1 Pouvoir pathogène des microorganismes. Sommaire Introduction Les diverses stratégies...

Post on 03-Apr-2015

106 views 0 download

Transcript of 1 Pouvoir pathogène des microorganismes. Sommaire Introduction Les diverses stratégies...

1

Pouvoir pathogène Pouvoir pathogène des microorganismes des microorganismes

Sommaire

Introduction Les diverses stratégies écologiques des

microorganismes et la situation des microorganismes pathogènes

1- Le pouvoir pathogène lié à la production de toxines

2- Le pouvoir pathogène lié au pouvoir invasif

3

Introduction : Introduction : les diverses stratégies les diverses stratégies

écologiques des microorganismes écologiques des microorganismes (définitions) (définitions)

A/ Deux grandes catégories de stratégies écologiques :

- le saprophytisme

- la symbiose

4

Saprohytisme : vie dans l’air, l’eau, le sol sans dépendre d’un autre être vivant

Se nourrissent de matières organiques en décomposition qu’ils transforment en matières minérales

Symbiose : vie en association étroite de 2 ou plusieurs organismes (parfois appelé parasitisme)

Commensalisme

Mutualisme

Pathogénicité

6

Commensalisme Définition : relation dans laquelle un organisme (le

commensal) est avantagé alors que l'autre n'est ni lésé, ni aidé

Remarque : Les bactéries commensales du corps humain préfèrent habituellement coloniser des sites spécifiques

Exemple : Escherichia coli vit dans le colon chez l'homme et bénéficie des éléments nutritifs, de la chaleur, et de l'abri, mais ne provoque aucune maladie, ni aucun malaise

7

MutualismeDéfinition : vie en association de 2 ou plusieurs

organismes dans laquelle tous les membres sont avantagés

• Exemple : microorganismes du rumen – la vache fournit l'incubateur à température, pH régulés et

alimentation en cellulose et eau assurée – Les microorganismes digèrent les parois cellulosiques des végétaux

(ruminants ne synthétisent pas de cellulases) et produisent de nombreux métabolites assimilables par la vache.

8

Parasitisme • Définition : relation où un des organismes

symbiotes porte atteinte ou vit aux dépens d'un autre organisme (corps de l'animal = hôte).

• Si cet organisme produit une maladie évidente, il est dit pathogène

Pathogènes spécifiquesPathogènes opportunistes

Microorganismes pathogènes spécifiques microorganismes provoquant presque toujours une maladie spécifique même chez le sujet "sain"(ex typhoïde, choléra, tuberculose, méningite)

Microorganismes pathogènes opportunistes microorganismes normalement commensaux ou saprophytes ne produisant des troubles que chez un sujet à la faveur du terrain

9

Terrain favorable Déséquilibre de la flore normale de leur «habitat» (antibiothérapie),Affaiblissement des défenses immunitaires de l’hôte (immuno-dépression, âge, …)Migration dans un autre territoire (infections urinaires, endocardites)

B/ Etude expérimentale du pouvoir pathogène 1- Découverte du pouvoir pathogène de Corynebacterium diphteriaeInjection de

Corynebacterium diphteriae à une souris :

- Mort de l’animal de diphtérie

- Autopsie réalisée :- Pas de bactéries

disséminées mais uniquement localisées au point d’injection

- Beaucoup d’organes nécrosés

• Effet pathogène loin de l’endroit où se trouvent les bactéries

10

B/ Etude expérimentale du pouvoir pathogène 1- Etude de Corynebacterium diphteriae (suite)

Injection d’urine filtré d’ enfant atteint de diphtérie

- Mort de l’animal de diphtérie

• Pas de bactéries dans le filtrat injecté

• La mort n’est pas due à des microorganismes.

