Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

18
UNIVERSITE CHEIKH ANTA DIOP DE DAKAR FACULTE DES SCIENCES ET TECHNIQUES DEPARTEMENT DE CHIMIE 2011-2012 Stéréochimie La Stéréoisomérie conformationnelle L2BCGS/S3 EL Hadji Cheikh Mbacke NDIAYE Maître de conférence L ABORATOIRE DE B IOCHIMIE & C HIMIE DES P RODUITS N ATURELS / FS T -1 ER ETAGE

Transcript of Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

Page 1: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 1/18

UNIVERSITE CHEIKH ANTA DIOP DE DAKAR

FACULTE DES SCIENCES ET TECHNIQUES

DEPARTEMENT DE CHIMIE

2011-2012

Stéréochimie

La Stéréoisomérie conformationnelle

L2BCGS/S3

EL Hadji Cheikh Mbacke NDIAYE

Maître de conférence

L A B O R A T O I R E D E B I O C H I M I E & C H I M I E D E S P R O D U I T S N A T U R E L S / F S T - 1 E R E T A G E

Page 2: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 2/18

2

Isomérie

Stéréoisomérie

(stéréochimie moléculaire)Isomérie plane

3. Isomérie de chaîne

4. Isomérie de squelette

1. Isomérie de fonction

2. Isomérie de position isomérie optique ou

isomérie stérique

diastéréoisomérie

isomérie de configurationisomérie de conformation

isomérie géométrique ouisomérie éthylénique

(cis /trans )

StéréochimieStéréochimiestatique

Stéréochimiedynamique

énantiomérie

Cristallographie(stéréochimie de l'état solide)

La stéréochimie est plus un point de vue qu’une sous-discipline de la chimie qui traite de la disposition

spatiale relative des atomes au sein des molécules. Elle comprend: lastéréochimie dynamique et lastéréochimiestatique.

La stéréochimie dynamique (ou stéréochimie des réactions) étudie les conséquences, c’est-à-dire les

contraintes et les aspects stéréochimiques, de la géométrie des molécules chirales (la notion de chiralité sera traitée

au paragraphe « isomérie otique») sur le déroulement des réactions dans lesquelles celles-ci sont impliquées.

Lastéréochimie statique implique la stéréoisomérieet la cristallographie. Cette dernière étudie, grâce à la

technique de la diffraction des rayons X, l’arrangement spatial des atomes des édifices moléculaires au sein des

solidesmonocristallins.Encoreappelée stéréochimie moléculaire ou stéréochimie des molécules, lastéréoisomérie a

quant à elle pour objet dedéterminer (et de comparer) les arrangements spatiaux relatifs des molécules isomères

appelées stéréoisomères (ou stéréomères), leur énergie et leurs propriétés physiques, principalement

spectroscopiques. On en distingue: la stéréoisomérie (ou isomérie) conformationnelle et la stéréoisomérie (ou

isomérie) configurationnelle. Mais la détermination de la stéréoisomérie des molécules exige une représentation

graphique correctede celles-ci dans un espacebi- ou tridimensionnel.

I. Les méthodes conventionnelles de représentation graphique des molécules

1. La représentation de Cram

Elle est encore appeléereprésentation «coin volant» qui est la traduction littérale de l’expression anglaise

«flying wedge ». Elle s’applique aux dérivés contenant au moins un atome de carbone hybridé sp3 et aux dérivés

éthyléniques.

Les quatre liaisons simples € de l’atome de carbone hybridé sp3 pointent toutes vers les sommets d’un

tétraèdre régulier imaginaire au centre duquel se trouverait placé l’atome de carbone. Les angles des liaisons sonttous égaux et valent109°28’.

Page 3: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 3/18

3

En représentation de Cram, deux des quatre liaisons portéespar lemême carbone hybridésp3 sont placées

dans le plan de représentation; ellessont toujours symbolisées par des traits pleins. Pour ce qui concerne les deux

autresliaisons, l’une estdirigée en avant et l’autreen arrière du plande représentation (figure 1).

Figure 1. Représentation de Cram d'une moléculeàun atome de carbone sp 3 

ou

CC

représenteuneliaisondansleplandereprésentation

représenteuneliaison enavantduplandereprésentation

représenteuneliaisonenarrièreduplandereprésentation

Lesmoléculescomportant au moins une liaison simple carbone-carbonepeuvent êtresymbolisées par une

représentation de Cram de deux manières différentes parmi plusieurs autres possibilités. Il s’agit des deux

représentations de Cram décalée (ou alternée) et éclipsée les plus caractéristiques. On passe facilement de l’une à

l’autre par simple rotation de 180° de l’un des carbones autour de la liaison C-C.

CCCC

éclipsée décalée

Fi ur . r t ti on Cr m d' un m l  cul u t m d c rb n   3 .

2. La représentation (en) perspective (ou perspective cavalière)

La représentation perspective s’applique aussi aux molécules possédant au moins une liaison carbone-

carbone. Les liaisons interatomiques sont toutes symbolisées dansle plan de représentationpar destraitspleins.

C C

décalée

C C

éclipsée

Fi gure 3. Représentati on perspect ive.

