Université d’ORAN Faculté des Sciences Département de ...

103
Université d’ORAN Faculté des Sciences Département de Biotechnologie Mémoire de MAGISTER en Biotechnologie Option : Ecosystèmes microbiens complexes Présenté par Amaria HARMOUCHE Intitulé Devant le Jury : Président : Pr. ZADI-KARAM Halima Université d’ORAN Examinateurs : Dr. DALACHE Fatiha Université de MOSTAGANEM Dr. DRISSI Mourad Université de TLEMCEN Pr. Baba Ahmed Mohamed Bey Université d’ORAN Rapporteur : Pr. KARAM Nour-Eddine Université d’ORAN Soutenue le : / / 2010 ETUDE DE L’ANTIBIORESISTANCE CHEZ 83 SOUCHES AUTOCHTONES DE BACTERIES LACTIQUES

Transcript of Université d’ORAN Faculté des Sciences Département de ...

Page 1: Université d’ORAN Faculté des Sciences Département de ...

Université d’ORAN Faculté des Sciences

Département de Biotechnologie

Mémoire de MAGISTER

en Biotechnologie Option : Ecosystèmes microbiens complexes

Présenté par

Amaria HARMOUCHE

Intitulé

Devant le Jury : Président : Pr. ZADI-KARAM Halima Université d’ORAN Examinateurs : Dr. DALACHE Fatiha Université de MOSTAGANEM

Dr. DRISSI Mourad Université de TLEMCEN Pr. Baba Ahmed Mohamed Bey Université d’ORAN

Rapporteur : Pr. KARAM Nour-Eddine Université d’ORAN

Soutenue le : / / 2010

ETUDE DE L’ANTIBIORESISTANCE CHEZ 83 SOUCHES AUTOCHTONES DE BACTERIES LACTIQUES

Page 2: Université d’ORAN Faculté des Sciences Département de ...

REMERCIEMENTS

J'exprime mes profonds remerciements au Pr. Karam Nour-Eddine, Professeur à

l’université d’Oran, qui a dirigé ce projet de recherche : je vous remercie pour votre écoute,

vos idées précieuses, votre disponibilité et, surtout, votre confiance.

Ensuite, je tiens à remercier chaleureusement Pr. ZADI-KARAM Halima, Professeur à

l’université d’Oran, qui a accepté de présider mon jury de soutenance et à qui je suis très

reconnaissante pour sa disponibilité et ses conseils précieux.

Je présente mes sincères remerciements aux Pr. Baba Ahmed Mohamed Bey, Professeur à

l’université d’Oran, Dr. DALACHE Fatiha, Maitre de conférences à l’université de

Mostaganem, et Dr. DRISSI Mourad, Maitre de conférences à l’université de Tlemcen, qui

ont bien accepté d’examiner ce travail. Merci encore au Dr. DALACHE Fatiha pour ses

discussions scientifiques et ses conseils.

J’adresse également mes remerciements :

A mon collègue Mohamed Merzoug pour sa disponibilité et son aide.

A tous les chercheurs et le personnel du Laboratoire de Biologie des Microorganismes et de

Biotechnologies (LBMB).

A tous mes collègues.

Et à toute personne qui a contribué de prés ou de loin à la réalisation de ce projet de

recherche.

Un merci tout spécial à ma famille et mes ami(e)s Assmaa, Wassila, Hayet, Fatima,

Mohamed, Abdeslem, Ali, Yasser, pour leur soutien constant, leur amour et leurs mots

d'encouragement qui m'ont permis de me rendre jusque là.

Page 3: Université d’ORAN Faculté des Sciences Département de ...

DÉDICACES

Aux membres de ma famille, qu’ils trouvent dans ce travail

le témoignage de toute ma gratitude et qu’il soit pour eux

le gage de mon amour infini

A tous ceux qui me sont chers, ils se reconnaîtront…….....

Amaria

Page 4: Université d’ORAN Faculté des Sciences Département de ...

SSoommmmaaiirree

I

SOMMAIRE

Pages

Liste des tableaux

i

Liste des figures

ii

1. Introduction 1 1.1. Les bactéries lactiques 4

1.1.1. Définition et caractéristiques 4 1.1.2. Classification 5

1.2. Les antibiotiques 8 1.2.1. Modes et modalités d’action des antibiotiques 9

1.2.1.1. Les inhibiteurs de la synthèse du peptidoglycane 9 1.2.1.2. Les inhibiteurs de la synthèse protéique 11 1.2.1.3. Les inhibiteurs de la synthèse des acides nucléiques 12 1.2.1.4. Les inhibiteurs de la synthèse des folates 12 1.2.1.5. Les antibiotiques qui provoquent l’altération des membranes 13 1.2.1.6. Les antibiotiques agissant par inhibition compétitive 13

1.2.2. Usage des antibiotiques et ses conséquences 13 1.3. La résistance bactérienne aux antibiotiques 15

1.3.1. L’antibiorésistance chez les bactéries lactiques 16 1.3.1.1. Génétique de l’antibiorésistance chez les bactéries lactiques 16 1.3.1.2. Moyens du transfert des gènes de résistance 21

1.3.2. Mécanismes de résistance aux antibiotiques chez les bactéries Gram positives 23 1.3.2.1. Inactivation ou modification de l’antibiotique 24 1.3.2.2. Modification de la cible 26 1.3.2.3. Pompes à efflux actif 27

