III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique...

12
Université Paul Sabatier - FSI L2 Mécanique / Mathématiques III CAPILLARITE – TENSION SUPERFICIELLE La « tension de surface » est un phénomène qui fait apparaître une grandeur intensive propre aux liquides qui peut revêtir une grande importance dans des problèmes spécifiques : capillarité, formation de gouttes et de bulles, mouillabilité… Elle peut être généralement négligée dans les problèmes avec des écoulements, en dynamique des fluides, mais pas dans les systèmes de petite taille (microfluidique …) 1. Mise en évidence Différents exemples permettent d’illustrer l’influence de la tension de surface : bien que l’acier ait une masse volumique plus de 7 fois supérieure à celle de l’eau, on peut poser à la surface de l’eau une aiguille à coudre ou un trombone sans qu’ils ne coulent au fond du récipient, certains insectes se déplacent à la surface de l’eau comme s’ils glissaient sur un film souple, on observe des ménisques sur les bords des verreries (verres, pipettes, récipients…) contenant un liquide. Lorsqu’on mets en contact un milieux poreux (papier, brique …) ou des tubes très fins (capillaires) avec un liquide, celui-ci « monte » dans le milieu des gouttes de liquide posées sur un plan horizontal ne s’étalent pas, mais prennent une forme oblongue… …. Dans tous ces exemples, le principe fondamental de la statique est pris en défaut. Cela s’explique par la présence d’une force complémentaire à la surface du liquide : la force de tension superficielle. Mécanique des fluides Manuel Marcoux III - 1

Transcript of III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique...

Page 1: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

III

CAPILLARITE – TENSION SUPERFICIELLE

La « tension de surface » est un phénomène qui fait apparaître une grandeur intensive propre

aux liquides qui peut revêtir une grande importance dans des problèmes spécifiques :

capillarité, formation de gouttes et de bulles, mouillabilité…

Elle peut être généralement négligée dans les problèmes avec des écoulements, en dynamique

des fluides, mais pas dans les systèmes de petite taille (microfluidique …)

1. Mise en évidence

Différents exemples permettent d’illustrer l’influence de la tension de surface :

bien que l’acier ait une masse volumique plus de 7 fois supérieure à celle de l’eau, on

peut poser à la surface de l’eau une aiguille à coudre ou un trombone sans qu’ils ne

coulent au fond du récipient,

certains insectes se déplacent à la surface de l’eau comme s’ils glissaient sur un film

souple,

on observe des ménisques sur les bords des verreries (verres, pipettes, récipients…)

contenant un liquide.

Lorsqu’on mets en contact un milieux poreux (papier, brique …) ou des tubes très fins

(capillaires) avec un liquide, celui-ci « monte » dans le milieu

des gouttes de liquide posées sur un plan horizontal ne s’étalent pas, mais prennent

une forme oblongue…

….

Dans tous ces exemples, le principe fondamental de la statique est pris en défaut.

Cela s’explique par la présence d’une force complémentaire à la surface du liquide : la force

de tension superficielle.

Mécanique des fluides Manuel Marcoux III - 1

Page 2: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

2. Origine physique :

L’origine des forces de tension superficielle est à chercher au niveau microscopique, dans les

interactions électrostatiques qui existent entre les atomes (ou molécules, ou ions…).

Soit un liquide avec une surface libre au contact de l’air.

Une molécule à l’intérieur du liquide subit de la part de ses voisines des forces d’attraction

(forces de Van der Waals). Son environnement étant symétrique, celles-ci se compensent, en

conséquence la résultante est nulle en moyenne.

A la surface ; ce n’est plus le cas : la situation est alors disymétrique. Les attractions dues aux

molécules du liquide sont beaucoup plus grandes que celles des molécules du gaz (moins

nombreuses et plus éloignées) et tendent à faire replonger la molécule de la surface vers

l’intérieur.

Il subsiste à la surface une résultante non nulle, dirigée vers l’intérieur du liquide.

Il faut donc fournir de l’énergie pour amener une molécule en surface et créer ainsi

l’interface.

A toute surface est associée une énergie supplémentaire dite énergie de tension superficielle,

ou énergie interfaciale, qui est proportionnelle à la surface.

Ceci explique que tout liquide tend spontanément à diminuer sa surface de contact avec le gaz

(ou encore à prendre la surface minimale) de manière à minimiser son énergie interfaciale

→ formation de gouttes ou de bulles, pour lesquelles la forme sphérique présente le plus

faible rapport surface/ volume. La sphère est la surface d’énergie minimale

Exemple : Paille dans une bulle de savon…

Mécanique des fluides Manuel Marcoux III - 2

Page 3: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

3. Définition

Quand on gonfle un ballon de baudruche, on étire sa surface en lui fournissant un travail qui

augmente son énergie potentielle élastique (comme pour un ressort).