Page 4: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 4/18

4

Cettereprésentation est très utilisée pour les dérivés cycliques, notamment le cyclohexane (voir plus loin).

3. La représentation (ou projection) de Newman

La projection de Newmanest obtenue à partir del’unedes deux premières représentations.Les liaisons sontainsi projetées dans un plan perpendiculaire à la liaison carbone-carbone et passant par le milieu de celle-ci. Pour

cela, il convient de regarder la molécule dans la direction del’axe carbone-carbone.

Ainsi, le carbone frontal (celui situé à l’avant) est représenté sous forme de point. Le deuxième carbone

(celui situé à l’arrière) est caché par le carbone frontal ; il est symbolisé sous forme de cercle. Les liaisons carbone-

substituants sont toutes représentées par des traits pleins, lesquels sont situés l’un par rapport à l’autre à des

distances angulaires de 120°. Les traits décrivant les liaisons du carbone frontal partent du point, alors que ceux

symbolisant les liaisonsdu carbone arrière sont attachés aucercle.

A l’arrivée, la nature décalée ou éclipsée de la représentation de Cram ou de la représentation perspective

mère est conservéedans laprojection de Newmanfille.

c

c

Figure4 décalée

180°

a

 b

 b

d

e

d

e

 b

c

a

a d

éclipsée

d

e ca

 b

e

Cas des alcènes

La représentation de Newman des alcènes est très utilisée en chimie organiquepour prédire la stéréochimie

des produits de certaines réactions, notamment d’addition électrophile sur les doubles liaisons. A l’inverse, il est

possible de prévoir la géométrie d’un alcène partant de la projection de Newman du substrat organiquequi l’a

généré.

La géométrieplane des alcènes implique cependant la définition du plan de la représentation initiale de la

molécule. Dès lors, deux possibilités de schématisation desalcènesen projection de Newman se présentent, suivant

que la molécule est initialement figuréedansle plande la feuille ou dansun plan perpendiculaire à celui-ci. Dans les

deux exemples, les liaisons€ C(sp2

)-substituants sont deux par deuxéclipsées.Lamolécule est regardéedans la direction de l’axe de la double liaison C=C. Et, dans le premier cas, le

schéma est projeté sur le plan que l’on imagine perpendiculaire à la feuille et passant par le milieu de la double

liaison C=C. C’est un plan analoguequi sert aussi de plan de projection dans ledeuxième casde figure.

cb

Page 5: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 5/18

5

c

d

a

c

d

Figure5 

C C

a

b

90°

acd

b

c

bd

a

b

C

90°

C

Les deux projections de Newman de la figure 5 sont identiques. On passe de l’une à l’autre par une rotation

de 90° dans le plan de la feuille. La deuxième est toutefois préférable à la première, simplement pour des raisons de

commodité d’écriture des mécanismes réactionnels.

Il est bon de soulignerqu’avec les alcènes, la rotation de l’un ou l’autre des atomes de carbone sp2 autour de

la liaison C=C est interdite. Cela s’explique par la nature même de la double liaison qui ne permet pas un tel

mouvement de rotation.

Aussi, il est important de signaler qu’il peut arriver des cas où l’axe d’observation de l’alcène, ou de toute

autre molécule possédant une double liaison C(sp2)= Y , soit défini par une liaison simple C(sp2)-C(sp3), entre le

carbone hybridé sp2et son voisin tétraédrique(figure 6).

Les liaisons C(sp2)-a et C(sp2)= Y peuvent être représentées coplanaires à la liaison C(sp3)-d. Ce qui

donnerait la projection de Newman A de la figure 6. Comme elles peuvent aussi être représentées dans un plan

perpendiculaire au plan de représentation de la liaison C(sp3)-d (figure 6). Ce qui conduirait à la projection de

Newman B . Mais, pour des raisons de commodité d’écriture des mécanismes réactionnels, la projection de

NewmanB est préférable à celleA .

Figure 6 

12C C

 Y e

da

d

e

a

 YA

d

12C C

e

da

e

a

 Y

 Y 

Cas des allèneset des spirannes

Page 6: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 6/18

6

Les allènes et les spirannes à nombre pair de doubles liaisons adjacentes ou de cycles ne sont pas plans. Pour

ce qui concerne les allènes, du fait de l’état d’hybridation sp du ou des atomes de carbone nodaux, les liaisons•, et

par conséquent les doubles liaisons, sont dans des plans perpendiculaires. Il en découle que les deux pairs de

substituants sont aussi dans des plans orthogonaux (figure 7). C’est la même situation qu’on retrouve dans le cas des

spirannes à nombre pairs de cycles. Mais là, en revanche, l’explication est vite trouvée en représentant le dérivé

spirannique par une représentation de Cram.

Dans lesdeux cas de dérivés, les molécules sont toujours regardées dans la direction de l’axe horizontal, par

le côté ducarbone qui lie lessubstituants situés en avant et en arrière du plan de représentation. Le plan fictif de

projection est perpendiculaire à l’axe internucléaire et passe par l’atome de carbone du milieu.

Dans la représentation de Newman des allènes et des spirannes, le ou les carbones médians ne sont pas

symbolisés. Ils sont imaginés cachés entre le point et le cercle qui décrivent les carbones terminaux.

