Comparaison Normes

download Comparaison Normes

of 64

Transcript of Comparaison Normes

  • 7/24/2019 Comparaison Normes

    1/64

    Comparison of Test Standardsaccording to ISO, DIN, ASTM, JIS and BS

    FMMouldi

    ngCom

    poun

    ds

    B

  • 7/24/2019 Comparaison Normes

    2/64

    Contents

    UL flame test

    Foreword 4Testing of the thermosetting moulding compounds and moulding materials 4Practice-relevant characteristic values, testing - Material - Data base (Campus) 4Dimensioning and service properties 5Simple tests and their informative quality 5Summary 5

    Diagram The designer and his tasks 6

    Diagrams of Testing, selection of materials 7

    Standardised moulding materials Survey 8-9

    Preparation of test specimens 10

    Injection moulding according to ISO 3167 Typ A 10Multipurpose test specimens ISO 10 724 Definitions 11Injection moulding shapes of test specimen 12Injection moulding shapes of test specimen (tensile test bars) 13

    Compression moulding according to ISO 295 procedure B 14Compression moulding according to ISO 295 Definitions 15Moulding conditions Compression moulding according to ISO 295 16Test specimens moulds for compression moulding 17

    Comparison of tests 18

    Density Apparent density 18Moulding shrinkage and Post shrinkage 19Tensile strength, tables, graphics 20-21Elongation 22Tensile modulus of elasticity (tangent or secant) 23Flexural strength, graphics 24-25Tensile modulus of elasticity (tangent or secant) 26Compressive strength ISO 27Compressive modulus of elasticity 28Impact strength (unnotched and notched) according to Charpy or Izod 29Ball indentation hardness or Rockwell hardness 30Comparison of hardness tests / Diagrams 31Shore hardnessDwith durometer / Diagrams 32-33Temperature of deflection under load 34Heat deformation temperature according to Vicat 35Heat deformation temperature according to Martens 36Coefficient of linear thermal expansion 37Thermal conductivity 38-39Maximum service temperature

  • 7/24/2019 Comparaison Normes

    3/64

    Problems and tasks

    Before dealing with tests one must first identifytheir problems and tasks. Without making anyappraisal, the test serves to assure a uniform quality, to make a selection for the economic use of

    materials, to reduce the costs, or correct dimensioning and design of a product.

    Testing technology

    Now what has happened in the field of testingtechnology?

    The first two criteria determination of the properties of the raw

    materials, semi-finished products, finishedproducts and

    supervision of the uniform quality of theseproducts

    are without doubt achieved with few auxiliarymeans (flexural strength, impact strength, notchedbar impact strength, HDT etc.).

    Hence the designer could proceed according to acertain rough pattern (Figure 1). However, this isonly possible if characteristic values with whichhe can do so are made available to him. The testingtechnology is intended to provide help for this.If we restrict ourselves to thermosettingcompounds, we find that the technical testingequipment is different; the necessary minimum issubject to supervision.

    When following the arrows in the diagram(Figure 2), it strikes immediately that the specialattention is focused on the moulding compound.

    Typifying and supervisionWhen the usual standard tests, e.g. the minimumrequirements specified in the standards, areconsidered, it can be seen that these serve in thefirst place to typify and supervise thermosettingmoulding compounds. A designer certainly needsmore than this numercical overview.

    The standard types, e.g. of DIN 7708 Parts 2, 9,10, 11 (draft) which are the basis of manydiscussions are given much too little consideration.(s. folder 8+9)

    Informative quality of standard tests

    Can the standard tests provide a comprehensivepicture of the compound?

    They are certainly sufficient where physically clearlydefined properties like density, specific heat etc.,which are independent of the test procedure, areinvolved but they are insufficient for characteristicvalues required for design purposes. Here it isabsolutely necessary to search for test procedureswhich lead to a good correlation of the results to

    the practice. It is of no importance how the uniformquality of the thermo-setting moulding compoundsis tested.

    Compounds are rejected as inadequate oftenenough because one property value does notfulfill the requirements although this value is ofno informative value for the particular application.

    Other prerequisites

    Many authors mentioned from which parametersthe property values are dependent.

    Extensive investigations performed during injectionmoulding of thermosetting moulding compounds

    demonstrate the problems. However, everythingis done with a view to the minimum requirementsof DIN 7708/T2 (ISO/CD 14526-3 etc.) determinedwith standard tests.

    It is not clear though whether other prerequisiteshave always been fulfilled. Knowledge and evaluation of the testing

    equipment and the charactistic valuesdetermined therewith,

    Establishing evaluation criteria based onexperience and

    Comparison of properties also with those of thematerials which were determined under the sameconditions and for the same geometries.

    Automatic testing devices

    A lot has happened in the field of testing technologyduring the last few years.

    Thus there are sufficient references for instanceto automatic testing devices and rational qualitycontrols. These can be computer-aided.It is obvious that closer tolerances, reduction of the number of random tests, higher reliability and accuracy of the values, comparability of the valuesrequire higher capital investment. However, if thetesting technology is to be in accordance withgood economics a high degree of utilisation is

    necessary. A wealth of experience from past yearsis not available to everybody.

    Practice-relevant characteristic values,testing - Material - Data base(CAMPUS)

    The question must be asked whether the imageof properties developed decades ago is stilladequate in the present time. It is not possibleeither to give a general instruction on how andwhich practice-relveant data should be determined.However, a little schematic could help to makethese decisions (Figure 3). A close look at it wouldalso reveal the direct relation to what is known asthe data block system for standardising andreducing tests and test specimens and tointernational standardisation.

    The plastic data base CAMPUS is a practicalsupplement for the standardisation andrationalisation of plastic tests. On an internationalbasis, it is the most successful and most widelyused data base for plastic properties.

    ForewordTesting of the thermosetting moulding compoundsand moulding materials

    Mould

    ing

    comp

    ound

    s/Resin

    DIN

    ISO/CD

    Epoxy 12252-3

    Melamine-formaldehyde 7708/T9 14528-3

    Melamine-phenolic 7708/T10 14529-3

    Phenolic 7708/T2 14526-3

    UnsaturatedPolyester 7708/T11 14530-3

    Bakelite-Data base CAMPUS world-wide

    Table A

    FMMouldi

    ngComp

    ound

    s

    4

  • 7/24/2019 Comparaison Normes

    4/64

    Comparability, reproducibility

    When considering a few selected tests on a typeof moulding compound with due regard to theimpact strength and notch impact tests, apparentlyhaphazardly scattered results are found as afunction of thickness.

    In view of the practical performance, a criticalevaluation of the test and its results is thereforerequired, with the moulding in the centre. Hence

    the following is applicable to thermosettingcompounds:1.) In the case of fractures of thermosetting

    compounds we have to deal chieflywith brittle fractures so that these can be themost dangerous failures resultingin considerable damage and consequentialdamage.

    2.) Long-term behaviour and service temperatureare subject to general rules whichare derived according to in the single-pointmethod or from limiting temperaturemesurements on test specimens and hencecan only be empirical values.

    The reproducibility of the values obtained in thetests is a function of the compounds and theprocessing parameters. It would be easiest if thelong-time performance the design of mouldingswith the respective service properties could beinferred from short-time tests without additionaloutlay.

    Dimensioning and service properties

    For the time being, let us keep to the subject ofthe characteristic values which, after all, are decisivefor the realisation of a moulding with appropriateservice properties.

    The properties are a function of the molding material, the processing (technology), the specimen geometry and the method of test ing.

    The manufacturer of the moulding compound isreponsible for the moulding compound and forissuing guidelines for the processing thereof.

    The Specimen geometry and testing method(except for in-house pratices) are defined in thestandards, which also permits verification of thereproducibility. Statistic methods help to get onwhere sufficient values are available.

    In the testing technology, the following has beendefined many years ago:1.) Typification of moulding compound supervision2.) Preparation and geometry of test specimens

    (compression moulding, standard specimen bar)

    3.)Testing method (flexural, impact strength,notched impact strength, the old Martens andthe new HDT method)

    When examining some examples which go beyondthe minimum requirements, it strikes immediatelythat the properties vary more or less with thethickness. Are these perceptions not sufficientfor the technician or designer?

    Evidently not because there is still a very great

    number of properties which depend on differentparameters.

    The dependency of one property on cure time,temperature and, for instance the notch depthillustrates the wealth of information which can beobtained with standardised test specimens andtests. However, the reservation must be made thatthe values of one compound can only be comparedwith those of other compoundss if such valuesare established under the same conditions(including test specimen geometry). The changefrom DIN to ISO ensures comparability ofthermoplastic and thermosetting compounds,provided that specimen geometry and specimen

    preparation are identical. The plastic data baseCAMPUS certainly is a practical and helpfulsupplement.

    Simple tests and theirinformative quality

    When considering some other types ofthermosetting compound, the same is evidentlyapplicable. Starting from the characteristic valuesobtained on 4 mm thick mulipurpose test specimen(= minimum requirements of e.g. 7708/T2 adv.ISO/CD 14526-3 etc.), it is possible to give someinformation and identify some interrelationships.The impact notch test according to Charpyserves

    to evaluate the impact strength behaviour ofnotched and unnotched test specimen with three-point bearing under sudden stress. For the notchedbar impact test, the test specimen is provided witha V-notch.

    As a result of the notch, a concentration of stressand an inrease of the crack propagation velocityis achieved at the bottom of the notch. In this wayit is possible to obtain a fracture in tough plasticseven if these do not break when using unnotchedspecimen. It must be noted that the marginal zoneof the test specimen is severed by the machiningof the notch in the side zone of the specimensubjected to tension.

    The fracture work required for the destruction ofthe specimens of the sizes specially prepared isdetermined with a pendulum impact testingmachine in which gravity acts as driving power.

    The test specimen is supported on two abutmentsand is suddenly stressed in the middle by thependulum hammer. This set-up is termed Charpyarrangement. The impact work Arequired for thedestruction of the test specimen results from thedifference between the height of fall and the heightof rise (after destruction of the specimens) andthe weight Gof the pendulum hammer.

