WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of...

81
COMMISSION DES COMMUNAUTÉS EUROPÉENNES C.C.E Direction générale de la recherche, de la science et de l'éducation 200, rue de la Loi B- 1049 Bruxelles BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES B.R.G.M. B.P. 6009 - 45018 Orléans Cedex Tél.: (38) 63.80.01 WELL TESTING ANALYSIS IN FLASHING GEOTHERMAL WELLS Contract n° 081-76 EG F Alain C. GRINGARTEN SERVICE GÉOLOGIQUE NATIONAL Département géothermie B.P. 6009 - 45018 Orléans Cedex - Tél.: (38) 63.80.01 77 SGN 651 GTH Orléans, décembre 1977

Transcript of WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of...

Page 1: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

COMMISSION DES COMMUNAUTÉSEUROPÉENNES

C.C.EDirection générale de la recherche,

de la science et de l'éducation200, rue de la Loi

B - 1049Bruxelles

BUREAU DE RECHERCHESGÉOLOGIQUES ET MINIÈRES

B.R.G.M.

B.P. 6009 - 45018 Orléans CedexTél.: (38) 63.80.01

WELL TESTING ANALYSISIN FLASHING GEOTHERMAL WELLS

Contract n° 081-76 EG F

Alain C. GRINGARTEN

SERVICE GÉOLOGIQUE NATIONAL

Département géothermie

B.P. 6009 - 45018 Orléans Cedex - Tél.: (38) 63.80.01

77 SGN 651 GTH Orléans, décembre 1977

Page 2: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

A B S T R A C T

The purpose of the research conducted for the Commission of theEuropean Communities under contract n° 081-76-EGF was to define and recommendmethods that would be appropriate for testing and evaluate flashing geothermalwells.

The various well testing methods that were considered includedtechniques well known in the oil and gas industries and in hydrogeology,such as transient pressure build-up and flow testing, and injection andfall-off testing, with either bottom-hole or wellhead measurements ; andtechniques more specific to two phase geothermal wells, such as matchingpressure and temperature profiles in the wellbore under production atdifferent flowing rates.

These testing methods were evaluated by being applied to thefew geothermal wells around the world for which adequate data wereavailable.

The following conclusions were reached for flashing geothermalwells :

1) bottom hole measurements could be carried out withstandard bourdon tube type pressure gages at tempe-ratures as high as 315° C ;

2) usual oil well test analysis models of an homogeneous,horizontal, isotropic reservoir with skin and storage,appear to be adequate for computing geothermal reservoirpermeability if pressure data are taken at the bottom ofthe hole, below the flashing front. Either build-up ormultiple rate tests could be used, but early time effects,which are of the changing wellbore type, seem to last muchlonger for flowing tests than for build-up tests. On theother hand, there may be in some cases an upper time limiton the validity of the build-up tests, due to steam conden-sation in the wellbore ;

3) injection tests may be helpful for permeability determina-tion, but thermal effects in the wellbore often make theanalysis very difficult ;

4) wellhead pressure measurements during two phase flow arenot adequate for usual oil well type well test analysis :

Page 3: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

5) when no flowing bottom hole pressure measurements areavailable, reservoir permeability may evaluated bymatching calculated and measured temperature and pressurewellbore profiles at various production rates. However,because profile calculations are not very sensitive topermeability, the result will only be approximate.

Page 4: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE OF CONTENTS

Pages

ABSTRACT

1. INTRODUCTION 1

2. TRANSIENT PRESSURE BUILD-UP AND FLOW-TEST ANALYSIS 2

2.1. Example 1 : CERRO PRIETO WELL 2

2. 2. Example 2 : ASAL WELL 7

3. FALL-OFF AND INJECTION TEST ANALYSIS 26

3.1. Example 1 : NEW-ZELAND WELL 26

3. 2. Example 2 : ASAL WELL 30

4. TRANSIENT WELLHEAD PRESSURE ANALYSIS 35

5. PRESSURE AND TEMPERATURE PROFILE MATCHING 41

6. CONCLUSIONS 44

7. NOMENCLATURE 45

8. REFERENCES 46

Appendix A - Temperature and pressure profiles inwell ASAL 1

Appendix B - Pressure build-up and flow test data forwell ASAL A

Appendix C - Injection test data. ,-

Appendix D - Wellhead temperature and pressure datafor well ASAL 1

Page 5: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE OF FIGURES

Pages

Figure 1 - The bottom-hole -pressure and mass flow rate

during the two-rate test, 3

Figure 2 - Two-rate graph for RUSSELL's method 3

Figure 3 - Two-rate graph for SELIM's method 6

Figure 4 - ODEH and JONES variable drawdown model 6

Figure 5 - ODEH and JONES two-rate model 6

Figure 6 - Schematic of ASAL 1 well 8

Figure 7 - Mass flow rate changes during ASAL 1 tests 9

Figure 8 - ASAL 1 pressure build-up test (6" outlet,25 October 1975)¿wellhead pressure andtemperature 10

Figure 9 - Temperature profiles in well ASAL 1 12

Figure 10 - Pressure profiles in well ASAL 1 13

Figure 11 - ASAL 13 pressure tests 16

Figure 12 - ASAL 13 pressure build-~up test (6" outlet,29 October 1975) 17

Figure 13 - ASAL 13 pressure build-up test (4" outlet31 november 1975) 19

Figure 14 - ASAL 13 pressure build-up test (2" outlet3

4 november 1975) 20

Figure 15 - ASAL 13 pressure flowing tests (6" outlet) 21

Figure 16 - ASAL 13 pressure flowing test'(2" outlet,

1 november 1975) 23

Figure 17 - p-, us t, for well with storage and skin effect -. 24

ASAL 13 pressure flowing test (1 " outlet,4 november 1975) 25

Page 6: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

Figure 19 - Infection test, NEW ZELAND well 27

Figure 20 - Kawerau 23 fall-off test (25 august 1975) 28

Figure 21 - Kawerau 23 fall-off test (25 august 1975) 29

Figure 23 - ASAL 1 injection and fall-off tests(29 September 1975) 32

Figure 24 - ASAL 1 fall-off test (29 September 1975) 34

19Figure 25 - OLEARIA 2 - pressure build-up plot 36

Figure 26 - ASAL 1 pressure build-up test (6" outlet,29 October 1975) 37

Figure 27 - ASAL 1 pressure build-up test (4" outlet,1 november 1975) 38

Figure 28 - ASAL 1 pressure build-up test (2" outlet,

4 november 1975) 39

Figure 29 - BORNER plot with wellhead pressure (ASAL 1) 40

Figure 30 - ASAL 1 - temperature profile match(kh = 2 Dm ; w = 135 t/hr) 43

Page 7: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

1 - INTRODUCTION

Well established pressure transient analysis techniques are routi-nely used in oil and gas wells for the determination of reservoir parameters1 2.In recent years, improvements in these techniques have allowed a better under-standing of complex reservoir and well behavior, as in the presence of skin,wellbore storage3, or fractures'*.

The same techniques have been applied successfully in vapor dominatedgeothermal reservoirs5 6. It was found that gas well analysis methods apply tosteam wells and that wellhead measurements were generally adequate for analysis,thus eliminating the need for downhole instrumentation.

In water dominated systems, on the contrary, transient well testingcan be far more complex, depending upon whether two-phase flow develops, withflashing in the wellbore or in the formation. Usual oil well methods have al-ready been shown to apply when no flashing develops7. On the other hand, theyapparently cannot be used when flashing occurs in the formation8.

This report deals with the case of hot water wells in which flashingoccurs at some depth in the wellbore. Various testing methods are considered,and examples of analysis of appropriate field data are presented.

Page 8: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

2 - TRANSIENT PRESSURE BUILD-UP AND FLOW-TEST ANALYSIS

As two phase flow and heat transfer influence pressure response,it seems obvious that pressure data in a two phase hot water well should beobtained from below the flashing front, where single phase flow prevails.Bottom-hole data gathering, however, is difficult, and may result in mecha-nical damage of the measuring devices because of the high temperatures in-volved, and of the high production rates of boiling geothermal fluids. Forthese reasons, operators have been reluctant to make bottom-hole measurementsin flowing two-phase wells, and very little formation on such tests is availablein the literature.

2.1. EXAMPLE 1 - CERRO PRIETO WELL

A two-rate flow test, conducted on one well in the Cerro Prieto field,was recently presented by RIVERA and RAMEY9. Prior to the test, the well hadbeen stabilized for approximately 48 hours at a constant rate of 111 tons/hr.The producing rate was first changed to a value of 66 tons/hr, and then increasedto a value as close to the initial flow rate as possible after stabilized condi-tions had become evident from wellhead measurements (figure 1). Twenty minutesprior to the first rate change, a standard bourdon-tube type pressure bomb witha 3 hr clock was lowered into the well in order to obtain a dependable valuefor the flowing pressure prior to the change in rate, and was left at thebottom of the hole throughout the duration of. the test. A record as continuousas possible was also kept of water and steam production, and of changes inwellhead pressure.

The data obtained from this multiple rate test were interpretedby means of models suggested by RÜSSEL10, SELIM11 and ODEH and JONES12 13.All of these methods are based on the fact that radial flow develops in theformation. Under this assumption, the bottom-hole pressure-time relationshipwas expressed in metric geothermal units by RIVERA and RAMEY9 as :

w v ByP ^ = P¿ - 527.4 \^C (log ,.,_*., + 0.891 + 0.87 S

w v By- 527.4 -JLi£

)

kïT~~ V i ü 6 — Ä F ^ w T "** " M . (i)

Page 9: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

S — 0 p«f y».t a » v»

v I. Flrtt rot« chongt.

£ 2. Steond rôti chong«.

i 3. End of th« 1*tt.

Tima, t (min.)

Fig. i - The bottom-hole pressure ar.d nass flow rote duringthe two-rate flow test.

At1 ' «I

2 - Two-rate graph for Russell's Method.

Page 10: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

in the case of RUSSELL's10 model ;

, + 0.891 +(fiycrww

0.87 S )

w v By I (-L) t + At1 + At" w \

- 5 2 7- 4^kïï^- I10«"20 Ät" + wf 1 OS A t"j (2)

in the case of SELIMls11model ;

=o - s : log (vti)+0-8926+0-87

(3)

in the case of ODEH and JONES12, variable drawdown model;

and finally :

Pwf t " Pwf t=Q vscBy / , n-1

= 527.4 - P ¿ — l-ri- E AAw. log(t -t.)w kh \Aw . n i 6V n in V n i=0

(4)

in the case of ODEH and JONES13' two-rate model.

In Eqs (1) to (4), p. and p represent the initial and flowingbottomhole pressure, in kg/cm2 ; w is^he steam-water mixture mass flow ratein tons/hr measured at the well head ; n (n = 1,2 or 3) refers to the flowperiod (w^ = W3 =111 tons/hr ; W£ • 66 tons/hr) ; v is the water specificvolume under standard conditions, in cm3/gr ; B is tne brine formation volumefactor (volume, reservoir conditions / volume, standard conditions) ; y is thebrine viscosity, in centipoises ; k is the reservoir permeability, in milidarcies ;h is the formation net thickness, in meters ; t is the producing time prior tothe first rate change, in hrs ; At' and At" represent the producing time fromthe first and second rate change, respectively (in hrs) ; <j> is the reservoirporosity (fraction) ; c is the total (rock + fluid) compressibility, in (kg/cm2)-1;and r is the well radius, in cm.S is the infinitesimal skin (dimensionless).

Page 11: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

Eqs 1 to 4 were obtained by RIVERA and RAMEY9 from the correspondingformulas in "practical" oil units (psi, feet, and bbl/day) derived by thevarious authors10"13. Incidently, the formulas given by RIVERA and RAMEY inref. 9 appear to be slightly incorrect. They should read 525.9 instead of527.4, and 0.8935 instead of 0.891 (Eqs 1, 2 and 4) or 0.8926 (Eq. 3).However, these errors only affect the numerical results of RIVERA and RAMEY1sanalysis, and will eventually be corrected before final publication of ref. 9.

It results from Eq. 1 that by plotting p - versus :

w(log — — f — + —2- log At') in cartesian coordinates, a straight

line should be obtained, with a slope equal to :

w v By. sc525.9 —i =-T- , which can be used to calculate the transmissivity

K>nkh of the reservoir (figure 2).

In the same way, Eq, 2 indicates that graphing p ^ versus :

(log

line of slope :

wt + At1 + At"

At"w"2

log At") should yield a straight

with

525.9 w v cBy v cByj-r-2 (figure 3). A .slopje equal to 525.9 —rr-— is obtained

(p.-p .) n-1 Aw.—=—==- vs. S log (t - t.), (Eq. 3 and figure 4), and with :

i=0Wn n

Pvf I . " Pwf0 ,^ vs. r p Z AAw. log (t - t.) (Eq. 4 and figure 5)

n n i=0 X n i

Page 12: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

I9

©

i

§

loS loç.

Fig. 3 - Two-rate graph for Selitn's Method.

ooeo

0.07-

Y =

O.T 0.9

»i. log. (tn-ti)

Fig. 4 - Odeh and Jones Variable Drawdown Model.

T ' — ¿ *"l log (in-tl)

Fig. 5 - Odeh and ¿ones' Two-Rate Model.

Page 13: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

RIVERA and RAMEY9 concluded that

1. two-rate flow tests could be used for calculating basicgeothermal parameters ;

2. RUSSELL's10 and SELIM's11 models, and the ODEH and JONES10

variable rate method gave better results than the ODEH andJONES9 two-rate method ;

3. Two-rate flow tests for geothermal wells could be carriedout with standard bourdon-tube type pressure gages at tem-peratures as high as 315°C.

2.2. EXAMPLE 2 : ASAL WELL

To the author's knowledge, no other example of transient test in atwo-phase well has been published in the literature. Unpublished data, however,were available from a well drilled in 1975 by B.R.G.M. in the French Territoryof Afars and Issas (now Republic of Djibouti).

These data, which include pressure build-up as well as two rateflow tests, have been analysed for the purpose of the present study and arepresented hereafter.

