VieiraLopes / Ocram Marco Lopes - APIH

67
Apresentação Ocram VieiraLopes / Ocram Marco Lopes Os Desafios de um Hospital Atual Museu da Imprensa - Madeira

Transcript of VieiraLopes / Ocram Marco Lopes - APIH

Page 1: VieiraLopes / Ocram Marco Lopes - APIH

Apresentação Ocram

VieiraLopes / Ocram

Marco Lopes

Os Desafios de um Hospital Atual

Museu da Imprensa - Madeira

Page 2: VieiraLopes / Ocram Marco Lopes - APIH

História, percurso empresarial VieiraLopes, o Alvaro Vieira e o

Marco Lopes, começaram como instaladores de Ar condicionado e

sistemas de ventilação em 1998, logo após 5 anos de actividade,

começou-se a perceber que existia uma grave crise no setor da

construção civil.

Nessa altura, o outro socio gerente Alvaro Vieira por cautela,

começou com a ideia de se reformar, também com receio em

relação à evolução dos acontecimentos no ramo da construção

civil. Esta situação fez com que Marco Lopes adquirisse a sua cota

na empresa VieiraLopes.

Claro, era factual que a única forma de alterar a crescente divida

de clientes, problemas de cobrança, prazos de recebimento muito

alongados, favorável enquadramento jurídico para as grandes

construtoras em detrimento das PME’s…era mudar a estratégia, o

percurso da empresa.

Quem somos?

Agradecimentos Associação Portuguesa de Infeção Hospitalar (APIH) e a

Associação de Técnicos de Engenharia Hospitalar

Portugueses (ATEHP), Secretaria Regional da Saúde da

Região Autónoma da Madeira, Museu da Imprensa, Câmara

de Lobos.

Page 3: VieiraLopes / Ocram Marco Lopes - APIH

Apostou-se em dois caminhos distintos: 1. A criação de uma atividade paralela industrial/fabrico e mudança geográfica na atividade da VieiraLopes.

Apostamos no mercado Espanhol inicialmente e depois no Francês onde estamos à cerca de 7 anos, mais recentemente com uma empresa local VLopes Clim na zona de Paris. Faturamos cerca de 5M€. Iniciamos à cerca de 2 anos em Copenhaga VLopes Scandinavia.

Por outro lado a OCRAMclima começou a operar como um fabricante de Unidades de Tratamento de Ar (UTAs) à cerca de 7 anos também possuindo a Unidade Industrial em Braga.

Claro, no caso da Ocram, temos a sorte de ter uma longa experiência e know-how para operar de forma eficiente e centrada na resolução de problemas, pois nascemos como instaladores. O "core business" de OCRAMclima é o fabricante e comercialização de unidades de tratamento de ar e produtos associados.

Temos agora uma vasta gama de equipamentos, unidades de ventilação, unidades de baixo perfil, Chillers, bombas de calor e sistemas de purificação de ar. Trabalhamos em conjunto com os nossos clientes para responder melhor às suas necessidades e oferecer as melhores soluções. A qualidade do ar interior é uma das principais preocupações internacionais. Afim de resolver os requisitos legais e ajudar a melhorar a qualidade do ar interior, oferecemos uma ampla gama de purificação NPS ® sistemas para operar individualmente ou integrar nossos produtos.

Page 4: VieiraLopes / Ocram Marco Lopes - APIH

Na aposta Ocram Clima foi seguido um trajeto com uma forte componente I&D.

A chave para o sucesso desta nova atividade centrou-se nas seguintes apostas:

Análise profunda dos Decretos-Lei da atividade e das alterações futuras das diretivas comunitárias centradas certificação energética de edifícios e da qualidade do ar interior;

Certificação ISO 9001 do Departamento Industrial;

Certificação dos produtos na TÜV (Alemanha) e EUROVENT;

Potenciou-se fortemente a Relação com a Universidade do Minho (UM) Tecminho;

Participação em projeto IDI do 7º Programa-Quadro de apoio comunitário;

Laboratório de Investigação instalado na Universidade do Minho com contrato de exploração através de um QREN;

Participação em inúmeros eventos internacionais na área de purificação de ar, quer como especialistas quer como interessados no conhecimento;

Candidatura, tendo ganho o Concurso Nacional de Inovação na área de Clean Tech e Processos Industriais 2012, tendo por base o conhecimento adquirido;

Quatro “model box” certificada na TÜV (Alemanha) e EUROVENT elevado nível de exigência de qualidade, graus D1(resistência mecânica)/L1(estanquicidade)/T2TB2(Térmica), ou seja grande investimento no desenvolvimento do produto;

Certificação Sistema de Gestão da Investigação, Desenvolvimento e Inovação (SGIDi);

Alargamento da gama de produtos com possibilidade de oferta aos clientes da solução completa de Ar Condicionado.