1.3.3. Les bétalactamases 29 1.3.3.1. Classification des bétalactamases 29 1.3.3.2. Les différents types de bétalactamases 31 1.3.3.3. Les bétalactamases des bactéries à Gram positif

32

2. Matériel et Méthodes 33 2.1. Souches bactériennes 34 2.2. Confirmation de l’appartenance des souches au groupe lactique et de leur pureté 35 2.3. Conservation des souches 35 2.4. Antibiogramme en milieu solide 35 2.5. Détermination des concentrations minimales d’inhibition des antibiotiques (CMI) 37 2.6. Recherche d’ADN plasmidique 38

2.6.1. Extraction d’ADN plasmidique 38 2.6.2. Electrophorèse sur gel d’agarose 39

2.7. Purification de l’ADN plasmidique par électroélution 39 2.8. Transformation de la souche Pediococcus sp. MA1 par électroporation 40 2.9. Recherche d’activité bétalactamase 41

2.9.1. Test de synergie 41 2.9.2. Test 3D

42

Page 5: Université d’ORAN Faculté des Sciences Département de ...

SSoommmmaaiirree

II

3. Résultats et Discussion 43 3.1. Confirmation de l’appartenance des souches au groupe lactique et de leur pureté 44 3.2. Détermination de la sensibilité des souches aux différents antibiotiques testés 45 3.3. Détermination des concentrations minimales d’inhibition des antibiotiques (CMI) 63 3.4. Détection des plasmides des bactéries lactiques 66 3.5. Purification de l’ADN plasmidique 67 3.6. Transformation de la souche Pediococcus sp. MA1 68 3.7. Recherche d’activité bétalactamase

70

4. Conclusion et perspectives 72 5. Références bibliographiques 75 6. Annexe 90

Page 6: Université d’ORAN Faculté des Sciences Département de ...

i

Liste des tableaux

Pages

Tableau 1 : Quelques résistances naturelles rencontrées chez les bactéries lactiques 17

Tableau 2 : Exemples de plasmides portant des gènes de résistances aux antibiotiques 19 Tableau 3 : Principaux mécanismes de résistance aux antibiotiques chez les bactéries Gram positives

24

Tableau 4 : Classification et propriétés des bétalactamases 30 Tableau 5 : Souches lactiques étudiées 34 Tableau 6 : Les différents disques d’antibiotiques utilisés 36 Tableau 7 : Solutions mères d’antibiotiques 37 Tableau 8 : Profils de résistance des bactéries lactiques étudiées (méthode de diffusion sur milieu solide)

46

Tableau 9 : Taux (%) de résistance des bactéries étudiées / antibiotique 52 Tableau 10 : Concentrations minimales d’inhibition (µg/ml) des antibiotiques testés 64 Tableau 11 : Sélection des clones transformants 69

Page 7: Université d’ORAN Faculté des Sciences Département de ...

ii

Liste des figures

Pages

Figure 1 : Résumé des principaux sites d’action des antibiotiques 9 Figure 2 : Réseau de transfert de résistance aux antibiotiques 14 Figure 3 : Illustration des mécanismes de résistance aux antibiotiques chez les bactéries Gram positives

23

Figure 4 : Structure des systèmes d’efflux actif 28 Figure 5 : Schéma de la technique de l'électroélution 40

Figure 6 : Aspect microscopique de quelques souches 44 Figure 7 : Antibiogramme de la souche Lactobacillus sp. V16 45 Figure 8 : Antibiogramme de la souche Pediococcus sp. MA1 45 Figure 9 : Antibiorésistance chez les bactéries lactiques étudiées 51 Figure 10 : Comparaison des antibiorésistances des souches étudiées, selon leurs origines 58 Figure 11 : Profil électrophorétique de l’ADN plasmidique des souches étudiées 67 Figure 12 : ADN plasmidique de la souche Lactobacillus sp. V16 récupéré pour les expériences d’électroélution

68

Figure 13 : Image de synergie entre AMC et CTX 71 Figure 14 : Résultat du test 3D 71

Page 8: Université d’ORAN Faculté des Sciences Département de ...
Page 9: Université d’ORAN Faculté des Sciences Département de ...
Page 10: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

2

Les antibiotiques sont d’un grand usage en santé humaine et animale ainsi que dans le

contrôle des phytopathologies, mais leur efficacité est menacée par la capacité des bactéries,

qui sont des organismes très adaptables, à développer une résistance à ces molécules. Par

conséquent, la longue période d’utilisation de ces agents antimicrobiens ainsi que leur

utilisation abusive ont abouti à la sélection de bactéries qui leur sont résistantes. L'ampleur du

problème est sensiblement augmentée par l’aptitude des bactéries à transférer horizontalement

les déterminants de la résistance (Levy, 1992). En effet, il a été démontré que l’exposition de

bactéries hébergeant un gène de résistance à la tétracycline à de faibles concentrations de cet

antibiotique aboutit à une augmentation de 10 à 100 fois de la fréquence du transfert de

l’élément porteur de ce gène et ceci, tant in vitro qu’in vivo dans le tube digestif de souris

gnotobiotiques (Doucet-Populaire et al., 1991). De même, Scott (2002) a conclu que le

transfert de gènes se produit largement in vivo entre les bactéries du tractus gastro-intestinal et

entre ces mêmes bactéries et les bactéries pathogènes du tractus gastro-intestinal, comme des

gènes de résistance identiques sont présents dans diverses espèces bactériennes à partir de

différents hôtes.