A schematic of the Asal 1 well is presented in figure 6. The wellcould be produced either vertically through a 6" tube, or horizontally througha calibrated pipe. Four sizes were available (namely, 6", A", 2" and 1") whichwere used to control the well flow rate. In addition, a 2" stainless steeltubing was lowered into the wellbore to a depth of 650 m, for wireline tempera-ture and pressure measurements with bourdon-tube type gages. As the well couldnot initially start by itself, the same tubing was used for inducing it intoproduction by air lift. The initial water level in the well was at an approxi-mate depth of 200 m below the well head. The total well depth was approximately1146 meters.

The flow rate history of ASAL 1 well is presented on figure 7. Aftercompletion, the well was produced through a 6" outlet for 6 days in preparationfor a build-up test for obtaining reservoir parameters (flow period # 1 ) .Mechanical problems, however, were encountered with the stuffing box on thelubricator attached to the 2" stainless steel tubing, that required the closingof the well for about 9 hours in order to retrieve the measuring devices(flow period # 2). During this unplanned pressure build-up, temperature andpressure could only be measured at the wellhead and are shown on figure 8,

Page 14: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

9" 5 /8

" 3/8

FIGURE 6 : Schematic of A5AL1 well

Page 15: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

X

\IÜ

O

100

50

0

6"

•FLOW PERIOD N° 1

|

2

6"

3 4

4"

B

i

6H 6"

6 7 e

2"

9 10 II

1"

J •

0 10 15

TIME, DAYS

20

FIGURE 7: M A S S FLOW RATE CHANGES DURING ASAL 1 TESTS

Page 16: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

24.00

22.00

20.00

CO

UJ

u 18.00

ÜJ2.00

0.

(••

»H. TEMPERATUR

HEAD PRESSURE

100.00 400.00

FIGURE 8

200.00 300.00

BUILD-UP TINE, niNUTESASAL1 PRESSURE BUILD-UP TEST (6" OUTLET; 25 OCTOBER 1975)

WELLHEAD PRESSURE AMD TEI1PERATURE

500.00

Page 17: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

11

It can be noticed on figure 8 that the wellhead temperature dropssuddenly after 400 minutes. This apparently corresponds to steam condensationin the wellbore and defines the time limit after which the well has to beinduced into production.

The well was again started by air-lift and flown through the 6" ouletfor approximately 4 days (flow period # 3) before being shut-in for 20 hrs (flowperiod #4).In order to obtain the well characteristic curve- relating wellheadpressure and mass-flow rate, the well was again started by air-lift, flown for43 hours with a 4" outlet (flow period -#5), shut-in for 3 hours (flow period # 6 ) ,and open again with the 6" outlet. Because of the short 4" pressure build-up, thewell was able to start by itself. After about 3 hours of 6" production (flowperiod # 7), the 6" outlet was changed into a 2" outlet ; the well was thenproduced for 3 days (flow period tf 8), shut-in for 7 hours (flow period ^ 9 ) ,open again with the 6" outlet (flow period it \0) which was changed into a 1"outlet after 3 hours (flow period# 11). During this final test, there wasevidence that the flow could not be sustained, and no build-up was attempted.

Although the primary objective of these last tests was to obtainthe well characteristic curve, bottomhole measurements were taken throughoutthe duration of each individual flow period, in order to check the resultsof the second 6" build-up test. Temperature and pressure measurements werealso performed at various depths in the wellbore, and are shown on figures 9and 10, respectively. They indicate a reservoir temperature of 253°C, andshow the presence of a flashing front at approximately 870 m with the 6"outlet, 850 m with the 4" outlet and 700 meters with the 2" outlet. Data forfigures 9 and 10 are given in tables A.I and A.2 in Appendix A.

Analysis of ASAL 1 bottom hole pressure data that were only availablefor flow periods 4, 6, 7, 8, 9, 10 and 11 was performed with a variable drawdownmodel, similar to that proposed by ODEH and JONES12. The well was considered ashaving been produced at different flow rates, qj, q2>..., q • Assuming the radialflow logarithmic approximation Y&lid for each one of the flow periods, the bottomhole well pressure during the n test is equal to :

1 1 ^ " ^ - I \r

.1. -J—^—- In (t -t. ,)+ln . , + 0.80907 + 2S]-l % n j-1 $ycrj

in Darcy units (p in atm ; q in cm3/sec ; k in darcy ; h and r in cm ; y incentipoise ; c in atm-1 ; and t in seconds).With geothermal metric units, Eq. (5) becomes :

(5)

ln + p. - 0.228'i "*"•" kh

(6)

Eq. 6 is identical to Eq. 3, except for the units of k (in darcy), t (in minutes),and r (in meters).

w

Page 18: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

COZJt—I

CO_JUJo

aCDUJa

ceE -

CCUJa.UJ

250.00

200.00

1

150.00

100.00

50.00

0.

jb~-—**

f

Y

Y

~- -rt 1 4 ^

\Y/

/9 Y

/y* Y

^5-11-75(1" OUTLET)

^2-11-75(2* OUTLET)

\31-I-75(«# OUTLET)

^8-1-75(6* OUTLET)

^Äl-I^Ste" OUTLET)

^17-1-75 (STATIC)

"*l28-II-75 (STATIC)

^DURING DRILLING

"\SHALLOW UELLS 1972

200.00 400.00 600.00

DEPTH. INTERS800.00 1000.00 1200.00

FIGURE 9 : TEHPERATURE PROFILES IN WELL ASALIM

Page 19: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

(M

O

UJoc

UJceCL

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

^5-11-75(1" OUTLET)

OUTLET)

OUTLET)

OUTLET)

^24-X-75<6" OUTLET)

^18-1-75 (STATIC)

(STATIC)

0. 200.00 400.00 600.00

DEPTH / fiETERS800.00 1000.00 1200.00

FIGURE 10 : PRESSURE PROFILES IN WELL ASAL1

Page 20: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

14

Therefore, by graphing p , versus E (w. - w._.) ln(60 t -t. ) in

cartesian coordinates, one should obtain a straight line, the slope of which

is equal to :

m = - 0.2284 - ^ (7)

This slope is indépendant of the flow rate. The intercept of thestaight line can be used to calculate the skin, if p. and $ are known. Inthe case of a build-up test (w =0), the intercept is equal to the initialpressure p..

The main difficulty in applying Eq. 6 to the analysis of ASAL 1 datawas the determination of the correct w values, which represent the various massflow rates under bottom hole conditions. As no separator was available, the wvalues were deduced from James1 lip pressure method^ : James observed that, asa fairly large flow of steam or steam-water mixture was expanded along a pipeto the atmosphere, the pressure at the extreme end (lip) of the pipe was greaterthan the atmospheric pressure, and proportional to the mass flowing, and theenthalpy, as in the following formula :

e « 1 ' " 2 : ., «00.P. Uo 3 t >

Li

where G is the mass velocity (in lb/sq ft.sec), E is the stagnation enthalpy(in Btu/lb, at reservoir conditions), and p the critical lip pressure (inpsi absolute).

James's formula was transformed for the present study into a moreconvenient system of units to yield :

w = 692.33 PL<>.96 E_1.102 ¿2 (g)

where w is expressed in tons/hr, p in bars, and d in inches.

Data for mass flow rate calculations are summarized in Table 1, Theenthalpy value used in Eq. 8 was that for pure water, although the geothermalfluid salinity was of the order of 200,000 ppm. Enthalpy values for highlysaline brines are not readily available in the literature.

Page 21: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

15

TABLE 1 MASS ELCW RATE MEASUREMENTS

: OUTLET: DIAMETER: (inch)

: 6": 4": 2": 1"

LIPPRESSURE

(bar)

0.52-2.56-8.5not

available

ABSOLUTELIP PRESSURE

(bar)

1.53-3.57.9.5

CALCULATEDHASS FLOW RATE

t/hr(from JAMES1 formula)

8371 - 8340 - 54

ESTIMATED :MASS FLOW RATE:

t/hr :

83 :71 :23 :11 :

As indicated in Table 1, the lip pressure was uniquely defined onlywith the 6" outlet, corresponding to a rate of approximately 83 t/hr. With the4" and 2" outlets, on the contrary, the lip pressure was oscillating betweentwo extreme values, because of1 the slug nature of the flow, and only a rangeof rate values could be obtained by applying JAMES' formula (71-83 t/hr and40-54 t/hr, respectively). According to JAMES15, such pulsations could havebeen eliminated by using a glycerine-damped pressure gage with a needle valve.By throttling the valve, the lip pressure stabilizes at the correct value,between the two extreme ones.

However, by plotting for each flow period the change in pressureversus the time since that flow period started (log-log coordinates, figure 11),and comparing the relative position of the different curves, it appears thatthe rates with the 4" and 2" outlets were more likely 71 and 23 t/hr, respecti-vely. In the same way, the rate with the 1" outlet seems to be equal to 11 t/hr.

2.2.7.

2.2.1.1. 6" outlet build-up (flow period #-4)

A plot of p ^ versus the multiple rate function, (expressedin tons/hr), is shown on figure*^. Data for figure 12 are given in Table Bl ofappendix B. Calculations were performed with the help of a computer program alsoincluded in appendix B.

A straight line of «lope m = 3.6 10- is clearly evidenton figure 12. Substituting m = 3.6 10-3 into Eq. 7 and taking v = 1.25 cm3/grand y = 0.2 cp yields :

kh - 15.9 Dm.

(p = 0.2 cp was obtained by extrapolating published viscosity curves1 to atemperature of 253°C and a salinity of 200,000 ppm).

Page 22: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

10 1 10 10TIME FROH THE BEGINNING OF THE TEST,IN filNUTES

FIGURE 11 : ASAL1 , PRESSURE TESTSBOTTOn HOLE PRESSURE (KÜSTER GAUGE AT 1027 fiETERS>

10* :

CD

Page 23: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

79.00

00

O

CD70.00

(O(OW 69.00

CL

Ul

O

O 60.00Ï -

oCQ

55.00

90.00

P i=76.6 kg/cm?PP P

m=3.6 10"3

P

pPP

PPP

P

P

P

290*00 300*00 390.00 AOO0OO 490.00 900.00 990.00 600*00 690*00 7OO0OO

MULTIPLE RATE FUNCTIONFIGURE 12: ASAL1 PRESSURE BUILD-UP TEST (6" OUTLET; 29 OCTOBER 1975)

BOTTOH HOLE PRESSURE (KÜSTER GAUGE AT 1027 METERS)

790.00

Page 24: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

18

The calculated initial pressure is 76.6 kg/cm2, which compares reasonably wellwith the value of 77.4 kg/cm2 measured before the test.

It can be observed in figure 12 that data points for build-up timesgreater than 6 hours deviate from the straight line. This is a consequence ofthe condensation effect already noticed on figure 8 during the first 6" build-up (flow period 4^ 2).

The early time deviation (for build-up times less than 20 minutes) iscaused by wellbore storage effects.

2.2.1.2. 4" outlet build-up [flow period^ 6)

The result of the analysis with the multiple rate methodis shown on figure 13. Pertinent data are given in Table B2 of appendix B.

The slope of the straight line is equal to 3.8. 10- ,which yields a kh value of 15.0 Dm. Extrapolation of the straight line givea value of 76.4 kg/cm2 for the initial pressure.

2.2.1-3. 2" outlet build-up (flow period #93

Because of the uncertainty on the rate during the 2"outlet flowing test, multiple rate analysis was applied with w9 = 23 t/hr,40 t/hr, and 54 t/hr. The results are given on figure 14 and in Table B3, B4 -and B5, respectively. Straight lines are obtained, with slopes equal to 3.4 10- ;1.7 10-3 ; and 1.5 10-3 , respectively. These results tend to confirm that themass flow rate was of the order of 23 t/hr during the 2" outlet flowing test(flow period # 8).

The corresponding kh is then equal to 16.8 Dm and p. to77.2 kg/cm2, x

2.2.2.

A plot of p - versus the multiple rate function for the two6" flowing tests (flow period-#7 and 10) is shown on figure 15. The slopefor the first one ( # 7 ) is equal to 7.2 10-3 , which yields kh = 8 Dm.

For the second 6" flowing test ( # 1 0 ) , three curves wereobtained as in chapter 2.2.1.3., one for each possible rate during the 2"flowing test. The corresponding slopes are 10.2 10-3 (kh = 5.6 Dm) forw9 = 23 t/hr ; 10.5 10-

3 (kh = 5.4 Dm) for w9 = 40 t/hr, and 11.3 10-3

(kh =5.1 Dm) for w9 = 54 t/hr.

Page 25: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

75.00

ü70.00

65.00in

cea.ui

o

o eo.oot-o03

55.00

50.00

— P.=76.4 kg/cmm=3.8 10~3

AA

A

250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00 650.00 . 700.00MULTIPLE RATE FUNCTION

FIGURE 13: ASAL1 PRESSURE BUILD-UP TEST (4" OUTLET; I NOV/EHBER 1975)Borran HOLE PRESSURE ÍKUSTER CAUCE AT 1027 HETERS)

750.00

Page 26: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

75.00

COE:o

70.00

UJ

ceCOtoUl 65.00ce0_

Ul

oXO 60.00

t-oCD

55.00

50.00

P.. =77.2 kg/cm

m=T75 10

w2,,=23 40 t/hr 54 t/hr

150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00

riULTIPLE RATE FUNCTIONFIGURE U : ASAL1 PRESSURE BUILD-UP TEST (2" OUTLET/ ¿ NOUEHBER 1975)

BOTTOn HOLE PRESSURE (KÜSTER GAUGE AT 1027 flETERS )

650.00

O

Page 27: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

75.00

COO\ 70.00CD

UJocz>coCOlu 65.00ceCLUi_ JoX

z:O 60.00t-om

55.00

50.00

Flow period n°7

Rs!Jlto .

