3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

13
Philippe Nika Professeur Univ. Franche-Comté_ Acoustique 60 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 Introduction L’impression de gène que produit un bruit dépend de nombreux facteurs, physiques et psycho- physiologiques, et pas seulement de son intensité physique . Les multiples causes de la gène imputée au bruit peuvent être: * l’intensité sonore, * le spectre du bruit, * sa durée, * la vitesse d’accroissement du niveau lors d’un bruit impulsionnel, Mais la gène sonore est due à bien d’autres causes : * physiologiques (état de santé, anxiété, fragilité, …), * psychologiques (état mental, intro ou extraversion, connaissance, acceptation ou non de l’activité professionnelle produisant ce bruit, …) * sociologique (milieu socio-culturel, relations affectives avec le voisinage, …). Il est donc évident qu’aucune échelle de niveau sonore objective, ne peut donner une indication de gène ressentie, dans ces conditions, il est très difficile de préciser le niveau de bruit admissible dans une situation d’exposition sonore donnée.

Transcript of 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Page 1: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

60

3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE

3.1 Introduction

L’impression de gène que produit un bruit dépend de nombreux facteurs, physiques et psycho-

physiologiques, et pas seulement de son intensité physique .

Les multiples causes de la gène imputée au bruit peuvent être:

* l’intensité sonore,

* le spectre du bruit,

* sa durée,

* la vitesse d’accroissement du niveau lors d’un bruit impulsionnel,

Mais la gène sonore est due à bien d’autres causes :

* physiologiques (état de santé, anxiété, fragilité, …),

* psychologiques (état mental, intro ou extraversion, connaissance, acceptation ou non de l’activité

professionnelle produisant ce bruit, …)

* sociologique (milieu socio-culturel, relations affectives avec le voisinage, …).

Il est donc évident qu’aucune échelle de niveau sonore objective, ne peut donner une indication de

gène ressentie, dans ces conditions, il est très difficile de préciser le niveau de bruit admissible

dans une situation d’exposition sonore donnée.

Page 2: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

61

3.2 L’oreille humaine

3.2.1 Données physiologiques

Comme le montre la figure 3.1, l’oreille est composée de trois parties :

- l’oreille externe (pavillon et conduit auditif) ;

- l’oreille moyenne (tympan et chaîne des osselets) ;

- l’oreille interne (appareil vestibulaire et la cochlée).

Figure 3.1 : L'oreille humaine.

L’oreille externe , constituée du lobe ou pavillon et du canal auditif, reçoit les ondes sonores qui

excitent le tympan ; organe de jonction avec l’oreille moyenne .

L’oreille moyenne possède trois petits os (chaîne des osselets) agissant comme des bielles et un

piston. Ces osselets transmettent les variations de pression acoustique vers l’oreille interne

qui est constituée de deux systèmes séparés : les canaux semi-circulaires pour l’équilibrage et la

cochlée ou limaçon, spirale osseuse qui contient l’organe de l’audition : l’organe de Corti. La

Page 3: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

62

cochlée en forme d’escargot, remplie de liquide et séparée longitudinalement en deux par la

membrane basilaire.

En réponse à un stimulus acoustique, le liquide dans le limaçon actionne la membrane basilaire

sur la surface supérieure de laquelle se trouvent 15000 à 20000 cellules ciliées. Celles-ci

enregistrent le mouvement et le transforment en impulsions nerveuses qui sont transmises au cerveau

par le nerf cochléaire.

Du point de vue de la sécurité, les dangers concernant l’oreille externe sont très faibles

Au niveau de l'oreille moyenne contenant la cavité tympanique de fréquence de résonance située

vers 1300 à 1500 Hz, les risques de déchirure du tympan ou de lésions de la chaîne des

osselets sont réels sous contraintes sonores élevées et prolongées.

