Weyl’s Law for Heisenberg Manifolds Chung, Khosravi, Petridis

73
Weyl’s Law for Heisenberg Manifolds Chung, Khosravi, Petridis, Toth Outline Weyl’s Law for Heisenberg Manifolds Derrick Chung 1 Mahta Khosravi 2 Yiannis Petridis 1 John Toth 3 1 The Graduate Center and Lehman College, City University of New York 2 Institute for Advanced Study 3 McGill University November 10, 2006

Transcript of Weyl’s Law for Heisenberg Manifolds Chung, Khosravi, Petridis

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

Outline

Weyl’s Law for Heisenberg Manifolds

Derrick Chung1 Mahta Khosravi2 Yiannis Petridis1

John Toth3

1The Graduate Center and Lehman College, City University of New York2Institute for Advanced Study 3McGill University

November 10, 2006

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Outline

The settingThe Heisenberg groupHeisenberg manifoldsWhy do we care?The spectrum of Heisenberg manifoldsClassical lattice-counting problems

Results and ConjecturesWeyl’s LawExponent pairsEvidenceAverage over metricsNumericsHigher dimensionsHint of proof of Th. 1

Open problems

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

The Heisenberg group

Heisenberg algebra:

hn = 〈X1, . . . ,Xn,Y1, . . . ,Yn,Z 〉

[Xi ,Xj ] = [Yi ,Yj ] = [Xi ,Z ] = [Yi ,Z ] = 0

[Xi ,Yj ] = δijZ

Heisenberg Group:

Hn =

1 x z

0 Inty

0 0 1

, x, y ∈ Rn, z ∈ R

X (x, y, z) =

0 x z0 0 ty0 0 0

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

hn = {X (x, y, z)} ⊂ gl(n + 2,R)

{X (x, y, 0), x, y ∈ Rn} ≡ R2n

Center, derived subalgebra: zn = {X (0, 0, z)}

hn = R2n + zn

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heisenberg Manifolds

(Γ \ Hn, g)

Γ uniform discrete, g left-invariant metric

S1 ↪→ Γ \ Hn

↓T 2n

Circle bundle over a torusTake r ∈ Zn

+, rj |rj+1. Define

Γr =

1 x z

0 Inty

0 0 1

, xi ∈ riZ, y ∈ Zn, z ∈ Z

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Gordon-Wilson)

(a) ∃r:(Γ \ Hn, g) ∼ (Γr \ Hn, g)

(b) ∃φ ∈ Inn(Hn) : hn = R2n ⊕ zn, rel. φ∗(g)

φ∗(g) =

[h2n×2n 0

0 g2n+1

]

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Why do we care?

1. Hn model for CR manifolds (Folland, Stein, Beals,Greiner)

2. Integrable: Butler, J. Geom. Phys. 36(2000)One integral is NOT analytic functionTaimanov: Analytic integrals constrain π1(M)

3. Isospectral manifolds: Gordon, Wilson, Gornet, Pescen = 1, (Γ \ H1, g) determined by its spectrum amongHeisenbergn > 1, if r1r2 · · · rn = r ′1r

′2 · · · r ′n, continuous families

Spec(Γ \ Hn, gt) = Spec(Γ′ \ Hn, g′t)

Almost Inner Automorphisms exist in abundance.

4. (H1, g) is a model geometry in classification of3-manifolds

5. Fourier coefficients of automorphic forms are∫Γ∩N\N φ(ng) dn where Γ ∩ N \ N is Heisenberg

manifold.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

The spectrum of Heisenberg manifolds

Deninger-Singhof, Colin de Verdiere, Gordon-WilsonLet Lr = {X (x, y, 0), xi ∈ riZ, y ∈ Zn}

J =

[0 In−In 0

]±id2

j be the eigenvalues of h−1J

The Spectrum

1. Type I: Spec(Lr \ R2n, h)

2. Type II: µ(y , t1, t2, . . . , tn) =4π2y2

g2n+1+

n∑j=1

2πyd2j (2tj +

1), y ∈ N, ti ∈ Z+,with multiplicity 2ynr1r2 · · · rn.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