550o00 600o00 650.00 700.00 750o00 800.00 850a00 900.00 950.00

nULTIPLE RATE FUNCTIONFIGURE^ : ASALl PRESSURE FLOWING TESTS (6W OUTLET)BOTTOn HOLE PRESSURE (KÜSTER GAUGE AT 1027 METERS)

1000.00 1050.00

Page 28: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

22

These kh values are much lower than those obtained so far.On the other hand, the analysis shown on figure 16 of the 2" flowing test(flow period 3^9) with a rate of 23 t/hr yields a slape equal to 3.5 10-3,corresponding to kh = 16.3 Dm, which is consistent with the results of thebuild-up test analyses. As expected, taking wg = 40 t/hr or 54 t/hr yieldsa much higher slope (5.1 10-3 and 149.10-3, respectively) which again confirmsthat the correct wg rate is of the order of 23 t/hr.

The results obtained with the 6" flowing tests areeasily explained. By comparing the log-log plot of figure 11 with theskin and storage type curves published in ref. 3 and reproduced in figure 17,it becomes apparent that none of the 6" flowing tests had been run long enoughfor the radial flow logarithmic approximation to apply, and therefore thestraight lines drawn on figure 15 are not the correct ones. On the other hand,that approximation does apply to the 2" flowing test, which had a much longerduration. The comparison also suggests that the early time behavior of thewell is of the changing wellbo*e storage type, going from liquid level con-trolled storage to compressibility controlled storage when flashing or con-densation occurs. Calculation of dimensionless pressures yields a large skin(of the order of 20) which may be due to the fact that the well had apparentlycollapsed between 1 050 and 1 150 meters.

Figure 11 further indicates that the radial flow loga-rithmic approximation applies sooner for build-up than for drawdown tests.This is somewhat opposite to what is generally observed in single phase wells,and may be due to the two-phase nature of the flow.

One final comment regarding figure 11 is that, althougha dry well had been drilled kilometer away from ASAL1, no impermeable boundaryis apparent on the log-log plot. The sudden increase in bottom hole pressureindicated on figure 16 is likely to be caused by a decrease in the flow rate.The same phenomena appears on figure 18, in the analysis of the 1" flowingtest (flow period ;# 11), during which the well was not able to sustain theflow : the last recorded pressure is roughly equal to the initial pressure.All the other pressure points fall on a straight line, whose slope, equal to3.2 10-3, does not vary significantly with the value of the 2" flowing testrate. The corresponding kh is equal to 17.8 Dm, which agrees well with thebuild-up tests results.

The data corresponding to the curves of figures 15, 16and 18 are given in Tables B6 to B15 in appendix B.

Page 29: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

75.00

70.00

UJCC: DtotoUJ 65 .00tua.UJ_joX

O 60.00

o00

6 / O ' 2

53.00

50.00

SSO.00 400.00 450.00 500.00 550.00 600.00 650.00 700.00 750.00

nULTIPLE RATE FUNCTIONFIGURE 16 : ASALl PRESSURE FLOWING TEST (2" OUTLET; OlIMOUEHBER

BOTTOn HOLE PRESSURE ÍKÜSTER GAUGE AT 1027 DETERS)

800.00 850.00

MCO

Page 30: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

10

10

er

o.1

0.1

^ ^ ^

¿ ^ ~ "•'"

< ^ ^

/ =— -y' ^*-~ - —

Se20

- o =—s ^ s»o

S«-5

C

"D 2irhd>c r2T \ w

FIGURE 17 : p VS \ F O Rr 0 D

105 106

b~ (b)tr2

T/ ^

WELL WITH STORAGE AND SKIN EFFECT

10'

Page 31: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

80.00

50.00

150o00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00

nULTIPLE RATE FUNCTIONFIGURE 18 : ASALl PRESSURE FLOWING TEST (1" OUTLET/ ¿ NOVEHBER 1975)

BOTTOn HOLE PRESSURE (KÜSTER GAUGE AT 1027 METERS)

650.00

in

Page 32: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

26

3 - FALL-OFF AND INJECTION TEST ANALYSIS

Injection of cold water following completion is commonly used ingeothermal wells in order to locate permeable zones along the wellbore. In-jection tests are routinely performed in New Zeland16 on all new wells andare analysed to evaluate the reservoir permeability. The usual procedure isas follows :

cold water is injected into the well at three different rates(respectively, 100, 200 and 300 gallons/mn) during periods of20 minutes each, while pressure is recorded at a specific depthin the wellbore. The pressure at the end of each flow period isthen plotted versus the rate, and the resulting curve comparedto that from other wells in the same or a different field. Onlyqualitative estimates of the permeability (excellent, good, orbad) can be obtained, although it may be possible to differentiatebetween crack flow and porous bed permeability17.

Quantitative knowledge of the permeability can usually be obtained,however, from the analysis of injection and fall-off test transient pressuredata. The advantage of the method is that the rate can be controlled, and thatonly one phase flow has to be considered. On the other hand, supply of waterto be injected may be a problem, and thermal effects in the wellbore may createdifficulties in the pressure analysis.

3.1. EXAMPLE 1 : NEW-ZELAND WELL

Figure 19 represents the rate history during an injection test uponcompletion of one geothermal well in New Zeland. Pump rate was at about 124 gal-lons per minute (gpm) for 45 minutes (flow period # 1 ) ; 127 gpm for 30 minutes(flow period #: 2) ; 120 gpm for 85 minutes (flow period # 3 ) ; 108 gpm for 135minutes (flow period # 4) ; 200 gpm for 27 minutes (flow period # 5) ; andfinally 300 gpm for 25 minutes (flow period # 6). After this final injection,a fall-off test was conducted for approximately 20 minutes.

Pressure at a depth of 853 m was recorded throughout the entire test,A plot of the change in pressure versus the time since injection stopped ispresented on figure 20 for the fall-off test and does not indicate any unusualfeature. Analysis of these data was performed using Eq. 6, the results ofwhich are shown in figure 21. Data for figures 20 and 21 are included inTable Cl, appendix C.

Page 33: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

27

300

200 •

Os

LJ

zO

S1 100h

1 1

FLOW PERIOD N°

1 2 3 4

1

1 i

1

5

|

6 7

1

' t

100 200 300

TIME, MINUTES

400 500

FIGURE 19 : INJECTION TEST, N E W - Z E L A N D WELL

Page 34: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

<M

O

ti

<XO

LüÛCIDÍO(OLUCEÛL

Lü_JOX

of-e-oen

10

10 10

FLOWING TINE, DINUTES

FIGURE 20: KAWERAU 23 FALL-OFF TEST ( 25 AUGUST 1975)( PRESSURE GAGE AT 853 HETERS=2800 FEET)

CD

Page 35: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

90.00

75-00

50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

riULTIPLE RATE FUNCTIONFIGURE 21 : KAUERAU 23 FALL-OFF TEST ( 25 AUGUST 1975)

( PRESSURE GAGE AT 853 HETERS=2800 FEET)

450.00 500.00

U

Page 36: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

30

Two parallel straight lines can be drawn through the pressurepoints on figure 21 : such a feature is indicative of a fractured or astratified reservoir. The slope of the lines is equal to 4.4 10-2 which,from Eq. 7, yields a transmissivity value :

kh • 0,65 Dm.

The intercept of the "correct" straight line on figure 20 is equalto 77.5 kg/cm2, which compares well with the measured initial pressure of77.3 kg/cm2 at 853 m.

Further information on the well can be obtained by comparingthe curve of figure 20 with the pressure and skin tj pe curves of figure 173:computing the dimensionless pressure for figure 20 with kh = 0.65 Dm yieldsa skin factor approximately equal to -5, which again suggests a fracturedreservoir. A good match can also be obtained with the vertical fracture withstorage type curve presented in ref. 5.

3.2. EXAMPLE 2 : ASAL WELL

Several injection tests with sea water at ambiant temperature wereperformed on the ASAL 1 well, about two weeks before the production testsdescribed in chapter 2,2. The pressure record during these injection testsis shown on figure 22 and indicates some very peculiar behaviors.

During the first and the second tests, the pressure gage waspositionned at a depth of approximately 391 m, i.e. 191 m below theinitial water level. The first test included an injection period of about7 minutes at an approximate rate of 3 9 m3/hr, followed by a fall-off periodof about 2 hours. It can be observed on figure 22 that pressure rises conti1-:nuously during this first injection, decreases rapidly for about 15 minutesafter the end of the injection to a pressure lower than the initial pressure,and finally rises again very slowly. This last pressure rise is thought to becaused by thermal effects in the wellbore and only the first 15 minutes of thefall-off test should be used for analysis.

A Ap versus At plot for both injection and fall'-off tests isshown on figure 23, superimposed on wellbore storage and skin curves offigure 173. Although not unique, the match presented on figure 23 indicatesthat injection was too short for a Homer type of analysis, and that onlythe last points of the fall-off test would be suitable. These points shouldthus fall on a straight line :

p = 0.5259 q ,, y log ** * — (9)

whose slope equal to :

m - 0.5259 q * ykh

can be used to calculate the transmissivity kh.

Page 37: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

100

90

80

(M

OCDSÉ

60

50

40

Û2

¡I 30

10

INJECTION

INJECTION1

/. .íA '"'i• x -\

FALL-OFF INJECTION

i11

«

FALL-OFF

c

^30-9-15 ( at 1027 m)

FALL-OFF

1'

''-- A89-9-15 ( at 391 m)

L * ' •

0. 10.00 SOaOO 30.00 4O0OO SOnOO 60*00

TIME, ÍN MM ON THE PRESSURE DIAGRAM (24 HR CLOCK: I MM- 0.2~HRS)

F I G U R E 22: A S A L 1 - ^OlD7l!ÂTË]RTNJECIIDN~TÎsfs~7 " ' .

"Ï0.00 80.00

Page 38: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

oN.CD

UlCD

<

CJUJÛC

toUJ

10

10-1

11

11

\I1

1

. 11 '

1. \"

111i1

11

11

i1

_ — • -

y

y yy y

S- -" "

***

y

/ y

y *

y

a t

/

y

B

- -

y

y

à

y

y

_ _ .

, ^ - - ^ . ' = = "

~" ""y' ^ - - " Qy •*"

yy ' " H

^ O

'' y '" y

. " y

% Py

i

3 O '

° y- ~^"^" t 3 '

o y *y '

/_> s ^

s — "_ _ _ , , « . — " • "

- - 1 ' - " " ^ "

-•

-

. . . 1 . . . . . . . .

10-1 10

iIi

i

«J

TINE FROH THE BEGIIMWING 0F THE TEST,IN MINUTESFIGURE23: ASAL1 INJECTION AND FALL-OFF TESTS (29 SEPTEHBER 1575)

(KÜSTER GAGE AT 391 HETERS)

Page 39: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

33

In Eq. 9, p is the pressure during the fall-off test, q theinjection rate (in nr/nr), and B is the formation volume factor (in volume,reservoir conditions/volume, standard conditions).

A Homer plot for fall-off data is presented on figure 24, with thebest estimate of the straight line corresponding to Eq, 9. The slope of thisstraight line is equal to 1.2 kg/cm2/log cycle, which yields, from Eq. 10 :

.. 0.5259 x 19 x 1.25 x 0.2 . . _kh = :—= = ¿.I Dm.

l. ¿.

This is a much lower value than that obtained from pressure build-upand flow test analysis. It does not seem to be reliable, considering the smallnumber of points available for defining the straight line and of the overallpressure behavior during the fall-off test.

During the second injection test shown on figure 22, the pressurefirst built up and then started to fall, although water was continuouslyinjected at a constant rate. After injection ceased, the pressured increasedvery slowly probably because of heating up of the water column.

A similar behavior, with randon pressure build-ups and fall-offswas observed during the third injection test, with the pressure recordingdevice at the well bottom (1 027 m).

These behaviors are not unusual during injection of cold waterinto hot wells and have been already observed in Italy18 and Iceland19.It does not appear that tests displaying such behaviors are suitable foranalysis.

Data for the three ASAL injection tests are given in Tables C2and C3 in appendix C.

Page 40: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

30.00

25.00

CO

ota

LüOCZ)toUJceCL

20.no

15.00

G

O

O

O

0

Q

O

>

1

o

z v

G

———

2m

1

D

-—-

O

cyc}e__

1 10 10T+DELTACT)/DELTA(T)

FIGURE 24: ASAL1 FALL-OFF TEST (29 SEPTEHBER 1975)(KÜSTER CAGE AT 391 HETERS)

Page 41: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

35

- TRANSIENT WELLHEAD PRESSURE ANALYSIS

As mentionned in the introduction of this report, well head pressuremeasurements are adequate for well test analysis in dry steam reservoirs.

Well head pressure was also used to obtain reservoir permeabilityfrom a Homer plot in the Olkaria field (Kenya)2^, as shown on figure 25,The well produced a steam water mixture, with about 60 % of steam. Threepossible straight lines are indicated on figure 25, which apparently wereused for obtaining an upper bound for the transmissivity.

Although the use of wellhead pressure may be legitimate in theparticular case of Oklaria 2, because of the high steam content of theflowing mixture, there is no theretical support to justify wellhead pressuretransient analysis in two phase wells. As a matter of fact, wellhead andbottomhole transient pressure behaviors may be very different, as shown infigures 26, 27 and 28 for the various build-up tests on the ASAL well. Forexample, a Homer plot (figure 29) using wellhead pressure data measuredduring the first 6" build-up (flow period 2), yields a kh value that ismuch lower than that obtained with bottomhole pressure (1 Dm compared to anaverage value of 16 Dm),

The use of wellhead data for transient pressure analysis istherefore not recommended in flashing geothermal wells.

Page 42: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

Boh»

FIGURE 25: OLKARIA 2- PRESSURE BUILD-UP PLOT19

Page 43: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

24.00

22.00

W6.00 cUlceû_

<4 .00

X

Ul3 2.00

B- -B- -B-ffOTTOM HOLE PRESSURE

TEMPERATURE

,L HEAD PRESSURE

CDoHo3Xor~mTJ•J3mw

j)m

o

79.00

77.00

75.00

73.00

71.00

69.00

67.00

65.00

63.00

61.00

59.00

57.00

55.00 I

o. loo«oo 300.00 300.00

BUILD-UP TIfiE, niNUTES400.00 500.00 '

FIGURE 26: ASAL1 PRESSURE BUILD-UP TEST (6" OUTLET/ 29 OCTOBER 1975)

Page 44: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

24.00

22.00

oM05

20.00

LUO

18.00a

CSUJ Aa

16.00LUoc

OC 14.00LUÛL

LU

12.00

CO

oC3

URE

PRES

S.H

EAD

_J

LU

10.00

8 .00

6 .00

4.00

2.00

0.