    If impact strength and notched bar impact strengthare identical or almost identical, the compounds

    are insensitive to impact.

    It is a well known fact that the property values canbe varied significantly by adding suitable fillersand reinforcing ingredients.

    If information is given on the basis of conclusionsfrom results obtained a long time ago there maybe a nasty awakening. It is necessary that practice-relevant characteristic values are furnished andused for further searching for suitable testingmethods or that such values are applied.

    Summary

    The designer needs the characteristic data ofcompounds for designing and shaping a product.These data are to be determined with suitabletesting methods on comparable test specimen.

    The Minimum requirements on mouldingcompounds or test specimens made thereof permitonly in part conconclusions to be drawn on theperformance of the mouldings. New and practice-relevant test procedures require investments.New fields of application cannot be opened upwith old, no longer comparable characteristicvalues. Standardisation and rationalisation havebeen achieved by the worldwide propagation ofCAMPUS. The break-through on an international

    level has been achieved with CAMPUS 4. The newdata catalogue is based on ISO 10350. For thedesigner, the target-oriented selection of themoulding compounds has become significantlyeasier, more reliable and faster.

    Various test specimens

    FMMouldi

    ngComp

    ound

    s

    5

  • 7/24/2019 Comparaison Normes

    5/64

    Figure 1

    DesignerDevelopment and design of a moulding

    Requirement Properties

    Material

    ExperienceTesting

    short-time, long-time etc.

    Shape and dimension

    Moulding

    Consumer

    Quality supervision

    DiagrammThe designer and his tasks

    FMMouldi

    ngComp

    ound

    s

    6

  • 7/24/2019 Comparaison Normes

    6/64

    Diagrams of Testing and selection of materials

    Selection of materials

    Testing

    Method

    Informa

    tion

    Identification Chemical analysis Type, environmental compatibility, application

    Processing Flow curing, pourability Machine parameter, surface

    Short-time mechanically, thermally, electrically Strength, field of application, dimension

    Long-time Tracking modulus, alternating stress Calculation, safety, dimension

    Resistance Chemicals, weather, temperature Compatibility, application, ageing

    Supplement Friction Special requirement (wear)

    Testing

    Production Development

    Moulding

    Characteristic values of test specimen Characteristic values of moulding

    Standard test Service value test

    Practice-relevant characteristic values

    Data sheets

    Data base - CAMPUS 4

    Processor / Consumer

    Moulding compound

    Figure 2

    Figure 3

    7

    FMMouldi

    ngComp

    ound

    s

  • 7/24/2019 Comparaison Normes

    7/64

    Preparation of test specimens Multipurpose test specimens according to ISO 10724

    Preparation of test specimens of thermosetting moulding compoundsby injection moulding according to ISO 3167 type A

    Distinction is made between two procedures forpreparing test specimens:

    Procedure A:Injection moulding of test specimensProcedure B:Compression moulding of test specimens

    The selection of the process is determined by the identification of the moulding compounds or the information given by the manufacturer.

    Injection moulding compounds shall be processedby injection moulding and compression mouldingcompounds by compression moulding.

    Unless otherwise specified in the applicablestandards, the compounds shall be processed inthe condition in which they are supplied.If pretreatment is required such treatment shallbe carried out in accordance with themanufacturers instructions (e.g. predrying,preheating, preforming or preplastification).Pending processing, the moulding compound shall

    be stored as specified by the manufacturer.

    The conditions of manufacture shall be statedtogether with the properties.

    Injection moulding (procedure A)

    The moulding compound shall be injection-moulded into multipurpose test specimens typeA-ISO 3167. During the process, the followingranges shall be adhered to:

    Mould cavity temperature, front flow velocity and

    compound temperature may be freely selectedwithin these ranges, provided that the sameprocessing conditions are applied to all testspecimens prepared from the moulding compoundto be tested and that they are stated together withthe test result.

    Hold pressure

    The hold pressure shall be kept constant duringthe entire hold phase.

    Transition from injection pressure to hold pressureshall be performed in such a way that what isknown as pressure peak is avoided and the injectionphase blends smoothly into the hold phase (toavoid filling the mould cavity via the hold pressure).

    The progression of the pressure inside the mouldshould be recorded in accordance with therecommendations given in ISO 10 724.

    Hold time

    The hold time shall be so selected that the pressurewithin the mould does not suddenly decrease whenthe hold pressure is switched off.

    Cure time

    The cure time may be freely selected as a functionof the curing behaviour of the moulding compoundto be tested, provided that the same cure time isapplied to all test specimens prepared from themoulding compound to be tested and that it isstated together with the test result.

    The selected cure time shall ensure thathomogeneous and preferably complete curing isachieved. (The differential scanning calorimetry(DSC) procedure may be utilised as a procedurein support for evaluating the curing).

    Injection moulding

    (procedure A)

    Moulding compounds

    Processing conditions(injection mouldingprocedure A)

    MF MPF

    PF UF UP EP

    Mould cavitytemperature C

    Front flow velocitymm s-1

    Compound

    temperature C

    160 to 170 160 to 170 165 to 175 140 to 150 160 to 180 170 to 190

    50 to 150 50 to 150 50 to 150 50 to 150 50 to 150 100 to 200

    105 to 115 105 to 115 110 to 120 100 to 110100 to 110

    80 to 100

    Table 1 Moulding compounds

    FMMouldi

    ngComp

    ound

    s

    10

  • 7/24/2019 Comparaison Normes

    8/64

    Definitions

    1. Mould-surface temperature

    The average temperature of the mould-cavitysurface, measured at several points on each halfof the mould cavity after the system has attainedthermal equilibrium and immediately after opening

    the mould.

    2. Temperature of the plasticizedcompound

    The temperature of the plasticized compound asmeasured in a free shot.

    3. Injection pressure

    The maximum pressure applied to the compoundin front of the screw during the injection time.

    4. Hold pressure

    The pressure applied to the compound in front ofthe screw during the hold time.

    5. Moulding cycle

    The complete sequence of operations in themoulding processs always required for theproduction of one test specimen.A moulding cycle consists of the following timeintervals:5.1 Injection time:The time interval from the

    beginning of the screw fowardmovement until the mould cavity is filled

    5.2 Hold time, dwell time:The time intervalfrom the time the mould cavity is filled

    until the screw begins to move back.5.3 Cure time:The time interval from the end

    of the injection until the mould startsto open.

    5.4 Mould open time:The time intervalbeginning at the instant the mould startsto open, including the removal of themoulding, until the mould is closed again.

    6. Injection speed

    The rate of forward travel, in millimeters persecond, of the plasticizing screw during theinjection stroke. This parameter may be variedto control the melt velocity.

    7. Melt velocity

    The velocity of the flow front of the plasticisedcompound in the 4 x 10 mm central cross-sectionalarea of the mould cavity.

    =

    is the melt velocity, in millimeters per secondis the screw diameter, in millimetersis the injection speed, in millimeters per secondis the number of mould cavitiesis the cross-sectional area, in square millimeters, of the centre of the test specimen

    vf

    vfdvsnS

    Figure 1 ISO-injection mould for multipupose test

    specimens according to ISO 3167 type A

    Multipurpose test specimens ISO 10724

    Preparation of test specimens of thermosettingmoulding compounds by injection moulding according to ISO 3167 type A

    prefarably B2

    P = pressure transmitters (optional)

    FMMouldi

    ngComp

    ounds

    11

  • 7/24/2019 Comparaison Normes

    9/64

    Multipurpose plate60 x 60 x 2 or 1 mm

    ShrinkagePenetration test

    (*) Water / moisture absorptioncolour / surface aspeet

    (*) Electrical testing

    weathering / ageinganisotropy tests (e.g. flexural test)

    Multipurpose test specimen according to ISO 3167,injection moulded: type Amachined: type B

    * Tensile test

    * Tensile modulus* Tensile creep modulus* Comparative tracking index* Vicat, HDT

    Test bar 80 x 10 x 4 mm(Injection moulded or machinedfrom the multipurpose test specimen type A)

    * Impact strength

    * Notched bar impact strength* Tensile impact strength* Vicat, HDT* Flammability by oxygen index

    Test bar type AISO 82563 mm thick

    Enviromental testing(heat ageing, weathering,chemical resistance)

    4 mm thick

    Injection moulding shapes of test specimen

    Test specimen basic shapes

    old new

    DIN 53470 Ribbed plate for standard bars ISO 3167 Multipurpose test specimen type A

    DIN 53470 Standard plate DIN 53470 Standard plate

    Injection moulding

    according to ISO 3167 type A

    Test specimen oldnew

    Test specimen acoording to ISO 10350 (single-point data) and

    ISO 11403 (multi-point data) (*:implemented in CAMPUS)

    FMMouldi

    ngComp

    ounds

    12

  • 7/24/2019 Comparaison Normes

    10/64

    Injection moulding shapes of test specimen(tensile test bars)

    Test of tensile strength according to DIN 53455 /EN 61

    Test of tensile strength according to JIS K 6911

    Test of tensile strength according to BS-302A

    Test of tensile strength according to ASTM D 638

    Figure 2

    Figure 3

    Figure 4

    Figure 5

    Figure 5a

    Test specimen dimensions for thickness T (mm)

    W - Width of narrow cross section

    L - Length of narrow cross section

    WO - Overall width

    LO - Overall length

    G - Gauge length c

    G - Gauge length

    D - Distance between clampsR - Rounding-off radius

    RO - External radius

    13

    57

    19

    165

    50

    11576

    Type I Type II Type III Type IV

    more than 7including 14

    4 or less7 or lessTolerance

    Test specimen geometry

    (see drawing)

    19

    57

    29

    246

    50

    11576

    6

    33

    19

    115

    25

    6414

    25

    0,5

    0,5

    6

    no max

    0,25

    0,13

    51

    1

    Table 2

    6

    57

    19

    183

    50

    13576

    Radius up

    to 9,5

    Gauge length Gauge length

    Parallel

    Minimum radius 76 mm

    Rad. up to 9,5

    13

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    11/64

    Preparation of test specimensof thermosetting compounds by compression mouldingaccording to ISO 295 procedure B

    Compression moulding (procedure B)

    Multipurpose test specimens type A-ISO 3167 aswell as compression moulded plates shall beprepared from the moulding compound in cavitymoulds with loading chamber.