The spectrum of Heisenberg manifolds

Deninger-Singhof, Colin de Verdiere, Gordon-WilsonLet Lr = {X (x, y, 0), xi ∈ riZ, y ∈ Zn}

J =

[0 In−In 0

]±id2

j be the eigenvalues of h−1J

The Spectrum

1. Type I: Spec(Lr \ R2n, h)

2. Type II: µ(y , t1, t2, . . . , tn) =4π2y2

g2n+1+

n∑j=1

2πyd2j (2tj +

1), y ∈ N, ti ∈ Z+,with multiplicity 2ynr1r2 · · · rn.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

The spectrum of Heisenberg manifolds

Deninger-Singhof, Colin de Verdiere, Gordon-WilsonLet Lr = {X (x, y, 0), xi ∈ riZ, y ∈ Zn}

J =

[0 In−In 0

]±id2

j be the eigenvalues of h−1J

The Spectrum

1. Type I: Spec(Lr \ R2n, h)

2. Type II: µ(y , t1, t2, . . . , tn) =4π2y2

g2n+1+

n∑j=1

2πyd2j (2tj +

1), y ∈ N, ti ∈ Z+,with multiplicity 2ynr1r2 · · · rn.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

The spectrum of Heisenberg manifolds

Deninger-Singhof, Colin de Verdiere, Gordon-WilsonLet Lr = {X (x, y, 0), xi ∈ riZ, y ∈ Zn}

J =

[0 In−In 0

]±id2

j be the eigenvalues of h−1J

The Spectrum

1. Type I: Spec(Lr \ R2n, h)

2. Type II: µ(y , t1, t2, . . . , tn) =4π2y2

g2n+1+

n∑j=1

2πyd2j (2tj +

1), y ∈ N, ti ∈ Z+,with multiplicity 2ynr1r2 · · · rn.

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heat kernel, determinant of Laplace operator:Furutani, de Gosson J. Geom. Phys. 48(2003)Question: Are (Hn, g) Quantum Integrable?

Example

I On H1

g0 =

[I2 00 2π

]I 2π factors:

1

2πµ(y , t) =

(y2 + y(2t + 1)

)= y(y + 2t + 1) = yx

with x > y , x 6≡ y(mod 2)

I Leads to lattice-point counting with weight y belowhyperbola xy = λ and line x = yUse Z2 and L = {(x , y) ∈ Z2, x ≡ y(mod 2)}

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heat kernel, determinant of Laplace operator:Furutani, de Gosson J. Geom. Phys. 48(2003)Question: Are (Hn, g) Quantum Integrable?

Example

I On H1

g0 =

[I2 00 2π

]I 2π factors:

1

2πµ(y , t) =

(y2 + y(2t + 1)

)= y(y + 2t + 1) = yx

with x > y , x 6≡ y(mod 2)

I Leads to lattice-point counting with weight y belowhyperbola xy = λ and line x = yUse Z2 and L = {(x , y) ∈ Z2, x ≡ y(mod 2)}

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heat kernel, determinant of Laplace operator:Furutani, de Gosson J. Geom. Phys. 48(2003)Question: Are (Hn, g) Quantum Integrable?

Example

I On H1

g0 =

[I2 00 2π

]

I 2π factors:

1

2πµ(y , t) =

(y2 + y(2t + 1)

)= y(y + 2t + 1) = yx

with x > y , x 6≡ y(mod 2)

I Leads to lattice-point counting with weight y belowhyperbola xy = λ and line x = yUse Z2 and L = {(x , y) ∈ Z2, x ≡ y(mod 2)}

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heat kernel, determinant of Laplace operator:Furutani, de Gosson J. Geom. Phys. 48(2003)Question: Are (Hn, g) Quantum Integrable?