Il existe au niveau de l’oreille moyenne des muscles commandés par le cerveau qui, par tension,

permettent d’atténuer l’intensité du bruit reçu sur certaines fréquences. Ce réflexe stapédien

d'autoprotection fait partie de cette “crispation” qui est créée lorsque l'on est, par exemple, devant

une presse à emboutir en action.

Lors de l'exposition à des bruits intenses transitoires, on observe une destruction

irréversible d’une partie des cellules ciliées sensorielles de l’oreille interne .

A cette destruction correspond une diminution progressive de l’acuité auditive. Plus il y a de cellules

détruites, moins le cerveau est capable de compenser cette perte d’information. Cette perte est

normalement plus importante aux fréquences voisines de 4 à 6 kHz auxquelles l’oreille est plus

sensible.

Les bruits impulsionnels ou transitoires et de chocs sont à cet égard les plus dangereux, de

par leur brièveté tels que tir, choc d’un marteau-pilon sur la pièce, qui occulte l'efficacité du réflexe

stapédien. On conçoit aisément qu'en l'absence d'information “d'avertissement” le réflexe stapédien

n'étant pas mis en œuvre, le risque de traumatisme et de surdité soit beaucoup plus grand.

Page 4: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

63

3.2.2 Les principales sensations sonores

La sensation auditive associée à la fréquence d’un son est la hauteur tonale ou tonie. Pour

l’échelle musicale, elle s’étend du grave à l’aigu. La tonie dépend principalement de la fréquence du

son, mais aussi de son intensité et de sa composition spectrale.

Le timbre ou richesse du son dépend des harmoniques accompagnant le fondamental, parfois

de leurs phases respectives.

Un son harmonique ou pur au sens physique (vibration sinusoïdale) n’est pas agréable à l’oreille. Au

contraire, un son riche en harmoniques (instruments de musique) paraît agréable et sa composition

spectrale caractérise le timbre de chaque instrument.

L’oreille apprécie aussi la vitesse de variation d’un bruit, elle est sensible aux transitoires et

les variations rapides de niveau perturbent plus ou moins la perception.

3.2.3 Les lois de l'audition : courbes isosoniques de Fletcher

Malgré son extraordinaire qualité, l'oreille humaine n’est pas un transducteur acoustique

linéaire et ses capacités sont limitées en amplitude et en fréquence.

Pour une personne jeune et otologiquement saine, le système auditif humain n'analyse qu'une partie

des bruits qui lui parvient dans la gamme de fréquence audible allant de 16 Hz à 20 kHz.

L'oreille est plus sensible aux sons entre 2 et 5 kHz pour l’être moins aux plus hautes et plus

basses fréquences dans des proportions différentes

- le seuil d'audition, fixé à 20 µPa à 1000 Hz (soit 0 dB) en onde plane harmonique se

diffusant librement ;

Page 5: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

64

- le seuil de douleur, situé au-dessus de 130 dB.

Bien qu'une augmentation de 6 dB représente un doublement du niveau de pression

acoustique, une augmentation d'environ 10 dB est nécessaire pour que, subjectivement, le

son nous paraisse deux fois plus fort

Le plus petit changement perceptible est d'environ 3 dB.

Courbes d'égales sensations sonores ou isosoniques de Fletcher et Munson pour des sons

harmoniques, et ce pour des niveaux de référence choisis à 1000 Hz.

La courbe de sensibilité de l'oreille est l'inverse des courbes de pression provoquant l'isosonie.

Figure 3.2 : Courbes d'isosonie ou d'égale intensité acoustique.

(d'après Fletcher et Munson)

Page 6: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

65

3.2.4 Réseau de pondérations physiologiques

Les sonomètres autorisent la mesure de la sensation sonore réellement ressentie par l'oreille en

fonction de la fréquence ils peuvent simuler les courbes isosoniques de Fletcher.