    It is also possible to prepare the required testspecimens from the compression moulded platesby milling in due compliance with ISO 2818. Inthis process, it must be ensured that the cut facesare free from burrs and grooves.

    The test specimens shall be prepared accordingto ISO 295 from the moulding compound in the

    condition as delivered or after pretreatment, e.g.precompressing (preforming) or preplastification.If pretreatment is applied, it shall be the same forall similar test specimens prepared from themoulding compound to be tested and shall beindicated together with the test results.

    The following conditions shall be complied withduring compression moulding:

    The Mould cavity temperature and the mouldingpressure may be freely selected within theseranges, provided that the same processingconditions are applied to all specimens preparedfrom the moulding compound to be tested andthat they are stated together with the test result.

    Cure time

    The cure time may be freely selected as a functionof the cure behaviour of the moulding compoundto be tested, provided that the same cure time is

    applied to all test specimens prepared from themoulding compound to be tested and that it isindicated together with the test result.

    The selected cure time shall ensure that the curingachieved is homogeneous and as complete aspossible.

    Test specimen compression NewOld

    Table 3 Moulding conditions

    14

    Conditions

    Fine

    Pretreatment:Drying

    Type of moulding material

    Aminoplastics

    Coars

    e

    Phenolics (PF)

    Urea-

    for

    malde

    hyde(UF

    )

    Melam

    inepurp

    ose

    Ge

    neral

    purpos

    e(MP

    F)

    Melam

    inepurp

    ose

    for

    food

    contac

    t(MF

    )

    Epoxide

    s(EP)

    Unsatur

    ated

    polye

    sters

    (UP)

    Permissible if specimens are toundergo electric tests

    Notrecommended

    Notrecommended

    Preforming Permissible Permissible Permissible Permissible Permissible Permissible

    High-frequencypreheating

    Permissible to reduce curing time but modifies material properties

    Preplastification Permissible Permissible Permissible Permissible Not recommended Not recommended

    Breathing Permissible Permissible Permissible Permissible Not nessessary Not recommended

    Moulding:Temperature (C)

    Pressure (MPa)

    Cure time (s)

    Mould:

    Surface finish

    Chrome plating

    165 3 150 3 150 3 150 3 150 to 180 130 to 170

    25 to 40 40 to 60 20 to 40 20 to 40 20 to 40 20 to 30 6 to 30

    20 to 60 per mm thickness 20 to 60 per mm thickness 20 to 60 per mm thickness

    RaH

    0,4 m to 0,8 m RaH

    0,4 m to 0,8 m RaH

    0,4 m to 0,8 m

    Preferable Preferable Preferable Preferable Required Required

    FMMouldi

    ngComp

    ounds

    Permissible if specimens are toundergo electric tests

    Structure of filler

  • 7/24/2019 Comparaison Normes

    12/64

    5. Compression-moulding press

    It is capable of ensuring that the specified pressureis applied and maintained during the whole of thecuring time. The press may be hand-operated orprogrammed.

    It is preferable to use a ress having two closing

    speeds:- a fast approach speed (for example 200 mm/s

    to 400 mm/s) to avoid precure of the compoundbefore closing;

    - a slow closing speed (for example 5 mm/s) toprevent air or gases from beingentrapped.

    NOTE:The oil pressure p0, in megapascals, to be

    applied to obtain the specified pressure p, inmegapascals, is given by the equation:

    6. Preforming

    If the volume of the moulding compound is toogreat for the capacity of the loading chamber ofa conventional mould, the compound may bepreformed; the conditions for such preformingshall be stated in the moulding report.

    1. Deviations of temperaturein position

    Deviations of temperature existing simultaneouslybetween various points inside the mould after thetemperature ajustment device has been set at agiven temperature and after a permanent thermal

    equilibrium has been reached.

    2. Deviations of temperature in time

    Deviations of temperature that may occur at asingle given point on the inside of the mould atvarious times after the temperature adjustmentdevice has been set at a given temperature andafter a permanent thermal equilibrium has beenreached.

    Preparation of test specimensof thermosetting compounds by compression mouldingaccording to ISO 295 procedure B

    3. Heating device

    The heating device is capable of heating the mouldso that the moulding temperature remains constantand uniform over all parts of the mould within thespecified tolerances.

    The mould may be heated either through the platen

    or by means of a built-in device (for example,circulating fluid or electric heating elements).In the latter case, the mould shall be insulatedfrom the press platen with a sheet of insulatingmaterial. For practical reasons, it is generallypreferable to heat the mould electrically.

    4. Mould temperatureadjustment device

    It is capable of ensuring that the optimum requiredtemperature is maintained constant over the mouldwith a permissible deviation of 3 C, i.e. themould temperature shall not vary with time andposition by more than 3 C (see 1. and 2.).

    px A1

    Ap

    0=

    Compressing mouldingprocedure B

    Moulding compounds

    Processing conditions(compression mouldingprocedure B)

    MF MPF

    PF UF UP EP

    Mould cavitytemperature C

    Moulding pressurein bar

    Moulding pressurein MPa

    160 to 170 160 to 170 165 to 175 140 to 150 155 to 175 165 to 175

    200 to 300 200 to 300 250 to 350 200 to 300 100 to 200 250 to 350

    20 to 30 20 to 30 25 to 35 20 to 30 10 to 20 25 to 35

    Definitions

    Table 4 Moulding conditions

    15

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    13/64

    Moulding conditions Compression mouldingaccording to ISO 295

    Table 5 - Information to be included in the moulding report

    Test specimens flexural strength, inpact strength, notched impact strength

    16

    FMMouldi

    ngComp

    ounds

    1.General

    Unless special conditions are specified, themoulding conditions given in table 4 shall be used.

    2.Drying

    The Phenolics and aminoplastics may be driedprior to electrical tests. For drying, the compoundshall be spread out in a thin layer and heated inaccordance with the following temperature andtime schedules:

    Phenolics: 30 min at 90 C + 3 C,or 15 min at 105 C + 3 C;

    Aminoplastics 60 min at 90 C + 3 C.

    The compound shall be moulded immediately uponremoval from the furnace.

    3.High-frequency preheating

    High-frequency preheating is permissible in thecase of phenolics and aminoplastics and pelletizedor granular polyesters. It permits a reduction incuring time. The preheated compound shall bemoulded immediately after preheating.

    4.PreplastificationPreplastification is permissible in the case ofphenolics and aminoplastics. It ensures thermaland mechanical homogenization of the compound.The preplasticized compound shall be mouldedimmediately after preplastification.For the conditions for the preplastification, anagreement shall be made between the interestedparties and the conditions shall be stated in themoulding report.

    Granules

    Powder

    Fine powder

    Other

    Comp

    ressio

    n

    mo

    ulding

    Mould

    Dryin

    g

    Prefo

    rming

    High-frequency

    preheatin

    g

    Preplas

    tificatio

    n

    Without

    Time

    Temperature

    Cylinder temperature

    Dynamic pressure

    Screw speed

    Temperature of

    compound

    Temperature

    Temperaturemeasuring device

    Pressure

    Cure time

    Breathing

    Type

    Number of cavities

    Chrome plated

    Heating device

    Physica

    lform

    of

    mater

    ial

    Pretreatment

    Preheater power

    Time

    Amperage

    Number of preformsTemperature ofpreforms

    5. Release agents

    Release agents, i.e. products designed to facilitatethe release of the moulding from the mould, maybe used only if it has been proved that they haveno influence on the moulded specimen properties.This requirement applies in particular when thespecimens are to be tested for electrical properties,spectroscopic analysis or adverse taste and colour.

    6.Breathing

    If it is necessary to open the mould for the purposeof breathing, this shall be noted in the mouldingreport.

    Pressure

    Temperature

    Weight of preform

    Size of preform

  • 7/24/2019 Comparaison Normes

    14/64

    Test specimen moulds for compression moulding

    Preparation of test specimensold new

    Compression moulding according to DIN 53470 Compression moulding according toISO 295

    Injection moulding according to ISO 10724

    Test specimens - derived forms

    old new

    blackened areas =machined areas

    Compression moulding according to ISO 295 procedure B

    Standardplate

    Ribbed plate

    ISO injection mould for multipurpose testspecimens according to ISO 3167, type A

    Multipurpose testspecimen

    Standard plate

    Test specimen general

    Test specimen compression

    JacketUpper ram

    Moulding (standard plate)

    Moulding insert

    Lower ram

    Jacket

    Upper ram

    Moulding (ribbed plate)

    Moulding insert

    Lower ram

    5

    0

    50

    JacketUpper ram

    Moulding (standard plate)

    Moulding insert

    Lower ram

    5

    0

    Sampling planfor type tests according to DIN 7708 on test specimens

    of compression-moulded standard plate new ISO 295 procedure B

    FMMouldi

    ngCom

    poun

    ds

    17

  • 7/24/2019 Comparaison Normes

    15/64

    Density (g/cm3) Apparent density (g/cm3)

    Test characteristic Test standard

    * JIS = Japanese Industrial Standard; Testing Methods for Thermosetting Plastics;JIS K 6911-1979 translated and published by Japanese Standards Association

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 1183 53479 D-1505 5.2.1 278260 5.28 Comparable with

    specific gravity, ifgravity isallowed for.

