Download - Couette flow

Transcript
Page 1: Couette flow

Couette Flow

BY

VIRENDRA KUMAR

PHD PURSUING (IIT DELHI)

Page 2: Couette flow

IntroductionIn fluid dynamics, Couette flow is the laminar flow of a viscous

fluid in the space between two parallel plates, one of which is moving relative to the other.

The flow is driven by virtue of viscous drag force acting on the fluid and the applied pressure gradient parallel to the plates.

This kind of flow has application in hydro-static lubrication, viscosity pumps and turbine.

The present analysis can be applied to journal bearings, which are widely used in mechanical systems.

When the bearing is subjected to a small load, such that the rotating shaft and bearing remain concentric, the flow characteristic of the lubricant can be modeled as flow between parallel plates where the top plate moves at a constant velocity.

Page 3: Couette flow

Journal bearing

Page 4: Couette flow

Navier-Stokes Equation: Cartesian Coordinates

Continuity equation for 3-D flow

X-momentum

Y-momentum

Z-momentum

๐œ•๐œŒ๐œ•๐‘ก +

๐œ•๐œ• ๐‘ฅ ( ฯ๐‘ข)+ ๐œ•๐œ• ๐‘ฆ (ฯ๐‘ฃ )+ ๐œ•๐œ• ๐‘ง ( ฯ๐‘ค)=0

๐œŒ (๐œ•๐‘ข๐œ•๐‘ก +๐‘ข ๐œ•๐‘ข๐œ• ๐‘ฅ +๐‘ฃ ๐œ•๐‘ข๐œ• ๐‘ฆ +๐‘ค ๐œ•๐‘ข๐œ• ๐‘ง )=โˆ’ ๐œ•๐‘ƒ๐œ• ๐‘ฅ +๐œŒ๐‘”๐‘ฅ+๐œ‡ (๐œ•2๐‘ข๐œ•๐‘ฅ2 + ๐œ•

2๐‘ข๐œ• ๐‘ฆ2 +

๐œ•2๐‘ข๐œ• ๐‘ง 2 )+๐œ‡3 ๐œ•

๐œ• ๐‘ฅ (๐œ•๐‘ข๐œ•๐‘ฅ + ๐œ•๐‘ฃ๐œ• ๐‘ฆ + ๐œ•๐‘ค๐œ• ๐‘ง )

ฯ+

ฯ+

๐œ•๐‘ข๐œ•๐‘ฅ +

๐œ•๐‘ฃ๐œ• ๐‘ฆ +

๐œ•๐‘ค๐œ• ๐‘ง =0 Continuity equation for study incompressible flow

Page 5: Couette flow

Analytical solution oF Couette flow

means

Now Steady Navier-Stroke equation can be reduce to

Invoking 0 0

ฯ X-momentum

๐œ•๐‘๐œ• ๐‘ฅ=๐œ‡( ๐œ•

2๐‘ข๐œ• ๐‘ฆ 2 )

We choose to be the direction along which all fluid particles travel, and assume the plates are infinitely large in z-direction, so the z-dependence is not there.

0 0 0 0 00 0

๐œ•๐‘๐œ• ๐‘ฆ=

๐œ•๐‘๐œ• ๐‘ง=0 means๐‘=๐‘ (๐‘ฅ )๐‘œ๐‘›๐‘™๐‘ฆ

Page 6: Couette flow

โ€ข The governing equation is :

๐‘ข= 12๐œ‡๐œ•๐‘๐œ•๐‘ฅ ๐‘ฆ

2+๐ถ1 ๐‘ฆ+๐ถ2

The boundary conditions are:

After invoking boundary conditions:

Where P is non-dimensional Pressure gradient.

s๐‘œ ,๐‘ข= ๐‘ฆh๐‘ˆ โˆ’ h

2

2๐œ‡ โˆ™๐œ•๐‘๐œ• ๐‘ฅ โˆ™

๐‘ฆh (1โˆ’ ๐‘ฆh )

๐‘ข๐‘ˆ=

๐‘ฆhโˆ’ h2

2๐œ‡๐‘ˆ โˆ™๐œ•๐‘๐œ• ๐‘ฅ โˆ™

๐‘ฆh (1โˆ’ ๐‘ฆh ) Let P

Page 7: Couette flow

The velocity profile in non-dimensional form

โ€ข when the equation reduced to:

(simple couette flow )

โ€ข It can be produced by sliding a parallel plate at constant speed relative to a stationary wall.

Fig. Simple couette flow

โ€ข For simple shear flow, there is no pressure gradient in the direction of the flow.

Page 8: Couette flow

The velocity profiles for various P โ€ข For P < 0, the fluid motion created

by the top plate is not strong enough to overcome the adverse pressure gradient, hence backflow (i.e., u/U is negative) occurs at the lower-half region.

โ€ข For P>0, the fluid motion created by top plate is enough strong to overcome the adverse pressure gradient, hence u/U is +ve over the whole gap.

Velocity Profiles

Page 9: Couette flow

Maximum and minimum velocity and itโ€™s locationโ€ข For maximum velocity :

โ€ข It is interesting to note that maximum velocity for P=1 occurs at y/h =1 and equals to U. For P>1, the maximum velocity occurs at a location y/h<1.

โ€ข This means that with P>1, the fluid particles attain a velocity higher than that of the moving plate at a location somewhere below the moving plate.

โ€ข For P=-1 the minimum velocity occurs, at y/h=0. For P<-1, the minimum velocity occurs at allocation y/h>1, means occurrence of back flow near the fixed plate.

The Max. velocity : For P โ‰ฅ 1The Min. velocity : For P โ‰ค 1

Page 10: Couette flow

Volume flow rate and average velocity

โ€ข The volume flow rate per unit width is:

๐‘ข๐‘Ž๐‘ฃ๐‘”=( 12+ ๐‘ƒ

6 )๐‘ˆ

โ€ข The Average velocity:

โ€ข For P=-3, volume flow rate (Q) and average velocity uavg=0

Page 11: Couette flow

Shear stress distribution

โ€ข By invoking Newtonโ€™s law of viscosity:

โ€ข In the dimensionless form, the shear stress distribution becomes

h๐œ๐œ‡๐‘ˆ=1+๐‘ƒ (1โˆ’ 2 ๐‘ฆ

h )โ€ข Shear stress varies linearly with the distance from the

boundary.

โ€ข For P=0, Shear stress remains constant across the flow passage:

โ€ข At y=h/2, i.e., at the center of the flow passage, shear stress is independent of pressure gradient (P).

Page 12: Couette flow

Force, Torque and Power

ยฟ๐œ‡๐œ‹ ๐ท๐‘

60 ๐‘ก โˆ™๐œ‹๐ท๐ฟ=๐œ‡๐œ‹ 2๐ท2๐‘๐ฟ

60 ๐‘ก

๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘๐‘ก๐‘œ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐‘๐‘œ๐‘š๐‘’ h๐‘ก ๐‘’๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘’๐‘“๐‘“๐‘’๐‘๐‘ก=๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ร— ๐ท2

๐‘‡=๐œ‡๐œ‹ 2๐ท3๐‘๐ฟ

120 ๐‘ก

๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘Ž๐‘๐‘ ๐‘œ๐‘Ÿ๐‘๐‘’๐‘‘๐‘–๐‘›๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐‘๐‘œ๐‘š๐‘–๐‘›๐‘” h๐‘ก ๐‘’๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’=๐‘‡ โˆ™๐œ”

๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ=๐œ‡๐œ‹3๐ท3๐‘2 ๐ฟ360 0 ๐‘ก watts

Page 13: Couette flow

Thanks