Spécificités de...

Post on 09-Apr-2018

219 views 2 download

Transcript of Spécificités de...

V. TRAN

(Roscoff avril 2014)

Spécificités de l’interaction protéines-sucres en

modélisation moléculaire

Unité Fonctionnalité et Ingénierie des Protéines

ATELIER GlycoOuest - Interactions Sucres-Protéines

Unité Fonctionnalité et Ingénierie des Protéines

Spécificités des sucres(nomenclature, terminologie) partager un langage commun avec les chimistes des sucres

Comparaison protéines-sucres2 communautés : des terminologies identiques mais des sens différents pour éviter les ‘bourdes’ initiales …

Spécificités de l’interactionpour bien démarrer la modélisation, des ébauches de stratégie…

biopolymères: suite de monomères

(règles de construction selon les types de polymères)

Organisation des biopolymères: Structure et fonction inséparables

Notions (alphabet,

règles de constructions (‘mécano’),

séquences)

caractéristiques des glucides :* très grande richesse de l’alphabet

* Plusieurs possibilités de liaisons osidiques

Rappels

Comparaison protéines-sucres, les acteurs de l’interaction

Pourquoi cette richesse?

Liaisons peptidiques et osidiques; les différences topologiques?

‘Simplicité fonctionnelle’ des sucres

Glucides : groupements fonctionnels les plus courants ?

avec la liaison C-OH

avec la liaison C=O

Molécules organiques avec des atomes de carbone porteurs

- fonction aldéhyde ou cétone

- et fonctions alcool (primaire ou secondaire) sur (tous) les autres

dérivés polyhydroxylés (polyols) d’aldéhydes ou de cétones.

Composition et définition des oses

* ‘unités’ de base

* en général : de 3 à 7 atomes de carbone

- au moins 2 fonctions alcool (dont une fonction alcool primaire)

- une fonction réductrice carbonylée : - aldéhyde (-CHO) aldose

- cétone (>C=O) cétose

les 2 plus petits (3 atomes de carbone)

Glycéraldéhyde(aldotriose)

Dihydroxyacétone(cétotriose)

Configuration et isomérie des oses

pour le plus petit aldose (aldotriose) :

1 carbone avec 4 substituants différents

*1

2

3

carbone chiral représentation spatiale nécessaire: stéréoisomérie (3D)

représentation du ‘coin volant’ (‘flying wedge’)représentation de Cram (UCLA, 1953)

Représentation spatiale (3D) de l’aldotriose : 2 énantiomères *

seule différence marquante : propriété physique du pouvoir rotatoiredéviation la lumière polarisée à droite (D-dextrogyre) ou à gauche (L-lévogyre)

Nomenclature des énantiomères (ou configuration absolue)

* configuration absolue sans rapport avec le signe de la rotation optique

* se déduit par filiation chimique avec une structure de configuration connue

nomenclature des molécules chirales : règle de Cahn-Ingold-Prelog (C.I.P)

désignation sans ambiguïté tous les stéréo-isomères car chaque carbone asymétrique (chaque élément de chiralité) aura sa propre distinction (R ou S).

formes linéaires : projection de Fischer

par rapport au ‘coin volant’, rotation de 90° suivant l’axe vertical dans le plan

axe d’élongation de la chaîne vertical

carbone en haut (en arrière du plan de la feuille) : numéro 1* au groupe fonctionnel de plus haut état d’oxydation

1

3

carbone en bas (en arrière du plan de la feuille) : dernier numéro

substituants latéraux (en avant du plan de la feuille)* localisation (gauche/droite) : information sur la configuration absolue

Les oses (séries dérivées de l’aldotriose) 2 points de départ:

D-glycéraldéhyde (D-aldotriose)

L-glycéraldéhyde (L-aldotriose)

R (D)

* les produits dérivés du D-aldotriose gardent le symbole D par filiation

* mais peuvent perdre leur caractéristique dextrogyre

S (L)

pour les glycéraldéhydes et dérivés (représentation Fischer):

* Le symbole D correspond à –OH à droite dans la (n-1)ème position

* le symbole L correspond à –OH à gauche dans la (n-1)ème position

pour les glycéraldéhydes :

* correspondance D (dextrogyre, déviation la lumière polarisée à droite)et configuration absolue R du carbone asymétrique fortuite !