Example

I On H1

g0 =

[I2 00 2π

]I 2π factors:

1

2πµ(y , t) =

(y2 + y(2t + 1)

)= y(y + 2t + 1) = yx

with x > y , x 6≡ y(mod 2)

I Leads to lattice-point counting with weight y belowhyperbola xy = λ and line x = yUse Z2 and L = {(x , y) ∈ Z2, x ≡ y(mod 2)}

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Heat kernel, determinant of Laplace operator:Furutani, de Gosson J. Geom. Phys. 48(2003)Question: Are (Hn, g) Quantum Integrable?

Example

I On H1

g0 =

[I2 00 2π

]I 2π factors:

1

2πµ(y , t) =

(y2 + y(2t + 1)

)= y(y + 2t + 1) = yx

with x > y , x 6≡ y(mod 2)

I Leads to lattice-point counting with weight y belowhyperbola xy = λ and line x = yUse Z2 and L = {(x , y) ∈ Z2, x ≡ y(mod 2)}

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems2 4 6 8 10

2

4

6

8

10

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems2 4 6 8 10

2

4

6

8

10

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem and Hardy’s conjecture

I N(λ) = #{(x , y) ∈ Z2, x2 + y2 ≤ λ}

I N(λ) = πλ+ R(λ)

I R(λ) = O(λ1/2)

Hardy conjecture

R(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem and Hardy’s conjecture

I N(λ) = #{(x , y) ∈ Z2, x2 + y2 ≤ λ}I N(λ) = πλ+ R(λ)

I R(λ) = O(λ1/2)

Hardy conjecture

R(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem and Hardy’s conjecture

I N(λ) = #{(x , y) ∈ Z2, x2 + y2 ≤ λ}I N(λ) = πλ+ R(λ)

I R(λ) = O(λ1/2)

Hardy conjecture

R(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Gauß circle problem and Hardy’s conjecture

I N(λ) = #{(x , y) ∈ Z2, x2 + y2 ≤ λ}I N(λ) = πλ+ R(λ)

I R(λ) = O(λ1/2)

Hardy conjecture

R(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Dirichlet divisor problem

I N(λ) = #{(x , y) ∈N2, xy ≤ λ}

I N(λ) =λ log λ+(2γ−1)λ+∆(λ)

I ∆(λ) = O(λ1/2)

Conjecture

∆(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Dirichlet divisor problem

I N(λ) = #{(x , y) ∈N2, xy ≤ λ}

I N(λ) =λ log λ+(2γ−1)λ+∆(λ)

I ∆(λ) = O(λ1/2)

Conjecture

∆(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Dirichlet divisor problem

I N(λ) = #{(x , y) ∈N2, xy ≤ λ}

I N(λ) =λ log λ+(2γ−1)λ+∆(λ)

I ∆(λ) = O(λ1/2)

Conjecture

∆(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Dirichlet divisor problem

I N(λ) = #{(x , y) ∈N2, xy ≤ λ}

I N(λ) =λ log λ+(2γ−1)λ+∆(λ)

I ∆(λ) = O(λ1/2)

Conjecture

∆(λ) = O(λ1/4+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

DefinitionSpectral counting function

N(λ) = #{λj ≤ λ}

Weyl’s law, Hormander’s Theorem

N(λ) = cnvol(M)λn/2 + R(λ)

withR(λ) = O(λ(n−1)/2)

RemarkIn 3-dim gives R(λ) = O(λ)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

DefinitionSpectral counting function

N(λ) = #{λj ≤ λ}

Weyl’s law, Hormander’s Theorem

N(λ) = cnvol(M)λn/2 + R(λ)

withR(λ) = O(λ(n−1)/2)

RemarkIn 3-dim gives R(λ) = O(λ)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

DefinitionSpectral counting function

N(λ) = #{λj ≤ λ}

Weyl’s law, Hormander’s Theorem

N(λ) = cnvol(M)λn/2 + R(λ)

withR(λ) = O(λ(n−1)/2)

RemarkIn 3-dim gives R(λ) = O(λ)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Chung, P., Toth)

For every left-invariant metric g on H1

R(λ) = O(λ34/41)

Conjecture 1:

R(λ) = O(λ3/4+ε)