    Apparent density ofJIS and ISOcomparable

    Definitions: Density Density Apparentdensity

    Apparentdensity

    Apparentdensity

    DensityDensity

    Methods: A) Buoyancyunder

    water

    B) Pycnometer

    C) Floating

    D) Measuring cylinder

    A) Weighingunder water

    B) Water dis-placement(pycnometer)

    C) AerometerD) Measuring

    cylinder

    Measuring cylinder Measuringcylinder

    Mesuring

    cylinder

    Measuringcylinder

    No.: D 792

    Definitions: Specific gravity Specificgravity

    1: Weighing underwater

    Weighingunder water

    2: Waterdisplacement(pycnometer)

    Apparent density Density

    FMMouldi

    ngComp

    ounds

    18

  • 7/24/2019 Comparaison Normes

    16/64

    Moulding shrinkage and Post shrinkage (%)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 2577 53464 D 955 5.7 -

    Test specimens: SG 170 x 10 x 4 mmP 120 x 10 x 4 mm

    120 x 15 x 10 mm 165 x 13 x 7 mm115 x 6 x 4 mm

    90 x 11 x 4 mm

    Time: VS24 h

    NS168 h

    VS24 h

    NS168 h

    VS24 h

    NS168 h

    VS48 h

    NS168 h

    Temperature: 23 C 110 C 23 C 110 C 23 C 110 C 23 C 110 C

    Medium: Air Air Air Air

    Evaluation: Change in length Change in length Change in length Change in length

    comparable

    Notch depth

    Moulding shrinkage

    on commutator

    Shrinkages in %

    Moulding shrinkage

    Post shrinkage

    Total shrinkage

    VS = 100 %

    NS = 100 %

    GS = VS + NS

    Lw- L

    Lw

    L - L1L

    Processing shrinkage along moulding bar

    Moulding shrinkage on SG tensile bar Transverse shrinkage on SG

    tensile bar

    Test characteristic Test standard

    FMMouldi

    ngComp

    ounds

    19

  • 7/24/2019 Comparaison Normes

    17/64

    Tensile strength (N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 527 53455 (EN 61) D 638 5.18 2782

    Speed: 1 ; 5 ; 50 ; 100 ;500 mm/min.

    1 ; 5 ; 10; 50 ; 100 ;200 ; 500 mm/min.

    1 ; 5 ; 50;500 mm/min.

    5 mm/min. 5 mm/min.

    Test specimens / shape: Type A according toISO 3167, Figure 1

    Figure 2 Figure 3 Figure 4 Figure 5

    Temperature: + 23 C + 23 C + 23 C + 23 C + 23 C

    comparable, but

    only under samecondition: test specimen

    shape measured length test speed

    Tensile strengthTensile strength

    Test characteristic Test standard

    FMMouldi

    ngCom

    poun

    ds

    20

  • 7/24/2019 Comparaison Normes

    18/64

    Tensile strength

    Tensile strength in correlation to temperature

    Copper-adhesion

    Tensile strength of PF 6507 and PA6-GF 35 in correlation to temperature

    Tensile strength (MPa)

    Temperature (C)

    Tensile strength (MPa)

    Temperature (C)

    PF 6507as moulded

    PF 6507annealed

    PA 6-GF 35

    FMMouldi

    ngComp

    ounds

    21

    Residual strength of various engineering plastics

    Resid

    ualstre

    ngth

    (Te

    nsile

    test)

    atva

    rious

    Test-Te

    mperatur

    es

    Engineering plastics

    Polyphenylenesulfide (PPS)

    Polyethersulfone

    Polyamide 66

    Polyethyleneterephthalate (PET)

    C

    220

    180

    130

    140

    100 C

    %

    48,3

    85,5

    51,3

    38,1

    150 C

    %

    34,9

    57,7

    39,7

    21,1

    200 C

    %

    4,7

    13,7

    7,2

    Therm

    alInd

    ex

    (byU

    L)

    PF-Standard (PF 31)

    PF-Glass fibre

    PF-Heat resistant

    150

    160

    170

    83,7

    71,9

    75,1

    51,2

    57,6

    59,7

    50,1

    52,0

    69,9

    Polysulfone

    Polyamideimide

    Alkyd

    Polydiallylphthalate

    150

    200

    180

    130

    86,1

    72,8

    69,9

    94,6

    13,1

    59,1

    62,4

    68,7

    29,9

    33,3

    53,1

  • 7/24/2019 Comparaison Normes

    19/64

    Elongation (%)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 527 53455 (EN 61) D 638 5.18 2782

    Speed: 1 ; 5 ; 50 ; 100 ;500 mm/min.

    1 ; 5 ; 10; 50 ;100 ; 200 ;500 mm/min.

    1 ; 5 ; 50;500 mm/min.

    5 mm/min. 5 mm/min.

    Test specimens /shape:

    Type A according toISO 3167, Figure 1

    Figure 2 Figure 3 Figure 4 Figure 5

    Temperature: + 23 C + 23 C + 23 C + 23 C + 23 C

    Elongation (%)

    Creep (long term tensile creep) Load: 20 MPa

    10,50 1,5 2 2,5 %

    Strain at rupture (%)

    Time (h)

    Tension-elongation-Diagram

    Tensile strength in correlation to temperature

    Test characteristic Test standard

    EP 8405

    PF 31

    PF 2774

    PF 6507

    PF 6537

    PF 6540

    UP 3420

    FMMouldi

    ngComp

    ounds

    22

    comparable, but

    only under samecondition: test specimen

    shape measured length test speed

  • 7/24/2019 Comparaison Normes

    20/64

    Tensile modulus of elasticity(tangent or secant) (N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 527 53457 (EN61) D 638 2782

    Determined on: Tangent Tangent Tangent Secant at0,2 % elongation

    Speed: 1 mm/min. 1 mm/min. 1,3 mm/min. 1 mm/min.

    Test specimens: Figure 1 Figure 2 Figure 3 Figure 5

    ASTM, DIN and

    ISO arecomparable in thecase of stiffplastics

    EP 8450

    MF 156

    MF 2500MP 183

    MP 4165

    PF 31

    PF 1107

    PF 2774

    PF 2874

    PF 6507

    PF 6540

    UP 3415

    UP 802

    Tensile

    modulu

    sofelas

    ticity

    MP

    aTe

    nsile

    stren

    gth

    MP

    aSt

    ress-stra

    in

    %Mo

    ulding

    comp

    ound

    14200

    10000

    1000010000

    9000

    9000

    9000

    10000

    10000

    10000

    10000

    13000

    11000

    80

    60

    8065

    80

    60

    70

    70

    75

    105

    120

    65

    60

    0,8

    1

    11,3

    1

    0,8

    0,6

    1,1

    0,7

    1,4

    1,4

    0,5

    0,7

    Tensile modulus of elasticity, comparative Tension-elongation diagram of different Bakelites FM

    Tensile test specimen new, moulding test specimen old

    Test characteristic Test standard

    FMMouldi

    ngCom

    poun

    ds

    23

  • 7/24/2019 Comparaison Normes

    21/64

    Flexural strength(N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 178 53452 D 790 5.17 2782

    Speed: d/2 = 2 mm/min. 1;2;5;10;20;50;100 and200 mm/min.

    2,8 mm/min. N = h/2t 0,2 d/2 = 2 mm/min.

    Test specimens: 80 x 10 x 4 mm 80 x 10 x 4 mm120 x 15 x 10 mm

    130 x 13 x 6,4 mm 80 x 10 x 4 mm 95 x 10 x 4 mm

    Evaluation: Breaking stress Sress at 3,5 %elongation orflexural strength

    Breaking stress Breaking stress Breaking stress

    ISO, DIN, JIS and

    BS comparable

    Loading: 3-point-load 3-point-load 3-point-load 3-point-load 3-point-load

    Flexural strength (UPM 1474)

    Mechanical properties

    old new

    Flexural strength DIN 53452 Flexural strength ISO 178

    under short time stress

    Tensile test

    ISO 527

    Test characteristic Test standard

    24

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    22/64

    Flexural strength

    Dynstat-testing device Change of flexural strength PF 6507 after storage

    Flexural strength ISO 178

    Flexural strength (MPa)

    Duration (h)

    Air Water/Glycol

    25

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    23/64

    Tensile modulus of elasticity(tangent or secant) (N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 178 53547 (EN 63) D 790 5.17 2782

    Determination on: Tangent Tangent Tangent orSecant

    Tangent Tangent

    Speed: d/2= 2 mm/min. 16/h mm/min. 2,8 or1,3 mm/min.

    Comparable at

    three-pointloading,DIN notcomparable withASTM, BS, ISOand JIS at four-point-loading

    Test specimens: 80 x 10 x 4 mm 120 x 10 x 4 mm(3-P-load)80 x 10 x 4 mm(4-P-load)

    130 x 13 x 6,4 mmor80 x 25 x 3,2 mm

    16/h =1 mm/min.

    d/2= 2 mm/min.

    80 x 10 x 4 mm 95 x 10 x 4 mm

    Loading: 3-point-load 3-point-load

    4-point-load

    3-point-load 3-point-load 3-point-load

    Test specimen flexural modus of elasticity Test specimen flexural strength old-new

    Test characteristic Test standard

    26

    FMMouldi

    ngCom

    poun

    ds

  • 7/24/2019 Comparaison Normes

    24/64

    Compressive strength ISO(N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 604 53554 D 695 5.19

    Speed: Various Test period 1 min. 1,3 mm/min

    Test specimens: 10 x 10 x 4 mm 10 x 10 x 10 mm 12,7 x 12,7 x25,4 mm or12,7 mm h = 25,4 mm

    not comparable

    Evaluation: Maximum strength Maximum strengthor strength at0,5 %, 1 %deformation

    Maximum strengthor strength at1 %, 10 %deformation

    12,7 x 12,7 x25,4 mm

    Maximum strength

    Compressive stress-strain diagrams

    Upsetting d

    1 Brittle plastic2 Deformable plastic

    Compressivestressd

    Compressive strength

    Test characteristic Test standard

    27

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    25/64

    Compressive modulus of elasticity(N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 604 53457 D 695

    Determination on: Tangent Tangent Tangent

    Speed: Various 1% deformationper min.(approx.0,4 mm/min.)