Règles applicables à la série L

Représentation de Fischer pour les oses plus longs

la chaîne carbonée (verticale), devenant plus longue, elle sera vue de façon convexe (cf. règles de C.I.P.)

1

2

3

4

chaque C en plus : insertion juste après le groupe carbonyle

3

2

1exemple

1 carbone asymétrique(2 stéréoisomères)

2 carbones asymétriques(4 stéréoisomères)

**

*

Les 2 derniers carbones conservent la filiation D

aldotétrose

(symbole D/L correspond à –OH à droite/gauche dans la (n-1)ème position)

D-érythrose

Filiation des aldoses (série D)

D-glycéraldéhyde (D-aldotriose)

D-thréose

D-ribose D-arabinose D-xyloseD-lyxose

D-gulose

D-idose

D-galactose

D-talose

D-mannose

D-glucose

D-altrose

D-allose

D-aldot

étr

ose

D-aldop

ent

ose

D-aldoh

exos

e

* forme cyclique par réaction interne d’hémi-acétalisation

Formes cycliques des oses

réactivité du carbonyle à proximité d’hydroxyles * 2 types présents dans les oses * mais hydroxyles liés entre eux cyclisation

groupe carbonyle (C1)

groupes alcool secondaire(C2,C3,C4,C5)

alcool primaire (C6) mais bien moins favorable ( cycles à 7 carbones très rares)

critère proximité: C4,C5

Tautomérie (formes linéaire et cyclique)

Exemple d’hémi-acétalisation C5-C1 d’un aldohexose

basculement90°

1

5

2

4

3

pour cycliser, tourner autour de C4-C5 pour présenter l’OH secondaire face au carbonyle

D-glucopyranose (pyrane)

1

5

Fischer

Tollens

Hémi-acétalisation C5-C1 d’un aldohexose (illustration 3D)

basculement90°

‘courbure’

pour cycliser, tourner autour de C4-C5 pour présenter l’OH secondaire à proximité du carbonyle

1

Autre exemple: hémi-acétalisation C4-C1 d’un aldohexose

Basculement90°

pour cycliser, tourner autour de C3-C4 pour présenter l’OH secondaire face au carbonyle D-glucofuranose

(furane)

1

4

Fischer

Tollens

Hémi-acétalisations C5-C1 et C4-C1 d’un aldohexose 2 possibilités

dans les 2 cas, C1 devient asymétrique (par perte de la double liaison)

2 stéréoisomères : C1 carbone anomérique, anomères α et β(les formes α et β ne sont pas énantiomères mais épimères)

l’interconversion des formes α et β passe par la forme linéaire

à pH 7, formes cycliques prépondérantes (99%) dont 2/3 forme βet cycle à 6 prépondérant / cycle à 5

à pH basique, forme linéaire prépondérante (99%)

Représentation de Haworth pour les cycles

* représentations de Fischer (ou Tollens) inadaptées (?) pour les cycles

* a priori, le plan de la feuille aurait été une bonne solution pour les cycles…

mais difficile de voir ce qui est dessus et dessous de la feuille

(or essentiel pour représenter les substituants des C asymétriques)

* représentation semi-perspective perpendiculaire au plan de la feuille

Conventions:

* liaisons devant le plan moyen représentées par des traits gras* liaisons derrière le plan moyen représentées par des traits fins* carbone C1 (le plus oxydé) est à l’extrême droite

représentation de Haworth: (assez approche de conformation 3D)

repérage facile groupements hydroxyles en dessus/dessous du plan du cycle

1

Relations Fischer – Tollens - Haworth pour les cycles

hémi-acétalisation C5-C1 d’un aldohexose

D-glucose (linéaire) D-glucopyranose (cyclique)

TollensHaworth

α D-glucopyranose β D-glucopyranose

1

1

1

C1 (droite)

liaisons devant

liaisons derrière

C1 anomérie (α/β) C5 série D (droite en Fischer ou Tollens)

(D) (D)5 5

*

Fischer

Représentation de Haworth pour les cycles

Variété des configurations cycliques (à 6) des monosaccharides

4 molécules : hémi-acétalisation d’un cétohexose (C6-C2)

Au total: 4 x 16 molécules… à vous de jouer!