Fi gure 7. L es proj ections de N ewman d' un allène et d' une spiranne ànombre pair de doub les liai sons ou de cycles 

a

b

CCCC C C

a

b

c

d

123C C C

c

d

CCC

a

b

c

d

ab

c

d

al lène 

spiranne 

al lène 

Les représentations de Newman des allènes et des spirannes à nombre impair de doubles liaisons ou de

cyclessontmoins intéressantes. Ellessont semblablesà celle déjà établie pour les alcènes. A la seule différence que

les figures des carbones médians sont supposéescachées entre celles descarbonesfrontal et arrière. Cela vient dufait que ces dérivés sont plans, au même titre que les alcènes. On peut facilement le démontrer en essayant de

rendre compte de la formation des liaisons par la théorie de Lewis.

al lène spiranne 

Fi gure 8. Les proj ection s de N ewman d'u n allène et d' une spiranne ànombre impair de doub les li aisons ou de cycles 

abcd

a

b

CCCCCCC CC

c

d

a

bd

c

Page 7: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 7/18

7

Cas desBiphényles

A l’instar des allèneset des spirannes, les biphényles qui présentent quatresubstituants sur les sommetsortho 

ne sont pas plans. L’explication est qu’il existe une interaction stérique entre les groupements en regard. La

molécule n’est stable que dans la situation où les deux noyaux aromatiques sont portés par deux plansperpendiculaires. Dans cette position, la libre rotation autour du lien qui relieles deux noyaux est empêchée par la

présence des quatre substituants. Et c’est justement ce lien qui sert d’axe d’observation pour la représentation de

Newman. Mais la molécule est toujours regardée comme indiqué sur la figure 9, par le côté du sommet para du

noyau aromatiqueporté par le plan de la feuille. Le plan de projection est perpendiculaire au lien et passe par son

milieu.

Figure 9. Représentation de Newman d' un dérivébiphényle 

D

C B

A

A B

C

D

Il est important de souligner que dans la projection de Newman des biphényles, le point et le cercle ne

décrivent pas véritablement les carbones auxquels les substituants sont directement liés.

Comme nousl’aborderonsplusloin, les projections de Newman des allènes, des spiranneset des biphényles

sont particulièrement intéressantes. Elles permettent, en effet, de déterminer les configurations absolues des

molécules chirales deces troistypes de dérivés.

Cas du cyclohexane(voir plus loin)

4. Représentation (ou projection) de Fischer

En représentation de Ficher, les liaisons sont toutes symbolisées par des traits pleins. Elles sont éclipsées par

pair. Raison pour laquelle, pour unnombre total d’atomes de carbone de la chaîne principale au moins égal à quatre,

on part toujours de la forme éclipsée del’une ou l’autre destrois représentationsdéjà décrites.

L’opération consiste à représenter d’abord la plus longue chaîne carbonée par un trait vertical. Lesatomes

de carbone terminaux de la chaîne sont ensuite placés chacun à une extrémité avec leurs substituants, le carbone le

plus oxydé étant toujours orienté vers le haut. Les chaînes latérales et/ ou les groupes fonctionnels liés au même

carbone sp3 sont ensuite attachés de part et d’autre d’un trait qui est tracéperpendiculairement au premier. Ainsi, il

en résulte une succession de segments verticaux unis par des points de jonction, lesquels représentent chacun un

atome de carbone tétraédrique.

Page 8: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 8/18

8

Fig ure 10 . Représentati on de Ficher : cas oùdeux atomes de carbon es servent d e noeuds ( a  pl us oxydéque d) 

"Cram" éclipsée

a

e

c

rotationautourdela liaison C-Cpourmettreaàl'arrièredu plan

d

b c

a

c

d

e

rotationautourdela liaisonC-Cpourmettredà l'arrièreduplan

"Ficher"

a

d

 b

a

b

c

e

a

 b

d

projectiondansleplandela figure

Dans la représentation de Fischer, les traits horizontaux symbolisent des liaisons qui sont dirigées en avantdu plan de représentation. Si le nombre de points de jonction (c’est-à-dire, les représentants des carbones

tétraédriques médians) est supérieur ou égal à deux, les segments verticaux indiquent une alternance de liaisons

situées en arrière et dans le plan de représentation. Lepremier segment du bas et le dernier du haut décrivent ainsi

des liaisons toujours dirigées vers l’arrière du plan de la figure. Aussi, les atomes de carbones de la chaîne verticale

sont toujours numérotés de bas en haut. Cenumérotage n’a, cependant, rien à avoir avec celui qui est basé sur les

règles de la nomenclature systématique. I l sert seulement à identifier les carbones de la chaîne principale dans la

représentation de Fischer. Par conséquent, il y’a lieu de ne pas leprendre en considération lors de la dénomination

du composé

Dans le cas d’une molécule où un seul atome de carbonedoit servir de point de jonction à la représentation

de Fischer, il est plus commode de regarder la représentation de Cram mère sous l’angle formé par les deux liaisons

qui sont situées en avant et en arrière du plan de la feuille (bien queles autres cas de figure ne soient pas faux).