Certificação Higiénica do produto para utilização em salas de cirurgia de hospitais, microeletrónica, “clean room” no exigente ILH Berlin.

Recentemente inicio de certificação do produto, performance, pelo AHRI USA.

Page 5: VieiraLopes / Ocram Marco Lopes - APIH

Gama OCRAM Clima

Page 6: VieiraLopes / Ocram Marco Lopes - APIH

Componentes/parceiros AHU OCRAM Clima

Page 7: VieiraLopes / Ocram Marco Lopes - APIH

Grupo OCRAMClima 2016

120 Pessoas

10 M €/Ano.

4x companhias

3x países europeus

550 UTAs/Ano

17%

34% 33%

8%

8%

Number AHU / Air Flow

x < 2500 [m3/h]

2501 <x<5000 [m3/h]

5001<x<15000[m3/h]

15001<x<50000 [m3/h]

x > 50000 [m3/h]

25%

5%

8%

5%

57%

Turnover 2016

M€ / Country

Portugal

Afrique

Espagne

Asie

France

Page 8: VieiraLopes / Ocram Marco Lopes - APIH

As nossas certificações

The air handling units OCRAM Clima® are certified by Eurovent.

According with ISO9001/ISO14001

We are recently certified for the AHU hygienic by IHL

Berlin in Germany. In order to applications Hospitals,

laboratories, and industrial processes.

All our units are ready for Ecodesing ErP 2016

Page 9: VieiraLopes / Ocram Marco Lopes - APIH

Clientes que confiam em nós

Page 10: VieiraLopes / Ocram Marco Lopes - APIH

A pergunta que se põe é a seguinte:

Qual é mais importante, questões de saúde humana (QAI) ou eficiência energética dos

edifícios? O legislador Português para já escolheu a eficiência energética… Agora

felizmente esta legislação permite que saiam portarias com intuito de criar um

sistema de fiscalização, ou seja, a porta está aberta para a melhoraria…

Em todo este contexto analisamos muito bem a referida norma ASHRAE 62.1. A maioria

das alterações legislativas baseou-se nesta norma e percebemos que ela aborda um

tema realmente interessante, a relação entre eficiência energética e QAI, sendo

que a existência de sistemas dinâmicos de purificação de ar, já previstos nesta, são

a chave para a resolução da maior parte dos problemas. Recordo que é muito mais

complicado dimensionar um sistema de climatização num edifício de grande altura

(vertical) do que em construção horizontal mais típica nas cidades europeias. O

espaço necessário para as condutas do ar, as necessidades de ar fresco exterior

devido aos envidraçados fechados, a própria contaminação exterior em grandes

cidades, jogam a favor destas tecnologias. Daí que os EUA estão mais empenhados

devido à natureza tecnológica e estado da arte dos sistemas de purificação de ar na

sua economia, isto é, em seguir um caminho de utilização de sistemas de

purificação de ar dinâmicos. Aliás a certificação de edifícios verdes ASHRAE prevê

uma bonificação significativa aquando da utilização deste tipo de sistemas.

Page 11: VieiraLopes / Ocram Marco Lopes - APIH

NPS ®

O sistema de purificação de ar tem como objetivos:

No mínimo, reduzir os poluentes concentrações aos limites legalmente

exigidos

Desnaturar e / ou destruir os microrganismos (bactérias, fungos )

Decompor compostos orgânicos voláteis em espécies não agressivos

Fazer isso com baixa perda de pressão para uma melhor eficiência energética

Radiação

UVGI

Superfície

fotocatalítica

Page 12: VieiraLopes / Ocram Marco Lopes - APIH

Um sistema de purificação de ar dinâmico é uma espécie de catalisador, como vulgarmente vemos nos automóveis interagindo com os elementos nocivos do ar, à sua passagem e através de reacções físico-químicas alterando as suas características com o intuito de no final termos um ar mais “puro” ou seja descontaminado. No caso de vírus, bactérias, fungos inativando a sua actividade, por quebra nas ligações proteicas do DNA, no caso de COV’s ou Formaldeído, por ionização catalítica do ar e posterior oxidação destes elementos adsorvidos nas superfícies catalíticas. A diferença para os sistemas tradicionais, existentes na generalidade dos equipamentos de ar condicionado é que a filtragem é apenas estática, como uma rede que retém à passagem as partículas que arrastam estes elementos.