4 molécules : hémi-acétalisation d’un aldopentose (C5-C1)8 molécules : hémi-acétalisation d’un aldohexose (C5-C1)

Variété des configurations des cycles (à 5) des monosaccharides

Représentation de Haworth pour les cycles

cycles à 5 atomes

(représentation

a-D uniquement)

Manque:

formes α-L, β-D, β -L

Au total 4x 20 molécules à vous de jouer!

8 molécules : hémi-acétalisation d’un aldohexose (C4-C1)4 molécules : hémi-acétalisation d’un aldopentose (C4-C1)

4 molécules : hémi-acétalisation d’un cétohexose (C5-C2)2 molécules : hémi-acétalisation d’un cétopentose (C5-C2)

2 molécules : hémi-acétalisation d’un aldotetrose (C4-C1)

En cas de doutes…

Variabilité des configurations cycliques (5, 6 atomes) de monosaccharides

Résumé : représentation de Haworth pour les cycles

particularité du "mécano" des sucres

Très grande variabilité des configurations cycliques de départ :

144 ‘unités’ de départ

* Toutes ne sont pas naturelles…

* mais on ne parle (pour l’instant) que de configurations (topologiques) !

* une configuration peut avoir plusieurs conformations (géométries spatiales)…

Sources de variabilité configurationnelle:

* carbones asymétriques* conditions de cyclisation (anomérie α et β)

Propriété physique ‘anormale’ : mutarotation

* équilibres formes linéaires et cycliques* Entre formes cycliques pyranose, furanose* équilibre entre les formes et …

Cas d’un hexose : D glucose

Protéines : 20 acides aminés

Variabilité configurationnelle : comparaison proteines / glucidesles unites de base: acides aminés et oses

Glucides : oses (monosaccharides)- formes linéaires- formes cycliques

cycles à 5 (furanose)cycles à 6 (pyranose)

- très grande variabilité des monomères(essentiellement due aux carbones asymétriques)

carbone central () portant :- groupement amine (NH2)- groupement acide (acide carboxylique)- portion variable (radical) ou chaîne latérale

si R ≠ H, le carbone est asymétrique (S selon C.I.P. Cahn-Ingold-Prelog)

tous les AA naturels sont en configuration L

Conformation 3D des oses (pour les cycles à 6 atomes)

Conversion 3D de Haworth cycles à 5 et 6 plans ?

Impossible !! (angle de valence idéal : 109.47°)

déformation dans l’espace

Plusieurs conformations stables (minima):les formes chaise et bateau (mais moins stables)(disposition cyclohexane mais un des C remplacé par un O)

Cas des cycles pyranose

positions axiale et équatoriale uniquement dans le cas de la conformation ‘chaise’

forme 4C1 (O5 en haut du plan): tous les substituants en position équatorialeforme 1C4 (O5 en bas du plan): tous les substituants en position axiale

En présence de substitutions sur un ou plusieurs atomes C (cas desmonosaccharides) ces géométries vont être différenciées :

remplacement d’un hydrogène par un groupe hydroxyleen position axiale (a)

ou en position équatoriale (e).

(a)

(e)

Cas du -D-glucose:

(formes 4C1

et 1C4 ?)

Pour des raisons d’encombrements stériques, le β-D-glucose est nettementplus stable en conformation 4C1.

(e)

(e)

(e)

(e)

(a)

(a)(a)

(a)

Conformation 3D des oses (pour les cycles à 6 atomes)

Autre interprétation des formes cycliques (cas des formes pyranoses):

- cycle dérivé du cyclohexane(asymétrie ponctuelle liée à l’oxygène intra-cyclique)

‘plateau’ essentiellement hydrophobe

- des groupements hydroxyles plus ou moins au pourtour(la majorité dans le plan du ‘plateau’)

pour les cycles à 6 atomes (cyclohexane):

* formes ‘chaise’ ≈ minima avec puits énergétiques prononcés

caractéristiques dièdres intra-cycliques (alternance +/- 60°)