Cette énergie peut être récupérée sous forme de travail ou de chaleur.

De la même façon, les molécules superficielles possèdent une énergie potentielle liée aux

forces de cohésion du liquide (elles compriment les autres molécules du milieu).

Pour accroître la surface, il faut donc apporter de l’énergie, et l’expérience montre qu’il y a

proportionnalité entre le travail à apporter et l’augmentation de l’aire de la surface

de liquide.

dW dA

On écrit alors simplement : dAdW σ=

σ est le coefficient de proportionnalité est appelé cœfficient de tension superficielle ou tout

simplement tension superficielle.

C’est une propriété de l’interface entre le liquide et le gaz.

Quand l’interface correspond à la surface de contact entre deux liquides non miscibles,ou

entre un liquide et un solide, on définit alors de la même façon un cœfficient de

proportionnalité appelé coefficeint de tension interfaciale.

Conséquences :

Ce travail à apporter pour augmenter l’aire superficielle correspond à celui d’une force F,

tangent à la surface, qu’il faudrait appliquer sur un une longueur L de surface pour produire la

même variation . dA

Considérons une bulle de savon piégée sur un cadre fermé par une tige.

La lame de liquide, tendue, exerce une force en cherchant à minimiser sa surface.

Pour augmenter cette surface A, il faut exercer une force F qui tire le film.

Mécanique des fluides Manuel Marcoux III - 3

Page 4: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

Pour déplacer la tige de dx et augmenter la surface de , il faut fournir le travail : dxL

dAdW σ= , et dxFdW =

soit encore la force : LF σ= .

Ceci signifie inversement que la surface de liquide exerce une force de sens opposé qui

s’exerce sur le liquide,et en particulier sur les parois qui le limitent.

Dans ce cas

FFliquide

rr−= avec LFliquide σ=

r

(cf. fil dans un cadre métallique)

Remarque :

Diviser un liquide en fines gouttelettes (pulvérisation, atomisation émulsification …) ou

produire de fines bulles d’air ou de gaz dans un liquide (aération, oxygénation …) revient à

augmenter considérablement la surface de contact avec le milieu environnant, gaz ou liquide.

Ce sont donc des opérations qui consomment de l’énergie.

4. Unités

La relation de définition précédente nous donne pour unité de la tension superficielle :

[ ] [ ][ ]

[ ][ ]

2122

−−− ===== skgmNmJLF

LWσ

Exemples :

Quelques valeurs sous 1 bar :

Remarques :

On constate que la tension superficielle dépend d’une part de la nature des liquides en

contact, d’autre part de la température (diminue quand la température augmente).

(exemple : eau sur une poêle chauffée…)

Mécanique des fluides Manuel Marcoux III - 4

Page 5: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

Pour de faibles variations de température, la relation )1(0 θασσ σ−= offre un accord

satisfaisant avec les résultats expérimentaux

En pratique, σ varie peu en fonction de la nature du gaz qui surmonte le liquide.

La tension superficielle est très sensible aux impuretés, aussi bien dissoutes en

volume, qu’à la surface du liquide étudié

5. Surfaces sphériques - Loi de Laplace

En un point d’une surface liquide plane, les forces de tension superficielle, tangentes à la

surface, s’équilibrent en moyenne.

Sur une surface courbe (bulle, goutte, ménisque …), ce n’est plus le cas. Il apparaît une

résultante des forces superficielles dirigée vers l’intérieur du liquide qui donne naissance à

une pression intérieur , supérieure à la pression extérieure . iP eP

Il en résulte donc une surpression : ie PPP −=Δ .

C’est cette surpression qu’il faut exercer pour faire des bulles avec de l’eau savonneuse

(similaire à la surpression qu’il faut appliquer pour gonfler une baudruche en caoutchouc)

a) ·Cas de la goutte:

Considérons une goutte de liquide,

sphérique, de rayon R, immobile

(la pression du liquide pousse vers l’extérieur,

que la tension de surface contient)

La goutte est à l’équilibre,

donc le travail des forces extérieures

est compensé par le travail des forces intérieures.

Mécanique des fluides Manuel Marcoux III - 5

Page 6: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

Bilan :

forces de pression : 24)( RPPSPF iextpression π−−==

forces de tension superficielle : RdRdSFtension πσσ 8==

Finalement, à équilibre : , 0rr

=∑F

ce qui donne l’expression de la suppression interne : R

PPP extσ2

int =−=Δ

Il s’agit de la loi de Laplace

Cette surpression interne est celle qui a tendance à faire éclater la goutte, et qui est contenue

et équilibrée par les forces de tension superficielle qui tendent le film de molécules de surface

comme le ferait une membrane élastique

b) ·Cas de la bulle

Pour une bulle d’eau savonneuse sphérique, le raisonnement est exactement le même, mais

dans ce cas l’eau savonneuse crée une double interface entre l’air intérieur et l’air extérieur de

la bulle, il faut alors considérer 2 couches superficielles.