Nós inventamos o NPS (Nano Purifying System) onde conseguimos estes efeitos e “gastamos” assim, quando instalado num sistema, Unidade de Tratamento de Ar (UTA), menos ar exterior, utilizado mais recirculação do interior. Regula-se a inserção de ar fresco exterior apenas pela quantidade de pessoas e respectivo consumo de CO2. Coloca-se sondas de qualidade de ar e tudo é analisado como se trata-se, utilizando uma analogia, de regular a temperatura ambiente.

À alguns anos a regulação da temperatura começou a ser uma obrigatoriedade no inverno, passando depois a ser também no verão. Nos dias de hoje em locais mais exigentes existe também a regulação da humidade. Portanto a busca do conforto humano é uma evolução constante. No futuro a QAI será certamente uma realidade/obrigatoriedade não para efeitos de conforto mas sim de saúde humana isso não temos dúvidas!

Cabe a todos contribuir para que as coisas mudem…

Page 13: VieiraLopes / Ocram Marco Lopes - APIH

First, what is Cleanroom?

“A room in which the concentration of airborne particles is controlled, and

which is constructed and used in a manner to minimize the introduction,

generation, and retention of particles inside the room and in which other

relevant parameters, e.g. temperature, humidity, and pressure, are

controlled as necessary.”

From ISO 14644-1

“A room in which the concentration of airborne particles is controlled and

which contains one or more clean zones.”

From Federal Standard 209E

Contamination Monitoring and Control Systems

Page 14: VieiraLopes / Ocram Marco Lopes - APIH

Just some curiosities...

Although the cleanrooms of yesteryear had similarities to modern cleanrooms,

a principal omission was positive ventilation by filtered air. The use of

ventilation, albeit the natural type, to reduce bacterial infection had been

advocated by people such as Florence Nightingale and mechanical ventilation

was provided in the hospital designed for the Crimea by Brunel in 1855.

However artificial ventilation was rare until about 60 years ago.

Contamination Monitoring and Control Systems

Page 15: VieiraLopes / Ocram Marco Lopes - APIH

Ventilation of hospital room in the 1920s

A patient could inhale

fresh air from the

funnel. Foul air from

the floor was

extracted by another

funnel.

Contamination Monitoring and Control Systems

Page 16: VieiraLopes / Ocram Marco Lopes - APIH

The development of contamination

control and cleanrooms

Primarily been a result of research and development taking place from 1940 onwards. Some of these development and research projects are as follows:

• The atomic bomb (the Manhattan project) - 1942-1944;

• The biological and chemical war industry;

• Instrumentation for the air and space industry;

• Industries working with miniaturization;

• Industrial plants dealing with radioactivity or hazardous microorganisms;

• The space program;

• Surgical operations;

• Tumour therapy, both when producing, preparing and administering solutions containing cytostatic components;

• Microelectronics.

Contamination Monitoring and Control Systems

Page 17: VieiraLopes / Ocram Marco Lopes - APIH

Cleanroom applications

Electronics Computes, TV tubes, Flat screens…

Semiconductors Production of integrated circuits for computer

memory and control

Micromechanics Gyroscopes, miniature bearings, CDs..

Optics Lenses, Photography film, Laser equipment…

Biotechnology Antibiotics production, Genetic engineering…

Pharmacy Sterile pharmaceuticals

Medical devices Heart valves, Cardiac by-pass systems

Food and Drink Disease-free food and drink

Hospital Immunodeficiency therapy, isolation of

contagious patients, Operating rooms…

Contamination Monitoring and Control Systems

Page 18: VieiraLopes / Ocram Marco Lopes - APIH

Unidirectional flow type cleanroom

The air changes are normally equal to, or greater than, 20 per hour, this being much greater than that used in ordinary rooms, such as in offices. In this style of cleanroom, the contamination generated by people and machinery is mixed and diluted with the supply air and then removed.

This air sweeps across the room in a unidirectional way at a speed of around 0.4 m/s and exits through the floor, thus removing the airborne contamination from the room. This system uses much more air than the turbulently ventilated cleanroom but, because of the directed air movement, it minimizes the spread of contamination about the room and sweeps it out through the floor. Contamination Monitoring and Control Systems

Page 19: VieiraLopes / Ocram Marco Lopes - APIH

The dispersion and spread of

contaminants

Different contaminants will have different impacts on production processes and products. It is therefore of major importance to be fully cognizant of all aspects of the production process and of how to control them.