* pour passer d’une forme chaise à une autre

↔ distorsions de certains paramètres internes (angles de valence)

* passage par états intermédiaires (formes flexibles dont ‘twist’ et ‘bateau’)

infinité de solutions sans variations énergétiques

contrôle par un paramètre : phase de pseudo-rotation (360°)

* entre formes ‘chaise’ et ‘flexibles’: déformations continues

Contrôle analytique des géométries : paramètres de puckering

variabilité conformationnelle des cycles

variabilité conformationnelle :angles dièdres intra-cycliques des formes pyranoses

JE. Kilpatrick, KS. Pitzer & R. Pitzer. J. Am. Chem. Soc. 69, 2483 (1947).

A General Definition of Ring Puckering Coordinates, D. Cremer and J.A. Pople, J. Am. Chem. Soc. 97, 1354-1358 (1975).RING - A Coordinate Transformation Program for Evaluating the Degree and Type of Puckering of a Ring Compound, D. Cremer, Quantum Chemical Program Exchange, No. 288, 1-8 (1975).

Déformation des cycles. Expression analytique (J. Pople, D. Cremer)

http://smu.edu/catco/ring-puckering.html

Figure 1. Pseudorotational cycle of tetrahydrofurane (O is atom #1; clockwise numbering around the ring). According to the rules for ring conformations (see below) the Cs-symmetrical envelope form with the O atom at the apex of the ring is located at φ2 = 0°. The C2-symmetrical twist form of tetrahydrofurane is located at φ2 = 90°. 10 envelope (E) and 10 twist (T)

Applicable à tous les cycles (avec ou sans symétrie)

Intérêt pour les acides nucléiques : formes ribofuranose et dérivés…

Déformation des cycles (pour les cycles à 6 atomes)

Jeu de coordonnées polaires:

* phase pseudo-rotation (Φ)* angle déformation (θ) pour passer entre les 2 formes ‘chaise’ (0 ≤ θ ≤ π)* Q : déviation moyenne des positions atomiques hors du plan

Géométries décrites

- chaise (chair) C- bateau (boat) B- twist (skew) S- enveloppe (envelop, sofa, half-boat) E- demi-chaise (half-chair) H

Déformation des cycles (pour les cycles à 6 atomes)

Représentation globale

http://smu.edu/catco/ring-puckering.html

http://www.ric.hi-ho.ne.jp/asfushi/

Mesure de la déformation des cycles ?

méthode ‘moderne’ : internet

méthode ‘pédagogique’ : programmation perso…RING - A Coordinate Transformation Program for Evaluating the Degree and Type of Puckering of a Ring Compound, D. Cremer, Quantum Chemical Program Exchange, No. 288, 1-8 (1975).

Autre degré de liberté conformationnelle : hydroxyles primaires

plus généralement : présence d’une liaison C-C simple hors des cycles: (3 positions décalées –cf. barrière de rotation éthane)

Excessivement important dans la modélisation des monosaccharides

orientations manuelles des groupes hydroxyles toujours nécessaires et fortementrecommandées car :

* les contraintes de cyclisation ne leurs sont pas applicables

* la directivité des LH qui découlent des groupements hydroxyle nécessite la plusgrande attention.

Seul cas de réelle flexibilité conformationnelle

.

* Rotation autour liaison C5-C6 avec 3 positions privilégiées(substituants décalés)

* La propagation hors du cycle des liaisons C5-C6 et C6-O6 peut sefaire en référence, soit à l’atome O5 soit à l’atome C4.

* La nomenclature adoptée tient compte des deux angles dièdresO5-C5-C6-O6 et C4-C5-C6-O6.

Autre degré de liberté conformationnelle : hydroxyles primaires

trois conformations possibles avec valeurs suivantes :

[O5-C5-C6-O6]= -60° (forme gauche – ou g)[C4-C5-C6-O6]= +60° (forme gauche + ou g): conformation gg

[O5-C5-C6-O6]= 180° (forme trans ou t)[C4-C5-C6-O6]= -60° (forme gauche - ou g): conformation tg

[O5-C5-C6-O6]= +60° (forme gauche + ou g)[C4-C5-C6-O6]= 180° (forme trans ou t) : conformation gt

En recherche systématique, 3 conformations à tester !!!