Celles-ci sont ainsi représentées horizontalement, tandis que les deux liaisons portées par le plan sont symbolisées

verticalement. Les deux segments verticaux représentent dans ce cas des liaisons qui sont dirigées vers l’arrière du

plan.

d

 b

c

a

 b

"Cram" "Ficher"

rotationautourdela liaisonC-apour fairepasserC-dàl'arrièreduplan

basculementdelaliaison

C-avers l'arrière

Fi gur e 11. Représentati on de Fi cher : cas où un seul atom e de carbon e sert de noeud 

a

d

c

a

 b c

d

d

a

c b

dc

a

 b"Cram" "Ficher"

basculementdelaliaisonC-avers l'arrière

d

a

c

 b

a

 bd

c

rotationautourdelaliaisonC-apour fairepasser C-dàl'avantduplanalorsqu'aumêmemomentbresteàl'avantmaisdécaléversladroite

a

 b

c

d

projectiondansleplandelafigure

projectiondansleplandelafigure

Page 9: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 9/18

9

La projection de Fischer permet d’accéder facilement aux trois premièresreprésentations. Elle est dans ce

cas regardée dans la direction du substituant le plus oxydé, à partir du deuxième carbone le plus bas. Mais la figure

qui en dérive directement est toujours une éclipsée. Si c’est la représentation décalée qui est recherchée, il suffit

ensuite de tourner l’un des atomes de carbone de la représentation éclipsée produite autour de l’axe d’observation.

Figure 12. Passage d'une représentat ion de Ficher àune projection de Newman, et inversement 

CHO

OHH

CH2OH

OHH

HO

CH2OH

H

CHO

H

OH

CH2OH

HO H

OHH

CHO

CH2OH

H

HO

OH

H

CHO

décaléedécaléeéclipsée

Il est important de souligner qu’une représentation de Fischer peut être tournée dans le plan de 180° mais

 jamais de 90°.

5. La représentation de Haworth(elle devra êtretraitéeencours de biochimie)

II. Stéréoisomérie (ou isomérie) conformationnelle

Les deux représentations décalée (ou alternée) et éclipsée de la figure 4 sont interconvertibles par une

rotation de 180° de l’un des atomes de carbone autour de la liaison centrale carbone-carbone. Elles représentent

chacune un isomère de la même molécule. Les deux isomères présentent la même formule semi-développée et la

même connectivité mais diffèrent par l’arrangement spatial des substituants portéspar les deux atomes de carbone.

Ils sont alors des stéréoisomères. Ce type d’isomérie relève donc de la stéréochimie. Cependant, dans le présent cas

où l’on passe d’une disposition spatiale relative à une autrepar simple rotation autour de laliaisoncarbone-carbone,

il s’agit plutôt d’une isomérie conformationnelle (ou isomérie de conformation). Les formes décalée et éclipsée de la

molécule décrite plus haut sont des conformères, rotamères, isomères conformationnels ou isomères de

conformation. Ainsi, on entend par conformation, l’arrangement rotationnel autour d’une ou plusieurs liaisons€

(pas toujours une liaison carbone-carbone) d’une molécule donnée. I l existedonc une multitude de conformations

possiblespour unemême molécule.

Chaque arrangement rotationnel est ainsi déterminé par un angle de rotation. Lequel angle est

communément appelé angle detorsion ou angle dièdre et souvent désignépar €. Il est toutefois à distinguer de

l’angle de liaison. Car il faut quatre atomes pour le définir, alors que pour l’angle de liaison, il en faut juste trois.

Dans l’exemple de la figure 13ci-après, l’angle de torsion ‚ est formé par lesdeux plans ayant en commun l’axe

central carbone-carbone, tandisque les angles desliaisons sont définis par les couples de segments (CC, Cd)et (CC,

Page 10: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 10/18

10

Ca). Chaqueplan est déterminépar un deuxième axe qui porte l’uneou l’autredes liaisonsC-aet C-d. L’angle de

torsion€ variedefaçon continue entre 0 et -360° ou 0 et +360°. Il est donc soit positif (la torsion va dans le sens

des aiguilles d’une montre) soit négatif (la torsion va dans le sens contraire des aiguilles d’une montre).Mais, dans la

réalité, la torsion obéit à la loi du hasard : il y’a autant de molécules dont l’angle€ estpositif que de molécules dont

l’angle€ estnégatif. Elle est provoquée par les collisions entre les molécules.

Fi gur e 13 . I lust rati on de l' angl e de tor sion par la représentati on de N ewman 

a

C

a

d

a

d

C

C

a

d

d

a

C

C

d

a

-90°

d

C

+90°

Dans la deuxième représentation de Newman de la figure 14, la valeur de l’angle de torsion‚ vaut, en valeur

absolue, 180°. Les deux méthyles du butane sont placés de part et d’autre d’un plan imaginaire qui serait

perpendiculaire au plan de la feuille et partagerait le cercle en deux parts égales. Ils sont alors antiparallèles. C’est

pourquoi, cette conformation est appelée anti . Les deux autres conformations décalées du butane ont

respectivement pour angle de torsion €= +60° et +300 ou -60, selon le sens de la rotation. Ils sont désignés sous

l’appellation gauche .