The following list contains some of the major sources of contamination that pose a risk to the production process:

- Personnel

- Incoming ventilation air

- Machinery and other equipment for production

- Raw material and semi-finished material

- Packaging material

- Different media used in the production process as well as chemicals used for cleaning

Contamination Monitoring and Control Systems

Page 20: VieiraLopes / Ocram Marco Lopes - APIH

Sources of contamination

(an overview)

Indoor environment Outdoor environment

People Skin scales,

microorganisms,

tobacco smoke, hair,

textile fibers

Natural processes Wind, fire, natural

cycle of plants in

nature.

Cleaning Maintenance Choice of material,

choice of chemicals

Manmade processes Motoring, combustion

of fossil materials,

waste disposal.

Machinery Equipment Spray painting,

welding, grinding.

Construction material Fibrous insulation

material,

microorganisms in wet

wood.

Contamination Monitoring and Control Systems

Page 21: VieiraLopes / Ocram Marco Lopes - APIH

Human particles

Activity Number of particles

released

(greater than or equal to

0.5 pm) per minute

Sitting totally still 100 000

Sitting with rotating arm movements

500 000

Rising from sitting and sitting down

2 500 000

Walking up and down stairs, running

10 000 000

Contamination Monitoring and Control Systems

Page 22: VieiraLopes / Ocram Marco Lopes - APIH

Recommended limits for microbial

contamination – EU GGMP

Grade Air sample

cfu/m3

Settle Plates

(diam. 90 mm)

cfu/4 hours

Contact Plates

(diam. 55 mm)

cfu/plate

Glove Print

5 fingers

cfu/glove

A < 1 < 1 < 1 < 1

B 10 5 5 5

C 100 50 25 -

D 200 100 50 -

Contamination Monitoring and Control Systems

Page 23: VieiraLopes / Ocram Marco Lopes - APIH

Air velocities in Cleanrooms

Large volumes

or new fresh

air that needs

to be

acclimatized

and cleaned.

Why not reuse

the same

already

acclimatized

air?

Class of

cleanroom

ISO

(FED STD

209E)

Airflow type Average

velocity (m/s)

Air

changes/hr

ISO 8

(100,000) N/M 0,01 – 0,04 5-48

ISO 7 (10,000) N/M 0,05 - 0,08 60-90

ISO 6 (1,000) N/M 0,13 - 0,2 150-240

ISO 5 (100) U/N/M 0,2 - 0,41 240-480

ISO 4 (10) U 0,25 - 0,46 300-540

ISO 3 (1) U 0,3 - 0,46 360-540

Better then

ISO 3 U 0,3 - 0,51 360-600 Contamination Monitoring and Control Systems

Page 24: VieiraLopes / Ocram Marco Lopes - APIH

This is where we

want to attack

Cleanroom Technology

Cleanroom design and

construction

Cleanroom Testing

and Monitoring

Cleanroom Operations

Standards Testing that the new

room performs as

designed

Monitoring the room

conditions

Layout And Entry of people,

machines and

materials

Construction materials Testing to ensure that

the room continues to

perform as designed

Cleanroom disciplines

to avoid contaminating

the product

Services: water and

gases

Cleanroom garments

including gloves,

masks, etc.

Setting cleanroom to

work

Cleanroom cleaning

and cleaning

equipment

Contamination Monitoring and Control Systems

Page 25: VieiraLopes / Ocram Marco Lopes - APIH

Recirculate to save

Recirculate the air –

bypass made with

and air purification

system

Possibility to save Money in

terms of heat recovery, since

the air is the same, but

cleaned.

Contamination Monitoring and Control Systems

Page 26: VieiraLopes / Ocram Marco Lopes - APIH

Air Purification

Phenomena

UVGI Photocatalysis

Contamination Monitoring and Control Systems

Page 27: VieiraLopes / Ocram Marco Lopes - APIH

Air Purification

Phenomena

UVGI Photocatalysis

Contamination Monitoring and Control Systems

Page 28: VieiraLopes / Ocram Marco Lopes - APIH

So, lets add something more.

Photocatalysis is the acceleration of a photoreaction in the

presence of a catalyst. In catalysed photolysis, light is

absorbed by an adsorbed substrate.

In photogenerated catalysis, the photocatalytic activity (PCA)

depends on the ability of the catalyst to create electron–hole

pairs, which generate free radicals able to undergo secondary

reactions.