• Présence d’un produit toxique secrété par le microorganisme et présent dans l’urine : la toxine diphtérique

11

B/ Etude expérimentale du pouvoir pathogène 1- Etude de Corynebacterium diphteriae (suite)

Bien des années plus tard :- purification de la toxine montre qu’il s’agit d’une protéine provoquant l’inhibition de la synthèse protéique

12

B/ Etude expérimentale du pouvoir pathogène 1- Etude de Streptococcus pneumoniae

Injection d’un bouillon de culture filtré absence de mort de l’animal de pneumonie

• Pas de bactéries dans le filtrat injecté

• Pas de toxine pathogène secrétée par cette bactérie

13

B/ Etude expérimentale du pouvoir pathogène 2- Etude du pouvoir pathogène de Streptococcus pneumoniaeInjection deStreptococcus

pneumoniae capsulées à une souris :

- Mort de l’animal par pneumonie

- Autopsie réalisée :- Présence de bactéries

disséminées partout

Injection de Streptococcus pneumoniae acapsulés absence de mort

• Effet pathogène des bactéries avec invasion de tout l’organisme

• La capsule est responsable de l’expression du pouvoir invasif

14

Deux grands moyens de nuire à l’hôte pour un microorganisme :

- la production de toxines (= toxinogénèse)

- la capacité à se répandre dans les tissus adjacents ou les autres tissus après multiplication active aux dépens des structures de l’hôte (= pouvoir invasif, parfois appelé virulence).

15

16

1- Pouvoir 1- Pouvoir pathogène et pathogène et toxinogénèsetoxinogénèse

1-1- Définition du terme toxine

Toxine : métabolite ou constituant cellulaire dont la libération provoque :- des troubles dans l’organisme : lésions cellulaires locales ou altérations d’activités physiologiques essentielles- l’apparition d’Ac (anticorps) spécifiques

car une toxine est une macromolécule à la fois toxique et antigénique

18

1-2- Classification des toxines bactériennes

1-2-1- Classification biochimique

20

• Toxines protéiques

• Toxines lipopolyosidiques (LPS) de la membrane externe de la paroi des bactéries Gram -

1-2-2- Classification topologique

21

• Exotoxines : toxine diffusant à un moment donné de la croissance à l’extérieur de la bactérie dans le milieu environnant (correspondent le plus souvent aux toxines protéiques)

• Endotoxines : toxines retenues dans la cellule bactérienne et libérées à la mort de la bactérie quand la cellule est lysée (correspondent notamment aux toxines LPS)

1-3- Etude des toxines LPS

1-3-1- Caractéristiques des toxines LPS

23

• Action non spécifique : toutes les toxines LPS donnent quasiment les mêmes troubles

• Toxicité à une dose souvent importante• Thermostable le plus souvent• Immunogénicité : assez faible• Impossibilité de les transformer en

anatoxine (substance ayant perdu son pouvoir toxique, mais ayant conservé son pouvoir immunogène)

1-3-2- Troubles dues aux toxines LPS

24

• Faibles doses : maux de tête, malaises, fièvre, leucopénie

• Forts doses : choc toxique caractérisé par :– Perturbations vasculaires : vasodilatations,

fuite de plasma vers les tissus, hypotension et hypovolémie pouvant être mortelles

– Troubles de la coagulation

1-3-3- Mécanisme d’action des toxines LPS

25

• Hyperproduction des médiateurs produits normalement au cours de la réponse immunitaire :– Libération exagérée de TNF – Libération exagérée d’interleukines

Molécules responsables des troubles caractéristiques du choc toxique

1-4- Etude des toxines bactériennes protéiques

1-4-1- Microorganismes producteurs

27

• Essentiellement des Gram +Quelques exemples d’intérêt alimentaire

• Quelques bactéries Gram - Vibrio choleraeShigella dysenteriae

Staphylococcus aureus Entérotoxine staphylococcique

Clostridium botulinum Toxine botulinique

Clostridium perfringens Entérotoxine

1-4-2- Moment de leur libération : analyse des résultats expérimentaux

28

1-4-2- Moment de leur libération : analyse des résultats expérimentaux

29

• Cas a : Excrétion dans le milieu extérieur dès qu’elles sont synthétisées sans aucune altération de la structure cellulaire ni du fonctionnement de la cellule (Exotoxines vraies)Ex : entérotoxine staphylococcique

toxine de Clostridium perfringens• Cas b : Libération en partie par excrétion pendant la

croissance et suite à la lyse cellulaire(Toxine mixte à localisation exo et endocellulaire)Ex : toxine botulinique

• Cas c : Libération par la lyse cellulaire (Toxines intracytoplasmiques)Ex : toxine de Shigella