Autre degré de liberté conformationnelle : hydroxyles primaires

GT

GG

TG

Monosaccharides : - hydroxyles primaires très flexibles - déformation faible des cycles (plutôt invariants)

mais des ordres de grandeurs énergétiques très différents

Variabilité conformationnelle : comparaison proteines / glucidesles unités de base: acides aminés et oses

Acides aminés: espace conformationnel de la chaîne latérale (rotamères)

cas du tryptophane

possibilités de rotation de 2 angles dièdres

- hydroxyles primaires très flexibles (et faible coût énergétique)à explorer (en relation avec la directivité de la liaison hydrogène)

- déformation des cycles (plutôt l’exception)formes ‘chaise’ assez stable’

les causes de déformations :

groupe(s) substituant(s) volumineux

cas limite de cyclisation interne

contexte de fortes contraintes externes

(site actif catalytique: déformation nécessaire à l’attaque nucléophile)

sinon…

problème de champs de forces

artéfact du minimiseur (typique interactions protéine sucre)

↔ aussi bien d’un point de vue statique que dynamique, vérifier les raisons ‘plausibles’ d’une déformation de cycle (sinon, probablement ‘bug’ informatique)

Variabilité conformationnelle des monosaccharides

Spécificité des sucres: liaison osidique (ou glycosidique)

Condensation d’oses par formation d’une liaison éther

entre

- hydroxyle réducteur : OH semi acétalique en C1 (aldose) et C2 (cétose) d’un ose

(réactivité de l’hydroxyle anomérique)

- autre hydroxyle d’un autre ose (y compris OH semi acétalique)

Formation des biopolymères : (alphabet, règles de constructions (‘mécano’), séquences)

Sens de propagation primordial : bout réducteur(possibilité de continuer la condensation ou arrêt)

Possibilité de ramification

Typologie des liaisons glycosidiques

OH semi-acétalique + alcool prim. dimère réducteur (1 OH semi-acétalique libre)

OH semi-acétalique + alcool sec. dimère réducteur (1 OH semi-acélique libre)

2 x (OH semi-acétalique ) dimère non-réducteur (OH semi-acétalique non libre)

le cycle donnant l’OH semi-acétalique fige son anomérie (α ou β)

nomenclature et convention

critères : - noms des oses (celui avec fonction semi-acétalique à gauche + osyl)- anomérie et numéro de l’ose fournissant la fonction semi-acétalique - numéro de l’atome de l’autre ose en liaison- terminaison : ose si l’oligomère reste réducteur

oside si l’oligomère est non réducteur

Glucopyranosyl glucopyran

α

(α16) oseexemple de la liaison en haut :

****

6

exemples juste en dessous (vert)

4

Glucopyranosyl(α1 α1)glucopyranosideexemple tout en bas

1

Glucopyranosyl(α14)glucopyranose

La plupart du temps: 2 angles dièdres caractérisent la liaison…

(φ,ψ) ou (φ,ψ) ?

Propagation polymérique: liaison peptidique vs liaison osidique

Rappel liaison peptidique: typologie différente (pas de ramification)

entre le groupement acide (COOH) d'un acide aminé et le groupement amine (NH2) d‘un autre acide aminé.

liaison osidique: ramification possible (plusieurs hydroxyles), arrêt possible

liaison peptidique : angle de torsion (autour C-N)

chaque AA : deux angles de torsion: (autour N-C ) et (autour C-C)

N-terC-ter

plan rigide intégrant 6 atomes dont les deux atomes impliqués dans la liaison

Cas le plus fréquent : = 180° (conformation trans)

Cas beaucoup plus rare : = 0° (conformation cis)

Cas de liaison peptidique… angles de torsion essentiels

Variabilité de propagation 3D: liaison peptidique vs liaison osidique

variabilité conformationnelle intra-unité: spécifique à chaque acide aminé

Les angles de torsion et sont reportés sur une table

Diagramme de Ramachandran (1963)

Toutes les valeurs de φ et ψ ne sont pas possibles car certaines conduisent à des conflits stériques entre atomes trop proches (énergétiquement très défavorables)

