

-1.19

Shear diagram (kN)

Deflected shape

-0.09

-0.09

6.75

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

1

11.37 kN

11.37 kN

0.09 kN

1.19 kN�m

0.09 kN0.50 kN�m

D3 =-5.278(10-4) rad

D2 = -1.79 mm

D1 = 0.46 mm

D1

D3

D2 =4.575(10-4) m

-5.278(10-4) rad

-1.794(10-3) m -11.25

-

+

Bending-moment diagram (kN�m)

-14.70

0.5

Page 572: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

Example 3

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2 for each member.

4.5 m

6 m 3 m

10 kN

A

BC15 kN

20 kN�m

3 kN/m

3 m

Page 573: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

[FEM] 13 kN/m 11.25 kN

wL/2 = 11.25 kN

wL2/12 = 14.06 kN�m

14.06 kN�m

Global

21

2 7

8 9

1

2 3

4.5 m

6 m 3 m

10 kN

A

BC15 kN

20 kN�m

3 kN/m

3 m

7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN

λx = cos θx = 6/7.5 = 0.8

1

Members1

2 3

4

56

1

2 3

4

56

7

8 9

θy = 53.13

θx =36.87

λy = cos θy = 4.5/7.5 = 0.6

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

11.25(0.8) = 9 kN

Page 574: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

Global:

1

21

2 3

4

5 6

7

8 9

Q1 = 15

Q3 = 20

Q2 = 0

D1

D3

D2

-6.75

-14.06 + 7.5

9 + 5+1

2

3

1

30362.9

768

7516.16

2

7516.16

6645.2

976

3

768

976

14400=

[FEM]13 kN/m 11.25 kN

11.25 kN

14.06 kN�m

14.06 kN�m7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

10 kN

A

BC15 kN

20 kN�m

3 kN/m

14.06 kN�m7.5 kN�m

6.75 kN

5 kN9 kN

15 kN20 kN�m

Page 575: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

D1

D3

D2 =1.751(10-3) m

2.049(10-3) rad

-4.388(10-3) m

1

21

2 3

4

5 6

7

8 9

Page 576: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

Member 1:

0

0

0

D1 = 1.751(10-3)

D2 = -4.388(10-3)

D3 = 2.049(10-3)

-6.75

14.06

9

-6.75

9

-14.06

+ =

q4

q6

q5

q1

q2q3

4

5

6

1

2

3

5 1 2 34 6

k1

6.51

26.46

24.17

-20.01

-6.17

4.89

=

[FEM]

13 kN/m 11.25 kN

11.25 kN

14.06 kN�m

14.06 kN�m

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

θx

θy 1

2 3

4

56 1

λx = cos 36.87o = 0.8, λy = cos 53.13o = 0.6

14.06 kN�m

14.06 kN�m

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

Page 577: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

38

3 kN/m

7.5 m1

19.71 kN

19.71 kN

7.07 kN

4.89 kN�m

15.43 kN

26.46 kN�m

=

q4

q6

q5

q1

q2q3

6.51

26.46

24.17

-20.01

-6.17

4.89

θx = 36.87o

θy = 53.13o 1

2 3

4

56 1

3 kN/m

7.5 m

20.01 kN

4.89 kN�m

6.51 kN

24.17 kN

26.46 kN�m

6.17 kN

Page 578: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

39

Member 2:

2 7

8 9

1

2 3

0

7.5

5

0

5

-7.5

+=

q1

q3

q2

q7

q8q9

D1 = 1.751(10-3)

D2 = -4.388(10-3)

D3 = 2.049(10-3)

0

0

0

1

2

3

7

8

9

2 7 8 91 3

k2

35.02

15.12

6.17

-35.02

3.83

-8.08

=

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

[FEM]

7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN 2

10 kN

7.5 kN�m

5 kN

7.5 kN�m

5 kN

Page 579: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

40

3 kN/m

7.5 m

20.01 kN

4.89 kN�m

6.51 kN

24.17 kN

26.46 kN�m

6.17 kN

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

2

10 kN

10 kN

A

BC15 kN

20 kN�m

3 kN/m

6 m 3 m3 m

6.51 kN

24.17 kN

26.46 kN�m

35.02 kN3.83 kN

8.08 kN�m

Page 580: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

41

Shear diagram (kN)

Bending-moment diagram (kN�m)

3 kN/m

7.5 m1

19.71 kN

19.71 kN

7.07 kN

4.89 kN�m

15.43 kN

26.46 kN�m

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

2

10 kN

15.43D1

D3

D2 =1.751(10-3) m

2.049(10-3) rad

-4.388(10-3) m

Deflected shape

D3 = 2.05(10-3) rad

D2 = -4.39 mm

D1 =1.75 mm

-26.46

4.89

-15.12 -8.08

-7.07

6.17

-3.83

Page 581: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

42

Special Frames

Page 582: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

43

i j

θjθi 4 *

5 * 6*

1*

2*3 *

λix = cos θi

λiy = sin θi

λjx = cos θj

λjy = sin θj

[ q* ] = [ T ]T[ q´ ]

1

Stiffness matrix

i j

5´ 6´

2´3´

[ T ]T

=

6'

5'

4'

3'

2'

1'