RemarkFor Z3 \ R3, conj.: R(λ) = O(λ1/2+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Chung, P., Toth)

For every left-invariant metric g on H1

R(λ) = O(λ34/41)

Conjecture 1:

R(λ) = O(λ3/4+ε)

RemarkFor Z3 \ R3, conj.: R(λ) = O(λ1/2+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Chung, P., Toth)

For every left-invariant metric g on H1

R(λ) = O(λ34/41)

Conjecture 1:

R(λ) = O(λ3/4+ε)

RemarkFor Z3 \ R3, conj.: R(λ) = O(λ1/2+ε)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Chung, P., Toth))

If (k, l) is an exponent pair then R(λ) = O(λ(l+2k+1)/(2k+2))

DefinitionLet 0 ≤ k ≤ 1/2 ≤ l ≤ 1. We call (k, l) an exponent pair if∀s > 0 ∃P(k, l , s) ∀N > 0 ∀t > 0 and ∀f (x) withf ′(x) ∼ tx−s , f ′′(x) ∼ −stx−s−1, . . .

f (P)(x) ∼ (−1)P+1s(s + 1) · · · (s + P − 2)tx−s−P+1

we have ∑N≤n≤2N

e(f (n)) � (tN−s)kN l + t−1Ns

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (Chung, P., Toth))

If (k, l) is an exponent pair then R(λ) = O(λ(l+2k+1)/(2k+2))

DefinitionLet 0 ≤ k ≤ 1/2 ≤ l ≤ 1. We call (k, l) an exponent pair if∀s > 0 ∃P(k, l , s) ∀N > 0 ∀t > 0 and ∀f (x) withf ′(x) ∼ tx−s , f ′′(x) ∼ −stx−s−1, . . .

f (P)(x) ∼ (−1)P+1s(s + 1) · · · (s + P − 2)tx−s−P+1

we have ∑N≤n≤2N

e(f (n)) � (tN−s)kN l + t−1Ns

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture (Montgomery)

∀ε, (ε, 1/2 + ε) is an exponent pair.

I Implies Lindelof H, Hardy’s conjecture

I Implies Conjecture 1 for Heisenberg

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture (Montgomery)

∀ε, (ε, 1/2 + ε) is an exponent pair.

I Implies Lindelof H, Hardy’s conjecture

I Implies Conjecture 1 for Heisenberg

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture (Montgomery)

∀ε, (ε, 1/2 + ε) is an exponent pair.

I Implies Lindelof H, Hardy’s conjecture

I Implies Conjecture 1 for Heisenberg

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Evidence

Theorem (Khosravi, Toth)

Cramer’s formula

limT→∞

1

T 5/2

∫ T

0R(λ)2 dλ = c > 0

Compare with Cramer (1922)

I For Gauss circle problem

limT→∞

1

T 3/2

∫ T

0R(λ)2 dλ =

1

3π2

∑n

(r(n)

n3/4

)2

I For Dirichlet divisor problem

limT→∞

1

T 3/2

∫ T

0∆(λ)2 dλ =

1

6π2

∑n

(d(n)

n3/4

)2

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Evidence

Theorem (Khosravi, Toth)

Cramer’s formula

limT→∞

1

T 5/2

∫ T

0R(λ)2 dλ = c > 0

Compare with Cramer (1922)

I For Gauss circle problem

limT→∞

1

T 3/2

∫ T

0R(λ)2 dλ =

1

3π2

∑n

(r(n)

n3/4

)2

I For Dirichlet divisor problem

limT→∞

1

T 3/2

∫ T

0∆(λ)2 dλ =

1

6π2

∑n

(d(n)

n3/4

)2

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Evidence

Theorem (Khosravi, Toth)

Cramer’s formula

limT→∞

1

T 5/2

∫ T

0R(λ)2 dλ = c > 0

Compare with Cramer (1922)