Pendant plusieurs décennies, les études sur la sélection et la diffusion de la résistance aux

antibiotiques ont porté principalement sur les espèces à intérêt clinique. Toutefois, de

nombreux chercheurs ont émis l'hypothèse que les bactéries commensales présentes dans les

aliments et dans le tractus gastro-intestinal pourraient servir de réservoirs pour les gènes de

résistance aux antibiotiques et pourraient transférer ces gènes à des bactéries opportunistes et

pathogènes de l’Homme, ce qui nuit à la réussite de l’antibiothérapie (Perreten et al., 1997a;

Mathur et Singh, 2005).

Les bactéries lactiques, qui font partie de la flore commensale et qui bénéficient d’une

longue histoire de sécurité de leur utilisation en industrie agroalimentaire ainsi qu’en tant que

probiotiques (Mathur et Singh, 2005; Ammor et al., 2007), peuvent être l’un de ces réservoirs.

En effet, des gènes conférant la résistance à la tétracycline, l'érythromycine et la vancomycine

ont été détectés et caractérisés chez Lactococcus lactis et des espèces d’entérocoques et de

lactobacilles isolées à partir de produits carnés fermentés et de produits laitiers (Mathur et

Singh, 2005), et la possibilité de leur transfert aux bactéries opportunistes et pathogènes de la

flore digestive de l'Homme est fort envisageable. Toutefois, pour répondre aux

préoccupations de la biosécurité des cultures starters et des probiotiques, un certain nombre

d'initiatives ont été lancé par diverses organisations à travers le monde, tels que l'interdiction

Page 11: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

3

de l’utilisation des antibiotiques à usage clinique en tant que promoteurs de croissance chez

les animaux d’élevage (déjà appliquée en union européenne) et la limitation des caractères de

résistance que doivent porter les probiotiques à ceux requis pour un but précis seulement

(Mathur et Singh, 2005).

C'est dans le contexte de la résistance bactérienne aux antibiotiques que s'inscrit notre

travail qui a pour objectifs d’étudier le comportement de plusieurs souches de bactéries

lactiques isolées de différents milieux naturels vis-à-vis de divers antibiotiques, et de tenter de

préciser le déterminisme génétique de certaines résistances observées.

Page 12: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

4

1.1. Les bactéries lactiques :

1.1.1. Définition et caractéristiques :

Les bactéries lactiques constituent un groupe de bactéries Gram positives, taxonomiquement

hétérogène, qui produisent principalement de l’acide lactique par fermentation des sucres en

anaérobiose comme en aérobiose (Axelsson, 2004 ; Atlan et al., 2008). Ce sont des bactéries

asporogènes, de forme coccoide, bacillaire ou coccobacillaire, immobiles, dépourvues de

catalases et de cytochromes (à l’exception de certains genres à pseudocatalase), anaérobies

mais aerotolérantes, et tolérantes à des pH acides (Axelsson, 2004).

Ces bactéries fermentent les sucres selon deux voies : la glycolyse (Embden-Meyerhof-

Parnas), ou fermentation homolactique, qui conduit à la formation d’acide lactique, et la voie

du 6-phosphogluconate / phosphocétolase (fermentation hétérolactique) qui produit, en plus

de l'acide lactique, d’autres métabolites tels que l'éthanol, l'acétate et le CO2 (Axelsson,

2004 ; Atlan et al., 2008).

Ces microorganismes ont une capacité de biosynthèse très faible, ce qui explique leurs

exigences nutritionnelles complexes en acides aminés, peptides, vitamines, sels, acides gras,

glucides fermentescibles et bases puriques et pyrimidiques (Axelsson, 2004 ; Wessels et al.,

2004 ; Atlan et al., 2008). En raison de ces exigences et de leur nature anaérobie

aerotolérante, ces bactéries sont associées à une grande variété de milieux naturels

particulièrement riches tels que les divers produits alimentaires (lait, viande, boissons,

légumes,…). Ces bactéries sont également présentes dans la flore normale de la cavité

buccale, l’intestin et l’appareil génital de l’Homme et des animaux (Stiles et Holzapfel, 1997 ;

Axelsson, 2004 ; Pot et al., 2008).

Les bactéries lactiques bénéficient d’un statut GRAS (Generally Reconized As Safe) et

jouent un rôle très important en industrie agroalimentaire et en santé. De nombreuses espèces

de ces bactéries sont impliquées dans la fabrication et la conservation des aliments à partir de

matières premières agricoles dans lesquelles elles sont présentes comme contaminants ou

ajoutées, volontairement, comme starters pour contrôler les processus de fermentation (Stiles

et Holzapfel, 1997 ; Leroy et de Vuyst, 2004 ; Pot et al., 2008). Ces processus contribuent

aux propriétés organoleptiques, rhéologiques et nutritionnels des aliments fermentés (Leroy et

de Vuyst, 2004) et produisent des acides organiques et d’autres composés antimicrobiens ce

qui a pour conséquence d’inhiber la croissance des bactéries indésirables voire pathogènes

Page 13: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

5

(Slover, 2008 ; Mäyra-Mäkinen et al., 2004 ). D’autres applications industrielles de ces

bactéries, tels que le traitement des déchets et la production de diverses molécules (enzymes,

métabolites,…), sont connues (De Roissart et Luquet, 1994). D’une autre part, certaines de

ces bactéries, qui sont des hôtes normaux du tube digestif, sont connues d'exercer des effets

bénéfiques pour la santé ; c’est la raison pour laquelle elles sont de plus en plus utilisées sous

forme de probiotiques (Ouwehand et al., 2002).