    1,3 mm/min.

    not comparable

    Test specimens: 10 x 10 x 10 mm80 x 12 x 5 mmor 5 mm3

    or 5 mm

    12,7 x 12,7 x25,4 mm or12,7 mm ,h = 25,4 mm

    10 x 10 x 4 mm

    Test for shaft interference Test specimens commutator

    Test specimenscompressive strength new-old

    Test characteristic Test standard

    Kommutator

    Mandrel

    Shell

    Copper segment

    Support

    28

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    26/64

    Impact strength (unnotched and notched)according to Charpy (kJ/m2) or Izod (J/m2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 179 / 180 53453 D-256 5.20 2782

    Pendulum: 0,5/1/4/15 J 0,5/1/4/15 J not defined not defined 0,5/1/4/15 J

    Izod tests

    according toASTM, and JIS arecomparable whencalculted in kJ/m2.Unit: kJ/m2of the

    remainingcross section

    kJ/m2of theremainingcross section

    J/m notch J/m notch J/m2notch or kJ/m2

    of the remainingcross section

    Method: 180: Izod, testspecimens: 63.5 x12.7 x 3.2/6.4 mmor 80 x 10 x 4 mmNotch: V-shapedApplication:notched only

    179: Charpy testspecimens:120 x 15 x 10 mmor 80 x 10 x 4 mmor 50 x 6 x 4 mmNotch: V-shapedApplication: notchedandunnotched

    Charpy testspecimens:120 x 15 x 10 mmor 50 x 6 x 4 mmor 15 x 10 x 1.5 -4.5 mmNotch: U-shapedApplication: notchedandunnotched

    A: Izod notchedE: Izod unnotchedTest specimens:63.5 x 12.7 x3.2 mmNotch: V-shaped

    B: Charpy testspecimens: 127 x12.7 x 12.7 mmNotch: V-shapedApplication: notched(also unnotched forcomparison)

    Izod notchedIzod unnotchedTest specimens:63.5 x 12.7 x3.2 mmNotch: V-shaped

    Charpy testspecimens:90 x 15 x 4 mmNotch: V-shapedApplication: notchedandunnotched

    306A: Izod,test specimens:63.5x12.7x 3.2 mmNotch: V-shaped(the notch may bepointed) Application:notched only

    306 D: Charpy306 E: CharpyTest specimens:120 x 15 x 10 mmNotch: U-shapedApplication: 306 Dunnotched,306 E notched

    Charpy testsaccording to DIN,BS and ISO arecomparable;

    JIS and ASTM arenot comparable

    Impact strength and notched impact strength

    Charpy

    ISO / 179 1eU ISO / 179 1eA

    Izod

    ISO / 180 1A ISO / 180 1R

    Impact strength and notched impact strength

    Test characteristic Test standard

    29

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    27/64

    Ball indentation hardness or Rockwell hardness(N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 2039/1 53456 D 1822 5.16.1

    Rockwellhardness

    DIN and ISO

    2039/1comparable

    ASTM, JIS andISO 2039/2comparable

    5.16.2

    Barcolhardness

    Preload: 100 N 10 N 100 N 98 N 39-69 N

    Method: B: Load49/132,4/358/961 NBall: 5 mm

    Load:49/132,4/358/961 N Ball: 5 mm

    R: Load: 600 N Ball 12,7 mm M: Load 1000 N Ball: 6,3 mm

    comparablewith ASTM

    Reading time after: 30 s 30 s 15 s 15 s -

    Unit: daN/mm2 daN/mm2 none - -

    2039/2

    100 N

    15 s

    none

    R: Load, Ball

    12,7 mm

    M: Load: 1000 N

    Ball: 6,3 mm

    Comparsion ball indentation hardnessBall indentation hardness

    PA 6 GF 30

    0

    100

    200

    300

    400

    Ballindentationshardness(MPa)

    PBT GF 30 PPS GF 45 PF 2774 MF 1206PET GF 30 PF 6507 MF 2500

    500

    Test characteristic Test standard

    30

    FMMouldi

    ngComp

    ounds

  • 7/24/2019 Comparaison Normes

    28/64

    Indentat

    ionhardne

    ss

    Pyramid

    hardne

    ss

    unde

    rload

    Shorehardne

    ss

    Rockwell

    hardne

    ss

    A D Scale Scale R Scale L Scale M Scale E Scale KBarcol

    hardne

    ss(with

    devic

    e

    typ

    eNo.

    834-1)

    Characteris

    ticsof

    hardne

    sstest

    proces

    s

    Ball5 mm diam.

    Quadratic py-ramid sur-faces = 136

    dmin=0,79 mm; 35

    with sphericalcap R = 0,1mm; 30

    Ball12,7 mmdiam.

    Ball12,7 mmdiam.

    Ball6,35 mmdiam.

    Ball6,35 mmdiam.

    Ball3,175 mmdiam.

    Ball3,175 mmdiam.

    Truncatedconedmin = 0,157mm; 26

    Test specimenTruncated cone

    49 to 961*) 0,5 to 4,9 *) 0,55 to 8,1 0 to 44,5 589 589 589 981 981 1472 65 to 77 Test force in N

    DIN 53456 none DIN 53505 DIN 53505 ASTM D 785 ASTM D 785 ASTM D 785 ASTM D 785 ASTM D 785 ASTM D 785 DIN EN 59ASTM D 2583

    Heat

    H/30

    N/mm2

    10 25

    40 65

    60

    40 80

    75 115

    85 105

    95 145

    >

    >

    >

    >

    >

    >

    55 >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    >

    Shore D

    40 50

    50 70

    65

    65 75

    70 75

    75

    75 80

    >

    >

    >

    >

    >

    HR

    (

    >

    105 >

    110 >

    115 >

    HRR

    125

    90110>

    100 110

    90

    125

    125

    115 120

    120

    95 105

    115

    120

    105

    100 110

    >

    120 >

    >

    105 >

    105 120

    120

    125

    125

    >

    >

    >

    >

    >

    >

    HRL

    >

    114 >

    115 >

    112 >

    HRM

    24 h/23 CProcedure 2 L:>24 h/23 CProcedure 3 L:

    >24 h/23 C

    Procedure a =24 h/23 CProcedure b =22 h/23 CProcedure d =

    saturation

    Drying24 h/50 C,then waterabsorption24 h/50

    502 F: Drying24 h/50 C thenwater absorption24 h/23 C502 G: as F, but with

    subsequentre-drying 24 h/23 C

    Test specimen: 50 mm ,d = 3 mm or50 x 50 x 3 mmor others

    50 mm ,d = 3 mm or50 x 50 x1,3,4 mm

    51 mm ,d = 3,2 mm or76,2 x 25,4 x3,2 mm

    50 mm ,d = 3 mm

    50 mm ,d = 3 mm or50 x 50 x 3 mmor others

    Time, boiling: Procedure 1, 2and 3:30 min./100 C

    Procedure e =2 h/100 CProcedure f =30 min/100C

    No. 5.27.1Drying24 h/50 C,then waterabsorption1 h/100 C

    503 B: Drying24 h/50 C thenwater absorption30 min./100C503 C: as B, but withsubsequent re-drying 24 h/50 C

    Time, other: Note:Procedure 1: Drying

    before testingProcedure 2: Dryingbefore and aftertestingProcedure 3:No drying

    Procedure g =48 h/50 C,

    also drying ofspecimens24 h/50C or1 h/110C beforetesting

    Unit: mg mg or % % mg or % mg

    Test characteristic Test standard

    FMMouldi

    ngComp

    ounds

    55

  • 7/24/2019 Comparaison Normes

    53/64

    Abrasion(mm3or mg)

    Bakelite

    -Meth

    od

    ISO DI

    NAS

    TMJIS

    6911

    -1979*

    BS Rem

    arks

    No.: Bakelite-Method 53754 D 1242 notcomparable

    Test specimens: 2 Round disks130 mm dia. or octagonalswith 50 mm edge length,thickness 0.3 - 5 mm

    Method A:76 x 51 mmMethod B:115 x 45 mmThickness notprescribed

    50 x 50 x 4 mm

    Load: 1000 g 5,4 2 N A: 5000 gB: 1500 g

    Friction surface: Bar (120 x 10 x4 mm) onplate (50 x 50 x4 mm)

    Abrasive grain onaluminium oxide

    AI2O3grain sizeNo. 80, approx.0.2 mm or otherabrasive grain

    RPM: Step 4 (40 %) 55 6 min-1 Test specimen 32.5,Disk 23.5

    Medium: Dry Dry Dry

    Evaluation: Abrasion after100,000 strokes(see drawing)

    Abrasion amounts by weightfor the reference material(mSB) in mg per 100revolutions are calculatedfor each pair of grinding

    discs according to thefollowing equations:

    A: cm3per1000 rev.

    B: cm3perX rev. with abrasivegrain of Y quality

    mSB=m1B m2B

    50 100

    ms= m1 m2Test specimen general

    Test characteristic Test standard

    FMMouldi

    ngComp

    ounds

    56

  • 7/24/2019 Comparaison Normes

    54/64

    Abrasion test (Bakelite AG)

    Abrasion test UP 3415 und UP 3710 / Plate-bar

    Abrasion testing device,typical drawing

    Abrasion (mg) after100.000 strokes

    Weight

    Ball bearing

    Bar

    Plate

    Stroke

    Plate: 50 x 50 x 4 mmBar: 120 x 10 x 4 mmWeight: 1 kg

    Stroke: 70 mm

    UP 3415/3415 UP 3710/3710

    Abrasion

    Taber abrasion resistance as in ISO 3537

    Standard plate Standard bar Special plate Special bar

    Testspecimen

    FMMouldi

    ngComp

    ounds

    57

    Calibrated frictional wheel CS17

    5 N

    5 N

    120

    60 U/min

    10 - 12

    19

  • 7/24/2019 Comparaison Normes

    55/64

    Shear modulus (torsion vibration test)(N/mm2)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 537 53445 D 2236 comparable

    Terst specimens: 60 x 10 x 1 mm orarbritrary

    60 x 10 x 1mm Length:25 bis 150 mmWhide:2,5 bis 15 mmThickness:0,3 bis 2,5 mm

    Schematic of a torsional vibration device

    (procedure A)Torsional vibration test (shear modulus)

    Tempering chamberClamp

    Test specimen

    Clamp

    Disc flywheel

    Locking device

    Recorder

    Mirror

    Light source

    Scope

    This method of test is designed to enable the shear modulus and the mechanicaldamping to be measured as a function of temperature using free torsionoscillations. By means of this method, measurements are made over a frequencyrange from 0,1 to 10 Hz. It is thus possible to determine the mechanicalproperties of plastic materials at low deformation stresses and low stressingspeeds over a wide temperature range.