*6

5*

*4

*3

2*

*1

1000000000000000010000000000

qqqqqq

λλλλ

λλλλ

qqqqqq

jxjy

jyjx

ixiy

iyix1*2*3*4*5*6*

1´ 2´ 3´ 4´ 5´ 6´

Page 583: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

44

[ ]

=

1000000000000000010000000000

jxjy

jyjx

ixiy

iyix

λλλλ

λλλλ

T

1´2´3´4´5´6´

1* 2* 3* 4* 5* 6*

� Member Stiffness Matrix

1´2´3´4´5´6´

1´ 2´ 3´ 4´ 5´ 6´

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Page 584: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

45

[ k ] = [ T ]T[ k´ ][T] =

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 585: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

46

40 kN

4 m 4 m

3 m

7.416 m

22.02 o

20 kN200 kN�m

6 kN/m

Example 4

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagrams and qualitativedeflected shape.Take I = 200(106) mm4 , A = 6(103) mm2, and E = 200 GPa for all members.Include axial deformation in the stiffness matrix.

Page 586: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

47

1Local

12

40 kN

4 m 4 m

3 m

7.416 m

22.02 o

20 kN200 kN�m

6 kN/m

4

5 6

7

8 922.02 o

Global

2

2´ 3´

5´ 6´

2´3´

5´ 6´

1 *

2* 3 *

Page 587: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

48

mkNm

mkNmL

AE /101508

)/10200)(006.0( 3262

×=×

=

mkNm

mmkNLEI

•×=×

= 3426

10208

)0002.0)(/10200(44

mkNLEI

•×= 310102

kNm

mmkNLEI 3

2

426

2 1075.3)8(

)0002.0)(/10200(66×=

×=

mkNm

mmkNLEI /109375.0

)8()0002.0)(/10200(1212 3

3

426

3 ×=×

=

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Mi

Vj

Mj

Vi

Nj

Ni

θi ∆j θj∆i δjδi

Page 588: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

49

2

2´ 3´

5´ 6´

2´3´

1 4´

5´ 6´

Local

8 m

8 m

03750

0

- 3750- 937.5

0

0375010000

0-3750

0 - 150000

00

0

10000

-3750

- 3750

3750

0

3750

-937.5

0

0

00

-150000

0

0

[ k´]1 = [ k´]2 =20000

937.5

20000

937.5

150000

150000

θi ∆j θj∆i δjδi

Mi

Vj

Mj

Vi

Nj

Ni

Page 589: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

50

θi =22.02o

Member 1:

1

1 *

2 * 3 *

4

5 6

Global1´

2´3´

1 4´

5´ 6´Local

θj = 0o

λjx = cos (0o) = 1,λjy = sin (0o) = 0

λix = cos (22.02o) = 0.927,λiy = sin (22.02o) = 0.375

40 kN40 kN�m40 kN�m

20 kN20 kN

1

[FEM]

q1´

q3´

q2´

q4´

q5´

q6´

q*1

q*3

q*2

q4

q5q6

[ T ]1T

00

0

00

0

00

0

000

000

000

1 0

1

01

00

0 0

0.9270.375

- 0.375 0.927

10 0

00

[ q* ] = [ T ]T[ q´ ]

=

1´ 4´ 5´ 6´2´ 3´

1*

2*

3*

4*

5*

6*

Page 590: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

51

θi =22.02o1

1 *

2 * 3 *

4

5 6

Global1´

2´3´

1 4´

5´ 6´Local

θj = 0o

[ k* ]1 = [ T ]1T[ k´ ]1[ T ]1

[ k* ]1 = 103

1*2*3*456

1*

129.04651.811-1.406

-139.0580.351-1.406

2*

51.811

21.892

3.476-56.240

-0.8693.476

3*

-1.4063.47620.000.00-3.7510.00

4

-139.058-56.240

01500

0

5

0.351-0.869-3.75

00.938-3.75

6

-1.4063.47610.00

0-3.75

20

Page 591: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

52

θi =22.02o1

1 *

2 * 3 *

4

5 6

Globalθj = 0o

40 kN40 kN�m40 kN�m

20 kN20 kN

1

[FEM]

[ qF* ] = [ T ]T[ qF´]

[ qF*] = [ T ]1T

0

40

20

0

20

-40

40 kN40 kN�m

20 kN

1

40 kN�m

18.547.5

-7.5018.5440020-40

=

1*

2*

3*

4

5

6

Page 592: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

53

Member 2

q1´

q3´

q2´

q4´

q5´

q6´

q4

q6

q5

q7

q8q9

[ T ]2T

0.927-0.375

0.3750.927

1

00

0

00

0

00

0

000

000

000

1

0.927-0.375

0.3750.927

00

0 0

0 0

00

[ q ] = [ T ]T[ q´ ]

=

1´ 4´ 5´ 6´2´ 3´

456

78

9

6 kN/m2

24 kN

24 kN

32 kN�m

32 kN�m

[ q´F]

2

2´ 3´

5´ 6´

[ q´]

λix = λjx = cos (-22.02o) = 0.927,λiy = λjy = sin (-22.02o) = -0.375

2

45 6

[ q ]7

8 922.02o

22.02o

Page 593: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

54

2

2´ 3´

5´ 6´

[ q´ ]

[ k ]2 = [ T ]2T[ k´]2[ T ]2

2

45 6

[ q ]7

8 922.02o

22.02o

[ k ]2 = 103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 594: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