H3C

CH3

CH3

H

HH

H

CH3

CH3

H

H

H

H

CH3

H

H

H

H

"Gauche" "Anti" "Gauche"

Figure 14.

+60° +ou-180° +300°ou-60°

Page 11: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 11/18

11

 Toutefois, pour dénommer les conformères les plus caractéristiques, aussi bien les décalés que leséclipsés,

on asouvent recours à la nomenclature de Klyne et Prelog. Celle-ci est basée, à titre illustratif, sur le cadran qui

porte lesnoms des deux auteurs (figure 15).

+ap-ap

+sc-sc

+sp

+ac

-sp

-ac

+90°-90

+30°-30°

-150° +150

0

180

Fi gure 15. Le cadran de Kyn e et Prelog 

sc =syn-clinalsp=syn-périplanaireac=anti-clinalap=anti-périplanaire

Ainsi, en appliquant le cadrant de Klyne et Prelog au cercle de la représentation de Newman de la figure 13

pour laquelle€ = 0° (les deux plans sont superposés), le subsituant «d» directement lié à l’atome de carbone

frontal sevirade pilote. L’atome de carbone arrière est ensuite tourné dans le sens plus ou moins. Si, à l’issue de la

torsion, «a» reste dans la distribution spatiale délimitée par le demi-arc supérieur et le segment horizontal, le

conformère sera désigné par «syn ». Dans le cas contraire, c’est-à- dire, si «a»est dans l’aire géographique du bas, il

sera appelé «anti ». L’on distinguera ensuite les conformères syn et anti -périplanaires des conformères syn et anti -

clinals. Les premiers sont ainsi dénommés, lorsque «a» se situe dans la région angulaire qui va de 0à+30 et-30° oudans celle allant de +150 à -150°. Les deuxièmes sont appelés comme indiqué, pour les angles de torsion compris

entre +30 et +150° ou entre -30 et -150°. Chaque nom est ensuite précédé du signe (+) ou (-) en fonction dusens

de la torsion (la dénomination des conformères les plus caractéristiques du butane estdonnéeen exemple à la figure

16).

(+) (-)

Fig ure 16. Dénom in ation des isomères les plus caractéristi ques du but ane par la nom enclatu re de K lyne et Prelog 

H

+60°ou-300°

CH3

CH3

H

H

H

H

+ou-sc

+120ou-240°

CH3

CH3

H

H

H H

+ou-ac

CH3

  H  3  C

H

H

H

+240ou -120°

+ou-ac

+ou-180°

CH3

CH3

H

HH

H

+ou- ap

H3C

+300° ou -60°

CH3

H

H

H

H

+ou-sc

CH3H3C

H

H

H H

sp

Lechoix des deux substituants pilotes obéit néanmoins à des règles: 1°) le substituant porté par le carbone

frontal est toujours dirigé vers le haut ; 2°) si un atome de carbone porte deux substituants identiques, c’est le

Page 12: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 12/18

12

troisième qui servirade référence; si les trois substituants sont identiques, la conformation seradéfinie par l’angle

de torsion le plus petit (figure 17).

Figure 17 

"ap"

H

Cl

CH3H3C

Cl

H

"-sc"

OH

Cl

H

Cl

H

H

H H

"+sc"

CH3

Cl

ClCl

"sp"

OH

H

H H

HH3C

La différence d’énergie entre deux conformations est très faible. C’est pourquoi, contrairement aux autres

types d’isomères, les conformères sont non isolables dans les conditions ordinaires (25 °C ; 1 atm). On peut

cependant, par des méthodes spectroscopiques, prouver leur existence à très basse température(-100°C).

A la température ambiante, la molécule passe successivement, en un temps court, par toutes les

conformations possibles. Mais elleadopte préférentiellement les conformations décalées. Celles-ci sont plus basses

en énergie (elles sont moinsénergétiques), donc plus stablesque les conformations éclipsées.

La déstabilisation des conformations éclipsées est causée par les interactions répulsives d’ordre électronique

(répulsion faible des nuages électroniques des liaisons€ ou interaction dipolaire du fait de l’existence de moments

dipolaires qui induit des liaisons polarisées) et/ ou stérique (en fonction du volume spatial des groupements) des

groupes en éclipse. Ces interactions sont minimisées dans la conformation décalée, les liaisons portées par le mêmecarbone étant aussi éloignées que possible de celles de l’autre.

Cas de la conformérie de l’éthane

Dans le cas de l’éthane, toutes les conformations décalées ont la même énergie et pareillement pour les

conformations éclipsées. Ces dernières sont cependant beaucoup plus énergétiques, donc beaucoup moins stables,

du fait de l’existence de répulsions électroniques entre les paires de liaisons€

C-H. Chaque conformère est ainsidoté d’une énergie, laquellese traduit en énergie potientielle. Celle-ci estdépendante de l’angle de torsion.

Figure 18. Diagramme de l’énergi e potent iell e en fonction de € (J. Mc Murry, «Organic Chemistry », 4th Edition, p. 110.) 