La différence de pression entre l’intérieur et l’extérieur de la bulle devient :

RPPP ext

σ4int =−=Δ

Remarque :

il existe donc une discontinuité de pression à la traversée d’une interface sphérique gaz-

liquide ou liquide-liquide, la pression étant toujours plus élevée du coté concave, aussi bien

pour les gouttes que pour les bulles

Mécanique des fluides Manuel Marcoux III - 6

Page 7: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

Généralisation :

Dans le cas général d’une surface courbe non sphérique, ayant deux rayons de courbure et

, la surpression est donnée par la formule de Laplace généralisée :

1R

2R

⎟⎟⎠

⎞⎜⎜⎝

⎛+=Δ

21

11RR

P σ

Le cas de la goutte sphérique correspond au cas particulier où RRR == 21

6. Angle de raccordement - Mouillabilité

Une goutte de liquide posée sur une surface plane s’étale plus ou moins.

Son étalement dépend de la surface du solide, du liquide, et du gaz en contact.

Entre chaque couple de phases (solide, liquide et gaz) existe une tension superficielle

spécifique, notées SLσ , LGσ et SGσ .

Si la goutte s’étale (eau ou huile sur verre propre), il y a mouillage total

Ceci signifie que la situation (solide mouillé) est énergétiquement plus favorable que

le contact solide-gaz, ce qui peut se traduire par SGLGSL σσσ <<,

Si le liquide reste en goutte (eau sur plastique, mercure), le solide n’est pas recouvert

et le mouillage est partiel

L’énergie du contact solide-gaz est plus faible que celle des 2 autres contacts :

LGSLSG σσσ ,<<

Dans le cas du mouillage partiel, la goutte reste hémisphérique, et son rayon de courbure

diminue d’autant que plus que le solide est mouillant vis-à-vis du liquide

Mécanique des fluides Manuel Marcoux III - 7

Page 8: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

L’équilibre du mouillage partiel se traduit par un raccordement du liquide au solide le long

d’une ligne faisant un angle θ avec le solide tel que :

LG

SLSG

σσσ

θ−

=

La valeur de cet angle renseigne donc sur la propriété de mouillabilité du solide par le liquide.

Ainsi 0=θ traduit un étalement complet du liquide et un mouillage parfait.

Plus θ augmente, moins le liquide mouille la surface solide.

Pour °> 90θ , le liquide ne mouille plus la surface (non-mouillant)

Exemples

Eau ou alcool sur une surface de verre propre : 0≈θ , mercure sur du verre : °=130θ …

Remarque :

Ce phénomène a une grande importance dans de nombreux domaines domestiques et

industriels, pour tout ce qui concerne les opérations de nettoyage par exemple (les lessives et

détergents doivent à la fois mouiller les surfaces sales et dissoudre ou disperser les impuretés.

Ces produits abaissent donc les tensions superficielles ou interfaciales au sein du milieu à

traiter pour ensuite pénétrer, s’étaler et prendre contact avec les surfaces à la place des

souillures.

7. Ascension capillaire. Loi de Jurin

Au contact d’une paroi verticale plongeant dans un liquide, on retrouve les 3 cas de

mouillage: parfait, imparfait et pas de mouillage, avec les même angles de raccordement que

sur un support horizontal.

Dans le cas du mouillage parfait, le liquide remonte sur la paroi et forme un film liquide

(monomoléculaire).

Mécanique des fluides Manuel Marcoux III - 8

Page 9: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

L’existence d’un angle de raccordement différent de 90° a pour conséquence une différence

de niveau entre la surface plane du liquide et la ligne du contact liquide-solide. hΔ

Si on plonge maintenant deux lames parallèles dans un liquide qui les mouille parfaitement et

que l’on diminue progressivement leur distance e, on constate qu’à partir du moment où la

surface plane disparaît entre les deux lames, le niveau du liquide s’élève au dessus du niveau

environnant.

La formation d’un ménisque quasi cylindrique s’accompagne de l’apparition d’une

surpression PΔ dans le liquide, analogue à celle qui existe dans les gouttes et dans les bulles.

Cette surpression est responsable de l’ascension du liquide entre les plaques jusqu’a une

hauteur h au dessus du niveau normal.