Contacts possibles entre atomes des chaînes latérales

3 zones énergétiquement favorables

En reportant les points correspondant à chaque couple (,), on ne devrait pas retrouver de points hors de ces zones… ??

exceptions: Glycine et Proline

Cas de liaison peptidique (suite)…

Cas de liaison osidiques: angles de torsion essentiels… (φ et ψ) inter-unités

* cohérent avec la rigidité des cycles de base

*degrés de liberté les plus importants pour la propagation de la chaîne

-hors contexte protéique (structures régulières des polysaccharides)

-en contexte protéique (ex: remplissage d’une crevasse catalytique)

Variabilité de propagation 3D: liaison peptidique vs liaison osidique

exemple du cellulose

Flexibilité intra-unité(φ et ψ) liaison peptidique

Flexibilité inter-unités(φ et ψ) liaison osidique

Cas de liaison osidiques: angles de torsion essentiels… (φ et ψ) inter-unités

Représentations 2D (φ|ψ) (similaire à la carte de Ramachandran)

selon: les cycles de part et d’autre

les conformations des cycles impliqués

la liaison (anomérie α/β; mode de fixation (14, etc…)

stratégies de prise en compte des autres degrés de liberté

(cartes rigides, semi-relaxées, relaxées…)

extension possible carte 3D (φ|ψ|ω)

Variabilité de propagation 3D: liaison peptidique vs liaison osidique

Exemple de cartes (φ et ψ) semi-relaxées liaison osidique

4C1Glucopyranose (α14) glucopyranose 4C

1

Effets de la déformation second cycle (2 formes skew)formes et position des minima

G. ANDRE, & al. " - Biopolymers, 39, 737-751 (1996)

Interprétation des cartes (φ et ψ) liaison osidique

Interprétation à moduler selon la ‘finesse’ des cartes (φ et ψ)

approche oligomère

* garde-fou des zones interdites

(si critère de stabilité des conformations des cycles accepté)

(interprétation assez similaire aux cartes de Ramachandran)

* points de départ des minimisations énergétiques

surtout dans un contexte très contraint :

plusieurs hypothèses de conformation liaison,

réorientations manuelles des hydroxyles

minimisation

vérification que les géométries finales sont dans les zones permises…

approche polymère

* tirages (aléatoire ou régulier) de couples de points (φ et ψ) pour mimer lapropagation régulière ou statistique de polysaccharides

Les polysaccharides (structures régulières d’homopolysaccharides)

un faible nombre de schémas possibles

A - Structure alternée

D - Structure ramifiée complexe

B - Structure en blocs

C - Structure linéaire complexe

E - Structure interrompue branchée

Les polysaccharides (classement hétéropolysaccharides)

A/ hélice simple (cellulose) : 2 résidus par tour

B/ simple hélice (amylose) : 6 résidus par tour

C/ double hélice (amylose) : 6 résidus par tour,

organisation différente des chaînes

- effet hydrophobe

les radicaux hydrophobes se regroupent à l’intérieur de la protéines (maximisation des contacts vdW pour minimiser leurs interactions avec l’eau)Inversement, radicaux hydrophiles à la périphérie (contact avec l'eau)

- liaisons ioniques

entre radicaux ioniques positifs et négatifs

- liaisons hydrogène

existent aussi au sein de la protéine(intra struct. second. et inter segments)

- ponts disulfure

Dans les protéines: les interactions importantes

liaison covalente entre 2 résidus cystéines à proximité spatiale (aucun lien avec la disposition dans la chaîne)

Spécificités de l’interaction protéine-sucre

Dans l’interaction protéine/sucre: 2 termes énergétiques importants

liaisons hydrogène

Nature des cycles osidiques

- cycle dérivé du cyclohexane(asymétrie ponctuelle liée à l’oxygène intra-cyclique)

‘plateau’ essentiellement hydrophobe

- des groupements hydroxyles (+/-) au pourtour(la majorité dans le plan du ‘plateau’)

dérivés polyhydroxylés (polyols) d’aldéhydes ou de cétones

contacts hydrophobes (dont ‘stacking’ avec résidus aromatiques)

Résidus à chaine latérale aromatique et hydrophobe

‘stacking’

structuration protéine et arrimage des ligands

* extension aux cycles osidiques sans noyau aromatique.