Page 13: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 13/18

13

Dans le cas de la conformérie de l’éthane, la valeur approximative de l’énergie potentielle conformationnelle

est donnée par la fonction sinusoïdaleE = 1/ 2E 0 (1 + cos3 €  ) (avec E0, la barrière d’énergie), laquelle est quelque fois

appelée potentielle (de torsion) de Pitzer. Sur la figure 18est reproduit le diagramme de l’énergie potentielle E des

conformations les plus caractéristiques de l’éthane en fonction de l’angle de torsion. La barrière d’énergie E0 de

rotation de l’un des méthyles autour de la liaison C-C est expérimentalement prouvée égale à 12 kjmol-1. Elle

représente en fait l’énergie de transition, ou encore l’énergie d’activation, qui permet de passer d’une conformation

décalée à une autre. En effet, partant de la conformation éclipsée syn -périplanaire (€ = 0°), l’énergie potentielle

décroit avec l’angle de torsion jusqu’à celle de la conformation décalée +syn -clinal (€ = 60°). Pour atteindre la

conformation décalée +anti -périplanaire (€ = +180°) suivante, il faut d’abord passer par la conformation éclipsée

+anti -clinal (€= +120°). La différence d’énergie potentielle nécessaire au changement conformationnel étant alors

de 12 kjmol-1, le conformère +syn -clinal (€= 60°) doit posséder une quantité énergétique égale à cette valeur pour

pouvoir passer à la forme décalée +anti -périplanairesuivante(€ = +180°). Mais l’énergie propre des conformères

est seulement d’ordre cinétique et d’environ 2,5 kjmol-1. La lacune énergétique est comblée par un phénomène de

transfert d’énergie qui intervient lors des collisions intermoléculaires et des chocs contre les parois du récipient. Une

fois l’énergie requise pour franchir la barrière d’énergie acquise, la conversion de la forme décalée+syn-clinal (€ =

60°) à la forme décalée+anti-périplanaire (€= +180°) suivante s’opère facilement. Le passage par la conformation

éclipsée intermédiaire est, en effet, très précaire. Les conformères éclipsés étant très fourbes à température

ambiante, l’état transitionnel qui correspond à leur formation a une existence très courte de 10-12 seconde. Ainsi,

l’éthane n’a que trois conformères, à savoir les trois formes conformationnelles décalées. Ils sont cependant non

isolables et indistinguables.

Cas de la conformérie du butane

La stabilité des conformères du butane est fortement influencée par les groupes méthyles des carbones

axiaux. Occupant un plus grand volume spatial, par comparaison aux atomes d’hydrogène de l’éthane, les deux

méthyles interagissent mutuellement en se rapprochant l’un de l’autre. Ce qui a pour effet d’augmenter l’énergiepotentielle du système. Dans le cas du butane, l’énergie potentielle est liée à l’angle de torsion par la fonction

sinusoïdaleE = 1,7cos3 € + 0,5cos € .

Le conformère+anti -périplanaire (€= +180°)de lafigure16est le plus favorisé énergétiquement, les deux

méthyles s’éloignant l’un de l’autre au maximum. I l estplus stable que les deux conformèresgauche +syn -clinal (€=

+60° et +300). La différence d’énergie potentielle entre leconfomèreanti et les conformèresgauche est d’environ 3,8

kjmol-1 à la température ambiante. Ainsi, le butane est un mélange de 72% de conformères anti et de 28% de

conformèresgauche . Les pourcentages de population des deux variantes de conformères décalés sontdans le rapportd’équilibre K = %anti /%gauche = exp(-ƒG°/RT) (K est la constante de l’équilibre anti „ gauche ; ƒG°= ƒH° -

 TƒS°, l’entalphie libre; R = la constante des gaz parfaits et T la température en Kélvin). Cependant, dans certains

composés contenant à la fois unsubstituant polaireet unhétéroatome«Y », il arrive parfois que lesconformations

Page 14: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 14/18

14

gauche soient favoriséessur laconformationanti par l’existenced’uneliaison hydrogène intramoléculairedu type -O-

H…Y ; -N-H…Y ; -S-H…Y.

ONH2

H

H

H

H

H

O

NH2

H

HH

H

H

Plusstable moinsstable

anti gauche 

liaisonhydrogène

Stabi li sation du con formère gauche du 2-am ino éthanol par li ais on hydrogène 

De la même manière, tous les conformèreséclipsés du butane n’ont pas le même degré de stabilité. Sur la

figure 19, il apparaît une nettedifférence d’énergie potentielle entre le conformère syn -périplanaire (€ = 0°) et les

deux autres conformères éclipsés +anti -clinal (€ = +120° et +240°). Le premier est plusdéstabilisé que les deux

derniers à cause des interactions répulsives des méthylesqui se sont rapprochés au maximum. Dans le cas de la

deuxième variante de conformères éclipsés, la destabilisation est provoquée par les interactions stériques répulsivesentre les hydrogènes et les groupesméthyles en éclipse. Celles-ci sont plus fortes que l’interaction entre les deux

hydrogènesen vis-à-vis. Ainsi, la barrière d’énergie dans lebutane estplus hautequecelle dans l’éthane(19 kjmol-1

vs 12 kjmol-1).

Figure 19. Diagramme de l’énergie potent iell e en fonction de € (J. Mc Murry, «Organic Chemistry », 4th Edition, p. 112.) 