A l’équilibre, deux forces se compensent :

les forces de tension superficielle (longueur mouillée = L2 ) : σLF 2=

le poids de liquide qui s’est élevé (~parallélépipède) : geLhP ρ=

D’où la hauteur d’ascension : eg

hρσ2

=

Dans le cas où l’angle de raccordement n’est pas nul, les forces de tension font un angle α

avec la verticale. La hauteur d’ascension devient : eg

ασ cos2=

Le même phénomène se produit lorsqu’on plonge un tube de très petit diamètre intérieur

( ) dans un liquide qui mouille sa paroi. rd 2=

Mécanique des fluides Manuel Marcoux III - 9

Page 10: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

La forme du ménisque est ici pratiquement celle d’une calotte sphérique rayon R.

On peut alors écrire la relation :

θcosRr =

où θ est l’angle de mouillage

Entre les points E, I, A et S on peut écrire (théorème de Pascal, statique des fluides):

hgPP SE ρ=− et IE PP = , avec atmAE PPP ==

Et d’après la loi de Laplace, la surpression au niveau du ménisque est

RPP SA

σ2=− (force ascensionnelle, fait monter le ménisque)

On obtient finalement la valeur du dénivelé d’eau : rg

θσ cos2=

Il s’agit de la loi de Jurin :

La hauteur de remontée capillaire h est proportionnelle à la tension superficielle σ du liquide

et inversement proportionnelle au rayon du tube capillaire.

Remarques :

L’équilibre des forces, avec une longueur mouillée égale à ⇒rπ2 même résultat

Dans le cas où le liquide ne mouille pas la paroi, l’angle de raccordement est alors

supérieur à 90°. La relation précédente est toujours valable, mais θcos est alors

négatif, la dénivellation h est donc aussi négative ⇒ abaissement de niveau

Extension : La tension superficielle permet d’expliquer les phénomènes d’attraction et de

répulsion qui apparaissent entre les corps de petite taille qui flottent à la surface d’un liquide,

ainsi qu’entre ces corps et les parois d’un récipient.

L’attraction a lieu lorsqu’elles sont toutes le deux soit mouillées, soit non mouillées par le

liquide. En revanche, si l’une est mouillée, et l’autre ne l’est pas, elles subissent une répulsion

mutuelle.

Mécanique des fluides Manuel Marcoux III - 10

Page 11: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

8. Mesure de la tension superficielle

Il existe différentes méthodes pour mesurer le cœfficient σ

méthode par arrachement:

on mesure directement, grâce à un dynamomètre, de la force nécessaire à l’arrachement d’un

solide de forme simple (cylindre creux, plaque …), parfaitement mouillant, plongé dans le

liquide dont on veut mesurer la tension superficielle

LPF σ+= , où L est la longueur mouillée σ⇒

Méthode du tube capillaire

Observation de l’ascension d’un liquide dans un tube capillaire.

Connaissant ),,( ραr , la mesure de h σ⇒

Nécessite l’utilisation d’un cathétomètre et d’un microscope pour mesurer h et r avec

précision

Méthode des gouttes (goniomètre)

Comme la tension superficielle est responsable de la formation des gouttes, l’étude ces

dernières permet la détermination de σ .

Deux méthodes :

Méthode de la goutte posée (ou goutte sessile) : une analyse d’une photographie de la goutte

de profil permet de mesurer θ directement , et d’obtenir σ , car

2

21 hgρσ =

Mécanique des fluides Manuel Marcoux III - 11

Page 12: III CAPILLARITE – TENSION SUPERFICIELLEmanuel.marcoux.pagesperso-orange.fr/Enseignement/mecanique des... · Mécanique des fluides Manuel Marcoux III - 6. Université Paul Sabatier

Université Paul Sabatier - FSI L2 Mécanique / Mathématiques

où h est la distance entre le point de contact d’un plan vertical tangent à la goutte et la surface

supérieur de celle-ci

Méthode de la goutte tombante (stalagnomètre)

Méthode reposant sur la loi de Tate :

« la masse des gouttes issues d’un tube capillaire est proportionnelle à la tension superficielle

σkmgoutte =

où k est une constante indépendante du liquide et du rayon du tube capillaire»

Mesure relative → 0

0 mmσσ =

Méthode de la pression maximale de bulle

La génération de bulles dans un liquide à partir d’une pression minimale dans un tube à la

profondeur z vérifie :

mP

mm R

zgP σρ 2+=

où est le rayon maximal de la bulle avant qu’elle ne s’échappe du tube mR

Mesure insensible aux impuretés de surface.

Méthode des ondes de surface

La célérité c des ondes de surface dépend de la longueur d’onde, de la tension superficielle, de

la masse volumique et de l’épaisseur de la couche de liquide.

Mesure de σ⇒c

Mécanique des fluides Manuel Marcoux III - 12