0.

BOTTOM HOLE PRESSURE

TEMPERATURE

HEAD PRESSURE

100.00 200.00 300.00

BUILD-UP TIDE, (IIIMUTES400.00

79.00

77.00

75.00

73.00

00O-i

O

X

O•m

PRESSU

RE,

<no

M

71.00

69.00

67.00

65.00

63.00

61.00

59.00

57.00

55.00

500a00

FIGURE 271 ASAL1 PRESSURE BUILD UP TEST (¿" OUTLET; 1 IMOUEfiBER 1975) o)CD

Page 45: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

24.00 79.00

22.00

O12.00

ON.

-10.00

~ 8.00

UJccrjco

Í36-00

Q-

<4.00

I

ÜJ2.00

0.

»OTTOH rfOLE PRESSURE

H. TEnPERATUflE

LL HEAD PRESSURE

100.00 200.00 300.00

BUILD-UP TIPIE, flINUTES400.00

CDO-i

X

om

mCOCOc3}m

CD

O

77.00

75.00

73.00

71.00

£9.00

67.00

65.00

63.00

61.00

59.00

57.00

55.00

500.00

FIGURE 28: ASAL1 PRESSURE BUILD UP TEST (2" OUTLET/ ü NOUEHBER 1975)CD

Page 46: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

40

15 i I i i I I I I F T

6 BUILD UP '25-X-I975(FLOW PERIOD N°2)

O

\L±Ja:<ntnhiÛCQ.

LJ

LJ

10

10

i i i i I I I I

10

i i i i i i i

10'

FIGURE 29: HORNER PLOT WITH WELLHEAD PRESSURE (ASALI)

Page 47: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

41

5 - PRESSURE AND TEMPERATURE PROFILE MATCHING

A final possibility for obtaining the reservoir characteristics froma well producing a flashing steam water mixture is by matching calculated tem-perature and pressure profiles with profiles actually measured in the wellboreat different flowing rates.

A computer program2^ was used for calculating temperature andpressure drop in a hot water well.

In the program, steady state radial Darcy flow vas assumed. In thatcase, the total mass flow rate into the well is related to the pressure dropfrom the initial pressure p. to the bottom hole pressure at the same datum as :

w2ÏÏ khv y

Pi * (IDè- w

where r is the radius of drainage.

As water flows into and up the well, hydrostatic pressure eventuallybecomes low enough for boiling to begin. The saturated vapor près"sur"e p r at theboiling level Z is related to the bottom hole flowing pressure p ^ throughhydrostatic equilibrium by the relation :

' 8 ,„ - x (12)

where g is the acceleration of gravity and Z is the well depth.

Above the flashing level Z , the flow is assumed to be isenthalpicand a finely dispersed mixture with equal liquid and vapor average velocities.Including the changing porportions in the mass conservation and energy equa-tions yields, respectively :

w

(1-X)u (13)

2L E +J£*LV W V. w g

g uw E

(14)

Page 48: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

42

where ;

X is the volume fraction of water ; u, v , E , v , E. are the mixture' w' w' g' g

velocity, and the specific volume and enthalpy of liquid and vapor at a given

level and temperature ; E - is the liquid enthalpy at reservoir temperature.

The hydrodynamic losses are treated by using a friction factorformulation for the momentum balance :

d P - A -1. '~A Ir, J. \ " \ (15)dz

X J-X / . u \+ I g + A ~, \v v I6 4r I

w g J. \ w /where X is the friction factor.

Starting with the bottomhole flowing pressure, the flow rate iscomputed from Eq. 11 and the flashing depth from Eq, 12, The distributionof pressure and temperature in the well is then solved by integrating Eq. 15up the bore in combination with Eq 13 and 14»

When the permeability is not known, such a program can be used withdifferent permeabilities until a good match is obtained. However, the calcula-tions are not very sensitive to permeability, and the answer will not be veryaccurate. As an example, a good match is obtained in figure 30 for the 6" outlettemperature profiles in well Asal 1, with kh. = 2 Dm and w = 135 t/hr, which doesnot agree well with results of other analysis methods.

Page 49: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

C/íi

WU

owQ

3w

230.00

200.00

(

130.00

100.00

SO.OO

0.

m /

yVI35

1 I ' I

1

*

T/H

i . 1 1

treo o

! i

i r

1 1 : | • i

1

m m m O

Calculated20

, 1 - 1 0 - 1 5 ( 6 ^

1 1 1 t|

1 >

1

i

1 1

100.00 800.00 300.00 400.00 500.00 600.00 100.00 600.00 900.00 1000.00 1100.00 1200.00 1300.00

DEPTH, METER.S,

FIGUREÍ 30 - Ä S A L I - T E M P E R A T U R E PROFILE M A T C H " ( k h = 2 Dm ; w = 1 3 5 t /h r )

OJ

Page 50: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

44

6 - CONCLUSIONS

The following conclusions can be reached from the present study

1) Usual multiple rate techniques can be used in two phasegeothermal wells for obtaining reservoir characteristicsfrom bottom hole transient pressure data.

2) Early time bottom hole pressure appear to be wellborestorage controlled. There are indications that wellborestorage changes from liquid level type to compressibilitytype, as a consequence of water flashing or steam condensingin the wellbore. These wellbore storage effects appear tolast longer in drawdown and double-rate tests than in build-up tests (200 mn compared to 20 mn for the well ASAL 1 studiedin this paper). This has to be taken into account when planningsuch tests.

3) When the well is not artesian, there is no practical avantageof running long build-up tests, because of the effects ofsteam condensation in the wellbore. 6 hours was the practicallimit in the case of well ASAL 1.

A) Two phase geothermal well testing can be carried out withstandard bourdon-tube type instruments for extended periodsof time at temperatures as high as 253°C and salt content ofthe order of 200,000 ppm.

5) Injection tests can usually also be used for permeabilitydetermination, but thermal effects may in some cases makethe interpretation very difficult if not impossible.

6) Wellhead pressure measurements are usually not adequate forpermeability determination in two phase geothermal wells.

7) When no pressure transient analysis can be performed due toto the lack of adequate data, matching calculated and mea-sured temperature and pressure profiles can provide anestimate of the reservoir permeability.

Page 51: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

45

7 - NOMENCLATURE

B = formation volume factor

c = total fluid compressibility

E = enthalpy

g = acceleration of gravity

h = formation net thickness

k = permeability

m = slope of straight line

n = constant rate intervals

p = pressure

q = volumetric flow rate

r = wellbore radiusw

S = skin factor

t = producing time

u = mixture velocity

w = mass flow rate

X = volume fraction of water

Z = depth of well

Z = depth of flashing front

X = friction factor

y = viscosity

v = specific volume

<j> = porosity

Darcy

atm-

cm

Darcy

UNITS

Metric geothennal

dimensionless

(kg/cm)-

kcal/kg

m2/h

m

Darcy

atm

cm3/sec

cm

sec

cp

kg/cm

m3/hr

m

dimensionless

min

m/hr

t/hr

fraction

m

m

cp

cm3/g

fraction

SUBSCRIPTS

e - drainage

g = vapor

i = initial condition

j = constant rate interval

sc = standard conditions

v = flashing

w = wellbore or water

wf = flowing conditions at well bottom

Page 52: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

46

8 - REFERENCES

1. MATTHEWS, C.S. and RUSSELL,D.G. : Pressure build-up and flow tests in wells.Monograph series, Society of Petroleum Engineers of AIME, Dallas,(1967), vol. 1.

2. EARLOUGHER, R.C. : Advanees in well test analysis.Monograph series, Society of Petroleum Engineers of AIME, Dallas,(1977), vol. 5.

3. AGARWAL, R.G. AL-HUSSAINY, R. and RAMEY, H.J., Jr : An investigation ofwellbore storage and skin effect in transient liquid flow - 1 :analytic treatment.Soc. of Pet. Eng. J., sept. 1970, 279.

A. GRINGARTEN, A.C., RAMEY, H.J., Jr and RAGHAVAN : Applied pressure analysisfor fractured wells.Journal of Pet. Tech., July 1975, 887.

5. RAMEY, H.J., Jr and GRINGARTEN A.C. : Effect of high volume verticalfractures on geothermal steam well behavior.Proceedings, 2nd U.N. Symposium on the development and use ofgeothermal resources, San Francisco, California (USA), May 20-29,1975, vol. 3, p. 1759.

6. BARELLI, A., MANETTI, G., CELATI, R. and NERI, G. : Build-up and back-pressuretests on italian geothermal wells.Proceedings, 2nd U.N. Symposium on the development and use of geothermalresources, San Francisco, California (USA), May 20-29, 1977, vol. 3,p. 1537.

7. WITHERSPOON, P.A., NARASIMHAN, T.N. and Me EDWARDS, D.G. : Results ofinterference tests from two geothermal reservoirs.SPE paper 6052, 51st Annual Fall Meeting, New Orleans, oct. 3-6, 1976.

8. GULATI, M.S. : Pressure and temperature build-up in geothermal wells.Proceedings, Stanford geothermal workshop, Stanford University,dec. 15-17, 1975.

9. RIVERA, J.R. and RAMEY, H.J., Jr ; Application of two-rate flow tests tothe determination of geothermal reservoir parameters.SPE paper 6887, 52nd Annual Fall Meeting of SPE, Denver, oct. 9-12,1977.

10. RUSSELL,D.G. : Determination of formation characteristics by two-rate flowtests.J. Pet. Tech., dec. 1962, 1349.

Page 53: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

47

11. ODEH, A.S. and JONES, L.G. : Two-rate flow test, variable rate case.J. Pet. Tech., jan. 1974, 93.

12. SELIM, M.A. : A modification of the two-rate flow method for determinationof reservoir •parameters.J. Institute of petroleum, v. 53, n° 527, nov. 1967, 343.

13. ODEH, A.S. and JONES, L.G. : Pressure drawdown analysis, variable ratecase.J. Pet. Tech., Aug. 1965, 960.

14. JAMES, R. : Alternative methods of determining enthalpy and mass flow.Proceedings, U.N. Conference on new sources of energy, Rome, 1961.

15. JAMES, R. : Private communication.Orléans (France), nov. 1977.

16. WAINWRIGHT, D.K. : Subsurface and output measurements on geothermal boresin New Zeland.United Nations Symposium on the development and utilization of geothermalresources, Pisa (Italy), 1970.

17. JAMES, R. : Drawdown test results differentiate between crack flow andporous bed permeability.Proceedings, 2nd U.N. Symposium on the development and use ofgeothermal resources, San Francisco, California (USA), May 20-29,1975, vol. 3, p. 1693.

18. MANETTI, G. : Private communication.Pisa (Italy), august 1975.

19. STEFANSSON, V. : Private communication.Larderello, Italy, sept. 1977.

20. NOBLE, J.W. and OJIAMBO, S.B. : Geothermal exploration in Kenya.Proceedings, 2nd U.N. Symposium on the development and use ofgeothermal resources, San Francisco, California (USA), May 20-29,1975, vol. 1, p. 189.

21. NATHENSON, M. : Flashing flow in hot water geothermal wells.Jour. Research U.S. Geological Survey, vol. 2, nov.-dec. 1974, p. 743.

Page 54: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

A P P E N D I X A

TEMPERATURE AND PRESSURE PROFILES IN WELL ASAL 1

Page 55: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

46

TABLE Al : TEMPERATURE PROFILES IN WELL ASAL 1

: DEPTH

; (meters)

; o; s'. 25: 49; 98; 147: 196

235• 245

; 293318

; 342; 391• 44D: 489! 536

562567

; 611; 636; 665: 7D9I 734 :

; 783i B07; 831; 655: 880 ;; 905 :: 9291 954 :

976: 1003 :: 1027: 1047

; Static

! 28.IX.75

113113

113

118 '120126126127

128

137144

155 :

171

184

198 !

214 :

227

252

'. Static

! 17.X.75

34

76102103

109119

126128131127114

127

135147

161176

190

205

237

246251

TEMPERATURE

; 6" outlet

! 21.X.75

: 162: 165: 171: 175: iss: 191

197

202209211213219222223224229231232234

DEGREES CELSIUS

! 6" outlet

! 28.X.75

: 162; 166: 174

179! 187

203

211

219

226

233

2392412^3 ;245 ;248 !250 ;251 :252 :253 !