Cas de la conformérie descycloalcanes

Le cyclopropane est le seul cycloalcane qui soit plan. Il ne présente pas d’arrangements conformationnels.

Mais, comme dans l’éthane, le phénomène d’éclipse causé par les deux pairs d’atomes d’hydrogène (figure 20) est à

Page 15: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 15/18

15

l’origined’interactions répulsives. A cela sontvenuess’ajouter les contraintes angulaires(les anglesdes liaisons sont

de 60°). Le cyclopropane est ainsi très instable. Il subit facilement des réactions d’hydrogènation catalytique en

présence de palladium. Ce qui conduit à l’ouverture du cyclepar la formation du propane.

Figu re 20 

H

H

H

H

H

H

H

H

H

H

C

H

H

H2/ PdCH3CH2CH3

Le cyclobutane est beaucoup moins réactionnelque le cyclopropane. Il s’ouvre également par hydrogénation

catalytiqueen donnant le butane. A la différence du cyclopropane, il donne lieu au phénomène de conformérie, au

même titreque lecyclopentane et le cyclohexane. Ces dernierssont cependant beaucoup plus stables.Le cyclobutane et le cyclopentane sont tous les deux pliés. Ils se présentent chacun en ce qui le concerne

sous deux formes conformationnelles. Dans le cas du cyclobutane, par exemple, les deux conformères

s’interconvertissent très rapidement par pseudo-rotation. Ils ont la forme d’une aile avec un angle de pliurede 28°.

Les deux conformères du cyclopentane se présentent quant à elles sous frome d’enveloppe et de demi-chaise.

cyclopentane enveloppe  demi-chaise 

Figure 21. L es conformères du cyclobut ane et du cyclopentane en équi li bre conformati onnel .

cyclobutane 

28°

Le cyclohexane est aussi stable que l’hexane. I l existe sous denombreuses formes conformationnelles. Les

plus caractéristiques sont : la chaise, le bateau et le bateau croisé (encore appelé bateau flexible ou twist). La

conformation chaise est cependant de loin la plus stable. Elle représente à elletoute seule 99% de la population des

conformères. Il en existe deux sortes(figure 22).

Figur e 22 

bat eau cro isé1 chaise 1  chaise 2 

Les deux conformères chaisesdu cyclohexane sont interconvertibles à la température ambiante par passage

à la confomation bateau croisé. La constante d’équilibre entre les deux conformations est dépendante de la

température et donnée par la relation K = [chaise 2]/ [chaise 1] = exp(- •G°/ RT). Mais l’interconversion d’une forme

chaise à une autreest déjà très rapideà la température ambiante. Elle intervient environ 100.000 fois par seconde.

Page 16: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 16/18

16

L’équilibrage conformationnel peut toutefois être bloquéen refroidissant une solution de cyclohexane à très basse

température (-150 °C).

Dans les conformationschaises, les atomes de carbone 1 et 4 sont situés de part et d’autre du plan moyen.

Dès lors, comme on le voit facilement en projection de Newman (figure24), toutes les liaisons sont décalées les

unes par rapport à leurs voisines. Ce qui réduit fortement les interactions répulsives des atomes d’hydrogène. Ceux-ci sont liés à deux types de liaisons: axiales (au nombre de six) et équatoriales (au nombre de six). Lors du

basculement conformationnel, les liaisons axiales de l’une des chaises deviennent les liaisons équatoriales de l’autre,

et inversement.

Fig ure 23. L es projection s de N ewman des conform ations chaise et bateau 

bateau 

4

3

6

1

2

5

chaise 

1

24

5

3

6

3

6

5

4

1

2 3

5 14

51

26

Dans la conformation bateau, en revanche, les deux atomes de carbone sont situés hors du plan mais

pointent dans la même direction. Les liaisons des carbones 2et 3, ainsi que celles des carbones 5 et 6, sont éclipsées

(figure23). La conformation bateau est ainsi très déstabilisée par les interactions répulsives entre les hydrogènes en

éclipse de la base. Il existe une autre interaction déstabilisatrice appelée tension transannulaire. Elle résulte des

encombrements stériques au travers du cycle des atomes hydrogènes des carbones 1 et 4.

Le conformère en bateau n’est pas isolable. Il est en fait un état transitionnel de l’interconversion des deux

bateaux croisés. Son énergie potentielle est par conséquent plus élevée que celle des deux bateaux croisés (figure

24). Ces derniers existent cependant mais dans de faibles proportions. Ils sont très flexibles: dans un sens, ils

s’inversent en bateau et, dans un autre, ils donnent lieu à la chaise correspondante par passage à la demi-chaise.

Pareillement au bateau, les demi-chaises sont aussi des états transitionnels. Mais ils sont plus hauts en énergie

potentielle et, par conséquent, les plus instables.

bateau 

bateau croi sé2 bat eau croi sé1 

Figure 24 

demi-chaise 1  demi-chaise 2 

chaise 1 chaise 

Page 17: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 17/18

17

Dans le cas des cyclohexanesmonosubstitués, il existe une interaction stériquerépulsive appeléeinteraction

1,3-diaxiale.Ellese produit dans le conformère axial entre le groupe porté par le carbone 1et les hydrogènes axiaux

des positions3 et 5. Ellediminue fortement dans le conformère équatorial. Ainsi, l’équilibre conformationnel des

deux formes chaises (figure 25) est généralement déplacé vers le conformère équatorial. Si le substituant est très

volumineux, comme le tertiobutyle [(CH3)3C-], l’interconversion des deux formes chaises est complètementbloquée: seul le conformère équatorial subsiste(figure 25).