Il résulte de ceci quatre caractéristiques internationalement reconnues modifiant le signal de façon

inverse aux courbes isosoniques de Fletcher, appelées : pondérations “A”, “B”, “C” et “D”

- la pondération “A” sera utilisée pour les niveaux sonores inférieurs à 55 dB ;

- la pondération “B” sera utilisée pour les niveaux compris entre 44 et 85 dB ;

- la pondération “C” sera utilisée pour les niveaux supérieurs à 85 dB ;

- la pondération “D” sera réservée aux bruits d'avion.

Les mesures en pondération physiologiques seront notées en dB(A), dB(B), dB(C) et dB(D). Sans

pondération, la notation sera dB ou dB(lin) (linéaire).

Figure 3.3 : Filtres de pondérations physiologiques. (affaiblissement

sonore à appliquer au dB lin).

Page 7: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

66

3.2.5 Courbes NR d'évaluation du bruit (Noise Rating)

Les courbes isosoniques d'égales sensation d'intensité acoustique de Fletcher et Munson, ont été

établies pour des sons purs .

Un tracé du même genre a été refait avec des sons de bandes d'octave de l'analyse en fréquence

pour obtenir les courbes NR données par la recommandation ISO R 1996 [3] et la norme NF S

30-010 [4].

La fréquence de 1000 Hz est toujours la référence. On constate toujours une sensibilité de l'oreille

beaucoup plus faible aux basses fréquences qu'aux aiguës.

Utilisation des courbes NR :

- on fait l'analyse en fréquence du bruit par bandes d'octave ;

- on reporte le spectre trouvé sur le réseau de courbes NR ;

- on détermine la courbe immédiatement supérieure à tous les points relevés. Le numéro de

cette courbe est le résultat de l'évaluation sonore.

-

Page 8: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

67

Figure 3.4: exemple de report sur les courbes NR

N.B.

Si l'analyse a été effectuée par 1/3 d'octave, on ajoutera 5 dB (10 log 3 = 4,77 dB).

Page 9: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

68

Corrections à apporter à la suite de l'utilisation des courbes NR :

- Son pur aisément perceptible : + 5 dB ;

- Son transitoire ou intermittent et de chocs : + 5 dB ;

- Bruit limité aux heures de travail : - 5 dB ;

- Bruit pendant 25 % du temps de travail : - 5 dB ;

- 6 % : - 10 dB ;

- 1,5 % : - 15 dB ;

- 0,4 % : - 20 dB ;

- 0,1 % : - 25 dB ;

- Campagne très tranquille : + 5 dB ;

- Campagne : 0 dB ;

- Zone urbaine résidentielle : - 5 dB ;

- Zone urbaine industrielle : + 10 dB ;

- Zone industrielle : + 15 dB.

Page 10: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

69

3.3 Les effets du bruit

3.3.1 Les effets physiologiques du bruit

Le bruit a pour conséquence :

- un effet de masque .

De la même façon qu'une odeur en masque d'autres, une ambiance sonore va perturber la

transmission d’autres sons. Le bruit masquant peut être dans la zone de fréquence

conversationnelle (difficile de se départir du masque) ou, en général, plus haut (utilisation de

moyens de protection individuel comme les casques ou bouchons d'oreilles).

On notera que l'agressivité des sons purs et leur rareté font que de nombreuses alarmes les

utilisent pour mieux “se détacher” du bruit ambiant ;

- une difficulté de localisation spatiale.

Normalement, le processus de captation sonore est très peu directif dans de bonnes

conditions d'écoute ; et l'on n'a pas besoin de faire face à la source pour la découvrir.

Cette faculté disparaît progressivement quand le masque augmente.

- une adaptation auditive.

C'est une sorte d'accommodation à un bruit prolongé qui diminue la sensibilité auditive par une

modification essentiellement musculaire, au niveau de l'oreille moyenne. Elle ne présente pas de

caractère pathologique, et elle disparaît rapidement quand le bruit cesse ;

- une gêne pour réaliser un travail.