55

6 kN/m2

24 kN

24 kN

32 kN�m

32 kN�m

[ q´F ]

[ qF* ] = [ T ]T[ qF´ ]

[ qF ] = [ T ]2T

0

32

24

0

24

-32

8.99822.249328.99822.249-32

=

4

5

6

7

8

9

6 kN/m2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998kN

22.249 kN

8.998 kN

2

45 6

[ q ]7

8 922.02o

22.02o

Page 595: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

56

[ k* ]1 = 103

1*2*3*456

1*129.04651.811-1.406

-139.0580.351-1.406

2*51.811

21.892

3.476-56.240-0.8693.476

3*-1.4063.47620.000.00-3.7510.00

4-139.058-56.240

01500

0

50.351-0.869-3.75

00.938-3.75

6-1.4063.47610.00

0-3.75

20

Global Stiffness:

12

1 *

2* 3 *

4

5 6

7

8 9

2*

7

8 9

[ k ]2 = 103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 596: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

57

Global: 40 kN 20 kN200 kN�m

6 kN/m 12

1 *

2 * 3 *

4

5 6

7

8 9

6 kN/m2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998 kN

22.249 kN

8.998 kN

40 kN40 kN�m

20 kN

1

40 kN�m

18.54 kN7.5

[ q*F ]

2 *

7

8 9

[ Q ] = [ K ][ D ] + [ QF ]

40 kN�m

7.5

40 kN�m 32 kN�m

20 kN 22.249 kN

8.998 kN

20 kN200 kN�m

D1*

D4

D3*

D5

D6

= 0.0

= 0.0

= 0.0

= -20

= -200

Q1*

Q4

Q3*

Q5

Q6

= 103

1*

3*

4

5

6

1*

129.046

-1.406

-139.058

0.352

-1.406

3*

-1.406

20

0

-3.75

10

4

-139.058

0

279.046

-51.811

1.406

5

0.351

-3.75

-51.811

22.829

-0.274

6-1.406

10

1.406

-0.274

40

+ 8.998

-7.5

40

20 +22.249

-40 + 32

Page 597: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

58

Global: 40 kN 20 kN200 kN�m

6 kN/m 12

1 *

2 * 3 *

4

5 6

7

8 9

2 *

7

8 9

D1*

D4

D3*

D5

D6

=

-0.0205 m

-0.0112 rad

-0.0191 m

-0.0476 m

-0.0024 rad

Page 598: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

59

1

1 *

2 * 3 *

4

5 6

[ q ]

40 kN 40 kN�m

20 kN

1

40 kN�m

18.547.5

[ qF* ]Member 1: [ q*] = [ k*][ d*] + [ qF*]

q1*

q3*

q2*

q4

q5q6

D1*=-0.0205

D3*=-0.0112D2*= 0.0

D4= -0.0191D5= -0.0476D6=-0.0024

-7.50

40

18.54

0

20

-40

+

q1*

q3*

q2*

q4

q5

q6

0

022.63 kN

-8.49 kN19.02 kN7.87 kN�m

=

40 kN

22.63 kN

8.49 kN

19.02 kN

7.87 kN�m

= 103

1*2*3*456

1*

129.04651.811-1.406

-139.0580.351-1.406

2*

51.811

21.892

3.476-56.240

-0.8693.476

3*

-1.4063.47620.000.00-3.7510.00

4

-139.058-56.240

01500

0

5

0.351-0.869-3.75

00.938-3.75

6

-1.4063.47610.00

0-3.75

20

Page 599: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

60

Member 2 : [ q ] = [ k ][ d ] + [ qF ]

q4

q6

q5

q7

q8q9

8.998

3222.249

8.99822.249

-32

+

2

4

5 6

[ q ] 7

8 96 kN/m

2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998 kN

22.249 kN

8.998 kN

D4= -0.0191

D6=-0.0024D5= -0.0476

D7 = 0D8 = 0D9 = 0

q4

q6

q5

q7

q8

q9

8.49 kN

-207.87 kN�m-39.02 kN

9.51 kN83.51 kN-248.04 kN�m

= 8.49 kN

39.02 kN

207.87 kN�m

9.51 kN83.51 kN

248.04 kN�m

6 kN/m

=103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 600: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

61

40 kN

22.63 kN

8.49 kN

19.02 kN

7.87 kN�m

8.49 kN

39.02 kN

207.87 kN�m

9.51 kN

83.51 kN

248.04 kN�m6 kN/m

22.5 kN81 kN

22.5 kN

33 kN

8.49 kN

20.98 kN

Bending-moment diagram (kN�m)

-

+

207.87

-248.04

83.56

+7.87

Deflected shape

D3*=-0.0112 rad

D1*=- 20.5 mm

D6=-0.0024 rad

D1*

D4

D3*

D5

D6

=

-0.0205 m

-0.0112 rad

-0.0191 m

-0.0476 m

-0.0024 radD4=-19.1 mmD5=-47.6 mm

Page 601: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

62

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

Example 5

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagramsand qualitative deflected shape.Take I = 400(106) mm4 , A = 60(103) mm2, and E = 200 GPa for all members.