Il est important de signaler que le caractère pathogène des bactéries lactiques est

extrêmement réduit puisque seules certaines espèces peuvent causer des infections chez

l’Homme, et cela dans des situations particulières tel est le cas avec des malades

immunodéprimés ou ceux recevant une antibiothérapie (Wessels et al., 2004).

1.1.2. Classification :

La classification des bactéries lactiques est basée sur leurs critères morphologiques et

écologiques et sur leurs propriétés physiologiques (croissance à des températures différentes,

capacité de croître à une concentration élevée en sel, mode de fermentation du glucose,…)

(Stiles et Holzapfel, 1997 ; Axelsson, 2004 ; Pot et al., 2008) et moléculaires (Axelsson,

2004).

Ce groupe microbien comprend actuellement environ 20 genres (Pot et al., 2008) dont les

principaux sont : Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus,

Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus,

Weissella et Bifidobacterium (Stiles et Holzapfel, 1997 ; Axelsson, 2004 ; Pot et al., 2008).

Les bactéries appartenant à ces genres sont regroupées, selon la composition de leur ADN en

bases nucléotidiques GC, sous deux branches : celle des Actinomycètes qui est représentée

par le genre Bifidobacterium ayant un pourcentage en bases GC supérieur à 55 % et celle des

Clostridies qui regroupe toutes les bactéries à % GC inférieur à 55 % (Axelsson, 2004 ; Pot et

al., 2008 ).

1.1.2.1. Lactococcus : les lactocoques sont des bactéries coccoides. Elles produisent l’acide

lactique de forme L (+) par métabolisme homofermentaire et elles sont couramment présentes

dans les produits fermentés, mais certaines espèces, notamment Lc. lactis, sont souvent

isolées des végétaux (Axelsson, 2004). Parmi les cinq espèces appartenant à ce genre, seule

Page 14: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

6

les souches de Lc. lactis sont utilisées comme starters dans la fabrication de divers produits

fermentés, notamment les produits laitiers (Floréz et al, 2008).

1.1.2.2. Vagococcus : les espèces de ce genre sont distinguées des lactocoques par leur

composition en acides gras (Axelsson, 2004). Elles sont isolées à partir des excréments des

poulets, des eaux des fleuves et des truites malades (Dellaglio et al., 1995).

1.1.2.3. Streptococcus : ce genre est essentiellement représenté par l’espèce S. thermophilus.

Les bactéries de cette espèce sont des coques lactiques thermophiles isolés à partir des

produits laitiers, mais certaines souches ont été récemment trouvées dans des plantes

(Delorme, 2008). Elles sont largement utilisées comme cultures starter dans la fabrication des

yaourts et de certains fromages (Axelsson, 2004 ; Delorme, 2008). Ainsi, des combinaisons

d’espèces probiotiques contenant S. thermophilus ont été décrites comme ayant des effets

positifs sur la diarrhée chez les jeunes enfants et l'entérocolite chez les nouveaux nés

prématurés (Delorme, 2008).

1.1.2.4. Enterococcus : les entérocoques sont des coques homofermentaires groupés en paires

ou en chaînettes. Les espèces de ce genre occupent une grande variété de niches écologiques

dont les sols, les eaux et les plantes ; elles font également partie de la microflore intestinale de

l’Homme et des animaux, et sont couramment trouvées dans les produits fermentés comme

contaminants ou bien ajoutées en tant que starters (Franz et Holzapfel, 2004). Cependant, ces

espèces ne bénéficient pas du statut GRAS. En effet, la plupart d’entre elles, en particulier En.

faecalis et En. faecium, sont habituellement associées à des infections humaines (Franz et

Holzapfel, 2004 ; Ogier et Serror, 2008).

1.1.2.5. Aerococcus : ce genre est constitué de bactéries coccoides formant des tétrades

(Axelsson, 2004). Ce sont des saprophytes microaérophiles (Dellaglio et al., 1995 ; Axelsson,

2004) groupés en cinq espèces qui n’ont pas de grande importance en technologie alimentaire

(Axelsson, 2004).

1.1.2.6. Pediococcus : les bactéries de ce genre sont des coques formant des tétrades,

acidophiles et homofermentaires. On les trouve dans les végétaux frais ou leurs dérivés

fermentés, dans le fourrage, la peau, les cavités, le tractus ou les sécrétions d’animaux. Parmi

les espèces de ce genre, P. acidilactici et P. pentosaceus sont utilisées comme cultures starter

Page 15: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

7

pour la fabrication des saucisses, en ensilage et comme agents de maturation des fromages

(Axelsson, 2004).

1.1.2.7. Tetragenococcus : C’est des coques formant des tétrades. Seules deux espèces, T.

halophilus et T. muriaticus, sont actuellement reconnues. Ces bactéries sont extrêmement

tolérantes au sel (> 18% NaCl), cela leur attribue une grande importance en fermentation des

aliments à forte teneur en sel tel que la sauce de soja (Axelsson, 2004).