énergies de stacking plus faibles mais significatives ( LH forte),

dépendantes des substituants axiaux sur ces cycles osidiques

Rôle: interaction fréquente dans les sites d’arrimages protéine-glucide

Bonne prise en compte du phénomène de stacking avec les lois de mécaniquemoléculaire malgré son caractère électronique.

Liaison Hydrogène (LH)

formée entre:un donneur avec H lié à un élément fortement électronégatif (O, N, F)un accepteur porteur d’un doublet électronique libre (base de Lewis).

Origine: forte électronégativité de l’oxygène forte polarisation des liaisons C–O et O–H présence de charges partielles sur O(δ–) et H (δ+)

Groupements concernés: –OH, –NH (amines) mais aussi l’eau (H–OH)

Energie bien moins forte qu’une liaison covalente mais significative

~ 4 à 5 kcal.mol-1 pour une LH forte (distance O…O ~2.8A)

Difficultés d’évaluations:

- difficilement dissociables entre elles (notion de réseaux)- difficilement quantifiables car large plage de distances- seul terme énergétique anisotrope : multiplicité et directivité

Automatisation quasi impossible (directivité et artéfacts de minimisation) : tests plusieurs orientations et cohérence du réseau LH

Spécificités de l’interaction protéine-sucre

* Rechercher systématiquement les résidus susceptibles de faire un stacking

* Identifier les LH directs ou via le pontage d’une molécule d’eau

pdb :4C4C (CELLULOSE 1,4-BETA-CELLOBIOSIDASE) Trichoderma reesei

selon Cazy:GH7 clan GH-B

4 stacking sur 9

pdb :4C4C (CELLULOSE 1,4-BETA-CELLOBIOSIDASE) Trichoderma reesei

Réseau très dense de LH

pdb :4C4C (CELLULOSE 1,4-BETA-CELLOBIOSIDASE) Trichoderma reesei

plusieurs conformations d’hydroxyles primaires

déformation d’un cycle au sous-site 1

pdb :4C4C (CELLULOSE 1,4-BETA-CELLOBIOSIDASE) Trichoderma reesei

de la spécificité des sites catalytiques…

Modélisation de l’interaction protéine-sucre

Les priorités (en vrac)…

- avoir une structure protéique fiable (RX et bonne précision)

un bon modèle de départ…

- topologie du site catalytique et les sous-sites de fixation

savoir où agir in silico…

- repérer des oses, des fragments d’oses ou des inhibiteurs

comment accrocher les (premières) unités de base

- étudier la propagation de la chaîne osidique : cartes (φ|ψ)

priorité à la liaison osidique; négliger la déformation des cycles

tester les minima, la compatibilité de la crevasse/nature des liaisons

- facteurs de stabilisation des oses dans leurs sous-sites

stacking, orientation (manuellement) des OH (côté sucres)

chaines latérales (côté protéines)

- si nécessaire, prendre en compte la déformation des cycles

Stabilité de la liaison osidique

La liaison éther est rompue par hydrolyse les molécules de départ retrouvent leurs fonctions hydroxyle

Liaison relativement stable à pH7 mais moins que d’autres comme liaison peptidique, carboxyl-ester (glycérides), phospho-ester (glycérophospholipides)

probablement une bonne façon de garder en réserve des molécules disponibles…

Hydrolyse enzymatique

Activité très intéressante à comprendre et à ‘mimer’

- large palette d’enzymes de coupure (hydrolases) des liaisons glycosidiques(glycosidases) (parmi le peu d’enzymes répertoriées…)

- grande variabilité d’activités : des moins spécifiques aux plus spécialisées…* concernant des classes d’oses ou leur dérivés (ex: hexosaminidases, …)* concernant un type d’ose (ex: glucosidases, galactosidases, xylanases…)* concernant la type de liaison et/ou l’anomérie (ex: α ou β-glucosidases,… )* concernant des fragments d’oligosides dans un contexte particulier…

Bref, la nature semble s’être dotée d’une panoplie de machines-outils (protéines) pour utiliser ces oligo- et poly-osides de réserve…

Hydrolyse enzymatique : spécificité des machines-outils

Comment le site catalytique des hydrolases est adapté à l’hydrolyse de chaines particulières d’oligosaccharide

Cas des alpha-amylases (hydrolyse de cycles glucopyranose liés en alpha)Ici alpha-amylase d’orgehydrolyse liaison alpha(1-4)(endohydrolase)

Hydrolyse enzymatique : spécificité des machines-outils

Cas des alpha-amylases (ici alpha-amylase d’orge)

Comment couper une chaîne au milieu ?