1-4-3- Les principales propriétés des toxines protéiques : 1-4-3-1- étude de l’une des propriétés

Substance toxique

Indice de toxicité

Strychnine 1

Arsenic 0,03

Venin de serpent

10

LPS bactérien 0,1

Toxine diphtérique

2000

Toxine tétanique

70 000

Toxine protéique de

Shigella

700 00

Toxine botulinique

700 000

30

Toxines bactériennes des milliers de fois plus puissantes que des poisons connus comme dangereux comme la strychnine ou l’arsenic

1 g de toxine botulinique ou tétanique est suffisant pour tuer 10 millions de personnes

1-4-3- Les principales propriétés des toxines protéiques1-4-3-2- Liste des propriétés essentielles

• Synthétisées par des bactéries spécifiques (contenant souvent un plasmide ou un prophage porteur du gène de la toxine)

• Souvent thermolabiles (inactivées entre 60°C et 80°C) avec une exception : l’entérotoxine staphylococcique

• Fort pouvoir toxique pour certaines (toxine botulinique par exemple)

• Induction de troubles spécifiques• Fortement immunogènes• Transformables en anatoxines

31

1-4-3- Les principales propriétés des toxines protéiques 1-4-3-3- Les anatoxines

32

1-4-3- Les principales propriétés des toxines protéiques 1-4-3-3- Les anatoxines

Définition d’une anatoxine : toxine ayant perdu son pouvoir toxique mais ayant conservé son pouvoir antigénique

Obtention d’anatoxines : action du méthanal (formol) pendant 30 à 40 jours à 40°C

Intérêt des anatoxines : utilisation pour vacciner (anatoxine diphtérique, anatoxine tétanique).

33

1-4-3- Les principales propriétés des toxines protéiques 1-4-3-4- Conséquence du pouvoir immunogène

Possibilité d’injecter l’anatoxine à des animaux (lapin, cheval….)

Synthèse d’Ac spécifiques par l’animalRecueil du sang et purification des Ac contenus

dans le plasmaInjection possible des Ac à des personnes

contaminées ou susceptibles d’être contaminées afin de leur permettre de ne pas avoir de troubles.

34

Applications :- sérum antitétanique- sérum antibotulinique

35

1-4-4- Les diverses catégories de toxines protéiques en fonction de leur mécanisme d’action

• Neurotoxines (toxines à action spécifique sur les neurones)

• Toxines cytotoniques (toxines perturbant les échanges ioniques et/ ou d’eau)

• Toxines cytolytiques (toxines détruisant la membrane plasmique)

• Toxines cytotoxiques (toxines responsables de la mort cellulaire)

• Toxines désorganisant le cytosquelette• Immunotoxines (toxines agissant sur le système

immunitaire)

36

1-4-4-1 Les neurotoxines (action spécifique sur les neurones) : cas de la toxine botulinique

37

Fonctionnement normal de la synapse (jonction) neuro-musculaire

38

• Arrivée du potentiel d’action à l’extrémité de l’axone• Déclenchement de la fusion des vésicules contenant le

neuromédiateur (acétylcholine) avec la membrane plasmique de l’axone

• Libération du neuromédiateur dans l’espace synaptique• Fixation du neuromédiateur sur un récepteur présent

dans la membrane du myocyte• Liaison provoquant un changement de conformation du

récepteur induisant une ouverture du canal sodium• Entrée de sodium dans le myocyte et donc

déclenchement du potentiel d’action délenchant à son tour la contraction musculaire.

1-4-4-1 Les neurotoxines (action spécifique sur les neurones) : mécanisme d’action de la toxine botulinique

39

• Toxine botulinique responsable du clivage des protéines permettant la liaison des vésicules d’acétylcholine à la membrane lors de l’arrivée d’un potentiel d’action

Conséquences : - Absence de liaison des vésicules à la membrane de l’axone- Pas de libération de l’acétylcholine dans l’espace intersynaptique- Absence de transmission du potentiel d’action du neurone au muscle - Absence de contraction des muscles

Paralysie flasque de tous le corps et mort de la personne par asphyxie (paralysie des muscles respiratoires)

novembre 2006 Cellule procaryote 40

1-4-4-2- Toxines cytotoniques (exemple : toxine cholérique)