253 :253253 :259

4" outlet

I 31.X.75

161165187195200206

217

219224228231233234

238241

246246251252253253 I

253

253253259

2" outlet

. 2.XI.75

211212212215217219

222

231234235236

241

246250251251252252252

252

253

253253258

: i" outlet :

: 5.xi.75 :

; 201 ;; 201 ;: 201 :: 203; 205

209 ;

215 ;

223 ;228 ;233 i238 ;

241 ;

243 ;245 ;24624B :

247 :

248 :

249 :

250 ;

251 ;251 ;

252 :252 :256 :

:

Page 56: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE A2 : PRESSURE PROFILES IN WELL ASAL 1

DEPTH

(meters)

05

254998

147196245293342391440469538587636685709734758783807831856880905929954978

10031027

Static ;

30.IX.75

611

: 162126,31 /

: 35: 40: 45

50

54 :

59

63

68

73

Static

18.X.75

48

1318232732374246

51

55

60

65

69

73

78

PRESSURE, KG/CM'

6" outlet

24.X.75

4.5

: 28

: 31

6" outlet '

29.X.75

5.0

30313233

33 : 34: 36

36 ; 37; 39

40 : 41: 44

45 ; 46: 48

49 ; 51: 53: 55

4" outlet

31.X.75

8.5

3233343537394143454750

54

59

2" outlet

3.XI.75

15.8: 18: 18: 18: 18; 19

20

: 23

: 26: 28

29: 30: 31: 35: 39: 41: 43

45485052

57

62 "

6668 !71 I

1" outlet

5,XI,75

12.014

14151617

20

23252731364145

50

54

59

64

68

72

77CD

Page 57: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

A P P E N D I X B

PRESSURE BUILD-UP AND FLOW TEST DATA FOR WELL ASAL 1

Page 58: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

E Q ' J A T I 0 N 6 -

D I V F N S I C N

R E A D 1 0 1 , { 1 Í I ) , F ( I ) , 1 = 1 , N P JR E A D 1 0 2 , N F , C T = S T

T I ( 1 ) = H T ( ] )D C 1 J = 2 , N FJ 1 = J - 1TTf D î T T I . n i -t-nT f 1 1

n r ? T = " . NPI P ( Q T E 5 T - C ( N F ) )

31 D P ( I ) = P ( 1 J - F ( I )an m -aa

33 T T U ) = Q ( 1 ) * Í L O G ( 6 0 . * C U ( N F ) + T{ I) ) ) + ( CTEST-0 ( NF ))*ALCG{ÊC.*T(I))DO 2 J=2,NRI 1 - I- ] ;

2 TT( I?=TT< I ) -H C )*à\ O P. f A P. - * f T 7 f K ' g ) - t - T f T > — T 7 f .11 ) ) 1

3 CONTINUEPUNCH 200p lj NI C M ; r i 1 1

PUNCH 12C2PUNCH 12 04PUNCH ?C2 . 6¿

PUNCH 20?7NP1=NP-1PUNCH 2 04rNFlp 'j N C H ?Cc i (1T(I ) ) P H ) tl-?iP PINT

O(NR1)=C7ES1P R T M T "a C1 . I . 1 . .1 = 1 . N P 1 1

a n ? , (rît.ii ..is

PRINT 302,ni(J),J=],NP)PRINT 304,(C{J),J=liNFl)PP TNT "3P cPRTMT

DC 4 1=2,NF4 PRPJT 3C7,7II) ,TT( I ) , F( I) ,DF(I)

P U N C H 2 0 1 r g 1PI INCH t 7n;PUNCH 1202PUNCH 202t¿2PUNCH ->rt

PUNCH

PUNCH 2C4.NF1PUNCH 2C5, {"Id ) ,DP( I) ,I = 2 ,NP)

nri n '102 FORM^T{ I5,F1C.C )200 FORMA.T(551 CARTES FEFFCREES

T( TYPF= .

l .NPASY=

Page 59: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

1 2 0 3 FCP.M4TI 7 1 H T P A C E C E S F C I N T S : T Y F £ = . P 4 S T = . F A S P = .CPIC-1X= -fc IC-P= .j

1 ? O A FTRMATÍ ! ; qx .77H"UTTF IF

2032CA POPMAK 14,61-PCINTS)7DÇ CnP"ATf pg 1 f .4 )

in f ; f y .? r¿A f / f i (?7x f ?rAA T / )301 FOPMAKihC,17HFLCV FERICD : ,11(4X , I2,4X302 FORMAT« ]HCi 17HDUR¿TÎC^ (VN) : , 1 1 F 1 C 1 )^ n ^ F H R M A T ( l l - r t 1 7 H T T V = i T N T T ( ^ K 1 ) : T 1 1 F l f ! . 1 )

F O P M A K 1 t-0 t 17HFI TU C f T ^ f T / H R ) : t 1 1 = 1 H . 1 )

305 FORMAK 1HC»22X,7HCT ( N ) 115XtAHF(T) , 12X , 10h F { KG / CP2 ) , 1CX , 1 CHCF{KG1/CM2) )

F H Q M ^ T M H f ; ^ X T 7 t 'S X T 1 FF 1 0 . A T S X ) t ? fa X t fi P F T 0 . 7 t c X ))

206 FORMAT« 22X, 36HBCTTCN hCLE PRESSURE CKANGE , K G / O 2 )

Page 60: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE El : «S A L I P R E S S U R E E L I L D - U P T E S T 16« C U T L E T ; 29 C C T O E E R 1 9 7 5 )E C T T C K H O L E P R E S S U R E ( K U S T E P G A U G E iT 1C2 7

FLCK PERI9C :

DURATION l?K) :

TIfE LI^IT (KN) :

FLCh RATE ( T / H R ) :

1

8 Î 5 5 . C

8 9 5 5 . C

8 3 . C

Í

Í 7 O . C

S Í 2 5 . C

0 . C

CT ifU)

0.0l.COOCE1.380CEJ.47CCE1.9100E2.2700c2.440CE2.6700E; .C800E3.340CE3.5OOOE3.700CE4.050CE4.560CE4.740CE5.19CCEÎ.310CE5.6300Eé.180CE6.600CE6.9900E8.0300E-É.9600E1.0400E"1.272CE1.3080E1.503CE1.7340E1.9650E2.1960EÍ .^270EÍ.6590E2.8140EA.9700EÍ.126CE7.282CEÍ.438CEK19O6E1.5373EI.1153EÎ.2711E3.8^i91E^.A270E5.C049E5.5829EÉ.16CEE7.3167E7.89A6E

-

5Í7C.C

15195.0

E3.C

ccocccoccccc£C

occcccococCC - ..

ccccccccocccccococ01 -ClC 1 - -01fll - -ClCl _ClClClfllClCJClC2C2C2C202 _C2C202C202C2 . . .

0.0

F.ÍTJ

7.9124E7.6451E7.5927E7.3754E7.2321E7.1721E7.097^E6.9789E6.9116E6.8726E6.8267E6.7517E6.6533E6.6211E6.5A59E6.5269E6.4784E6.4C11E6.3465E6.2989E6.1636E6.0929E

-5.9693E5.8C2'tE5.7792E5.664CE5.5«55£5.4419E5.349BE5.2669E5.1913E4.E927E4.6737E4-5009E«-3582E4.2367E2.9533E3.7435E3.4824E3.1282E2.9969E2.8846E2.7865E2.6995E2.6214E2.4860E2.4265E

020202C2020202-020202020202DZ0202C202•02

CZ02 .-0202-02020202020202020202020202C202 . -020202 ._020202020202

F (KG/CM2)

55.1355.2756.8157.6658.4359.2760.126C.SÉ61.SC62 . 5E63.4264.2665.1165.9566.7947.5768.4169.2é70.IC70.5S71.7272.5673.4C73.9074.1874.2574.4674.5374.6C74.6774.7474.7474.9575.0275-OS75-1675.1675.3C75.3C75.3775. 3C75. 3075.2375.2275.1675.1675.0275.02

CPIKG/CK2)

0 .141.682.533.304 .144 .995.836 .677.458.299 .139.98

10.8211.6612.4413.2614.1314.9715.4616.5917.4318.271 8 . 7 7 -19.0519.1219.3319.4019.4719.5419.6119.6119.8219.8919.9620.0320.0220.1720.1720.2420.1720.1720.1020.1020.0320.0319.8919.89

Page 61: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B 2 : ¿SALI PRESSURE BUILD-JP TEST (4" OUTLET; 1 NOVEMSE»BOTTOM HDL= PK¿SSURE JK'JST.ER GAUGE AT 1027 METERS)

FLOW PERIOD :

DURATION (NN) :

TIME LIMIT (MM) :

FLOW RATE ( T / H R U

1

3955.0

8955.0

83.0

2 - - 3

570.0 5670,X) -

Q525.O 15195.0

0.0 - -83,0

OT (MM)

4 5

11C5.0 2530,0

1638C.0 13960,0

71.0

MTJ

- -0.0 - —

P (KG/CM2J

0.04.5000E-01---- -£.6000E-01 - -1.13005 001.3000; 001.4700= 00 - —1.6600E JO1.8300£ 002.0600; 00 - —2 . 2300E 4302-4400E 002.6500E0Û2.85 00=. 003.09005 -00 -3-2900; 003-4600; CO3.b900E 004-0300c-00-..09QOE -00-4,3900£-OXi-_4-5 900c- OC4.8300t 005-21001-00 ...5-4900E-005.9400c 006.3700E OC7.0400;-007,3700; --007.8200E -00.--3.2700E 009.0300; OC1.0530E 01 .--1.2030c Dl1,354OE-C11.95 50=- Cl2-4070; 01-2.3580c Cl ......4.8130E X.19.1750E 011.1118;-02

7.4375E-026.9614E -02 --6.7939E 02 -b. 6344E- CZ- —* . 5971E-O2

-6.5108E-Í2 -6-4416= -026-357-6E-02 — -

-6-3013E- 0 2 —6,2374E -02-6.1789E-02--6. 1272E—02—6.069SE 526,0253E -02

-5,9S55E 02—-5—9439E--02 —-5,-8ei-4£—02-5.£709£_ 02 —- 5--82C6E-Í32-

--5,^752 «»£-02-5 - 6 «391= -.02 _

--5-Í620E—02---5,-6C61E-02-—5.5565E--02-5 -4656E-02—5,4531c—02-.—5,4111E- 02-- 5,3714E—02--5,3091=_02-

5.2O01E-O2--.-5-1057E- -02-

4,7fcl7E-i2-4--6145E-02-

-4-4.930E—02--4.1250E--02-3.6713E—02-

58.1558.5759.4860.26fcO.8261,3361,9462-51&3-07¿3-6364-1264-69 .65.2565,8166-37-66.94o7.50-66.06.

-6S-55-69-11.69,6870,24-70,80

-71-36-71,9372,4 972.9e73.2673.4773-6173.3274.1174-1374,2574.53-74.6774.6774.8874.95-75-09

0.421.332.112.67-3.23

- 3 . 7 94.36-4.92

5,97- 6.54

7 . 1 0-7 ,668-22

.- 8.79- 9,35

9.S1-10-40-10-Q6-11.53-12.09-12.6513.2113.78-14.34-14.3315.11-15-3215-4615.6715,9616.0316.1016.3816,52

16.7316,50-16. «54

Page 62: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

T A B L E E 3 : • S A L I P F E S S i m E L I L D - U P T E S T ( 2 " C U T L E T ; 4 N C V E " P E R 1 9 7 S iB C T T C K H C L E P R E S S L P F ( K U S 1 E R G i L G E 4 T 1 C 2 7 * E T E = S )

rLC* PcRI'lC

CUPATICN C M :

TI«F LIMIT ifN) :

FLC« RATE (T/H?):

-

1

8Í55.C

8955. C

63.C

*

570. C

9525.C

c.c

CT (CM

C.C1.900CS-

'-

5Í7C.C

15195.C

63.C

1

-Cl5.60CCE-C]í .600CE-C1 --1.350CE1.740CF2.1300E2.520CE2.9CCCE3.300CE3.68CCE4.10CCE4.E50CE5.620CE7.180CE6.73CCE1.C28CE1.184CE1.340CE1 .490CE3.650CE1.8050E1.9600E2.1160E2.270CE2.427CE2.562OE2.737CEI .893CE3.048CE3.2C3CE3.3590E3.514CE3.669CE3.6250E3.9800E¿.135CE4.291CE4.446CEi.601CE4.757CE4.9120EÍ .970CE

ccccccccccccccccceccccccClClClClClClClClClClClClCl . .ClClClClClClClClCl01ClClClCl .

4

1185.C

Í63S0.C

0.0

FIT)

3.4846E3.2279E3.112CE3.Û335E2.9751E2.92S6E2.8Í99E2.8576E2.3278E2.8C27E2.7778E2.7391E2.705-2E2.6487E2.6037E2.566CE2.5334E2.504SE2.48C3E2.4567E

. 2.4359E2.4169E2.3992E2.3E2SE2.3674E2.353CE2.3395E2.3267E2.3145E2.3C3CE2.292CE2.2615E2.2715E2.261SE2.2525E2.2436E2.235CE2.2267E2.2187E2.2109E2.2035E2.20C7£

5

2580.C

18960.C

71.C

C2C202C2C2C202C2C202C2C2C2C2020202 .02C202C2C2C2 . ..C2C2C2C202C2C2C2C2C202C2C2C2C2C2C2C2C2

6 7

172.C 193.C

19132.0 39323.C

C.C 83.C

F (KG/CC2)

71.0271.2í72.0«72.9273.5774.1774.6c75.0Í75.3675.6275.8475.9576.0676.lí76.2276.2576.2776.3C76.3C76.3376.3376.3376.3376.3576.3576.3676.3676.3676.3676.3876.3e76.3776.3776.3676.3676.3676.3676.4176.4276.4276.4176.3676.4C

Ç

42CC.C

23523.C

23.0

0.231.071.902.553.153.664.044.364.604.824.935.C65.135.205.235.255.285.285.315.315.315.315.335.335.365.365.365.365.365.365.355.355.365.365.365.365.395.405.405.395.365.38

0.0

Page 63: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B¿l A S A L l P * E S S l B . E P U L D - U P T E S T ( 2 " C L 1 L E T ; 4 M T V E H Ë E P 1 9 7 5 )h C L E P F E S S U F C ( K U S T E F G A U G E ÍT 1 C 2 7 K E T E P S )

FLCh FEPinC : 1

CURÍT ICN ( » M : 8 Ç 5 5 . C

TIME LIMIT (*1N) : 8 = 5 5 . C

kATE ( T / H R ) : 8 3 . C

Í70 .C

Î 5 2 5 . C

O . C

CT <PM)

CO1 .900CE-C1Í .eOOOE-ClÇ.6C0CE-C1I.2500E CC1.740CE OCÎ.130CE CCÎ.52OCE CCÍ.9C0CE CC3.3OOOE CC3.68OCÊ OC' . 1 C O C E CC4.8500F CCÍ.62OCE OC7.18OOE CC6.730CE OC1.C28CE Cl1.184CE Cl1.34CCE ClJ.4900E 011.65OOE Cl1.8O5OE Cl1.960CE 01Î.116CE Cl2.2700E ClÍ.4270E Cl; .5820E ClÎ.7370E ClÍ.893CE Cl3.0480E Cl3.2O3CE Cl3.359CE Cl3.514OE Cl3.6690E 013.8250E Cl3.980CE Cl4.1350E Cl