Page 602: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

63

Global

1

2 3

4

5 6

7*9*

8*

1

2 2

1´2´

4´5´

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

Local

2´ 3´

5´ 6´1

76.31o

Page 603: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

64

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

1

2 3

4

5 61

Member 1:

kN/m103000m4

)kN/m10)(200m10(60

3

2623

×=

××=

LAE

mkN1080m4

)m10)(400kN/m104(2004

3

4626

•×=

××=

LEI

mkN1040m4

)m10)(400kN/m102(2002

3

4626

•×=

××=

LEI

kN1030m)(4

)m10)(400kN/m106(2006

3

2

4626

2

×=

××=

LEI

kN/m1015m)(4

)m10)(400kN/m1012(20012

3

3

4626

3

×=

××=

LEI

Page 604: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

65

d1

d3

d2

d4

d5

d6

q1

q3

q2

q4

q5q6

0

26.67

40

040

-26.67

+= 103

123

45

6

1 4 5 6

030

40

0-30

80

3000

0

0

-30000

0

2

015

30

0-15

30

3

030

80

0-30

40

-30000

0

3000

0

0

0-15

-30

015

-30

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

26.67 kN�m26.67 kN�m

40 kN40 kN

1

20 kN/m

Member 1: [ q ] = [ k ][ d ] + [ qF ]

1

2 3

4

5 61

56.31o

76.31o

Page 605: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

66

Member 2:

2

1´2´

4´5´

45 6

7*9*

8*

2

i

j

kN/m103324m3.61

)kN/m10)(200m10(60

3

2623

×=

××=

LAE

mkN1088.64m3.61

)m10)(400kN/m104(2004

3

4626

•×=

××=

LEI

kN1036.83m)(3.61

)m10)(400kN/m106(2006

3

2

4626

2

×=

××=

LEI

kN/m1020.41m)(3.61

)m10)(400kN/m1012(20012

3

3

4626

3

×=

××=

LEI

mkN1044.32m3.61

)m10)(400kN/m102(2002

3

4626

•×=

××=

LEI

[ k´ ]2 = 103

1´2´3´4´5´6´

1´ 4´ 5´ 6´3324

00

-332400

2´0

20.4136.83

0-20.4136.83

3´0

36.8388.64

0-36.8344.32

-332400

3324

00

0-20.41-36.83

020.41

-36.83

036.8344.32

0-36.8388.64

Page 606: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

67

45 6

7*9*

8*

2

i

j 76.31oλjx = cos (-76.31o) = 0.24,λjy = sin (-76.31o) = -0.97

[ q* ] = [ T ]T[ q´ ]

q1´

q3´

q2´

q4´q5´q6´

q4

q6

q5

q7*q8*q9*

=

4567*8*9*

1´ 4´000

0.24

0-0.97

5´000

0.970.24

0

6´000001

0.55

0-0.83

000

2´0.830.55

0000

3´001000

λix = cos (-56.31o) = 0.55,λiy = sin (-56.31o) = -0.83

56.31o

2

i

j

1´2´

4´5´

[ k* ]2 = [ T ]T[ k´]2[ T ] = 103

4567*8*9*

4 7* 8* 9*5 6-452.884643.585-35.786205.452

-35.786-759.668

1787.474-2689.923

-8.717-759.6683139.053

-8.717

30.64620.43144.321

-35.786-8.71788.643

1036.923

30.646-1524.780

-452.8841787.474

30.646

-1524.7802307.582

20.431643.585

-2689.92320.431

30.64620.43188.643

-35.786-8.71744.321

Page 607: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

68

[k]1 = 103

123456

1 4 5 60

30400

-3080

3000

00

-300000

20

1530

0-1530

30

30800

-3040

-300000

3000

00

0-15-300

15-30

1

2 3

4

5 6

7*9*

8*

1

2

[k*]2 = 103

4567*8*9*

4 7* 8* 9*5 6-452.884643.585-35.786205.452

-35.786-759.668

1787.474-2689.923

-8.717-759.6683139.053

-8.717

30.64620.43144.321

-35.786-8.71788.643

1036.923

30.646-1524.780

-452.8841787.474

30.646

-1524.7802307.582

20.431643.585

-2689.92320.431

30.64620.43188.643

-35.786-8.71744.321

Page 608: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

69

Global:

= -50= 0= -80= 0= 0

Q4

Q6

Q5

Q7*

Q9*

D4

D6

D5

D7*

D9*

0

-26.6740

00

+

D4

D6

D5

D7*

D9*

-2.199x10-5 m

-2.840x10-4 rad-3.095x10-4 m

0.979x10-3 m6.161x10-4 rad

=

1

2 3

4

5 6

7*9*

8*

1

23 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C 26.67 kN�m

26.67 kN�m

40 kN40 kN

1

20 kN/m

80 kN�m50 kN

= 103

45679

4 7* 9*5 6

205.452

-452.884643.585-35.786

-35.786

30.646-9.56944.321

-35.78688.643

-452.884

4036.923

30.646-1524.780

30.646

-1524.780232.582

-9.569643.58520.431

30.646-9.569

168.643-35.78644.321

Page 609: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

70

q1

q3

q2

q4

q5q6

0

26.67

40

040

-26.67

+= 103

123

45

6

1 4 5 6

030

40

0-30

80

3000

0

0

-30000

0

2

015

30

0-15

30

3

030

80

0-30

40

-30000

0

3000

0

0

0-15

-30

015

-30

Member 1:

q1

q3

q2

q4

q5q6

65.97 kN

24.59 kN�m

36.12 kN

-65.97 kN

43.88 kN-40.11 kN�m

=

0

0

0

D4

D5

D6

40.11 kN�m24.59 kN�m

43.88 kN36.12 kN

1

20 kN/m

65.97 kN65.97 kN

1

2 3

4

5 61

Page 610: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

71

q4

q6

q5

q7*

q8*q9*

Member 2:

q4

q6

q5

q7*

q8*q9*

15.97 kN

-39.89 kN�m

-43.88 kN

0 kN

46.69 kN0 kN�m

=

= 103

456

7*8*

9*

4 7* 8* 9*5 6-455.21651.27

-35.73

210.67

-35.73

-769.1

1769.34-2678.93

-8.84

-769.13128.82

-8.84

30.5720.26

44.32

-35.73-8.84

88.64

1036.923

30.57-1508.14

-455.211769.34

30.57

-1508.142296.15

20.26

651.27-2678.93

20.26

30.5720.26

88.64

-35.73-8.84

44.32

D4

D6

D5

D*7

0

D*9

15.97 kN43.88 kN 39.89 kN�m

46.69 kN

2

45 6

7*9*

8*

2

i

j

Page 611: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

72

Bending-moment diagram (kN�m)

+

40.11 kN�m24.59 kN�m

43.88 kN36.12 kN

1

20 kN/m

65.97 kN65.97 kN

15.97 kN43.88 kN 39.89 kN�m

46.69 kN

2

-24.59-

-40.11

- +

39.89

D4

D6

D5

D7*D9*

-2.199x10-5 m

-2.840x10-4 rad-3.095x10-4 m

0.979x10-3 m6.161x10-4 rad

=

Deflected shape

D4=-2.2x10-5 m

D5=-3.1x10-4 m

D7*=0.979x10-3 mD6 = -2.84x10-4 rad

D9*=6.161x10-4 rad

1

2 3

4

5 6

7*9*

8*

1

2

Page 612: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

1

! Trusses! Vertical Loads on Building Frames! Lateral Loads on Building Frames: Portal

Method! Lateral Loads on Building Frames: Cantilever

Method Problems

APPROXIMATE ANALYSIS OF STATICALLYINDETERMINATE STRUCTURES

Page 613: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

2

P1 P2

(a)

Trusses

R1 R2

a

a(b)R1

a

a

V = R1

F1

F2

Fb

Fa

Method 1 : If the diagonals are intentionally designed to be long and slender,it is reasonable to assume that the panel shear is resisted entirely by the tension diagonal,whereas the compressive diagonal is assumed to be a zero-force member.

Method 2 : If the diagonal members are intended to be constructed from largerolled sections such as angles or channels, we will assume that the tension and compressiondiagonals each carry half the panel shear.

Page 614: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

3

Example 1

Determine (approximately) the forces in the members of the truss shown inFigure. The diagonals are to be designed to support both tensile and compressiveforces, and therefore each is assumed to carry half the panel shear. The supportreactions have been computed.

10 kN 20 kN4 m 4 m

3 m

A BC

DEF

Page 615: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

4

+ ΣMA = 0: FFE(3) - 8.33cos36.87o(3) = 0

FFE = 6.67 kN (C)

ΣFy = 0:+ 20 - 10 - 2Fsin(36.87o) = 0

F = 8.33 kN

FFB = 8.33 kN (T)

FAE = 8.33 kN (C)

+ ΣMF = 0: FAB(3) - 8.33cos36.87o(3) = 0

FAB = 6.67 kN (T)

ΣFy = 0:+ FAF - 10 - 8.33sin(36.87o) = 0

FAF = 15 kN (T)

10 kN 20 kN4 m 4 m

3 m

A BC

DEF

10 kN

20 kN

V = 10 kN

FFE

FAB

FAE= FFFB= F

θ = 36.87o

10 kN

3 m

A

F20 kN

θ

θ6.67 kN

8.33FAF

10 kN

θA

Page 616: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

5

C

D

10 kN

3 mθ

θ

ΣFy = 0:+ 10 - 2Fsin(36.87o) = 0

F = 8.33 kN

FDB = 8.33 kN (T)

FEC = 8.33 kN (C)

+ ΣMC = 0: FED(3) - 8.33cos36.87o(3) = 0

FED = 6.67 kN (C)

+ ΣMD = 0: FBC(3) - 8.33cos36.87o(3) = 0

FBC = 6.67 kN (T)

θ = 36.87o

V = 10 kN

θ = 36.87oD

θ6.67 kN

8.33 kNFDC

ΣFy = 0:+ FDC - 8.33sin(36.87o) = 0

FDC = 5 kN (C)

ΣFy = 0:+

FEB = 2(8.33sin36.87o) = 10 kN (T)

Eθ θ

6.67 kN6.67 kN

8.33 kN 8.33 kN

θ = 36.87o

FEB

FED

FBC

F = FEC

F = FDB

Page 617: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

6

Example 2

Determine (approximately) the forces in the members of the truss shown inFigure. The diagonals are slender and therefore will not support a compressiveforce. The support reactions have been computed.