I For Gauss circle problem

limT→∞

1

T 3/2

∫ T

0R(λ)2 dλ =

1

3π2

∑n

(r(n)

n3/4

)2

I For Dirichlet divisor problem

limT→∞

1

T 3/2

∫ T

0∆(λ)2 dλ =

1

6π2

∑n

(d(n)

n3/4

)2

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Evidence

Theorem (Khosravi, Toth)

Cramer’s formula

limT→∞

1

T 5/2

∫ T

0R(λ)2 dλ = c > 0

Compare with Cramer (1922)

I For Gauss circle problem

limT→∞

1

T 3/2

∫ T

0R(λ)2 dλ =

1

3π2

∑n

(r(n)

n3/4

)2

I For Dirichlet divisor problem

limT→∞

1

T 3/2

∫ T

0∆(λ)2 dλ =

1

6π2

∑n

(d(n)

n3/4

)2

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (P., Toth)

For a local perturbation gu, u ∈ I of g0∫IR(λ, u)2 du = O(λ3/2)

Kendall (1948)

Shifts of Z2

∫ 1

0

∫ 1

0R(λ, α, β)2 dα dβ = O(λ1/2)

Theorem (P., Toth)

For a local perturbation Lu of the standard lattice Z2∫IR(λ, u)2 du = O(λ1/2)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (P., Toth)

For a local perturbation gu, u ∈ I of g0∫IR(λ, u)2 du = O(λ3/2)

Kendall (1948)

Shifts of Z2

∫ 1

0

∫ 1

0R(λ, α, β)2 dα dβ = O(λ1/2)

Theorem (P., Toth)

For a local perturbation Lu of the standard lattice Z2∫IR(λ, u)2 du = O(λ1/2)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Theorem (P., Toth)

For a local perturbation gu, u ∈ I of g0∫IR(λ, u)2 du = O(λ3/2)

Kendall (1948)

Shifts of Z2

∫ 1

0

∫ 1

0R(λ, α, β)2 dα dβ = O(λ1/2)

Theorem (P., Toth)

For a local perturbation Lu of the standard lattice Z2∫IR(λ, u)2 du = O(λ1/2)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Lower bounds

Theorem (P., Toth)

For fixed g1

T

∫ 2T

T|R(λ)| dλ� T 3/4

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

E(t)

Error Term for N(t)

Figure: The relative error for the standard lattice E (t)/t3/4

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

t

E(t)

Error Term for N(t)

Figure: The absolute error for the standard lattice

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Error Term for NL(t)

E(t)/

t3/4

t

Figure: The relative error for the lattice L

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−4

−3

−2

−1

0

1

2

3

4

5

6

x

Delta

(x) /

x1/

4

Error term for the Dirichlet Divisor Problem

Figure: The relative error in the Dirichlet divisor problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−80

−60

−40

−20

0

20

40

60

80

100

120

x

Delta

(x)

Error term for the Dirichlet Divisor Problem

Figure: The absolute error in the Dirichlet divisor problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−8

−6

−4

−2

0

2

4

6Error Term for Gauss Circle Problem

E(x)

/x1/

4

x

Figure: The relative error term in Gauss’ circle problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

1000

2000

3000

4000

5000

6000

7000

8000Histogram for N(t) (normalized)

Figure: The Histogram for the standard lattice

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

1000

2000

3000

4000

5000

6000

7000

8000

Histogram for NL(t) (normalized)

Figure: Histogram for the Lattice L

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

−4 −3 −2 −1 0 1 2 3 4 5 60

1000

2000

3000

4000

5000

6000

7000

8000Histogram for Dirichlet Divisor Problem (normalized)

Figure: Histogram for Dirichlet’s Divisor problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

−8 −6 −4 −2 0 2 4 60

1000

2000

3000

4000

5000

6000

7000

8000Histogram for Gauss Circle Problem (normalized)

Figure: Histogram for Gauss’ circle problem

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Higher dimensions

Hormander: R(λ) = O(λn) on Hn

If d2i /d

2j are all rational, we call g rational.

Theorem (Khosravi, P.)

n > 1

I Rational case: R(λ) = O(λn−7/41)

I Irrational case: R(λ) = O(λn−1/4+ε) for generic g

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Higher dimensions

Hormander: R(λ) = O(λn) on Hn

If d2i /d

2j are all rational, we call g rational.