L’intensité de l’interaction 1,3-diaxiale est cependant dépendante de la dimension moléculaire. En effet, dans

leshétérocycles à six chaînons, par exemple, lastabilité relative des chaisesdépendde la longueur des liaisons C-Y

(Y = hétéroatome: O ; S; N ; etc.). En comparant, par exemple, le 1,3-dioxaneet le 1,3-dithiane au cyclohexane, les

longueurs des liaisons augmentent dans l’ordre C-O < C-C < C-S.Ainsi, l’interaction 1,3-diaxiale diminuant dans le

sens1,3-dioxane < cyclohexane < 1,3-dithiane, l’instabilité relative des trois chaisesdiminuedans le même ordre.

chaise 2 (con for mère équato ri al) chai se 1 (con form ère axi al)  chaise 2 chaise 1 

H

HX C(CH3)3

C(CH3)3XH

H

Figure 24. In teract ion 1,3-di axiale dans le cyclohexane et les hétérocyclesmonosubst it ués 

XH

H

O

O

XH

H

SS

XH

H

1,3-dithianemonosubstitué

ordre de st abili técroissante 

1,3-dioxanemonosubstitué cyclohexanemonosubstitué

Il importe néanmoins de souligner quele conformère axial peut être favorisé sur son homologueéquatorial. Cela

seproduit lorsqu’il y’a formation d’une liaison hydrogène intramoléculaire, entre un substituant polaire et un

hétéroatome appartenant aucycleou à ungroupe fonctionnel directement lié au cycle(figure 26).

Figure 26. Stabili sation par li aison hydrogène int ramoléculaire du conformère axial du 5-hydroxy-1,3-dioxane 

OH

O

O

Dans les cylcohexanes disubstitués en 1,2-, 1,3- et 1,4-, les substituants sont disposés l’un par rapport à

l’autre en cis ou en trans . Chaque conformère chaise se présente ainsi sous deux isomèrescis et trans . C’est le plan

moyen de la chaise qui sert dans ce cas de plan de référence. Sur la figure 23, le plan moyen est défini par les liaisons

Page 18: Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

7/14/2019 Chapitre 3B_La Stéréoisomérie Conformationnelle(Autosaved)

http://slidepdf.com/reader/full/chapitre-3bla-stereoisomerie-conformationnelleautosaved 18/18

18

C1-C2 et C5-C4. Sur la représentation de Newman de la même chaise, il est perpendiculaire au plan dereprésentation

et passe par les milieux des cercles. Il n’est ainsi représentable que par l’horizontale qui passe par les deux points

(figure 26). Mais la définition du plan moyen est fonction du choix des axes d’observation. Rien n’empêchait de le

définir par les liaisons C2-C3 et C6-C5.

Dans le cas d’une disubstitution 1,2-, par exemple, les isomères cis présentent deux conformères àsubstituants (1-axial, 2-équatorial) ou (1-équatorial, 2-axial). S’agissant des isomères trans , les conformères sont à

substituants (1-axial, 2-axial) ou (1-équatorial, 2-équatorial). La forme diéquatorialeest relativement la plus stable

des quatre conformères et la forme diaxiale lamoins stable. Entre lesdeux conformèrescis , c’est celui qui porterale

substituant le plus volumineuxen positionéquatoriale qui sera le plus stable.

Fi gur e 26. L es p rojecti ons de N ewman des isomères cis et trans de la conform ation chai se d' un cyclohex ane disubsti tuéen 1,2- 

A

A

A

A

CIS (1-ax, 2-éq)CIS (1-éq, 2-ax)

TRANS (1-ax, 2-ax) TRANS (1-éq, 2-éq)

L a tracedu 

plan moyen 

La tracedu 

plan moyen 

L a tracedu 

plan moyen L a tracedu 

plan moyen 

3

6

5

4 2

3

6

4

1

2

3

6

5

4

1

2

3

6

5

4 2

15

1

Par exemple, l’équilibre des deux chaises ducis -1-méthyl-2-(1-méthyléthyl)cyclohexane de la figure 27est déplacé à

gauche, vers le conformère qui porte l’isopropyl (1-méthyléthyl) en position équatoriale.

moinsstableplusstable

H3C

CH(CH3)2

CH(CH3)

2

CH3

Fi gure 27. Equ il ib re conformormati onnel ori entédes deux chaises du ci s-1-méthyl-2-(1-méthyléthyl)cyclohexane 

Comme une annonce au prochain paragraphe sur l’isomérieoptique, il est bon de signaler qu’il n’existe pas

de relation image spéculaire-objet entre les conformères d’une même molécule. Leur relation est par conséquentune relation de diastéréoisonmérie. Ainsi, l’on dira qu’ils sont diastréoisomères.