1.1.2.8. Leuconostoc : Ce genre regroupe des bactéries de forme coccoide ou coccobacillaire,

hétérofermentaires, produisant l'acide D-lactique à partir du glucose et ne produisant pas

l'ammoniac à partir de l'arginine (Axelsson, 2004). Ces bactéries sont habituellement

rencontrées sur les végétaux ainsi que les produits laitiers et carnés. Leur présence intervient

dans le goût et l’arôme des aliments et cela par production de certains composés aromatiques

comme l’acétoïne et le diacétyle ; c’est la raison pour laquelle certaines de ces espèces,

principalement Ln. mesenteroides subsp. cremoris, sont utilisées en industrie laitière. Ces

bactéries sont également importantes dans les fermentations spontanées de légumes

(Axelsson, 2004 ; Ogier et al., 2008). Cependant, certaines espèces peuvent également

provoquer la détérioration des aliments suite à la production de composés indésirables

(amines biogènes et dextrane) (Ogier et al., 2008).

1.1.2.9. Weissella : c’est des bactéries hétérofermentaires incluant des coques et des bacilles.

Elles se distinguent des bactéries du genre Leuconostoc par de nombreuses caractéristiques

telles que leurs modes de fermentation des sucres, la formation de dextrane et la croissance à

différents pH et températures différentes. De nombreuses espèces de ce genre semblent être

associées aux produits carnés (Axelsson, 2004).

1.1.2.10. Oenococcus : les bactéries de ce genre sont des coques lactiques qui se distinguent

des leuconostocs par leur tolérance extrème à l’acide et à l’éthanol (Axelsson, 2004).

1.1.2.11. Lactobacillus : c’est le groupe le plus grand et le plus hétérogène parmi tous les

genres lactiques. Il regroupe des bactéries, en forme de bâtonnets ou de coccobacilles, homo

ou hétérofermentaires qui sont les plus tolérantes à l’acide (Axelsson, 2004). Ces bactéries

sont les plus ubiquitaires, elles sont présentes chez l’Homme, les animaux et les plantes

(Axelsson, 2004 ; Bernardeau et al., 2008). Elles sont ainsi très utilisées en industrie

Page 16: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

8

alimentaire (ferments lactiques pour produits fermentés) et en tant que probiotiques

(Axelsson, 2004 ; Bernardeau et al., 2008).

1.1.2.12. Carnobacterium : ce sont des bacilles à métabolisme principalement

hétérofermentaires. Ils se distinguent des lactobacilles par leur croissance à des pH élevés

(jusqu’à pH 9) et par leur composition en acides gras. Ces bactéries sont typiquement trouvées

dans les viandes et les produits carnés (Axelsson, 2004).

1.2. Les antibiotiques :

Depuis celle donnée par Waksman en 1942, la définition d’un antibiotique a connu plusieurs

évolutions. À l’heure actuelle, le terme antibiotique désigne toute substance naturelle ou

synthétique, d’origine microbienne ou dérivée chimiquement, capable d'inhiber

spécifiquement la vitalité des micro-organismes (Walsh, 2003 ; Zomahoun, 2005).

Les antibiotiques agissent à faibles doses et doivent présenter certains caractères pour être

actifs sur les micro-organismes : ils doivent pénétrer tout d’abords dans la cellule, ensuite

rencontrer leur cible et perturber la physiologie bactérienne, et ils ne doivent subir aucune

transformation capable de les inactiver au cours de leur contact avec la cellule (Ogawara,

1981 ; Zomahoun, 2005).

Ces molécules peuvent être classées selon différents critères :

L’origine : les antibiotiques sont élaborés par un organisme vivant ou produits par synthèse

(Yala et al., 2001).

La nature chimique : ce critère permet de classer les antibiotiques en différentes familles

(aminosides, macrolides, phénicolés, bétalactamines,…) au sein desquelles peuvent exister

des groupes ou sous-groupes. En général, à une parenté structurale s'associera un même mode

d’action (sur une même cible) et un même mécanisme de résistance (Courvalin, 2008).

Le mode d’action : Les différentes classes d’antibiotiques agissent à différents niveaux chez

la bactérie. Ils agissent notamment au niveau de la biosynthèse de la paroi bactérienne et des

protéines, du métabolisme des acides nucléiques, et au niveau de la membrane cytoplasmique

(Russell, 2002 ; Walsh, 2003).

Les modalités d’action : Les antibiotiques peuvent entraîner la mort des bactéries

(antibiotiques bactéricides) ou seulement inhiber leur croissance (antibiotiques

bactériostatiques) (Walsh, 2003).

Page 17: Université d’ORAN Faculté des Sciences Département de ...

Le spectre d’activité : c’est la liste des espèces sur lesquelles les a

(voir annexe). Il peut être étroit ou large, c’est

bactéries ou une large gamme d’espèces

1.2.1. Modes et modalités d’action des antibiotiques

Comme le montre la figure suivante, les antibiotiques ont divers modes d’action sur leurs

cibles.

Figure 1 : Résumé des principaux sites d’action des antibiotiques

1.2.1.1. Les inhibiteurs de la synthèse du peptidoglycane

Ces antibiotiques agissent soit en inhibant la synthèse des précurseurs de la paroi, soit en

inhibant le transfert de ces derniers sur un lipide porteur qui permet leur transport à travers la

membrane plasmique, ou encore en inhibant l'insertion des unités glycaniques précurse

la paroi.