40 kN 40 kN

4 m

A B C

GHJ

D E

FI

10 kN 20 kN 20 kN 20 kN 10 kN

4 m 4 m 4 m 4 m

Page 618: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

7

FBH = 0

FIH

FBC

FIC

40 kN

4 m

A

J

10 kN

45o

V = 10 kN

FBH = 0

ΣFy = 0:+ 40 - 10 - 20 - FICcos 45o = 0

FIC = 14.14 kN (T)

+ ΣMA = 0: FJI(4) - 42.43sin 45o(4) = 0

FJI = 30 kN (C)

+ ΣMJ = 0: FAB(4) = 0

FAB = 0

0

0FJA

40 kN

θA

ΣFy = 0:+ FJA = 40 kN (C)

FAI = 0

FJI

FAB

FJB V = 30 kN

ΣFy = 0:+ 40 - 10 - FJBcos 45o = 0

FJB = 42.43 kN (T)

FAI = 0

40 kN

4 m

A B

J I

10 kN 20 kN

4 m

45o

Page 619: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

8

+ ΣMB = 0:

FIH(4) - 14.14sin 45o(4) + 10(4) - 40(4) = 0

FJH = 40 kN (C)

FBC = 30 kN (T)

+ ΣMI = 0: FBC(4) - 40(4) + 10(4) = 0

FBH = 0

FIH

FBC

FIC V = 10 kN

40 kN

4 m

A B

J I

10 kN 20 kN

4 m

45oB

30 kN0

042.3 kNFBI

45o

45o45o

ΣFy = 0:+ FBI = 42.3 sin 45o = 30 kN (T)

ΣFy = 0:+

FBI = 2(14.1442.3 sin 45o) = 20 kN (C)

C30 kN30 kN

14.14 kN14.14 kNFCH

45o45o

Page 620: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

9

Vertical Loads on Building Frames

typical building frame

Page 621: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

10

w

A B

L(b)

0.21L0.21Lpoint of zero moment

approximate case

w

L

(d)

assumed points of zero moment0.1L 0.1L

model

w

(e)

� Assumptions for Approximate Analysis

0.1L 0.1L0.8L

w

A B

L

Simply supported(c)

column column

girder

w

A BL

(a)

Point ofzeromoment

Point ofzeromoment

Page 622: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

11

Example 3

Determine (approximately) the moment at the joints E and C caused by membersEF and CD of the building bent in the figure.

B

D

F

A

C

E

6 m

1 kN/m

1 kN/m

Page 623: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

12

1 kN/m

1 kN/m

4.8 m

4.8 kN

0.6 m

0.6 kN 2.4 kN

3 kN

0.6(0.3) + 2.4(0.6) = 1.62 kN�m

0.6 m

0.6 kN2.4 kN

3 kN

1.62 kN�m

0.1L=0.6 m 0.6 m

4.8 m

2.4 kN 2.4 kN

Page 624: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

13

P

h

l(a)

P

h

l(b)

Portal Frames and Trusses

� Frames: Pin-Supported∆ ∆

assumedhinge

h

L/2

(c)

P

h

L/2

Ph/l

P/2

Ph/l

P/2

P/2 P/2

Ph/l

Ph/2

Ph/2Ph/2

Ph/2

(d)

Ph/l

Page 625: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

14

h/2

� Frames : Fixed-SupportedP

h

l(a)

P/2

Ph/2lP/2

Ph/2l

P

h

l(b)

∆ ∆

assumedhinges

(c)

h/2

L/2P

h/2

L/2

P/2 P/2

Ph/2l

P/2

Ph/2l

P/2

Ph/2l

Ph/2l

Ph/2l

P/2 P/2

Ph/2lPh/4 Ph/4

Ph/4

Ph/4Ph/4

Ph/4

(d)

Ph/4Ph/4

Page 626: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

15

� Frames : Partial Fixity

P

(b)

P

h

l(a)

h/3h/3

assumedhinges

θ θ

� Trusses

P

h

l(a)

P

l(b)

P/2 P/2h/2

assumedhinges

∆ ∆

Page 627: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

16

Example 4

Determine by approximate methods the forces acting in the members of theWarren portal shown in the figure.

40 kN

7 m

8 m

2 m

4 m

A

B

C

4 m 2 m2 m

D E F

H G

I

Page 628: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

17

40/2 = 20 kN = V

N N

20 kN = V

I3.5 m

A

V = 20 kN

NN

V = 20 kN

V = 20 kN

N N

20 kN = VM M

40 kN

3.5 m

2 m

B

C

4 m 2 m2 m

D E F

H G

J K

+ ΣMJ = 0:

N(8) - 40(5.5) = 0

N = 27.5 kN

+ ΣMA = 0:

M - 20(3.5) = 0

M = 70 kN�m

Page 629: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

18

20 kN

27.5 kN

40 kN

3.5 m

2 m

B

C

2 m

D

J

FCD

FBDFBH

45o

+ ΣMB = 0: FCD(2) - 40(2) - 20(3.5) = 0

FCD = 75 kN (C)

+ ΣMD = 0: FBH(2) + 27.5(2) - 20(5.5) = 0

FBH = 27.5 kN (T)

ΣFy = 0:+ -27.5 + FBDcos 45o = 0

FBD = 38.9 kN (T)

+ ΣMG = 0: FEF(2) - 20(3.5) = 0

FEF = 35 kN (T)