ClCl

'.6010E 01'.7570E 01'.9120E Cl

:E CI

5é7C.C

151Î5.C

8 3 . C

4

1185.0

1636C.0

0.0

FIT)

5

2580.C

18960.C

71.0

5.1852E 024.7388E C24.5372E 024.4C09E 024.2993E 024.2184E4.1512E4.0950E4.0433E

02020202

3.9997E 023.9564E3.8692E

02C2

3.8302E 023.7322E 023.6540E 023.5885E 023.5320E 023.4824E3.4399E

02C2

3.3991E 023.3631E 023.3301E3.2994E3.2713E3.2445E3.2197E 023.1963E 023.1741E 023.1532E3.1333E3.1142E3.0961E 023.0788E 023.0621E 023.0461E3.0308E3.016CE 023.0017E 022.968CE 022.9746E2.9617E

02C2C202

C2C2C2

0202

0202

2.9570E C2

6

172.C

1913;.C

C O

F (KG/CK2)

71.0271.2572.0S72.9273.5774.1774.6675.0675.3875.6275.8475.9576.0676.1Ï76.2276.2576.2776.3C76.3C76.3376.3376.3376.3376.3576.3576.3676.3676.3e76.3676.3676.3676.3776.3776.3676.3676.3676.3676.4176.4276.4276.4176.367 6 . 4C

7

191. C

19323.C

83.0

e

420C.0

23523.C

40.0

0.231.071.902.553.153.664.044.364.604.824.935.065.135.205.235.255.285.285.315.315.315.315.335.335.365.365.365.365.365.365.355.355.365.365.365.365.395.405.405.395.365.3B

0.0

Page 64: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B 5 « S A L I F R E S S I R E g l l L D - U P T E S T ( 2 « C L U E T ; 4 N C V E K E E H 1 9 7 5 )H C L E P R E S S U R E ( K U S T E F C - Í U G E Í T 1 C 2 7

F L C « P E R I O C . _ _ . : 1

D U R . ' T I C N ( « M : 8 Ç 5 5 . C

T I M E L I M I T < K N ) : 8 9 5 5 . C

F L C « R A T E < T / H R ) : 6 3 . C

Í70 .C .... 5Í7C.C

SÎ25 .C 15J9Ï .C

1." C .C 83. C.

. C T . IVK't

C O _J.900CE-C1Î.80C0E-C1Ç.6000E-C13.35OOE CC1.740CE CC2.13CCE CCZ.520CE OC2.900CE CC.2.300CE CC3.680CE. CC¿.1OOCE OC' .E5CCE CCÍ.6200E CCÏ.180CE CCe.73OCE CC1.C28CE Cl1.1840E Cl1.340CE Cl1.490CE Cl1.65OCE Cl1.8050E Cl1.960CE ClÍ.116CE Cl2.2700E Cl2.zi27CE Cl2.582CE Cl

. 2-737CE Cl2.893CE_C13.C48CE ClÍ.2030E Cl3.3590E Cl3.E14CE Cl3.669OE Cl

^ „SZSCE ci.2^98CCE Cl^-135OE £14.291CE ClA^i^tCS Cl4.601CE Cl^.7570E ClA.9120E Cl«.Ç700E Cl

1185.0

16380.C

0.0

F(T)

Ï.'5 85 7Ë5.9831E5 . 7 U 0 E5.5269E5.3898E5.2806E5.1898E5.114CE5.0442E^i.9854E4.927CE«.6363E4.7567E«-6245E4.5189E^.1307EA.354AE4.2875E^.2302E^1.1752E• < I . 1 2 6 7 E4.0822E4.04C8E¿I.0C29E3.9668E3.933^E3.901ÇE3.8720E2.843ÊE3.817CE3.7913E3.767CEJ2.7437E3.7212E3-6S97E3.6791E3.6591E2.6399E3.621^E2.603ÍE3.5861E3.579eE

5

2580.C

1B960.C

71.0

02C20202020202C2C2C2C202020202C202C2C2C20202020202C20202C20202C202C2C2C2C2C202C20202

6 7

172.C 191.C

19132.C 19323.C

C O ... . 83.0

F (KG/CW2)

71.0271.2S^ .

. 72.0S._.72.927 3 . 5 774.1.7.74 .6E ._ .7 Ï .O675.2£ .. ._It.6275 .8A75.9 i76 .06 . .76 .157 6 . 2 27 6 . 2 576 .277 6 . 3 C7 6 . 3 C ...76 .337 6 . 3 276 .3376 .3276 .3576 .3 Ï7 6 . 3 E7 6 . 3 87 6 . 3 876 .2676 .3676 .367 6 . 3 776 .377 6 . 3 876 .3£7 6 . 3 8 - .3 6 . 3 £76 .4176^427 6 . 4 276 .417 6 . 3 876.4C- _

8

4200.0

. 22522.C

_.1. 54.0

CP(KG/Cf2»

0.231.071.902.553.152.664.044.264.60

. 4.824.93

- 5.C65.135.205.225.255.285.285.215.315.31

.. . . . . 5 .315 . 3 35 . 3 35 . 3 65 .3é5 .365 .365 . 3 6

_ 5 . 3 65 . 3 55 .355 . 2 6

- - 5 . 3 65 . 3 65 . 3 65 .395 . 4 05 . 4 05 . 3 95 . 3 6

...... 5 . 3 8

9

0.0

Page 65: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B 6 : ¿SALI PRESSURE FLCoINC- TEST (6« CUTLET; Cl NCVECBER 1975)ECTTCK- HOLE PRESSURE IKUSTE? GAUGE ÍT 1C27 P E T E R S )

FLCw PERIOC -

DURATICN (KM :

.TIME LIMIT- (*N) :

FLGh RATE (T/HRJ :

- - - - . • -

-

MMEEM^M._

.._—..

. .- —

-:- • -

• - - •

_

i

8S55.C

83.0

- • -

- • -

-

2 -i

Î7C.C 567C.C

<it2S.C 15195.0

C . C 83 .0 .

CT (KK) . . . .

C.Cî .C00CE-C21.225CE CC1.782CE CC . ..Í.339CE CC.3.9550E CC5.57C0E CC6.355CE CC

. 1.114CE Cl1.3925E Cl1.671CE Cl

- 2.2281E Cl ._ .Í.7851E Cl3.3421E Cl2.8991E Cl4.4562E 01 -5.57C2E Cl6.6843E Cl

7.7983E ClE.9124E Cl . . . .

- J .0026E C2- 1.1140E C2

3.2254E C2. _ 1.3369E JC2-

1-4483E 02_ 1.5597£_02

3.6711E C2 . . .1.7825E C21.8382E C2

-

.

- : — - • -

1135.0

16380.0

0.0

FIT)

4.295EE6.7947E7.1036E7.3271E7.7567E8.0345E8.3603E8.5684E8.7632E8-9042E9.1229E9.2886E

9.5304E9.6232E9.7739E9.8923E9.9889E

. 1.0070E1.0139E

-L.019SE-1.025.2E1.0299E1.0341E1.0379E1.0413E1.0445E1.0459E

- - - --

5

2580.C

18960.C

71.0

C202C2C2020202 .02C2C202C2020202 .020202C3

C303C30303030303 .03

6

172.C

19132".C"!

C O

F Í K G / W 2 I

75.8C75.2C74.9C74.8C74.6C -73.4C12.OC -69.30 ..66 . 8C64.9C6 2 . 2C60.6C59.4C5E.6C-58.4C58 . OC57.80 -5 7 . b£57.2C -57.2C

57..2C

57.OC-57.OC -.57 .OC-

- 5£.8C56. 8C56.8C-_

_ ..

- •-

7

83.0

C

• - - • • - • •

- -

. .

- - - - - -

_ . _

P(KG/CV2) _

0.600.901.001.202.403.806.509.00

10.9012.6015.2016.4C17.2017.4017.8018.0018 . 2C18.6018.60

18.6018.7018.80 -18.8018.8019.0019.0019.0019.00

_ . . .

Page 66: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B 7 «Sill FRESSIRE C L C M N G TEST 12" C L U E T ;. C I N C V E ^ E E R 1975)HCLE P R E S S U R E (KUSTEP C-ÍUGE ÍT 1C27

FLCk PERIOC :

CURÍTICN <*M :

TIME L 1*1 IT <fN) :

FLCW RÄTE (7/I-RI:

1

8S55.C

6955.C

E3.C

2

Î7C.C

9Í25.C

C C

CT (*M

C CÍ.782CE3.676CE6.462CE9.247CE1.192CE1.3369E1.4817E2.C387E2.5957E3.152EE3.7098Ei .266eE5.38C9Eí .4949E7.609CEE.7230E1.4253E1.9863E2 .5434EÍ.1004E3.6574Ei .2144E4.7715EÏ.3285E5 .EÇ55E6.4425c6.99965-.5566EE.1136EE.670655.2277Ec .74ÉEE2.120CE3.12CCE3.12ÛOEÍ.173CE1.1734Et. 1736Ei .1745PL .1753E4.1761E¿.1769E4.1777Ei . 1784E'.1792EA.18O8E'.1823Ei.1839EL,1854EL.187CEÍ.1885EA.1901E4.1916E¿.193254.1946E'.1963E<.1979E4.1986E•i .19945t- .1996EL .200Cc

-

5 Í 7 C.C

15195.C

63.C

CCOCCCCCCl0101ClClClClClCl -ClClClC2C2C2C2C2 _.C2C2 _ . .C2CÍ.C2C2C2C2C2C2C2C3C3C3 ._._ .C3C3C3C3C3C303C3C3C303C3C3_C203C3C3C3C3C3C3C3C3C3C3C3

4

1185.C

16380.C

0.0

F(7J

7.6789E7.249CE6.9172E6.7087E6.5626E6.497CE6.4386E6.2594E6.1263E6.C21CE5.9345E5.8612E5.7424E5.6487E5.5718E5.5C66E5.2839E5.1449E5.0448E4.966eE4.9C30E4.8490E4.8022E4.7609E4.724CE4.690ÍE4.660CE4.6319E

. 4.6C55E4.5617E4.5591E4.5393E4.1373E4.1373E4.1372E4.0463E4.C463E4.0463E4.0462E4.0461E4.0461E4.C46CE4.046CE4.0459E4.0459E4.C457E4.0456E4.0455E4.0454E4.0453E4.0452E4.0451E4.045CE4.0449E4.0447E4.0446E4.C445E4.0445E4.0444E4.Q¿¿¿E4.0444E

5

2580.C

18960.C

71.C

C2C202C2020202 - .....C2C2C2C2C2C2C20202C2020202C202C2 .02C2 _ . . ...02C2. .C2C20202C2C2.C2._ . _C202 .C20202 _.0202C202C2C2C2C202C202C202C2C2C202C202020202

6 i

172.C 191.C

19132.C 19323.C

C C 83.C

F (KG/CK2)

56.7C57.1CÏ7.8C5S.2C58.4C58. 6C61.1C63.6C67.CC66.4068.8C69.2C69.2C69.3C69.5C69.5C69.5C69.8C69. 8C69.9C69.9C69.9C69.9C69.9C70.OC70.OC7C.0C7C.2C7C.2C70.027C.2C70. 2C7C.2C70.557C.5e,70.597C.7C70. 8C7C.8E70.9E71.0571.1271.IE71.2£71.2£71.2671.3471.3E71.3E71.3571.4C71.4271.3571.3771.3671.3671.3671.3671.3671.367i.oe71.02

e

23.C

CF(KG/C"2)

0.4C1.101.501.701.904.406.9010.3011.7C12.1012.5012.5C12.6012.ec12.8012.8013.1013.1013.2013.2013.2013.2013.2013.3013.2013.3013.5013.5013.3213.5013.5012.5013.8913.8913.8914.0014.1014.ie14.2814.3514.4214.4814.5514.5814.5814.6414.6614.6814.6914.7014.7214.6914.6714.6614.6614.6614.6614.6614.6614.3814.32

Page 67: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

T A B L E B 8 : A S i l l P R E S S t R E C L C « I N G T E S T ( 2 " C L 1 L E T : C l h C V E V P E R 1 9 7 5 )B C T T C K H O L E P P E S S U K E ( K U S T E F G A L ' G F Í T 1 C 2 7 " E T E R S )

FLO« PERIOD :

CURAT ICN (*M :

TIME LIMIT (KN) :

= L0w RATE (T/HR] :

1

0955.0

8955.C

83.C

í 7C.C

SÍ25.C

o.c

CT (VNJ

C.C] .782CE

' 2.6760E6.462CE9.2470E1.1920=1.3369=3 .4817E2.C387E2.5957E2.1528E2.7C98E«.2668E5.38C9E6.4949E7.6090E8.7230E1.¿293E].9863E2.5434E2.1004E2.6574Et> .2144Eí .7715Eí .2285Eí.8855E6.4425Ef .9996E7.5566E6 .1136E£ .6706E9.2277EÇ.7468E2.12OOE2.120CE2.12OOE¿.1730E<.1734E4.1738E•Í.1745E4.1753E•Í.1761EL .1769E¿ .1777E4.1784EÍ.1792E4.18O8EÍ.1823E*• .1839EA.1854E4.187CE*.1885E4.1901EÍ.1916E*• .1932Et.1948E4.1963E1.19 79E¿.1986E<.199AE1.199eEA.2000E

-

it7C.C

15195.0

83.C

CCOCCCOC01Cl01ClClClClClClClClClC2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C3C3C2C3C3C2C302C302C2C3C2C3C2C3C3C2C303C3C203C202C2C2C202

1135.0

1Ó380.0

0.0

FIT)

8.4731E8. 1664E7.9305E7.7829E7.6799E7.6339E7.5929E7.4679E7.3759E7.3037E7.2446E7.195¿E7.1160E7.0542E7.0C42E6.9625E6.8235E6.7405E6.6824E6.6381E6.6024E6.5725E6.5468E6.5243E6.5042E6.4861E6.4697E6.4546E6.4407E6.4278E6.4156E6.4C53E6.2C11E6.2011E6.2011E6.1595E6.1595E6.1595E6.1595E6.1595E6.1594E6.1594E6.159¿E6.1594E6.1593E6.1593E6.1592E6.1592E6.1591E6.1591E6.1590E6.159CE6.1589E6.1589E6.1588E6.1568E6.1588E6.1587E6.15B7E6.1537E6.1587E

1

5

2580.C

18960.C

71.0

0202020202020202020202020202020202C202020202020202020202020202020202020202020202020202C202020202020202020202020202C2C20202

6

172.C

19132.0

C.C

F (KG/CHZ)

56.7C57.1C57.8C58.2C58.4C58.6C61.1C63.6C67.CO68. 4C68.8069.2C69.2C69.3C69.5C69.5C69.5C69.8069.8C69.9C69.9C69.9C69.9069.9C70.OC70.OC70.OC70. 2C70.2C70.0270.2C70.2C7C.2C70.5970.597C.5970.7C70. 8C70.8e70.9671.0571.1271.1871.2571.2e71.2871.3471.3e71.3671.3971.4C71.4271.3971.3771.3671.3671.3671.3671.3671.3671.0671.02

191.C

19323.C

83.C 40.0

0.401.101.501.701.904.406.90

10.3011.7012.1012.5012.5012.6012.8012.8012.8013.1013.1013.2013.2013.2013.2013.2013.3013.3013.3013.5013.5013.3213.5013.5013.5013.8913.8913.8914.0014.1014.1814.2814.3514.4214.4814.5514.5814.5814.6414.6814.6814.6914.7014.7214.6914.6714.6614.6614.6614.6614.6614.6614.3814.32

Page 68: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B9 : ASALl PRESSURE FLDVIN3 TEST (2" OUTLET; C1NOVEH8EC .2975)BOTTDI HOLE PRESSURE {KUSTÍR GAUGE AT 1C27 METERS)

FLOW PERIOD :

DURATION IP.N) :

TIME LIMIT IMN) :

FLOW RATE (T/H?j:

1

8955.0

3955.0

83 .0

2 .