    This method is also employed for determining the temperature range overwhich a plastics material appears rigid, visco-elastic or rubber-like, and it alsogives information concerning the commencement of plastic flow.

    The method provides a means of easily distinguishing thermoplastic, thermosettingand other cross-linked polymers and between crystalline and amorphouspolymers.

    When carried out at one temperature, the method is only of use as a controltest of plastics whose general properties are known. It can thus be employedto determine whether a given plastics material is soft or rigid at a giventemperature and stressing speed. The shear modulus and the mechanicaldamping are physical constants which are independent of the test method,the apparatus employed and the shape of the test specimen.

    Test characteristic Test standard

    FMMouldi

    ngComp

    ounds

    58

  • 7/24/2019 Comparaison Normes

    56/64

    Dying-out torsional vibration.

    Amplitude A1, as a function of time;

    torsional vibration diagram

    Shear modulus (torsion vibration test)

    DefinitionShear modulus

    The shear modulus is the quotient of the shearing strain and the resulting elastic deformationangle with a very low deformation within the elasticity limit: that is, in the Hookes range.Determination of the shear modulus of plastics

    PF 2774

    Shear modulus, comparative table (duroplastics/thermoplastics)

    Shear modulus MP 182

    Shear modulus PF 2535

    G': Shear modulus [MPa]

    Temperature [C]

    MP 182-9005-S1G': Shear modulusin MPa

    PF 2535-9005-S1G': Shear modulusin MPa

    Temperature in C

    Temperature in CPETP

    PP

    Method

    0,1 - 10 Hz

    Phenolic-Mouldingcompound

    Temperature

    Shear modulus G=

    Shearing strain

    elastic deformation angle

    ShearmodulusG(N/mm

    2)

    FMMouldi

    ngComp

    ounds

    59

  • 7/24/2019 Comparaison Normes

    57/64

    Ashes (residue on ignition)(%)

    ISO

    DIN

    ASTM

    JIS6911

    -1979*

    BS Rema

    rks

    No.: 3451 Part 1 60 comparable

    Temperature: 850 25 C550 25 C

    950 20 C650 20 C

    Sample amount: 10-20 g > 2 g

    Time: 6 h 6 h

    Crucible size: 60 mm 60 mm

    Evaluation: Ignition loss

    in percentby weight

    Ignition loss

    in percentby weight

    Ashes test Ashes test

    Test characteristic Test standard

    FMMouldi

    ngComp

    ounds

    60

  • 7/24/2019 Comparaison Normes

    58/64

    Description of test procedures

    Density ISO 1138

    Definition:Density is the quotient of mass and volume of thecured moulding material.Unit of measure:g/cm3

    Test procedure:Weighing the test specimen in air and in water.Purpose of test:Possibility of conversion between mass and volumeof mouldings. Possibility of control for uniformcompression.

    Apparent density ISO 60Definition:The apparent density is the quotient of mass andvolume of a loosely poured moulding compound.Unit of measure:g/cm3

    Test procedure:Weighing the moulding compound which waspoured in a prescribed mannner into a certain testvolume.Purpose of test:Control of the uniformity of the mouldingcompound grains as well as a reference forcalculating the loading chamber of moulds.

    Moulding shrinkage ISO 2577

    Definition:The moulding shrinkage is the difference betweenthe dimension of the cold mould and the dimensionof the cooled down moulding. Aftershrinkage isthe difference between the dimension of the cooledmoulding and the dimension of the same mouldingafter holding at a certain temperature(168 h, 110 C).Unit of measure:%Test procedure:Measuring of the test specimen. The shrinkagevalues for compression moulding are determined

    on the standard bar (120 x 10 x 4 mm). For injectionmoulding, the shrinkage values are determined onthe multipurpose specimen (170 x 10 x 4 m)longitudinally and transverely to the direction offlow.Purpose of test:Important information for the design of moulds,control of identical mouldings for uniformprocessing.Note:Besides the respective moulding conditions,shrinkage and aftershrinkage are influenced bythe moisture contents (volatiles) and the flowadjustment of the given moulding compound.

    Because we offer most of our products with a wideflow adjustment range, the tolerances for theshrinkage values are relatively wide. The currentshrinkage values for your flow adjustment will beindicated on request.

    Tensile strength ISO 527

    Definition:The tensile strength is the maximum tension whichleads to rupture of the test specimen under uniaxialstress.Unit of measure:MPaTest procedure:The test specimen (shouldered bar) is elongatedat a uniform pulling speed in a longitudinal directionuntil rupture occurs.Purpose of test:Determination of the strength under tensile stress.

    Compressive strength ISO 604

    Definition:The compressive strength is the highest forceunder compressive stress related to the startingcross section of the test specimen.Unit of measure:MPaTest procedure:The test specimen is subjected to a uniformlyincreased breaking load till rupture occurs.Purpose of test:Determination of the strength under compressiveload.

    Flexural strength ISO 178

    Definition:The bending strength is the quotient of the bendingmoment at rupture of the test specimen and thesectiom modulus of the latter.Unit of measure:MPaTest procedure:The test specimen resting on two supports isincreasingly loaded in the centre and the forcerequired to cause rupture is determined (three-point test).Purpose of test:Determination of the strength under bending stress.

    Modulus of elasticity ISO 178

    Definition:The modulus of elasticity is the quotient of theincreases in stress and deformation of testspecimens subjected to bending.Unit of measure:MPaTest procedure:The changes in force and deformation aredetermined during the bending test.Purpose of test:Determination of the stiffnesss under bendingstress.

    Impact strength (ISO 179 1eU) andnotched impact strength (ISO 179 1eA)

    Definition:The impact strength is the impact work consumedby unnotched test specimens and the notchedimpact strength the impact work consumed bynotched test specimens.Unit of measure:kJ/m2

    Test procedure:The impact work consumed for the destruction ofthe test specimen is determined by means of a

    pendulum hammer.Purpose of test:Determination of the toughness and notchsensitivity under impact stress.

    Ball indentation hardnessDIN/ISO 2039 Part 1

    Definition:The ball indentation hardness is the quotient of thetesting force and the surface of the indentation leftby a ball following application of the testing force.Unit of measure:MPaTest procedure:Determination of the depth of penetration into the

    test specimen surface.Purpose of test:Determination of the surface hardness.

    Temperature of deflectionunder load ISO 75

    Definition:The heat deformation temperature is thetemperature at which an increasingly heated testspecimen has deflected by a certain amount undera certain load (medium: oil).Unit of measure:CTest procedure: See definition.

    Purpose of test: See definition.Note:In more recent standards, the deformation underheat influence according to Martens (DIN 53462)has been replaced by the heat deformationtemperature HDT (ISO 75). In this procedure, themeasurement is performed at different steps ofloading (0.45; 1.8 and 8 MPa). Both proceduresdo not permit to give information on a maximumapplication temperature.

    Coefficient of linear thermal expansionDIN 53752

    Definition:

    The thermal elongation coefficient indicates byhow much the length of a test specimen increasesat a temperature rise by 1 K.

    FMMouldi

    ngComp

    ounds

    61

  • 7/24/2019 Comparaison Normes

    59/64

    Description of test procedures

    Unit of measure:E-6/KTest procedure:Measuring the length of a test specimen while itheats up or cools down according to an optical ora mechanical procedure (two-point test).Purpose of test:Determination of the change in length occurringduring temperature variations.Note:

    Post shrinkage may possibly influence the resultof the measurement.

    Heat conductivity DIN 52612

    Definition:Heat conductivity is the flow of heat going througha layer of a certain thickness in the unit of time,whilst in a stationary position and with a specificdrop in temperature.Unit of measure: W/m KTest procedure:One measures the flow of heat and the differencein temperature between the heated and unheatedplates which are situated at both sides of the test

    body.Purpose of test:Establishing the heat conductivity.

    Maximum application temperatureDIN/IEC 216/T 1

    Definition:The maximum application temperature is thetemperature up to which moulding compoundsmay be utilised without any significant impairmentof important properties. It is a function of natureand duration of the influence of temperature,external loading and the ambient medium.

    Unit of measure:CTest procedure:Detection of changes in properties (for instance:bending strength and thermal ageing).Purpose of test:Indication of limiting temperatures for short-timeloading (

  • 7/24/2019 Comparaison Normes

    60/64

    Data catalogue in CAMPUS 3 according to ISO 10350

    Test conditions according to the particular

    material standard

    Longitidinal

    Transverse

    1 mm/min

    50 mm/min

    5 mm/min

    1 h

    1000 h

    23 C

    -30 C

    23 C

    -30 C

    23 C

    Process C

    Process A

    1,8 MPa

    0,45 MPa

    8 MPa

    Long fibre reinforced

    50 K/h, 50 N

    Longitudinal

    TransverseAt nom. 1,6 mm

    Tested thickness

    At thickness h

    Tested thickness

    At thickness h

    Tested thickness

    Process A

    100 Hz

    1 MHz

    100 Hz

    1 MHz

    Contact electrodes

    Short-term test in transformer oil according to IEC 296

    Test liquid A

    Saturation values

    Test conditions according to material standard

    Related to basic polymer

    If only compression moulding conditions are specified,

    all test specimens are to be compression moulded.

    If compression moulding and injection moulding

    conditions are specified, only plates are to be

    compression moulded.

    Only thermosets

    Elongation 0,05% to 0,25 %

    if 2.2 available

    if 2.2 not available

    if 2.2 and 2.5 not availableand 2.7 10 %

    Elongation 0,5 %

    if at 2.12 without failure n.f.

    45double V notch, r=1,0

    recommended, if at 2.13 n.f.