Contamination Monitoring and Control Systems

Page 29: VieiraLopes / Ocram Marco Lopes - APIH

How does Photocatalysis work

UV irradiation (photon) with energy equal to or

greater than TiO2 band-gap.

Promote the passage of

electrons from VB to CB,

generate an electron-hole

pair. Electron-hole pair

have enough lifetime

to migrate until

reach catalytic

surface and

participate in RedOx

reactions.

Contamination Monitoring and Control Systems

Page 30: VieiraLopes / Ocram Marco Lopes - APIH

How does Photocatalysis work

Electron react with oxygen and

generate superoxide radical anion

(O2-).

Hole react with water to produce

hydroxyl radical (•OH).

Superoxide radical anion (O2-) and

hydroxyl radical (•OH) are highly

reactive and they can oxide VOC’s.

𝑇𝑖𝑂2 + ℎ𝑣 → 𝑒𝑐𝑏− + ℎ𝑣𝑏

+

𝑒𝑐𝑏− + 𝑂2 → 𝑂2

ℎ𝑣𝑏+ + 𝐻2𝑂 → 𝑂𝐻− + 𝐻+

ℎ𝑣𝑏+ + 𝑂𝐻− → 𝑂𝐻 •

𝑉𝑂𝐶 + 𝑅𝑂𝑆 → 𝐶𝑂2 + 𝐻2𝑂

VOC – volatile organic compound

ROC – reactive oxidative surface

VOC’s are oxidized to carbon dioxide

(CO2) and water (H2O), which are

innocuous compounds.

Contamination Monitoring and Control Systems

Page 31: VieiraLopes / Ocram Marco Lopes - APIH

TiO2 – why?

Properties

Photocatalytic

Efficiency High

Stability High

Cost Low

Toxicity None

Crystalline

Forms

Rutile High chemical stability but low

activation (3.02eV)

Anatase

Metastable and has the greater

photocatalytic activity

(3.23eV)

Brookite Stable only at very low

temperatures (3,14 eV)

Production 70% of the total production volume of pigments

worldwide

Commercial

Applications Paints, plastics, papers, inks, foods, toothpastes,

cosmetic and skin care products (sunblock)

Contamination Monitoring and Control Systems

Page 32: VieiraLopes / Ocram Marco Lopes - APIH

Air Purification

Phenomena

UVGI Photocatalysis

Contamination Monitoring and Control Systems

Page 33: VieiraLopes / Ocram Marco Lopes - APIH

Why UV - UVGI

UV is an electromagnetic radiation with

a wavelength shorter than that of visible light, but

longer than X-rays, that is, in the range between 400 nm

and 10 nm, corresponding to photon energies from

3 eV to 124 eV

UVGI – Ultraviolet germicidal irradiation

An already well know and documented technology, but

still one very effective if used properly.

This a specific region of UV that has germicidal

properties.

Contamination Monitoring and Control Systems

Page 34: VieiraLopes / Ocram Marco Lopes - APIH

The UVGI disinfection

UVGI ultraviolet radiation in the range of UVB and UVC (ultraviolet radiation-

region B and C with wavelength of 280-320 nm and 200-280 nm, respectively),

causes photochemical reactions with DNA and RNA, with absorption peak of UV

by the nucleic acids in the range of 260-265 nm Contamination Monitoring and Control Systems

Page 35: VieiraLopes / Ocram Marco Lopes - APIH

The UVGI disinfection

The photochemical

reaction causes thymine

dimerization in the nucleic

acids and it is

consequently carrying to

the inactivation or

destruction of the

microorganism, in case of

sufficient damages caused

in the genetic material. The production of thymine dimers caused

by UV exposure has been, repeatedly,

demonstrated with effective inactivation

of bacteria and DNA virus.

Contamination Monitoring and Control Systems

Page 36: VieiraLopes / Ocram Marco Lopes - APIH

Because Biology is more complex than

what it seems… For the success of errors introduction in microorganisms’ genetic

sequences, in case of thymine dimers, this bases should be correctly

positioned during the instant of light absorption, in which the

formation of thymine dimers corresponds to a window of 1 × 1,012 s

after the beginning of excitement with UV radiation.

Only a few percent of the

thymine doublets are likely to

be favorably positioned for

reaction and dimerization at

the time of UV excitation.

Dimerization process for a thymine

doublet with the appropriate

orientation.

Contamination Monitoring and Control Systems

Page 37: VieiraLopes / Ocram Marco Lopes - APIH

Challenge – how to transfer the

phenomena to a system?