570.0

9525.0

0.0

0T tH,i

5670.0

15195.0

-83.0

. 4 .„,5

1185.0 - -2580.0

1638C.0 - 18960.0

172.0 191.0

19132.0 19323.C

- C O 71.0

—.F-1TJ

0.0

P (KG/CM2J

83.0 54.0 - - -

D«MKG/CM2-J-

1.7820E 003.6760c-006.46202 009.2470= 001.1920s -Oil-1.3369= 011.-.617Í-0Í2.03 873 012.5957E- 013.1528= 013. 7093 = -014.26682 015.3809E --016.4949E 017.6Q9QE QlE. 72302--01

1-9e632 02.2.54342-02.3.100*2.-02-3.65742-024.2144E-.J324.7715E-02-5.32 85E 025.8655E-O2-b. 4425E.02

- 6.99962-02-7.5566E--02£.11362-02 .

-8 .67062-029.22772-029. 7468£--02.3.1200E-03-3.12002 033.12002-034.17302-03-

-4.1734E-034.17392-03-4.17452-03

- 4.17532 034.1761c 034.17692-03

.4 .17 772-034.1784t 03.4.17922—03t.. 1808E 034 . 1823E..034.18392 034.18 542 -034.18702 03.4.18352-03.4.19012-034.19162 034.19322 034.1948E 034.196324.19792 034.19362 034.1994E 034.19982t.20002

—-9.1272* -02— - 3.-9218E 02— .

3,7649t- 02 —8.6675E- 028.6C0OE-O2 - —

- - S .5701E-02- —3.5435E- 028-4632E- 02-

-- 8.4050E--C26.3601E- .Û2--

-S.3239E 028 . 2 9 4 0 2 . 0 2 - - -8.2471E-02.8.2117-E-.Û2B.1E39E.-028.1613E-Q2S . 0 9 1 5 E - 0 28 . 0.5 452- -02

.-- _.B.031.0r 02-a. 01452-02-

7..9918E-C2

—. - 7 . 9 7 6 4 E - - Q 2 —-

X . 964 9E--02_ J . 960OE--O2 _^-.

7-S557E—027..-95J.72—027^-948 ie-027„944B= -027- 9420E- 027-.-9007Í—02 -^—7-.SCC7E—027^ 9C07Ê--Û2

7^.39936-027.flS.98E_02—

-7.-8«598E .021.8998E-D27 . .8 99RF Q77.8S99E-027.8999E-027.8995E_02Z..8.S99E—02

J7.859SE 02- ._. 7— 89.99= 02---7.3999E—02-

_7-.-8.999£_02—

03

0303

. 7-.e999£__02-7 .8999E 027^3999£-X)2-

.7 .89992 02 _7.8999E. 027.8999E 02

_7.8999Ç 027.89992 027.8999E 02

56.70 -57.10 -

. — 57.30 -- 58.20

. - 58.405 R . A 0

-- . tol.10-63.60Ê7.00

. . 6 8 . 4 0 - -68.30 .69.20 _69.206 9 . 3 0

..... 6 9 . 5 0- _ -69 .50 -

-69.50 .• 6 9 . 8 0 ..

6 9.80

_ 6 9 . 9 0* 9 . 9 06 9 . 9 0

--69.90- 7C.00

-70.00.70.00

- 70-20-7C.20 -

- 7Û.02- 7 0 . 2 0

70.20-70.20

. -70.59_-70-59_- 7 0 - 5 9 .-J?C-70

7 0 . 8 0 --J7C.88-

70.98-. 71.0 5.—71.12--71 .18 -

--71.25-71.2871.2871.3471.3371.3371.3971-* O71-4271.3971.3771.3671.3671.3671.3671.36.71.3671.0871.02

-0 .40- • —1.10

_ 1.50- 1.70- 1 . 9 0- 4.40

6.9010.3011.70 . _ . .-12.10 .... .12.50 - -12.5012. 60 -- —12.5012.3012. SO— ...13.1013.1013.2013.2013.2013.2013.20 —-13.30

-13.30- —13.3013.50

-13.5013.32 —13.5013.50J.3.50 .

-13.99-13.89 _ _ .13.591 4 - 0 01 4 . 1 0

. 1 4 . 1 31 4 . 2 814 .35 -1 4 . 4 21 4 . 4 8 - . _14 .55 ...._ .

. 1 4 . 5 8 . _1 4 . 5 814.6414.b814.6814.6914.70

-14.7214.69

-14-6714-6614.6614.6614.66 _—14.66 . „14.6614.3814.32

Page 69: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE BIO : P R F S S t R E F L O W I N G T F S T ( 6 " C U 1 L E T S C4 N C V E f B E R 1<575)H P L E P R E S S U R E (KliSIFP C A U G F ÍT 1 C 2 7 V E T E P S )

FLCH PERinC :

DURATICN IMN) :

TINF l IM IT (MNI :

FLCV. RÍTE ( T /HR ) ;

1

8 Í55 .0

8 9 5 5 . 0

8 3 . C

2

Î70.C

9 Í25 .C

O.C

CT t r*N »

C.O2 . 2 5 C C E6 . 9 0 0 0 F1 . 5 5 O O E2 . 2 1 6 0 E2 . 8 8 0 0 E3 . 5 4 4 O Et . 2 1 0 0 F4 . 8 7 1 C E! .235CP6.2000E6.8620E7.5260E6.1900E9.5200E1.C845E1.350CE1.6155E1.7480E1.7880E

3

5(7C.C

1 5 K 5 . C

83.0

ceocClClCl01ClClClCl010101ClC2C2C2C202

4

1185.0

16380.0

0.0

FIT)

5.7513E6.Ö886E7.3452E7.63BCE7.8518E8.0202E8.1594E8.2768E8.3347E8.4699E8.5506E8.6238E8.6905E8.8086E8.9102E9.0791E9.2159E9.2754E94 2924E

5

2530.0

18960.0

71.C

C2C2C2C2020202020202020202020202C20202

6 7

172.0 191.C

19132.0 19323.0

0.0 83.C

F (KC/CM2)

75.5174. 2170.9266.81£2.1960.4C59.6559.2659.OC58.8258.655e.5758.4958.4158.2358.1457.9857.8557.8257.8C

8

4200.0

23523.0

23.0

CFtKG/CP;

1.224.598.70

13.3215.1115.8616.2516.5116.69I6.se16.9417.0217.1017.2817.3717.5317.6617.6917.71

9

426.0

23949.0

0.0

21

IG

8 3 . 0

Page 70: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

T A B L E B U : A S A L l P R E S S U R E F L O W I N G T E S T ( 6 " C U T L E T S C 4 N C V E f G E R 1 9 7 5 )B C T T C P H C L E P R E S S U R E I K U S T E R G A U G E A T 1 C 2 7 M E T E R S )

F L O W PEPinr :

DURATION ( fM :

TIME LIMIT IMN) :

FLOW RATE ( T / H R C

1

8Í55.0

8955.0 <

83. C

2

no.c

525. C

0.0

CT (KM)

C Oi -250CF8.9000F.

,t

Ii

I

t("(<

•55Û0E•2160F

! . 88G0FÎ.5440F.I.2100E

.871OF•2350E•2000E

•.B62CT.5260F..1900F.-5200E•0845E.3500E.6155E•7480F.7880E

-

5Í7C.0

15195.0

63.C

CCCCCl0101Cl0101Cl01Cl0101 .Cl0202C20202

1185.0

16380.0

0.0

FU)

6.1559E7.2909C7.7452E8.O357FB.2472E8.4134E8.5504E8.6657E8.7223E8.8545E8.9331E9.00'»3E9.069CE9.1832E9.2810E9.4427E9.5725E9.6287E9.6447E

5

2580.0

18960.0

7 1 . 0

02020202020202020202020202020202020202

6 7

172.0 191.0

19132.0 19323.C

0.0 83 .0

F (KG/CMÍ)

75.5174.2970.9266.8162.1960.4059.6559.2659.OC58.8258.6558.5758.4958.4158.2358.1457.9857.8557.8257.80

8 9

4200.0 426.0

23523.0 23949.0

4 0 . 0 0 . 0

CPIKG/CM2)

1.224 .598.70

13.3215. 1115.8616.2516.5116.6916.8616.9417.0217.1017.2817.3717.5317.6617.6917.71

IC

83.0

Page 71: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE B12 • aSALl PRESSIRE FLOWING TEST 16» CUUET C4 NCVEfBER 1975)BCTUH HOLE PRESSURE (KUSTEP GÍUGE ÍT 1027 NETEPS)

FLOW PERIOD !

OURÍTICN (MM :

TIME LIMIT <MN) :

FLOW RATE (T/HP):

1

8Í55.C

8955.0 <

83.0

(4

(

2

Î70.C

1Í25.C

0.0

CT (PN)

.0

.2500E:.90C0EL.5500E:.216CE2.Ö800E

i•5A40E..2100E4.8710Ei

<

t•

(

.235CE'.200CE.8620E

1.5260E3.19OOEÇ.5200EI.08A5EL.3500E.6155E

I.7480EI.7880E

i

5Í7C.O

15195.0

83.0

OCOC0101ClCl0101ClCl01010101C202C20202

A

1185.0

16380.0

0.0

FIT)

6.4891E7.6222E8.07'.5E8.3É32E8.5728E8.7372E8.8721E8.9859E9.0416E9.1712E9.2482E9.3177E9.3808E9.AS18E9.5864E9.7A21E9.8662E9.9197E9.9349E

5

2580.C

18960.0

71.0

02020202020202020202020202020202020202

6 7

172.0 191.0

19132.0 19323.0

0.0 83.0

P (KG/CM2)

75.517A.2S70.9266.81Í2.1C60.AC59.6559.2659.OC58.8258.6558.5758. 4S58.4158.2358.H57.9857.8557.8257.8C

8 9

4200.0 426.0

23523.0 23949.0

54.0 0.0

CP(KG/CM2»

1.224.598.7013.3215.1115.8616.2516.5116.6916.8616.9417.0217.1017.2817.3717.5317.6617.6917.71

1C

83.0

Page 72: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

T A B L E B 1 3 • A S A L 1 P B E S S L R E F L C M N G . . T E S T ( 1 " C U U F . T ; 4 I ^ C V E f P F R 1 9 7 5 ) _B C l l C M H C L F P R E S S U R E ( K U S I E P G Í U G E ÍT 1 0 2 7

FLCW PEPIIJC î

DURÄTICN ( K M :

TINC LIMIT tMN) :_

FLCW R M F (T/HR ) :

B S 5 5 . 0 Í 7 0 . C 5 Í 7 C . C

B955.Q 5Í25.C 151S5.G

P3.C 0.0 63.C

_C7__l I'M

C.C2.79CCE CC ._Í .110CE CC1.2740F Cl1.9300E Cl2 . 3 3 6 0 E Cl

...• 2. .748CE Cl

. 4 5 _

1185.0 2580.0

.163 80.0 .18960 .0

0.0 71 .0

_ 6

172.0

.19132.0

0.0

7

191.C

l?322.C

83.0

8 9 1C 11

4200.0 426.0 182.C

2 2 5 2 3 . 0 ~ . 2 3 9 4 9 . 0 . 24131.0

23.0 0.0 83.0 11.0

Í.COOCF Cl3.266CE Cl2..929CE Clt..59 3CE C 1 25.2570F ClÍ.S21CF Cl7.248GE Cl

.... e..576CE Cl1.1231F 071.3886E 021.É541E C2

__ 1..S196E C22.1851E C22.4506F Ce

_ 2...7160E 02

3.2471F Ce3.5126 e

5.6304E 025.0794EC24.5762F 024.2P91E 024.1792E 02

_4...C77.CE._02..4.O227E C23.9707E 023.8601E.C2

57.7458.325e .9559.4359.6259.6Í

3.6934E 023.6282F C2_3.5217E_ 02

CiJ..77eiE C2*i..0436E .02Í.3091E Ce

OíC2

Ï..1056E..C2î.3711F ClÎ .6366E 02Í...9021F.C26..16.76E C2 .Í .A331F C2f .69R6F. C2e.S641E C21.2296E. C21.4951F C2-I.Í278F C21.46CCF C?