41

• Toxine active sur une protéine : protéine G

• Activation par la protéine G de l’adénylate cyclase

• Augmentation du taux d’AMP cyclique• Action sur le canal chlorure

Absence d’absorption par la cellule des ions chloruresEntrainement hors de la cellule de charges positives (sodium)Sortie massive d’eau par compensation osmotique, d’où diarrhée massive aqueuse

Lit pour personnes souffrant de choléra

42

Lit pour personnes souffrant de choléra

43

1-4-4-3- Toxines cytolytiques: toxines provoquant la lyse des cellules

44

• Toxine agissant en formant des pores dans la membrane cellulaire – Soit suit à une activité phospholipasique :

lécithinase de Staphylococcus aureus– Doit suite à une activité de perforine (après

action sur le cholestérol membranaire) : listériolysine

45

1-4-4-4- Toxines cytotoxiques : toxines provoquant la mort de la cellule

46

• Exemple toxine diphtérique

• Mode d’action de la toxine : – blocage de la traduction– absence de protéines structurales et

enzymatiques– Mort de la cellule

1-4-4-5- Toxines désorganisant le cytosquelette

47

• Exemple toxine des EPEC

• Mode d’action de la toxine : – Fixation de la toxine sur l’entérocyte– Disparition des microvillosités– Disparition des jonctions serrées– Perte de l’étanchéité de l’épithélium– Fuite des constituants cellulaires– Diarrhée

1-4-4-6- Immunotoxines

48

• Exemple entérotoxine staphylococcique

• Mode d’action de la toxine : – Stimulation anormale du système immunitaire

(superantigène)– Production d’une quantité excessive

d’interleukines

Voir présentation de TP : intoxinations

49

50

• Existence de toxines microbiennes autres que les toxines bactériennes :– Phytotoxines– Mycotoxines (aflatoxines, ochratoxines……..)

51

2- Pouvoir invasif et 2- Pouvoir invasif et facteurs facteurs l’influençantl’influençant

52

Pouvoir invasif = capacité d’un agent pathogène à envahir les tissus stériles de l’individu.

Possibilité de deux types d’invasion non exclusifs :

• Invasion intracellulaire (Listeria, Salmonella, virus…)

• Invasion extracellulaire (Clostridium perfringens, Pneumocoque…)

2-1- Les diverses étapes et les facteurs de pathogénicité mis en jeu

54

- Etape de pénétration dans l’organisme- Etape d’adhésion : fixation sur une structure

de l’hôte et de colonisation- Etape de pénétration dans les cellules et

tissus de l’hôte- Etape de multiplication.

Avec nécessité de résister aux défenses de l’hôte

2-1-1- Pénétration

55

3 grandes voies de pénétration :- voie aérienne- voie digestive- voie cutanéo-muqueuse (dont la voie sexuelle)

2-1-2- Adhésion à un constituant de l’hôte

56

2-1-2-1- Rôle Attachement du microorganisme aux muqueuses digestive, respiratoire et urogénitale afin d’empêcher son expulsion mécanique (assurée notamment par battement des cils, péristaltisme intestinal…).Etape dépendant de la capacité du

pathogène à concurrencer avec succès la microflore normale de l’hôte pour les éléments nutritifs

2-1-2- Adhésion à un constituant de l’hôte

57

2-1-2-2- Structures responsables- Fimbriae- Pili- Capsule- Adhésines de surface- Couche S, glycocalyx- Acides teichoïques et

lipoteichoïques de la paroi

2-1-2- Adhésion à un constituant de l’hôte

58

2-1-2-3- Mécanismes- Cas 1 : interaction entre fimbriae, pili, polyosides capsulaires et récepteurs présents sur certaines cellules de l’hôte (= fixation spécifique)- Cas 2 : interaction électrostatique entre certains constituants superficiels (du microorganisme et des constituants de la membrane plasmique de la cellule hôte (= fixation non spécifique)

59

60

61

2-1-3- Pénétration dans les cellules et les tissus2-1-3-1- Pénétration dans les cellules

62

- Pénétration active :- par production de substances lytiques

altérant les tissus de l’hôte- par désorganisation de la surface cellulaire

- Pénétration passive par passage par de petites lésions dans une membrane, par endocytose……