UV needs time to create sufficient errors in the genetic structures of

microbes

VOCs pollutants have to contact with catalytic

surfaces to suffer photocatalytic degradation.

?

Contamination Monitoring and Control Systems

Page 38: VieiraLopes / Ocram Marco Lopes - APIH

A 4th filtration stage

Maybe an utopia but we aim to deliver an air

purification system capable of denature and/or

destroy microbes and decompose Volatile

Organic Compounds (VOCs). Contamination Monitoring and Control Systems

Page 39: VieiraLopes / Ocram Marco Lopes - APIH

What for?

The air purification system aims to:

- As a minimum, reduce pollutants concentrations to the legally required limits

- Denature and/or destroy microorganisms (Bacteria, Fungi)

- Decompose VOCs into non-aggressive species

- Do this is with low pressure drop to better energy efficiency

Contamination Monitoring and Control Systems

Page 40: VieiraLopes / Ocram Marco Lopes - APIH

How we did it

The TiO2 surfaces were coated by sputtering allowing a perfect physical deposition of the semiconductor in the catalytic surfaces of the air purification system.

SPUTTERING - is a process

whereby atoms are ejected fro

m a solid target material due

to bombardment of the target

by energetic particles.

Contamination Monitoring and Control Systems

Page 41: VieiraLopes / Ocram Marco Lopes - APIH

Air sprayed nanoparticle deposition

TiO2 Nanoparticles deposition.

HVLP (High Volume Low

Pressure)

Was used to achieve higher

volume (HV) of air to

aerosolise and propel the

coating solution at lower

pressure. The result is a

higher proportion of paint

reaching the target surface

with reduced overspray,

materials consumption, and

air pollution.

A special spray nozzle and pressures

were used to achieve the best

possible nanoparticles’ deposition.

This method is very helpful when we

are coating large surfaces that by

sputtering would not be possible to

do.

Contamination Monitoring and Control Systems

Page 42: VieiraLopes / Ocram Marco Lopes - APIH

Explaining the system…

UVGI radiation

Photocatalysis

Contamination Monitoring and Control Systems

Page 43: VieiraLopes / Ocram Marco Lopes - APIH

The 1st system

UVGI along the duct to maximize UV time exposure.

4 units to achieve more UV output

Plates perpendicularly place to the air flow to contact with air pollutants.

Contamination Monitoring and Control Systems

Page 44: VieiraLopes / Ocram Marco Lopes - APIH

Contamination Monitoring and Control Systems

Page 45: VieiraLopes / Ocram Marco Lopes - APIH

Promising results

0,48

0,34

0,045

0,08 0,08 0,08

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 4

ppm

time (hours)

Formaldehyde (VOC) ppm

by sputtering

legalmaximumconcentration

0

10

20

30

40

50

60

70

0 1 4CFU

/m

3

time (hours)

Bacteria and fungus

Bacteria bysputtering

Fungi bysputtering

180 Pa pressure drop – still high for an extra system in a HVAC system. Contamination Monitoring and Control Systems

Page 46: VieiraLopes / Ocram Marco Lopes - APIH

3D view of the next system

Contamination Monitoring and Control Systems

Page 47: VieiraLopes / Ocram Marco Lopes - APIH

Similar results with Nanoparticles coating

0,08 0,08 0,08

0,16

0,09

0,01

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 1 4

ppm

time (hours)

Formaldehyde (VOC) ppm

legal maximum concentration

by nanoparticles

Contamination Monitoring and Control Systems

Page 48: VieiraLopes / Ocram Marco Lopes - APIH

Keep good purification results and lower

pressure drop

Similar results as the 1st system, but now with only 70 Pa pressure drop

Contamination Monitoring and Control Systems

Page 49: VieiraLopes / Ocram Marco Lopes - APIH

Modular design to fit different flows and duct geometries

Contamination Monitoring and Control Systems

Page 50: VieiraLopes / Ocram Marco Lopes - APIH

And for AHU?

Same principle of idea:

UVGI and Photocatalytic

processes for microbes and

VOCs disinfection.

Because of large difference in

scale, energy efficiency was a

concern. At the first system for AHU

we used UV LEDs, just for testes.