+ ΣME = 0: FGH(2) + 27.5(2) - 20(5.5) = 0

FGH = 27.5 kN (C)

ΣFy = 0:+ 27.5 - FEGcos 45o = 0

FEG = 38.9 kN (C)

3.5 m

2 m

27.5 kN

20 kN = V

2 m

E F

G

K

FGH

FEG

FEF

45o

Page 630: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

19

ΣFy = 0:+ FDHsin 45o - 38.9sin 45o = 0

FDH = 38.9 kN (C)

D75 kN

38.9 kN

FDE

FDH

x

y

45o45o

75 - 2(38.9 cos 45o) - FDE = 0

FDE = 20 kN (C)

ΣFx = 0:+

H 27.5 kN27.5 kN

38.9 kN FHE

x

y

45o45o

ΣFy = 0:+ FHEsin 45o - 38.9sin 45o = 0

FHE = 38.9 kN (T)

Page 631: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

20

= inflection point

P

(a)

Lateral Loads on Building Frames: Portal Method

(b)V V V V

Page 632: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

21

Example 5

Determine by approximate methods the forces acting in the members of theWarren portal shown in the figure.

4 m 4 m 4 m

5 kN

3 m

A

B

C

D

E

F G

H

Page 633: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

22

5 kN

1.5 m

B D F G

I J K L

M N O

4 m 4 m 4 m

5 kN

3 m

A

B

C

D

E

F G

H

I J K L

M N O

V V2V 2V

Iy Jy Ky Ly

ΣFx = 0: 5 - 6V = 0

V = 0.833 kN

+

Page 634: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

23

Ly 0.625 kN =

0.625kN

Ky = 0

4.167 kN

0.625 kN

Iy = 0.625kN

2.501kN

0.625kN

Jy = 0

1.5 mA

I

0.625 kN

0.833kN

0.625 kN

0.833 kN

H

L1.5 m

0.833 kN 0.625 kN 1.25 kN�m

C

J1.5 m

1.666 kN

1.666kN 2.50 kN�m

0.835 kN

E

K1.5 m

1.666 kN

1.666kN 2.5 kN�m

0.833 kN0.625 kN 1.25 kN�m

5 kN

1.5 m

B 2 m

0.833 kN

M

I

2.501 kN

0.625kN

F

1.666 kN1.5 m

2 m2 mN O

K

G

0.833 kN

1.5 m

2 mO

L

0.625 kN 0.835 kN

0.625 kN

D

1.666 kN

2 m 2 m

1.5 m

N

J

4.167 kN

Page 635: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

24

Example 6

Determine (approximately) the reactions at the base of the columns of the frameshown in Fig. 7-14a. Use the portal method of analysis.

20 kN

30 kN

8 m 8 m

5 m

6 m

G H I

A B C

D E F

Page 636: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

25

20 kN

30 kN

8 m 8 m

5 m

6 m

G H I

A B C

D E F

S

N

J K L

O P Q

R

M

Page 637: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

26

Py

VOy

VPy

2V

ΣFx = 0: 20 - 4V = 0 V = 5 kN+

Ly

V´Jy

V´ Ky

2V´

ΣFx = 0: 20 + 30 - 4V´ = 0 V´ = 12.5 kN+

20 kN2.5 m

G I

20 kN

30 kN

5 m

3 m

G H I

D E F

Page 638: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

27

Oy = 3.125

20 kN2.5 m

G R4 m

5 kN

Rx = 15 kN

Ry = 3.125 kN

Sx = 5 kN

Sy = 3.125 kN

Py = 0 kN

Mx = 22.5 kN

My = 12.5 kN

Jy = 15.625 kN

Nx = 7.5 kN

Ny = 12.5 kN

Ky = 0 kN

B

K3 m

25 kN

A

J3 m

15.625kN12.5 kN

Bx = 25 kNBx = 0 MB = 75 kN�m

Ax = 12.5 kNAx = 15.625 kN MA = 37.5 kN�m

25 kN

2.5 m

N

K

P

M

3 m4 m4 m

10 kN

22.5 kN

12.5 kN

10 kN

H SR15 kN

3.125 kN

2.5 m

4 m4 m

5 kN

3.125 kN

12.5 kN

30 kN

J

O

M2.5 m

3 m 4 m

Page 639: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

28

Lateral Loads on Building Frames: Cantilever MethodP

beam(a)

building frame(b)

In summary, using the cantilever method, the following assumptions apply to a fixed-supported frame.

1. A hinge is place at the center of each girder, since this is assumed to be point of zero moment.

2. A hinge is placed at the center of each column, since this is assumed to be a point of zero moment.

3. The axial stress in a column is proportional to its distance from the centroid of the cross-sectional areas of the columns at a given floor level. Since stress equals force per area, then in the special case of the columns having equal cross-sectional areas, the force in a column is also proportional to its distance from the centroid of the column areas.

Page 640: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

29

Example 7

Determine (approximately) the reactions at the base of the columns of the frameshown. The columns are assumed to have equal crossectional areas. Use thecantilever method of analysis.