2-1-3- Pénétration dans les cellules et les tissus2-1-3-2- Pénétration dans les tissus

63

A partir de la pénétration dans une cellule, possibilité d’atteinte de tissus plus profonds et de dissémination dans tout l’organisme du fait de la production d’enzymes ou de substances facilitant la propagation :- lécithinase, hyaluronidase, coagulase, hémolysine, collagénase……

2-1-4- Multiplication

64

Nécessité pour le microorganisme de trouver chez l’hôte un environnement favorable à sa multiplication : éléments nutritifs, pH adéquat, température adéquate….Conséquence :

- certains ne peuvent se multiplier que dans certaines cellules spécifiques de l’hôte

- certains se multiplient activement dans le plasma sanguin où ils rejettent leurs déchets métaboliques toxiques, d’où septicémie

65

66

2-2- Les mécanismes de résistance à la défense de l’hôte

68

novembre 2006 Cellule procaryote 69

novembre 2006 Cellule procaryote 70

novembre 2006 Cellule procaryote 71

72

73

74

75

76

77

78

79

80

- Résistance à l’immunité non spécifique

* Résistance à la phagocytose* Résistance au complément

- Résistance à l’immunité spécifique

2-2-1- Résistance à la phagocytose

81

82

2-2-1- Résistance à la phagocytose

83

Phagocytose = processus d’endocytose par lequel des macrophages ou des granulocytes neutrophiles capturent des microorganismes dans une vésicule d’endocytose, puis les détruisent par digestion lysosomiale.Résistance des microorganismes par

:-Inhibition du chimiotactisme des cellules phagocytaires- Inhibition de l’attachement du microorganisme sur la cellule phagocytaire- Résistance à la digestion lysosomiale

Absence de destruction du microorganisme

84

2-2-2- Résistance aux composants du complément

85

Complément = ensemble de protéines plasmatiques intervenant en complément des anticorps pour détruire les microorganismes

Résistance au complément par :- la sécrétion d’enzymes

protéolytiques (Pseudomonas aeruginosa) qui détruisent les protéines du complément

- ou par leur paroi (capsule, lipopolysaccharide, protéines de la membrane externe) empêchant le composant C3 du complément de se fixer à la bactérie.

Absence de destruction du microorganisme

2-2-2- Résistance aux composants du complément

86

2-2-3- Résistance à l’immunité spécifique

87

Mécanisme - Variation antigénique du microorganisme : anticorps présents incapables de s’unir à l’antigène- Similitude des Ag du microorganisme avec les Ag de l’hôte- Sécrétion d’IgA protéases par le microorganisme

2-3- Les facteurs de l’hôte favorisant l’agression

89

- Facteurs immunitaires- L’âge- L’état physiologique et hormonal- Les facteurs génétiques- Les facteurs environnementaux

2-3-1- Facteurs immunitaires

90

Mécanisme - Barrières naturelles (cutanées ou muqueuses) altérées : pénétration possible des bactéries à travers la peau et les muqueuses- Immunodépression naturelle ou acquise : pas d’inactivation du microorganisme

Cas particulier : l’âge car •Chez les jeunes enfants le système immunitaire n’est pas complètement mature•Chez les personnes âgées, le système immunitaire a perdu son efficacité

2-3-2- Etat physiologique et hormonal

91

- Malnutrition, traitement médicamenteux…..

* diminuent la réponse immunitaire* favorisent doncl’infection

2-3-2- Etat physiologique et hormonal

92

- Malnutrition, traitement médicamenteux…..

* diminuent la réponse immunitaire* favorisent donc l’infection

2-3-3- Facteurs environnementaux

93

- Pollution atmosphérique- Conditions climatiques- Surpopulation, mauvais niveau d’hygiène, insalubrité de l’habitat

Facteurs favorisant l’infection

Conclusion

95

- Pouvoir pathogène : capacité d’un microorganisme d’induire des changements pathologiques ou une maladie.- Virulence correspondant à l’intensité du pouvoir pathogène.- Pouvoir pathogène exercé par

* l’invasion de l’organisme hôte * et / ou la production de toxines

- Induction de maldies par certaines toxines en l’absence du microorganisme toxinogène