• Les bétalactamines :

Les antibiotiques appartenant à cette famille sont caractérisés par la présence du cycle

bétalactame. Ce sont des acides plus ou moins forts qui traversent difficilement la membrane

c’est la liste des espèces sur lesquelles les antibiotiques sont actifs

Il peut être étroit ou large, c’est-à-dire qui englobe une clientèle précise de

bactéries ou une large gamme d’espèces (Bryskier, 1999).

1.2.1. Modes et modalités d’action des antibiotiques :

igure suivante, les antibiotiques ont divers modes d’action sur leurs

Résumé des principaux sites d’action des antibiotiques (Paquet

1.2.1.1. Les inhibiteurs de la synthèse du peptidoglycane :

ssent soit en inhibant la synthèse des précurseurs de la paroi, soit en

inhibant le transfert de ces derniers sur un lipide porteur qui permet leur transport à travers la

membrane plasmique, ou encore en inhibant l'insertion des unités glycaniques précurse

Les antibiotiques appartenant à cette famille sont caractérisés par la présence du cycle

bétalactame. Ce sont des acides plus ou moins forts qui traversent difficilement la membrane

II nnttrroodduuccttiioonn

9

ntibiotiques sont actifs

dire qui englobe une clientèle précise de

igure suivante, les antibiotiques ont divers modes d’action sur leurs

Paquet-Bouchard, 2006)

ssent soit en inhibant la synthèse des précurseurs de la paroi, soit en

inhibant le transfert de ces derniers sur un lipide porteur qui permet leur transport à travers la

membrane plasmique, ou encore en inhibant l'insertion des unités glycaniques précurseurs de

Les antibiotiques appartenant à cette famille sont caractérisés par la présence du cycle

bétalactame. Ce sont des acides plus ou moins forts qui traversent difficilement la membrane

Page 18: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

10

bactérienne (Zomahoun, 2005) et qui ont une action bactéricide (Prescott, 2004). Ces

molécules agissent sur la paroi des bactéries en se fixant aux enzymes indispensables à la

formation du peptidoglycane « PG » (transpeptidases, glycosylases et carboxypeptidases)

appelés PLP ou protéines liant les pénicillines. En fait, ces enzymes lient l’antibiotique au

lieu de lier leurs substrats. Il s’ensuit un affaiblissement du PG et une lyse osmotique qui

mène à la mort bactérienne (Walsh, 2003 ; Mimoz, 2003). D’autre part, les antibiotiques de

cette famille peuvent activer les enzymes responsables de la dégradation naturelle du PG, les

autolysines ou muréine-hydrolases (Charpentier et Novak, 2000 ; Prescott, 2004). Les

bétalactamines n’agissent donc que sur les bactéries en croissance.

• La fosfomycine :

Cette molécule possède une action bactéricide. Elle pénètre dans la bactérie par le système

de transport actif de l’α-glycerophosphate et du glucose-6-phosphate et agit en inhibant

MurA, la pyruvyl-transférase cytoplasmique qui est responsable de la formation de l’acide N-

Acétyl Muramique et cela de façon irréversible. Elle inhibe donc le premier stade de la

synthèse du peptidoglycane (El Zoeiby et Sanschagrin, 2003).

• La bacitracine :

C’est un polypeptide cyclique (Tsuda et Yamashita, 2002), neutre et soluble dans l’eau

(Paquet-Bouchard, 2006). Cette molécule interfère avec les phospholipides de la paroi

bactérienne et perturbe la perméabilité membranaire en empêchant la déphosphorylation du

phospholipide indispensable à la synthèse du peptidoglycane (Ming et Epperson, 2002).

• Les glycopeptides :

Ces antibiotiques inhibent la 2ème phase de la synthèse de la paroi des bactéries en

croissance, et ce après fixation précoce et irréversible aux parois bactériennes. En effet, ils

recouvrent le D-Ala-D-Ala terminal de l’UDP-N-acetylmuramyl-pentapeptide prêt à être

incorporé dans le peptidoglycane en cours d’élongation. En raison de leur volume, les

glycopeptides vont ainsi empêcher l’action des glycosyltransférases et des transpeptidases et

bloquer l’élongation du peptidoglycane. La grande taille de ces antibiotiques fait, également,

qu'ils ne peuvent pas emprunter les porines et sont donc, de ce fait, inactifs contre les

bactéries à Gram négatif (Mimoz, 2003 ; Zomahoun, 2005).

Page 19: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

11

1.2.1.2. Les inhibiteurs de la synthèse protéique :

Ces antibiotiques agissent préférentiellement sur la sous-unité 30S et/ou la sous-unité 50S

des ribosomes et cela au niveau de l'une des trois étapes principales de la traduction (Euzéby,

2007).

• Les aminosides ou aminoglycosides :

Ce sont des antibiotiques bactériostatiques à faibles doses et bactéricides à fortes doses

(Zomahoun, 2005). La cible principale de ces molécules est le ribosome, et en particulier sa

sous-unité 30S. La plupart des aminosides se fixent aussi sur la sous-unité 50S. Cette fixation

sur le ribosome conduit à une altération de la synthèse des protéines (Mimoz, 2003 ;

Zomahoun, 2005). Ces molécules induisent également des erreurs de lecture de l’ARN

messager provoquant ainsi la synthèse de protéines anormales (Zomahoun, 2005).

• Les tétracyclines :

Ce sont des molécules bactériostatiques ou bactéricides, qui se fixent sur la sous unité 30S

du ribosome et inhibent la fixation de l’aminoacyl-ARNt sur son site ribosomal (Zomahoun,

2005 ; Euzéby, 2007).