    DTA or DSC

    10 K/min

    for rigid materials: 1,8 MPa and

    8 MPa; for soft materials:

    1,8 MPa and 0,45 MPa

    Secant pitch between 23 C

    and 55 CSpecification of class from:

    NO, HB, V-2, V-1, V-0

    Specification: NO, 5VA or 5VB

    1

    1.2

    1.3

    2

    2.1

    2.2

    2.3

    2.4

    2.5

    2.62.7

    2.8

    2.9

    2.12

    2.13

    2.14

    3

    3.1

    3.2

    3.3

    3.4

    3.5

    3.6

    3.7

    3.8

    3.9

    3.16

    4

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    4.7

    4.9

    5

    5.2

    5.35.4

    see table 1

    in ISO 10350

    Rheological properties

    Melt volume flow rate

    Melt volume flow rate

    Moulding shrinkage

    Mechanical properties

    (Climate 23 C 2 C/50% 5% r.h. according to ISO 291)

    Tensile modulus

    Yield stress

    Elongation

    Nominal elongation at break

    Stress at 50% elongation

    Tensile stress at breakElongation at break

    Tensile creep modulus

    Tensile creep modulus

    Charpy impact strength

    Charpy impact strength

    Charpy notched impact strength

    Charpy notched impact strength

    Tensile impact strength

    Thermal properties

    Melt temperature

    Glass transition temperature

    Temperature of dimensional stability

    Vicat softening point

    Coefficient of linear expansion

    Flammability UL 94

    Flammability UL 94-5V

    Flammability by oxygen index

    Electrical properties

    (Climate 23 C 2 C/50% 5 % r. h. according to ISO 291)1

    Dielectric constant

    Dissipation factor

    Volume resistivity

    Surface resistivity

    Dielectric strength

    Comparative figure of tracking

    Other properties (23 C 2C)

    Water absorption in water at 23 C

    Moisture absorption in water at 23

    C/50% r.h.Density

    Specific properties of moulding compounds

    Viscosity number

    Characteristic density (PE only)

    Isotaxy index (PE only)

    Manufacturing conditions for test specimens

    Conditions according to the international

    moulding compound standard

    Injection moulding

    of thermoplastics

    Injection moulding

    of thermosets

    Compression moulding

    of thermoplastics

    Compression moulding

    of thermosets

    Post-curing

    of thermosets

    1. Value

    Temperature

    Load

    2. Value

    Temperature

    Load

    Melt temperature

    Mould temperature

    Melt front velocity

    Holding pressure

    Melt temperature

    Mould temperature

    Melt front velocity

    Holding pressure

    Post-curing time

    Mould temperature

    Compression moulding time

    Cooling velocity

    Demoulding temperature

    Mould temperature

    Compression moulding time

    Post-curing temperature

    Post-curing time

    ISO 1133

    ISO 2577

    ISO 527-1

    ISO 527-2

    ISO 899-1

    ISO 179/1eU

    ISO 179/1eA

    ISO 8256

    ISO 3146

    IEC 1006

    ISO 75-1

    ISO 75-2

    ISO 75-3

    ISO 306

    ASTM E 831

    UL 94

    ISO 4589

    IEC 250

    IEC 93

    IEC 243-1

    IEC 112

    Following

    ISO 62ISO 1183

    ISO 307

    1157, 1628

    ISO 1872-1

    ISO 6427 B

    Moulding comp.

    standard Part 2

    ISO 294

    ISO 10724

    ISO 293

    ISO 295

    Moulding compound

    Multipurpose test

    specimen according to

    ISO 3167

    Injection moulded: type A

    Machined: type B

    80 x 10 x 4

    V notch; r=0,25

    80 x 10 x 4

    Moulding compound

    80 x 10 x 4

    10 x 10 x4

    125 x 13 x 1,6

    125 x 13 x thickness

    152 x 13 x thickness and

    152 x 152 x thickness

    80 x 10 x 4

    Plate with the

    dimensions 1,0 0,1

    15 x 15 x 4

    50 x 50 x 1

    10 x 10 x 4

    Moulding compound

    cm3/10 min

    C

    kg

    cm3/10 min

    C

    kg

    %

    MPa

    %

    MPa

    %

    MPa

    kJ/m2

    C

    C

    1/K

    Class

    %

    Ohm cm

    Ohm

    kV/mm

    %

    g/cm3

    cm3/g

    cm3/g

    C

    mm/s

    MPa

    C

    mm/s

    MPa

    s

    C

    min

    K/min

    C

    C

    min

    C

    min

    No.in

    ISO10

    350

    Prop

    erty

    Stan

    dard

    Testspecimen

    dim

    ensio

    nsinm

    m

    Unit

    Testcond

    itions

    an

    dsup

    plement

    ary

    statem

    ents

    1)

    1)

    1)

    1)

    2)

    2)

    1)

    1) Eventually taken from the multipurpose test specimen type A 2) Compression moulded or injection moulded test specimen

    FMMouldi

    ngComp

    ounds

    63

  • 7/24/2019 Comparaison Normes

    61/64

    National Standards Organization

    AAMVA American Association of Motor VehicleAdministrators (USA), Prfbehrde frdie Kfz-Industrie in den USA

    ABNT Ass. Brasileira de Normas Tecnicas,brasilianisches Norminstitut, A. 13 deMaio, no 1318 andar, Caixa Postal1680, CEP 20003 Rio de Janeiro RJ

    AEA American Electronics Association (USA)AECMA Association Europenne des

    Constructeurs de Matrial Arospatial(Europ. Prfbehrde fr die Luftfahrt)

    AENOR As. Espanola de Normalizacion(spanischer Normverband), Callefernandez de la Hoz, 52, 28010 Madrid

    AFNOR Association Franaise de Normalisation(franz. Normenausschu), Tour Europe,Cedex 7, 92049 Paris la dfense

    AKI Arbeitsgemeinschaft DeutscheKunststoff-Industrie (D), Karlstrae 21,D-60329 Frankfurt, Tel. 0 69 /2556307

    ANAIP Association Espanola de Industrialesde Plasticos (E), Spanischer Verbandder Kunststoff-Verarbeiter, RaimundoFernandez Villaverde 57, E-8003 Madrid

    ANSI American National Standards InstituteInc. (USA), 1430 Broadway, New York,N. Y. 10018

    ASKI Swiss Plastic Industries Federation(CH), Arbeitsgemeinschaft derSchweizerischen KunststoffindustrieGesamtverband, Nordstrae 15, CH-8006 Zrich (ab 01. 01. 1992 im KVSaufgegangen)

    ASME American Society of MechanicalEnigeers

    ASQC American Society for Quality Control(USA Qualittsgesellschaft)

    ASTM American Society for Testing andMaterials (USA), (Norminstitut der USA)

    BAM Bundesanstalt fr Materialforschungund -prfung (D), Unter den Eichen 87,

    D-12205 Berlin, Tel. 0 30 / 81 04-1, Fax0 30 / 8 112029

    BGA Bundesgesundheitsamt (D), Thieleallee8292, D-14195 Berlin, Tel. 0 30 /83 08-0, Fax 0 30 / 83 08-27 41

    BSI British Standards Institution (Brit.Norminstitut), (die Normen werden alsBS bezeichnet), 2 Park Street, LondonW1A 2BS

    BPS Bureau of Product Standards,Phillippines

    CAS Chemical Abstract Service, Columbus,Ohio (USA), (Datenbank-Informations-Zentrum)

    CEE Commission Internationale pourRglementation et le Contrle delEquipement Electrique (Internat.Elektriker Verband)

    CEFIC Conseil Europeen des Federation de

    lIndustrie Chemique (EuropischerChemieverband)

    CEN Comit Europen de Normalisation(Europischer Normenverband). DieNormen werden als EN-Normbezeichnet. CEN gliedert sich in -TC =Technische Comitees, -SC = Sub-Comitees (Fachbereiche), -WG =Working Groups (Arbeitsausschsse)fr die jeweiligen Fachbereiche- EN Europische Normen, - ENVEuropische Vornormen, - HDHarmonisierungsdokumente

    CENELEC Comit Europeen de NormdialistionElectric, (Europischer Normenverbandfr die Elektroindustrie)

    CIE Commission Internationale delEclairage

    COSMT Czech Office for Standards, Metrologyand Testing, Czech Republic

    CSA Canadian Standards Association(Kanadischer Normverband)

    CSBTS China State Bureau of TechnicalSupervision (chinesischesNorminstistut), PO Box 820, Beijing

    CSN Federal Office for Standards andMeasurements (tschechischesNorminstitut), Vaclavske Namesti 19,

    11347 PragCWFG Chemie

    WirtschaftsfrderungsgesellschaftmbH, Karlstrae 21, D-60321Frankfurt/M. (Geschftsstelle frCAMPUS-Datenbanken), Tel. 0 69 /25 56-4 60, Fax 0 69 / 25 56-4 71

    DAR Deutscher Akkreditierungs Rat (D),Geschst. BAM, Unter den Eichen 87,D-12205 Berlin, Tel. 0 30 / 81 04-1, Fax0 30 / 8 1120 29

    DGQ Deutsche Gesellschaft fr Qualitt e. V.(D), August-Schanz-Strae 21a, D-60433 Frankfurt/M., Tel. 069 / 54 80 01

    (0), Fax 0 69 / 54 80 01 38DIN Deutsches Institut fr Normung e. V.