Although this technology is still far

from industrial use, mainly because

of life time. Contamination Monitoring and Control Systems

Page 51: VieiraLopes / Ocram Marco Lopes - APIH

Our idea for an Air

Purification system

for AHUs

Patented

Contamination Monitoring and Control Systems

Page 52: VieiraLopes / Ocram Marco Lopes - APIH

Just a simulation

The same idea when engineering the system:

Contact area, UV output, residence time, low pressure

drop

Final pressure drop of the system: 50 to 70 Pa Contamination Monitoring and Control Systems

Page 53: VieiraLopes / Ocram Marco Lopes - APIH

Modular system – to best fit

Contamination Monitoring and Control Systems

Page 54: VieiraLopes / Ocram Marco Lopes - APIH

Installed Module

Contamination Monitoring and Control Systems

Page 55: VieiraLopes / Ocram Marco Lopes - APIH

Indoor Air Quality Sensors

Air Quality Monitoring

Demand Controlled Ventilation

Compliance with latest building

standards

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 56: VieiraLopes / Ocram Marco Lopes - APIH

Contamination Monitoring and Control Systems

Cloud Based Monitoring & Automated Reporting

SENSORS

SENSORS

SENSORS

BMS API

NuWave

Sensors

Gateway Cloud

Monitor your connected sensors online and in real time using a NuWave Sensor Data online account.

Set up is quick and easy – connect the data hub to an Ethernet point and your sensor will connect wirelessly and send data online.

Once connected, data can be analysed online or downloaded for more detailed analysis as well as linked with existing IT/BMS systems.

• Easy to use

• Online monitoring

• Plug & Play set up

• No need for additional monitoring software systems

• E-mail alerts whenever air quality goes below configured levels

• Data export function for more detailed offline analy

Page 57: VieiraLopes / Ocram Marco Lopes - APIH

Overview NuWave's Volatile Organic Compound (VOC) sensor monitors the air quality of the environment by reacting to the concentration of airborne odours such as smoke, cooking odours, bio-effluence,

outdoor pollutants or odours and CO2 from human activities. The QA15 measures these airborne contaminants giving a complete picture of their localised environmental quality. This wireless sensor transmits VOC, temperature and humidity information back to a central cloud based server for data viewing and analysis.

QA15 Features:

Wireless VOC & CO2 Sensor

Temperature Sensor Important measure for a controlled environment

Wireless Enables you to connect

multiple sensors

Air Quality Sensor Monitors air quality using a VOC sensor

Easy Set-up Plug and Play Technology

will have the sensor running in minutes

Humidity Sensor Measures the relative humidity and presents the data in %

Alert Get real-time alerts when the values go outside the set limits

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 58: VieiraLopes / Ocram Marco Lopes - APIH

Wireless VOC & CO2 Sensor

Specifications:

Performance (VOC Sensor)

Environment

Inputs and Outputs

Temperature range Operating Temperature (°C) 0 to 50

Temperature range Storage Temperature (°C) -25 to 50

Humidity range % RH continuous 5 to 95

Enclosure IP rating at proper indoor installation IP40

Weight Enclosure weight without adapters 186 g

Sensing Range VOC & CO2 (VOC’s measured in CO2 equivalents )

450-4000 ppm

Accuracy Across full range +/- 15 ppm

Resolution RMS noise (ppb equivalent) @250 ppb

10 ppm

Warm-up time To reach optimal detection performance

5 mins

Input 100-240 V International

Adapter

DC 12 V +/- 10%, 1 A (Supplied)

Power

Consumption

40 mA @ 12 V nominal -

Wireless Outputs ZigBee 2.4 GHz Gateway Dongle

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 59: VieiraLopes / Ocram Marco Lopes - APIH

Airborne Pathogen

Detection System

Continuous Monitoring

Rapid Detection

Online Monitoring and Alerts

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 60: VieiraLopes / Ocram Marco Lopes - APIH

LU45 - Airborne Pathogen Detection System

Overview The NuWave Sensors LU45 is a patented rapid microbial detection system that facilitates remote monitoring of airborne pathogens (bacteria, yeasts & moulds) and revolutionises the approach to

pathogen detection and control. The LU45 significantly shortens contamination detection times and

automates the sampling, monitoring and detection process. The sensor is connected to the cloud based monitoring and alert system so you receive alerts whenever contamination is detected.

Faster

•Faster detection of contamination events helping prevent future instances. •Fully automated - no separate incubation or analysis period

•No preparation time for samples Continuous & Remote Monitoring

•Isolation of contamination sources with multiple monitored points •Continuous air sampling

•Cloud based software including daily reports detailing current risk level

•Presentation of detection reports using similar format to traditional techniques

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 61: VieiraLopes / Ocram Marco Lopes - APIH

LU45 - Airborne Pathogen Detection System

Low Cost Contamination Detection Implementing the LU45 can not only have significant impacts on the effective management of airborne pathogens it can also result in lowering the overall cost of airborne contamination detection and remedial action.