30 kN

15 kN

6 m

CD

BE

A F

4 m

4 m

Page 641: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

30

30 kN

15 kN

6 m

CD

BE

A F

4 m

4 m

x

6 m

3)(6)(0~=

++

==∑∑

AAAA

AAx

x

G

H

I

J

K

L

Page 642: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

31

I

3 m 3 m

Hy

Hx

Ky

Kx

30 kNC

D2 m

M

+ ΣMM = 0: -30(2) + 3Hy + 3Ky = 0

The unknowns can be related by proportional triangles, that is

yyyy KHor

KH==

33

kNKH yy 10==

Gy

Gx

Ly

LxN

30 kN

15 kN

CD

BE

4 m H

I

J

K

3 m 3 m2 m

+ ΣMN = 0: -30(6) - 15(2) + 3Gy + 3Ly = 0

The unknowns can be related by proportional triangles, that is

yyyy LGor

GG==

33

kNLG yy 35==

Page 643: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

32

10 kN

30 kN2 m

C 3 m Ix = 15 kN

Iy = 10 kN

Hx = 15 kN

10 kN

DI15 kN

10 kN

2 m

3 m

Kx = 15 kN

35 kN

15 kN

10 kN

15 kN

G

H

J2 m

2 m 3 m Jx = 7.5 kN

Jy = 25 kN

Gx = 22.5 kN35 kN

2 m

L

K

J

2 m

3 m

15 kN

7.5 kN

25 kN

10 kN

Lx = 22.5 kN

A

G2 m

35 kN22.5 kN

Ax = 22.5 kNAx = 35 kN MA = 45 kN�m

Fx = 22.5 kNFy = 35 kN MF = 45 kN�m

F

L2 m

22.5 kN35 kN

Page 644: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

33

Example 8

Show how to determine (approximately) the reactions at the base of the columnsof the frame shown. The columns have the crossectional areas show. Use thecantilever of analysis.

35 kN

45 kN

6 m

6 m

4 m

P Q R

A B C D

L M N O

E F G H

I J K

4 m 8 m

5000mm2

5000mm2

4000 mm2

4000 mm2

6000 mm2

6000 mm2

6000 mm2

6000 mm2

Page 645: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

34

35 kN

45 kN

6 m

4 m

P Q R

A B C D

L M N O

E F G H

I J K

6 m 4 m 8 m

6 m 4 m 8 m

6000 mm2 6000 mm24000 mm25000mm2

x

mAAx

x 48.86000400050006000

)18(6000)10(4000)6(5000)0(6000~=

++++++

==∑∑

Page 646: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

35

35 kN2 m

P Q R

Ly

Lx My

Mx

Ny

Nx

Oy

Ox

1.52 m2.48 m8.48 m 9.52 m

+ ΣMNA = 0: -35(2) + Ly(8.48) + My(2.48) + Ny(1.52) + Oy(9.52) = 0 -----(1)

)2())10(6000

(48.848.2

)10(5000;

48.848.2;

48.848.2 66 −−−−−=== −−yy

LMLM LM

σσσσ

)3())10(6000

(48.852.1

)10(4000;

48.852.1;

48.852.1 66 −−−−−=== −−yy

LNLN LN

σσσσ

)4())10(6000

(48.852.9

)10(6000;

48.852.9;

48.852.9 66 −−−−−=== −−yy

LOLO LO

σσσσ

Since any column stress σ is proportional to its distance from the neutral axis

Solving Eqs. (1) - (4) yields Ly = 3.508 kN My = 0.855 kN Ny = 0.419 kN Oy = 3.938 kN

Page 647: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

36

35 kN

45 kN

3 m

L M N O

I J K4 m

Ey

Ex Fy

Fx

Gy

Gx

Hy

Hx

1.52 m2.48 m8.48 m 9.52 m

+ ΣMNA = 0: -45(3) - 35(7) + Ey(8.48) + Fy(2.48) + Gy(1.52) + Hy(9.52) = 0 -----(5)

)6())10(6000

(48.848.2

)10(5000;

48.848.2;

48.848.2 66 −−−−−=== −−yy

EFEF EF

σσσσ

)7())10(6000

(48.852.1

)10(4000;

48.852.1;

48.852.1 66 −−−−−=== −−yy

EGEG EG

σσσσ

)8())10(6000

(48.852.9

)10(6000;

48.852.9;

48.852.9 66 −−−−−=== −−yy

EHEH EH

σσσσ

Since any column stress σ is proportional to its distance from the neutral axis ;

Solving Eqs. (1) - (4) yields Ey = 19.044 kN Fy = 4.641 kN Gy = 2.276 kN Hy = 21.38 kN

Page 648: INTRODUCTION: STRUCTURAL ANALYSISmtp.itd.co.th/ITD-CP/data/StructuralAnalysis2.pdf · Beam 1 DOF A RB y Ax = 0 MA. 10 w w = + + = ... (m) V (kN) 10 10 + M x (m) (kNŁm) 40-40/3EI

37

One can continue to analyze the other segments in sequence, i.e., PQM, then MJFI, then FB, and so on.

35 kN2 m

3.508 kN

3 m

Ix= 114.702 kN

Iy= 15.536 kN

Lx= 5.262 kN

Ex= 64.44 kN

Px= 29.738 kN

Py= 3.508 kN

45 kN

3 m

I2 m

19.044 kN

5.262 kN3.508 kN

3 m

3 m

E19.044 kN

64.44 kN

Ax = 64.44 kNAx = 19.044 kN MA = 193.32 kN�m