    (D), Burggrafenstrae 6, D-10787Berlin, Tel. 030 / 2601-2352, Fax 0 30/ 26 01-12 31- DIN-FNK DIN-FachnormenausschuKunststoffe- DIN-NMP DIN-FachnormenausschuMaterialprfung

    DIS Draft International StandardDKE Deutsche Elektrotechnische

    Kommission (D)DKI Deutsches-Kunststoff-Institut (D),

    Schlogartenstrae 6, D-64289

    Darmstadt, Tel. 0 61 51 / 16-0, Fax0 6151 / 2928 55DQS Deutsche Gesellschaft zur Zertifizierung

    von Qualittssicherungssystemen (D),(Zusammenschlu v. 7 Verbnden),

    Burggrafenstrae 6, D-10787 Berlin,Tel. 0 30 / 2 65 14 74, Fax 0 30 / 26 01-1972

    DS Dansk Standardisierungsgraad(dnisches Norminstitut), Aurehojvej12, DK-2900 Hellerup

    EG Kommission d. EuropischenGemeinschaften, Rue de la Loi 200, B-1049 Brssel, Tel. 0 03 22 / 2 35 11 11,Fax 0 03 22 / 2 35 01 22, Bro DZietelmannstrae 22, D-53113 Bonn,Tel. 02 28 / 53 00 90, Fax 02 28 /5300950

    EOQC European Organization for Quality, P.O.Box 2613, CH-3001 Bern

    EPA Europisches Patentamt, D-80290Mnchen, Tel. 0 89 / 2 39 90, Fax 0 89/ 23 99 44 65

    ETP Engineering ThermoplasticsEUROPEN European Organisation for Packaging

    and the Environment, Rue de Commerz2022 B12, B-1040 Brssel

    FAA Federal Aviation Administration (USALuftfahrtbehrde)

    FGK Forschungsgesellschaft Kunststoffe e.V., Schlogartenstrae 6, D-64289Darmstadt, Tel. 0 61 51 / 1634 07

    FIZ Fachinformations-Zentrum Chemie (D),

    Steinplatz 2, D-10623 Berlin oderEggenstein, Leopoldshafenerstrae 2,D-76149 Karlsruhe (Datenbank-Informationszentrum)

    FPA Finnish Plastics Association (FinnischerKunststoff-Verband)

    FPID Finnish Plastics Industry Federation(SL), Finnischer Kunststoff-Verband,Mariankatu 26 B 9, SL-00170, Helsinki17

    FV Fachverbnde im GKV (D), AmHauptbahnhof 12, D-60329 Frankfurt(siehe GKV)

    GOST USSR State Committee for Standards

    (russisches Norminstitut), LeninskyProspekt 9, Moskau 117049

    IBN Institut Belge de Normalisation(belgisches Norminstitut), Avenue deBrabanconne 23, B-1040 Brssel

    ICONTEC Instituto Colombiano de NormasTcnicas, Colombia

    IEC International ElectrotechnicalCommission (InternationalerElektroverband) 3, rue de Varemb, CH-1211 Genve 20

    IEEE Institute of Electrical and ElectronicelEngineers (USA), (USA Normungsstellefr die Elektroindustrie)

    IFAN International Federation for theApplication of Standards, Case Postale56, CH-1211 Genve 20

    IFEC Institut Francais de lEmballage et duConditionnement (F)

    FMMouldi

    ngComp

    ounds

    64

  • 7/24/2019 Comparaison Normes

    62/64

    National Standards Organization

    IS International StandardISIRI Institute of Standards and Industrial

    Research of Iran, Islamic Republic ofIran

    ISO International Standard Organisation(Internationaler Kunststoff-Normverband), Case Postale 56, CH-1211 Genve 20Die TC = Technical Committee, sinddie Arbeitsgruppen

    ISO-DIS ISO-Draft Internationaler Standard =Normentwurf

    ISOPA European Isocyanate ProducersAssociation (Europaverband der PUR-Hersteller), B-Brssel

    IRS Institutul Roman de Standardizare,Romania

    IUPAC International Union of Pure and AppliedChemistry (unter anderem zustndigfr international gltige chemischeNomenklaturen)

    JICST Japan Information Center of Scienceand Technologie, Tokio (J), (DatenbankInformationszentrum)

    JISC Japanese Industrial StandardsCommittee (japanisches Norminstitut),1-3-1, Kasumigaseki, Chiyoda-ku,Tokyo 1000 PO Japanisches Patentamt

    (J)JPIF Japan Plastics Industry FederationKBS Bureau of Standards (koreanisches

    Norminstitut), 2, Chungang-dong,Kwachon-city, Kyonggi-do 427-010

    KIAA Korean Industrial AdvancementAdministration, Republic of Korea

    MSZH Magyar Szavanygi Hivtai(ungarischer Normverband), Postfach24, 1450 Budapest 9

    NAFTA North American Free Trade AgreementNEN Nederland Normalisatie-Instituut

    (niederlndisches Norminstitut), (NL)NFK Nederlandse Federatie voor

    Kunststoffen (NL), NiederlndischerKunststoff-Verband, Polanerbaan 15,NL-3440 AH Woerden

    NNI Nederlands Normalisatie-Instituur(niederlndisches Norminstitut),Kalfjeslaan 2, P.O. Box 5059, 2600 GBDelft

    NSF Norges Standardiserings Forbund(norwegisches Norminstitut), Postboks7020, Homansbyen, N-0306 Oslo 3

    OEM Original Equipment ManufacturerNA sterreichischer Normenausschu (A)

    (Adresse siehe ON)VE sterreichische Vereinigung fr

    Elektrotechnik (A)ON sterreichisches Normungsinstitut,Heinestrae 38, Postfach 130, A-1021Wien

    PKN Polski Komitet Normalizacyjny

    (Polnisches Norminstitut), (PL)PKNMiJ Polish Committee for Standardization

    (polnischer Normverband), Ul.Elektoraina 2, 00-139 Warschau

    PTB Physikalisch-Technische Bundesanstalt(D), Bundesallee 100, D-38116Braunschweig, Tel. 05 31 / 5 92-0, Fax05 31 / 592-40 06

    PWMI Plastics Waste Management Institute(europische Dachorganisation d.Kunststofferzeuger f. Kunststoffe u.Umwelt), Avenue E. van Nieuwenhuse4, B-1160 Brssel

    TVK Technische Vereinigung der Herstellerund Verarbeiter typisierter Kunststoff-Formmassen e. V., (kooperativesMietglied)

    RAL Deutsches Institut fr Gtesicherungund Kennzeichnung e. V. (D),Siegburgerstrae 39, D-53119 St.Augustin, Tel. 0 22 41 / 16 05-0, Fax0 22 41/ 16 05-11

    SAA Standards Association of Australia(australisches Norminstitut), P.O. Box458, North Sydney-N-S-W 2059

    SABS South African Bureau of Standards(sdafrikanisches Norminstitut),Private BAG X191, Pretoria 0001

    SAE Society of Automotive Engineers(USA), (USA-Prfbehrde frAutomobilindustrie, 400Commonwealth 3, Drive, Warrendale,PA 15096

    SC SubcommitteeSCC Standards Council of Canada

    (canadisches Norminstitut), 350Sparks, Street, Suite 1200, Ottawa,Ontario

    SFS Soumen Standardisoimislito(finnisches Norminstitut), P.O. Box205, SF-00121 Helsinki

    SIS Sveriges

    Standardisierungskommission(schwedisches Norminstitut), Box3295, S-10366 Stockholm

    SISIR Singapore Institute of Standards(Singapur Norminstitut), 1 ScienceParkdrive, Singapur 0511

    SKS Savezna Komisija za Standardizaciju(Jugoslavischer Normverband), (Y)

    SKZ Sddeutsches Kunststoff-Zentrum,Institut fr Kunststoffverarbeitung, -anwendung und -prfung (D),Frankfurter Strae 15, D-97082Wrzburg, Tel. 09 31 / 41 04-0, Fax09 31 / 4 104177

    SNV Schweizerische Normen-Vereinigung,Kirchweg 4, CH-8032 ZrichSPI Society of Plastics Industry (USA)

    (amerikanischer Kunststoffverband),CI Composites Institute des SPI

    TC Technical CommitteeTV Technischer berwachungs-Verein (D)

    mit folgenden relevanten Bereichen:- TV Bayern ArbeitsbereichKunststoffprfung, Westendstrae 199,D-80686 Mnchen- TV Berlin Kunststoff-Prfstelle(federfhrend f. Kunststoff-Kraftstoffbehlter), Postfach 11 06 61,D-10831 Berlin- TV Rheinland, ZentralabteilungWerkstofftechnik, Bereich Kunststoff-Technik, Am Grauen Stein 20, D-51105Kln, Tel. 02 21 / 80 60

    TV-CERT TV-Zertifizierungsgemeinschaft e. V.,Reuterstrae 161, D-53113 Bonn, Tel.02 28 / 9 14 81-40, Fax 0228 / 9 14 81-44

    TV Technische Vereinigung der Herstellerund Verareiter typisierter Kunststoff-Formmassen e. V. (D), Rosengasse 8,D-97070 Wrzburg

    UBA Umweltbundesamt (D), Bismarckplatz1, D-14193 Berlin 33, Tel. 0 30 / 89 03-0, Fax 0 30 / 89 03-22 85

    UL Underwriters Laboratory Inc. (Staatlichanerkanntes Institut fr die Prfungvon Kunststoffen auf Brennbarkeit,

    Temperaturbestndigkeit), Northbrook,IL 60062 (USA)

    UNI Ente Nazionale Italiano di Unificazione(italienisches Norminstitut), PiazzaArmando Diaz 2, I-20123 Mailand

    UNICE Union des Confderations delIndustries et des Employers dEurope(Verband der Europischen Industriegegenber den EG-Organen)

    UNMS Slovak Office of Standards, Metrologyand Testing, Slovakia

    USCAR United States Council for AutomotiveResearch

    USTAG United States Technical Advisory Group

    VCI Verband der Chemischen Industrie e.V. (D), Karlstrae 21, D-60329Frankfurt, (T. u. F. s. VKE)

    VDI Verein Deutscher Ingenieure e. V. (D),Graf-Recke-Strae 84, D-40239Dsseldorf, Tel. 02 11 / 62 14-0, Fax02 11 / 6 21 45 75 (darin eine Reihevon Fachgesellschaften fr dieeinzelnen Gebiete)

    FMMouldi

    ngComp

    ound

    s

    65

  • 7/24/2019 Comparaison Normes

    63/64

    Notes

    FMMouldi

    ngComp

    ounds

    66

  • 7/24/2019 Comparaison Normes

    64/64

    Conversion factors:1 N/mm2 = 10,2 kg/cm2 = 1 MPa1 J/m = 0,102 cmkp/cm1 kJ/m2 = 1,02 cmkp/cm2

    1 N/dm3 = 0,102 g/m3

    1 kgf/mm2 = 9,8 N/mm2

    1 kgfcm/cm2 = 0,98 kJ/m2Tension:1 psi = 0,007 N/mm2

    1 N/mm2 = 1,42 psiTemperatures:Conversion of C into F Conversion of F into CC x 1,8 + 32 = F (F - 32) x 0,555 = C