The LU45 is designed to be fully automated requiring no

specialist training to operate. One operative can manage a large number of installed units with human intervention required only when a contamination event has been detected and a cartridge needs to be changed.

The LU45 also eliminates the need for external laboratory

analysis which can be expensive as the cloud based software performs automated analysis and reporting when a contamination event is detected.

•Less intervention – only requires intervention to change

cartridges

•Low cost solution resulting in the reduction of overall

contamination

risks and expenses. •Low cost wireless installation

Technical Specifications

Inputs 100 – 240 V International

Adapter

DC 9 V +/-

10%, 1 A

(Supplied)

Wireless Outputs ZibBee 2.4 GHz (Gateway)

Supplied

Temperature Range Operating Temperature (°C) 15,5 - 30

Storage Temperature (°C) 1,5 - 8

Humidity Range % RH continuous 40 - 100

Enclosure IP rating for indoor installation IP 10

Air Flow Volume of air sampled/hr 0.6 m 3

Cartridge Specifications Pathogen Type Tested

Aspergillus Mould Yes

E-Coli Gram negative bacteria Yes

Cronobacter Sakazaki Gram negative bacteria Yes

Listeria Gram positive bacteria Yes

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 62: VieiraLopes / Ocram Marco Lopes - APIH

Clean Environment

Monitoring

Cleanroom monitoring

Laboratory monitoring

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 63: VieiraLopes / Ocram Marco Lopes - APIH

Overview NuWave Sensors TD16 is a sensitive and concise airborne particle measurement sensor. This unit is well suited to carrying out precise measurements of particle densities in clean and dust free facilities. The unit acquires the current particle concentration in the environment through its internal air circulation system and particle concentrations at precise diameter intervals are calculated based on the scattering of a laser source. The measurement of concentrations of particles within specific diameter intervals is performed using advanced digital signal

processing electronics.

TD16 Features:

TD16 - Wireless Particle Sensor

Particle Sensor 16 Particle Bin sensor that

counts the particles in the range of 0.38 to 17µm

Wireless Enables you to connect

multiple sensors

Easy Set-up Plug and Play Technology

will have the sensor

running in minutes

Alert Get real-time alerts

when the values go

outside the set limits Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 64: VieiraLopes / Ocram Marco Lopes - APIH

TD16 - Wireless Particle Sensor

Specifications:

Performance (Particle Sensor)

Inputs and Outputs

Input 100-240 V International

Adapter

DC 9 V +/- 10%, 1 A (Supplied)

Power Consumption 40 mA @ 9 V nominal -

Wireless Outputs ZigBee 2.4 GHz Gateway Dongle

Number of Channels Particle bins 16

Particle sizes Range 0.38 – 17 µm

Sampling interval Time between readings 1 – 10 seconds

Flow Rate Air passing through sensor

1 L/min

Particle count rate Max number per second 10,000

Coincidence % 106 particles/L 0.24 %

Communications Internal protocol SPI

Laser Laser class 3B

Calibration NIST traceable Yes

Conta

min

ati

on M

onit

ori

ng a

nd C

ontr

ol Syst

em

s

Page 65: VieiraLopes / Ocram Marco Lopes - APIH

Differentiation - We have to be different!

• NPS, with the help of Microbiologic Sensors

Rapid microbial detection sensors that operates in conjunction with control platform. It facilitates remote monitoring of airborne pathogens (bacteria,

yeasts & moulds) and revolutionizes the approach to pathogen detection and control by significantly shortening contamination detection times and

automating the monitoring and detection process.

Real-time detection and reporting of air contamination events helping prevent or control an outbreak of airborne contaminants e.g. listeria in

your food production plant or E.coli in your healthcare facility. Sensors has been engineered to periodically draw a sample of ambient air into the

device where it performs optical density measurements on growth facilitation media to determine if microbial contamination is present.

Page 66: VieiraLopes / Ocram Marco Lopes - APIH

Acknowledgments

Marco Lopes, Eng. - CEO

Rafael de Sousa, Eng. – R&D

António Amaral Nunes, Assist. Professor

– Scientific Coordinator

Carlos Tavares, Assist. Professor

Contamination Monitoring and Control Systems

Page 67: VieiraLopes / Ocram Marco Lopes - APIH

Thank you for your attention

Visit Carde Catalogue WEB Site