Forme de la crevasse catalytique: sillon continu et courbe

Complémentarité de forme et courbure nécessaire du substrat pour préparer l’attaque

Hydrolyse enzymatique : spécificité des machines-outils

Cas d’une beta-glucosidase (hydrolyse de cycles glucopyranose liées en beta)Ici beta-glucosidase de Thermus thermophilus (1UG6)(exohydrolase)

Comment couper une chaîne À une extrémité ?

Hydrolyse enzymatique : spécificité des machines-outils

Cas d’une beta-glucosidase (hydrolyse de cycles glucopyranose liées en beta)beta-amylase de thermus thermophilus (exohydrolase)

Forme de la crevasse catalytique: cul-de-sac

forme de la crevasse catalytique: cul-de-sac

Complémentarité de forme

Cas d’une beta-glucosidase (hydrolyse de cycles glucopyranose liées en beta)beta-amylase de thermus thermophilus (exohydrolase)

Modélisation de l’interaction protéine-sucre

Un exemple de stratégie … du siècle dernier !

Collaboration INRA Nantes/Carlsberg (B. Svensson)/CNRS Lyon(R. Haser)

G. ANDRE et al - "Amylose chain behavior in an interacting context. I. Influence of a non-chair ring onthe maltose conformation" - Biopolymers, 39, 737-751 (1996)

G. ANDRE, et al - "Amylose chain behavior in an interacting context. II. Molecular modeling of amaltopentaose fragment in the barley α-amylase catalytic site" - Biopolymers, 49, 107-119 (1999)

G. ANDRE et al - "Amylose chain behavior in an interacting context. III. Complete occupancy of theAMY2 barley α-amylase cleft and comparison with biochemical data" - Biopolymers, 50, 751-762 (1999)

K. S. BAK-JENSEN et al - "Tyrosine 105 and Threonine 212 at Outermost Substrate Binding Subsites –6and +4 Control Substrate Specificity, Oligosaccharide Cleavage Patterns, and Multiple Binding Modes ofBarley -Amylase 1" - J. Biol. Chem., 279, 10093-10102 (2004)

G. ANDRE & V. TRAN - "Putative implication of α-amylase loop 7 in the mechanism of substrate bindingand reaction products release"- Biopolymers, 75, 95-108 (2004)

Construction in silico de fragments d’amylose dans la crevasse catalytique de l’a-amylase d’orge

a-amylase d’orge (point de départ)

remplacement inhibiteurarrimage de substrats DP ∕catalyse phase hétérogène?mécanisme d’hydrolyse ?

Complexe AMY2/acarbose tronquée-inhibiteur: cycle A déformé,

(,) anormaux

-relier les 2 sites ?

Stratégie d’arrimage (statique)

Arrimage de substrats de taille croissante

Meilleur arrimage DP3

non déformation du substrat (cycles A et B)

DP3 inhibiteur

carte (φ|ψ) adaptée à la liaison α(1-4) point de départ: cycle B en conformation ‘chaise’accrochage des cycles de part et d’autre de B

Meilleur arrimage DP5

déformation cycle A induite par la crevasse

nouvelles cartes (φ|ψ) avec déformation des cyclesMême stratégie d’accrochage en amont et aval

Validation du modèle

superposition des oxygènes expérimentaux

Arrimage DP12

contexte de la crevasse, estimations énergétiques par sous-site

série de mutations loin du site catalytique (Carlsberg)

Spécificités de l’interaction protéines-sucres en

modélisation moléculaire

Unité Fonctionnalité et Ingénierie des Protéines

ATELIER GlycoOuest - Interactions Sucres-Protéines

Merci de votre attention et en route vers de nouvelles aventures scientifiques in silico !