3.4376E..02.3.3117E 023.22O7E 02.3.1511E._.C2_3.0958E 02.3.0504E C23.0123E C22.9797E 022.9515E 02_2.9266E 022.9044E 022.0846E 022.8665E 02.2.8501F 022.8350E 022.8211E 022.8081E C22.7960E 022.7847E C22..77.4 IE .02.2.7640E 022.7545F 022.7455E C22.7369E 022.7287F. 022.7208E 022.7170E C22.5814E 02

59.7C63.1167.1Ç72.977 2.91

74 .4374.59

.74.6774.8274.86

.74.94

.74.9474.9774.9e75.OC

_75 .O275.0575.OÎ75.05_75.O775.0775.1C75. 1C.7 5 . 1 C75.1C75.1275.1C75.1275.1375.175.17 5.175.175.177.34

0.591.21.1.691.881.921.965.379.4 5

15.2316.17lft.5216.6916.8516.9317.0917.1217.2017.2017.2317.2417.2617.2817.3117.3137.3117.3317.3317.3617.3617.3617.3617.3917.3617.3917.3917.4117.4117.41? 7 . 4 117.4119.60

Page 73: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

T A B L E B l \ . a s f l , A P R E S S U R E F L O W I N G T E S T ( 1 " C t T L E T ; 4 N C V E M P E P 1 9 7 5 )R C T T O M H O L E P R E S S U R E ( K U S T E P G A U G E A T 1 C 2 7

FLOW PER IOC :

DIIRATICN ( M M :

TINr LIMIT (MN) :

FLOW RATE ( T / H R ) !

1

8 S 5 5 . 0

8 9 5 5 . 0

8 3 . 0

i

Í70.C

S525.C

0.0

CT (PN)

C OÎ.790CF( .1100F1 .274GE1 .9380F2.3360F2.748CF2.C000F•.2660E3.9290E4.5930EÍ.2570E5.9210E7.248CF8.5760F1.123 IF1.3886E1.65* IF].S196FÎ.1851F2.4506EÎ.7160E2.S816E3.2471F.3.5126E3 .7Í81F<• .0436F< .3C91E4.5746E4.840CEÎ.1056E5.3711EÏ.6366F5.9021F6.1676Fí .4331E6.6S86Ef .9641F7.2296E7 . 49 5 1F7.6278E] .4600F

Í Í7C.C

15195.0

8 3 . 0

CCOCCI01ClClClClCl01Cl01Cl0102Ci02C2C20202C2C2Ci02C?02C202C20202C?C2C2C20202C2C203

4

1185 .0

16380 .0

0.0

FIT)

5.9813E5.4294E4.9246E4.6460E' . 5 2 5 1 E4.4220F4.3671E4.3145E4.2024E4.1103E4.0327E3.9660E3.8567E3.7697E3.6383F3.5421E3.4675E3.4073E3.3573E3.3147E3.2778E3.2454F3.2165E3.1904E3.1668E3.1451E3.1252E3.1066F3.0894E3.0732E3.0579E3.0436E3.0299E3.O17OE3.0047F2.9929E2.9816F2.970eF2.9604E2.9554E2.7699E

5

2580.C

18960.0

7 1 . 0

020202020202020202020202020202020202020202020202020202020202020202C202020202020202

6 7

172.0 191 .0

19132.0 19323.0

0 .0 8 3 . 0

F (KG/CMÎ )

c ? . 7 458.3358.9559.4359.6259.6659 .7C63.1167.1972.9773.9174.2674.4374.5Ç74.6774.8374.8674.9474.9474 .9774.9e75 .0075.0275.0575 .0575.0575 .0775 .0775 .1C75.1075 .1075.1C75.1375 .1C75.1375.1375.1575.1575 .1575 .1575 .1577.34

8 9

4200 .0 426 .0

23523 .0 23949 .0

4 0 . 0 0 . 0

CPIKG/CM2I

0 .591.211 .691.881.921.96)5.37'9.45

15.2316. 1716.5216.6916.8516.9317.0917.1217.2017.2017.2317.2417.2617.2817.3117.3117.3117.3317.3317.3617.3617.3617.3617.3917.3617.3917.3917.4117.4117.4117.4117.4119.60

1C

182.C

24131.0

83.0

11

11.0

Page 74: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE Bl5 ; A S Í L I PRESSURE FLOWING TEST tl" CUTLET; 4 NCVEPREP 1975)ECTTCI" HOLE PRESSURE (KUS1EP GAUGE ÍT 1C27 PETEPS)

FLOW PERIUC :

DURATION (PN) :

TI f P LIMIT (MN) :

FLOW RATE (T/HR):

1

8955.C

8955.0

83.0

i

570.C

9525.0

O.C

CT (KN)

COi .790CEi.llOCFJ .2740F1 .9380F2.3360Fi .748CE2.CO0OE2 .266CE2.9290E4.5930E5.257CE5.9210E7.248CEP.5760E1 .123 IE1.3886E1.6541E1.9196EÎ.1851EÎ.4506EÍ .7160Ei .9816E2.2471F.3.5126E2.7781E4.0436E<.3091E4.5746E4.8400E5.1C56F5 .371 IF?5.6366E5.9021E6.1676E6.4331E6.6S86E< .9641E7.2296E7.4951E1.6278E1 .4600E

i

5<7C.C

15195.C

83.0

CCocCl0101ClClCl0101Cl01Cl01C2C2Oí02C2020202C2C2C20202C202C2C20202C2C202C202C2C2C2

1185.0

16380.0

0.0

FIT)

6.2702E5.7177E5.2116E4.9317E4.810CE4.7061E4.6507E4.5976E4.4843E4.3909E4.3121E4.2442E4.1325E4.0432E3.9073E3.8068E3.7280E3.6639E3.610CE3.5638E3.5233E3.4874E3.4552E3.426CE3.3992E3.3746E3.3517E3.33O3E3.3103E3.2915E3.2736E3.2567E3.2407E3.2254E3.2107E3.1967E3.1832E3.1702E3.1577E3.1517E2.9252E

5

2580.0

18960.0

71.0

0202020202020202020202020202020202020202020202020202020202020202020202020202020202

6 7

172.0 191.0

19132.0 19322.C

0.0 83.0

F ÍKG/CP2)

57.7458.33îe .9559.4359.6259.6Í59.7C63.1167.1972.9773.9174.2674.4374.5 Ç74.6774.8374.8674.9474.9474.9774.9875.0075.0275.0575.0575.0575.0775.0775.IC75.IC75.IC75.IC75.1375.IC75.1:75.175.1!75.1.75.1!75.1!75.177.3'

n 9 lc

420C.C 426.0 182.C

23523.C 23949.0 24131.0

54.0 0.0 83.0

CP(KG/Cf2>

0.591.211.691.881.921.965.379.4 515.2316.1716.5216.6916.8516.9317.0917.1217.2017.2017.2317.2417.2617.2817.3117.3117.3117.3317.3317.3617.3617.3617.3617.3917.3617.3917.3917.4117.4117.4117.4117.4119.60

11

11.0

Page 75: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

A P P E N D IX C

INJECTION TEST DATA

Page 76: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE Cl . KAWERAU 23 FALL-CFF TEST ( 25 AUGUST 1975»( PRESSURE GAGE AT 653 fETERS=2600 FEET)

FLOH PER IOC :

OURATION (MN) !

TIME LIMIT (MN) :

FLOW RATE (T/HRI:

45.0

45.0

26.6

2

30.0

75.0

27.2

DT (MN)

C.O1.0400EI.4600E1.6700EI.8800E2.5000E3.3300*4.17O0EÎ.4200E7.5OOOEl.OOOOE1.4170E2.0000E

3

85.0

160.0

25.7

CC00OC0000OCOC00OC010101

4

135.0

295.0

23.1

FIT)

2.8286E2.6157E2.5319E2.4583E2.2826E2.1081E1.9732E1.8187E1.6323E1*4728E1.28S1E1.1163E

5

27.0

322.0

42.G

020202020202020202020202

6

25.0

347.0

64.3

P (KG/CM2)

90.9868.5387.6787.3987.1786.4685.6285.1084.8684.6184.1483.4182.47

7

0.0

CP(KG/CM2)

-2.45-3.31-3.59-3.81-4.52-5.36-5.88-6.12-6.37-6.84-7.57-8.51

Page 77: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE C2 ASAL1 INJECTION TEST f2S AUGUST 1975J(KljSTER G A G E . A T 391__f ETEPS I

TIPE FROM ThE BEGINNING CF THE TEST,IN CINUTES

0.347C0.579Cl.ise1.7372.31Í2.6953.4744.C534.6325.21C5.7896.716

FRESSURE CHANGE , KG/CM2

0.11000.3G001.2402. 1502.9504.9806.1706.7107.5107.930£.610«5*310

TABLEO { ASAL1 FALL-OFF TEST (29 ÍUGUST Í975)(KÜSTER GAGE AT 391 PETEFS)

TIME FROM THE CEGINMNG CF THE TEST,IN M N U T E S

0.463C0.8100

1.3891.9682.5473.1263.7054.2834.e635.4426.C216.5997.1797.7578.3368.9159.4941C.C710.6511.2311.8112.3912.9714.52

PRESSURE CHANGE i KG/CM2

0.29000.5200

1.0001.2501.6901.9402.1902.4CC2.5502.2303.6604.7105.47C6.0506.9208.0008.650Ç.2009.75010.071C.211C.3510.3710.40

T*DELTA(T)/DELTA(TI

15.509.2905.8404.4103.60C3.150

.810,570,380

2.2302.1202.0201.9401.8701.8101.7501.71C1.67C1.630

600570540520460

PRESSURE, KG/CP2

27.7127.4827.0026.7526.3126.0625.8125.6025.4524.9324.3423.2922.5321.9521.0820.0019.3518.8018.2517.9317.7917.6517.6317.60

Page 78: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

A P P E N D I X D

WELLHEAD TEMPERATURE AND PRESSURE DATA FOR WELL ASAL 1

Page 79: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE Dl : ASAL1 PRESSURE BUILD-UP TEST (6" C U T L E T ; 25 OCTOBER 1975)WELLHEAD TEMPERATURE AND PRESSURE

BUILD-UP TIME WELLHEAD PRESSURE WELLHEAD TEMPERATURE(MINUTES) (KG/CM?) - - (10 DEG. CELSIUS)0.0 ~ " " 5.000 "15".50""

9.0CC 10.50 16.9013.00 9.500 16.0020.00 9.750 14.8024.OC 10.00 14.0030.00 10.50 12.5037.OC 10.75 12.5045.00 10.50 17.8055.00 10.00 17.4065.00 9.500 16.8073.00 9.000 16.6085.OC 8.500 . 15.8095.00 8.000 15.00105.0 7.750 Í4.40111.0 7.500 15.20120.0 7.250 16.40125.C 7.000 16.60135.0 6.750 16.50145.0 6.500 16.40155.C 6.250 16.20165.C 6.000 16.00175.0 5.750 15.80185.0 5.500 15.70195.0 5.250 15.60205.0 5.COO 15.50215.0 4.750 15.40235.C 4.500 15.20245.0 4.250 15.10255.C 4.100 15.00265.0 3.850 14.80275.C 3.750 14.70285.C 3.600 14.60295.0 3.400 14.50305.0 3.250 14.40315.C 3.100 14.30325.0 3.000 14.20335.C 2.900 14.10345.C 2.800 14.00355.0 2.700 13.90365.0 2.600 13.80375.0 2.500 13.70385.0 2.400 13.60395.0 2.300 13.60405.C 2.250 13.50415.0 1C.70425.C 9.300435.C 8.000

Page 80: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE D 2 ASALl FRESSURE BUILD-UP TEST (6" CUTLET:WELLHEAD TEMPERATURE AND PRESSURE

29 CCTOEEP 1975)

BUILD-UP TIME(MINUTES)C OC.500C

1.0002.00C5.CCC10.0015.0020.0025.0030.0035.0040.0045.OC55.OC65.0075.0085.0095.001C5.C115.0125.0135.0145.0155.C165.0

TABLE D3 : ASALl

BUILD-UP TIME(MINUTES)0.0

l.CCC2.0005.0009.00014.0023.0029.0039.0049.0064.0074.OC83.0093.00103.0

WELLHEAD PRESSURE(KG/CM2)

6.00012.2011.0010.0010.4010.2010.6011.0011.8012.00 _".12.4012.0011.4011.2010.8010.601C.4010.009.8009.5009.2008.9008.6008.3008.000

PRESSURE BUILD-UP TEWELLHEAD TEMPERATURE

~w 'WELLHEAD PRESSURE"(KG/CM2)6.90013.2012.5012.0011.5011.4012.0012.5012.8012.5012.0011.5011.0010.5010-00

WELLHEAD TEMPERATURE(10 D E C CELSIUS)

16.0017.7017.9017.5016.2015.0013.8012.4010.809.8009.0008.8009.20012.6016.4016.8016.8016.8016.8016.9016.9016.8016.8016.9016.80

ST (411 CUTLET; 1 NOVEMBER 19AND PRESSURE

WELLHEAD TEMPERATURE_ ......— (10 DEC CELSIUS)

17.2018.0018.4017.8017.6017.8017.6017.7018.5018.8018.60ie.3018.0017.7017.50

Page 81: WELL TESTING ANALYSIS IN FLASHING …infoterre.brgm.fr/rapports/77-SGN-651-GTH.pdf · table of contents pages abstract 1. introduction 1 2. transient pressure build-up and flow-test

TABLE D4 : ASAL1 PRESSURE BUILD-UP TEST (2" CUTLET ; 4 NCVEMEER 1975)WELLHEAD TEMPERATURE AND PRESSURE

BUILD-UP TIME^(MINUTES)

0.02.0CC12.0022.0032.0042.0052.0C62.0072.0082.00

WELLHEAD PRESSURE(KG/CM2)

16.0017.0016.7516.7516.5016.0015.5015.0014.5013.80

WELLHEAD TEMPERATURE(10 DEG, CELSIUS)

19.8020.0019.7019.9019.8019.8019.8019.6019.4019.20