.

• Les phénicolés :

Le chloramphénicol est un antibiotique hydrophile bactériostatique mais qui peut être

bactéricide sur certaines bactéries. Il se fixe à l’ARNr 23S sur la sous unité 50S du ribosome

et inhibe la formation des liaisons peptidiques. Ses antagonistes compétitifs sont les

macrolides et les lincosamides (Zomahoun, 2005).

• Les macrolides, les lincosamides et les streptogramines (MLS) :

Ces antibiotiques sont bactériostatiques ou bactéricides selon leur concentration. Ils se

fixent sur la sous unité 50S du ribosome et bloquent les réactions de transpeptidation

(streptogramines inhibant la fixation des aminoacyl-ARNt) et/ou de translocation (macrolides

qui se fixent au niveau du site Aminoacyl) (Zomahoun, 2005 ; Philippon, 2006).

• L’acide fusidique :

De structure stéroïdique, cet antibiotique a un effet bactériostatique. Il inhibe la synthèse des

protéines en agissant sur le facteur d'élongation de la traduction EF-G (substance responsable

Page 20: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

12

de la translocation de la chaîne des peptides durant la synthèse des protéines) ; ceci entraîne le

blocage de la traduction de l’ARN messager au niveau de la sous unité 50S du ribosome

(Zomahoun, 2005 ; Philippon, 2006).

1.2.1.3. Les inhibiteurs de la synthèse des acides nucléiques :

Les antibiotiques de cette catégorie agissent à différents niveaux du métabolisme des acides

nucléiques.

• Les quinolones et fluoroquinolones :

Ces molécules ont une action bactéricide. Après leur pénétration dans la membrane externe

des bactéries, elles inhibent la réplication de l’ADN. En effet, les quinolones agissent sur les

topoisomérases (ADN gyrases) qui sont des enzymes régulant les changements de formes

topologiques de l’ADN. Il s’en suit alors la formation d’un complexe ADN gyrase-Quinolone.

C’est ainsi que ces antibiotiques empêchent la réplication, la transcription, la recombinaison

et la réparation au niveau du noyau cellulaire inhibant donc la synthèse de l’ADN (Mimoz,

2003 ; Zomahoun, 2005 ; Euzéby, 2007). Ces molécules sont très utilisées dans le monde

animal notamment chez les volailles et les poissons d’élevage (Courvalin, 2008).

• Les rifamycines (Ansamycines) :

Ce sont des antibiotiques bactéricides. Ils se fixent sur l’ARN polymérase en formant un

complexe Irréversible ce qui bloque la formation de l’ARN messager (Zomahoun, 2005;

Euzéby, 2007).

• La mupirocine :

Cet antibiotique inhibe l’isoleucyl-ARN-synthétase qui permet la synthèse de l’ARN de

Transfert (Podie-Magne, 1999).

1.2.1.4. Les inhibiteurs de la synthèse des folates :

• Les sulfamides et les diaminopyrimidines :

La bactérie édifie l’acide folique à partir de l’acide para-amino-benzoïque, l’acide

glutamique et la ptéridine grâce à la dihydroptéroate synthétase. L’acide folique ainsi secrété

doit être réduit par une dihydrofolate réductase en tétrahydrofolate.

Les sulfamides tel que la sulfadiazine et la Sulfadoxine, qui sont des antibiotiques

bactériostatiques, inhibent compétitivement la dihydroptéroate synthétase (DHPS) et

Page 21: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

13

bloquent ainsi la synthèse de l’acide folique. De leur part, le triméthoprime et la

pyriméthamine (diaminopyrimidines) inhibent la dihydrofolate réductase (DHFR) et bloquent

également la synthèse du folate. Ceci explique la synergie d’action entre les sulfamides et les

triméthoprimes (Zomahoun, 2005 ; Euzéby, 2007).

1.2.1.5. Les antibiotiques qui provoquent l’altération des membranes :

• Les polymyxines :

Elles appartiennent à la classe des polypeptides cycliques. Elles agissent comme des

détergents cationiques : grâce à leur caractère amphipathique, elles pénètrent dans la cellule

bactérienne et s'insèrent parmi les phospholipides des membranes externes et cytoplasmiques,

ce qui entraine la désorganisation de celles-ci et perturbe la perméabilité membranaire

(Zomahoun, 2005).

• La gramicidine :

Cet antibiotique réagit, également, avec les phospholipides et détruit la membrane

cytoplasmique (Podie-Magne, 1999).

1.2.1.6. Les antibiotiques agissant par inhibition compétitive :

Il existe certains antibiotiques qui agissent par inhibition compétitive (au cours des étapes

du métabolisme intermédiaire), parmi lesquels on cite les sulfamides et l’isoniazide qui sont,

respectivement, des analogues de vitamines et du NAD (Philippon, 2006).