Theorem (Khosravi, P.)

n > 1

I Rational case: R(λ) = O(λn−7/41)

I Irrational case: R(λ) = O(λn−1/4+ε) for generic g

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Higher dimensions

Hormander: R(λ) = O(λn) on Hn

If d2i /d

2j are all rational, we call g rational.

Theorem (Khosravi, P.)

n > 1

I Rational case: R(λ) = O(λn−7/41)

I Irrational case: R(λ) = O(λn−1/4+ε) for generic g

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Higher dimensions

Hormander: R(λ) = O(λn) on Hn

If d2i /d

2j are all rational, we call g rational.

Theorem (Khosravi, P.)

n > 1

I Rational case: R(λ) = O(λn−7/41)

I Irrational case: R(λ) = O(λn−1/4+ε) for generic g

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture 2 (Khosravi, P.)

n > 1 and g rational:

R(λ) = O(λn−1/4+ε)

I Phase is linear in n − 1 parameters.

I A generic irrational θ satisfies diophantine condition

||jθ|| � 1

j log2 j

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture 2 (Khosravi, P.)

n > 1 and g rational:

R(λ) = O(λn−1/4+ε)

I Phase is linear in n − 1 parameters.

I A generic irrational θ satisfies diophantine condition

||jθ|| � 1

j log2 j

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Conjecture 2 (Khosravi, P.)

n > 1 and g rational:

R(λ) = O(λn−1/4+ε)

I Phase is linear in n − 1 parameters.

I A generic irrational θ satisfies diophantine condition

||jθ|| � 1

j log2 j

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Need two term asymptotics for lattice point countingNeed to see cancellation with NI (λ) ∼ cλ for Type I (torus)eigenvaluesFor g0, x , y ∈ N∑

xy≤λ

x>√

λ

y =∑

y≤√

λ

y∑

√λ<x≤λ/y

1 =∑

y≤√

λ

y([λ/y ]− [√λ])

=∑

y≤√

λ

y(λ/y −√λ− ψ(λ/y) + ψ(

√λ))

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

where ψ(u) = u − [u]− 1/2

y

x

1

4

0.5

02

-0.5

-1

0-2-4

ψ(u) = −∑n 6=0

e2πinu

2πin

Use Euler summation∑n≤X

n =X 2

2− ψ(X )X + O(1)

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Distribution of λ−3/4R(λ)

QuestionIs λ−3/4R(λ) in B2 Besicovitch class?

Theorem (Khosravi 2006)∫ T

0R(x)3 dx ∼ cT 13/4, T →∞, c > 0

Heath-Brown (1992)

∃f (a) for Gauss and g(a) for Dirichlet divisor:

1

Xmeasure{x ∈ [1,X ], x−1/4R(x) ∈ I} →

∫If (a) da

1

Xmeasure{x ∈ [1,X ], x−1/4∆(x) ∈ I} →

∫Ig(a) da

Weyl’s Law forHeisenbergManifolds

Chung, Khosravi,Petridis, Toth

The setting

The Heisenberg group

Heisenberg manifolds

Why do we care?

The spectrum ofHeisenberg manifolds

Classicallattice-countingproblems

Results andConjectures

Weyl’s Law

Exponent pairs

Evidence

Average over metrics

Higher dimensions

Hint of proof of Th. 1

Open problems

Distribution of λ−3/4R(λ)

QuestionIs λ−3/4R(λ) in B2 Besicovitch class?

Theorem (Khosravi 2006)∫ T

0R(x)3 dx ∼ cT 13/4, T →∞, c > 0

Heath-Brown (1992)

∃f (a) for Gauss and g(a) for Dirichlet divisor:

1

Xmeasure{x ∈ [1,X ], x−1/4R(x) ∈ I} →

∫If (a) da

1

Xmeasure{x ∈ [1,X ], x−1/4∆(x) ∈ I} →

∫Ig(a) da