Par exemple, les exigences mentales d’un travail de plus en plus informatisé semblent rendre les

opérateurs plus sensibles à des bruits considérés habituellement comme non traumatisants

(inférieurs à 85 dB pondération A ) ;

- la fatigue auditive.

Page 11: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

70

Au point de vue physiologique, la fatigue auditive consiste essentiellement en une diminution

passagère de l’activité du récepteur de l’oreille après une diminution sonore (on récupère une

audition normale après une période plus ou moins longue de repos en ambiance calme) ;

3.3.2 Les effets pathologiques du bruit

On peut les classer en trois catégories :

- le traumatisme ;

- la surdité professionnelle ;

- les effets divers.

Le traumatisme acoustique

Le traumatisme acoustique est une lésion apportée par un phénomène physique extérieur

soudain, et de courte durée, sur le système auditif. Il possède un caractère transitoire , par

opposition à l'action de longue durée du bruit provocant la surdité. Le résultat sur le plan auditif reste

le même, à savoir perte de sensibilité partiellement ou sur toute l'étendue du spectre.

On fera la distinction entre le traumatisme qui est considéré comme accident du travail, alors

que la surdité est une maladie professionnelle

La surdité professionnelle

L’exposition à un bruit intense et prolongé provoque des pertes auditives qui se développent en

général en trois phases :

- on constate, d’abord, une perte d’audition de 30 à 40 dB, dans les fréquences comprises

entre 4000 et 6000 Hz. Cela ne provoque pas de gêne pour la conversation, et n’est donc

repéré que par l’examen audiométrique ;

- par la suite, la perte d’audition s’étend à des fréquences plus basses (3000, 2000 et

1000 Hz), et la personne ne comprend plus les paroles puis n’entend plus les voix, en

commençant par les voix aiguës. C’est une phase d’installation de la surdité ;

Page 12: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

71

- la troisième étape comporte une perte générale d’audition, atteignant 100 à 110 dB. Il s’agit

d’une phase d’infirmité.

La surdité professionnelle est la seconde maladie professionnelle en nombre de cas reconnus (1

maladie professionnelle sur 4 en France) et en coût financier : les surdités professionnelles

représentent 50 % des indemnisations de maladies professionnelles.

(Ce coût est répercuté sur les cotisations de l'entreprise et représente en moyenne 100 000 euros

par surdité reconnue professionnelle. )

Les effets divers du bruit

Les bruits ont également d’autres effets. Ils aggravent les situations de stress : manifestations

cardio-vasculaires, digestives, glycémiques, sur le sommeil (augmentation de la fatigue

générale, fatigue nerveuse), sur les comportements (agressivité, anxiété), sur le système oculaire

(dilatation de la pupille, rétrécissement du champ de vision), sur le métabolisme basal, etc … .

Remarque

Quand on traite du bruit dans un souci sécuritaire, on ne doit pas ignorer les effets des infrasons et

notamment des ultrasons utilisés, par exemple, en soudage dans l’industrie du plastique. Des

études en cours montrent que des expositions prolongées dans un champ intensif d’ultrasons

peuvent altérer gravement les cellules nerveuses du cerveau et de la moelle épinière . La

protection auditive est souvent inutile car ces vibrations sont transmises par conductibilité

osseuse.

Dans le domaine des infrasons, les risques sont aussi très grands . En effet, cette gamme

englobe des fréquences émises par de nombreuses partie du corps (par exemple, le cerveau a une

sensibilité particulière autour de 7 Hz). Si une source extérieure les fait vibrer à leur propre

fréquence de résonance, leur mouvement risque d’être dangereusement amplifié, et là encore des

Page 13: 3. ACOUSTIQUE PHYSIOLOGIQUE ET PSYCHOACOUSTIQUE 3.1 ...

Philippe Nika Professeur Univ. Franche-Comté_ Acoustique

72

expositions répétées et prolongées dans un champ intensif peuvent être à l’origine d’hémorragies

internes.