1.2.2. Usage des antibiotiques et ses conséquences:

Les antibiotiques sont utilisés comme phytopharmaceutiques sur des plantes, comme

adjuvants alimentaires pour l’accélération de la croissance et en tant que médicament et

agents prophylactiques chez les animaux d'élevage, et aussi comme agents thérapeutiques

chez l'homme (Wegener, 2003 ; Levy et Marshall, 2004 ; Kastner et al., 2006 ; Flórez et al.,

2008). En Algérie, par exemple, les antibiotiques représentent 38% du marché de

médicaments vétérinaires (Bouguedour, 2008) et ils englobent les pénicillines, les

céphalosporines, les cyclines, les aminosides, les macrolides, les lincosamides, les quinolones

et fluoroquinolones, les furanes, les phénicolés, les polymyxines, les sulfamides, les

imidazolés, le triméthoprime, l’acide fusidique, la bacitracine et d’autres (Zeghilet, 2009). En

Page 22: Université d’ORAN Faculté des Sciences Département de ...

effet, l’antibiotique le plus fréquemment utilisé en thérapeutique vétérinaire est

l’Oxytétracycline (80%) (Akloul, 2008).

Ces modes d'utilisation des antibiotiques influent fortement sur le nombre d'organismes

résistants qui se développent. D'a

les diagnostics incorrects, les prescriptions abusives et l'utilisation inappropriée

d'antibiotiques par les patients, les cultivateurs ou les éleveurs, par exemple en complément

alimentaire pour une croissanc

dernière utilisation a conduit à la sélection de bactéries résistantes aux antibiotiques parmi

celles de la microflore intestinale des animaux traités (Teuber, 2001; Wegener, 2003) avec

possibilité de transmission potentielle de la résistance à l'Homme par le biais de la chaîne

alimentaire (Witte, 1997 ; Teuber, 2001; Wegener, 2003

grande menace puisqu’elle peut être à l’origine de l'émergence et la propagation de la

résistance chez les bactéries pathogènes

traitements par les antibiotiques (

La figure suivante illustre bien le réseau à travers lequel les gènes de résistance aux

antibiotiques sont disséminés :

Figure 2 : Réseau de transfert de résistance aux antibiotiques (Witte, 2000)

plus fréquemment utilisé en thérapeutique vétérinaire est

(80%) (Akloul, 2008).

Ces modes d'utilisation des antibiotiques influent fortement sur le nombre d'organismes

résistants qui se développent. D'autres facteurs contribuent également à cette résistance dont

les diagnostics incorrects, les prescriptions abusives et l'utilisation inappropriée

d'antibiotiques par les patients, les cultivateurs ou les éleveurs, par exemple en complément

alimentaire pour une croissance accélérée des animaux d'élevage (ANMV, 2008).

dernière utilisation a conduit à la sélection de bactéries résistantes aux antibiotiques parmi

celles de la microflore intestinale des animaux traités (Teuber, 2001; Wegener, 2003) avec

ransmission potentielle de la résistance à l'Homme par le biais de la chaîne

; Teuber, 2001; Wegener, 2003). Cette transmission constitue une

grande menace puisqu’elle peut être à l’origine de l'émergence et la propagation de la

bactéries pathogènes qui deviennent, par conséquent, insensibles aux

traitements par les antibiotiques (Mathur et Singh, 2005).

La figure suivante illustre bien le réseau à travers lequel les gènes de résistance aux

disséminés :

Réseau de transfert de résistance aux antibiotiques (Witte, 2000)

II nnttrroodduuccttiioonn

14

plus fréquemment utilisé en thérapeutique vétérinaire est

Ces modes d'utilisation des antibiotiques influent fortement sur le nombre d'organismes

à cette résistance dont

les diagnostics incorrects, les prescriptions abusives et l'utilisation inappropriée

d'antibiotiques par les patients, les cultivateurs ou les éleveurs, par exemple en complément

e accélérée des animaux d'élevage (ANMV, 2008). Cette

dernière utilisation a conduit à la sélection de bactéries résistantes aux antibiotiques parmi

celles de la microflore intestinale des animaux traités (Teuber, 2001; Wegener, 2003) avec

ransmission potentielle de la résistance à l'Homme par le biais de la chaîne

Cette transmission constitue une

grande menace puisqu’elle peut être à l’origine de l'émergence et la propagation de la

qui deviennent, par conséquent, insensibles aux

La figure suivante illustre bien le réseau à travers lequel les gènes de résistance aux

Réseau de transfert de résistance aux antibiotiques (Witte, 2000)

Page 23: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

15

1.3. La résistance bactérienne aux antibiotiques :

Une souche est dite résistante lorsqu’elle peut croître en présence d’une concentration

d’antibiotique beaucoup plus élevée que celle qui inhibe le développement de la majorité des

autres souches de la même espèce (Zomahoun, 2005).

Il existe deux grands types de résistance aux antibiotiques, la résistance intrinsèque et la

résistance acquise :

- Résistance naturelle ou intrinsèque :

Cette résistance, généralement chromosomique, est présente chez toutes les souches d’une

même espèce ou d’un même genre bactérien. Elle délimite le spectre d’action des

antibiotiques et elle est due soit à une absence de cible pour l’antibiotique soit à une

imperméabilité de la paroi à cet antibiotique (Levy et Marshall, 2004 ; Zomahoun, 2005 ;

Courvalin, 2008). Cette résistance n’est pas transférable horizontalement et elle ne présente

donc aucun risque chez les bactéries pathogènes (Normark et Normark, 2002 ; Levy et

Marshall, 2004 ; Mathur et Singh, 2005).

- Résistance acquise :

Cette résistance ne concerne que quelques souches, d’une même espèce ou d’un même

genre, normalement sensibles à un antibiotique donné (Zomahoun, 2005 ; Mathur et Singh,

2005 ; Courvalin, 2008). Elle est due à des modifications génétiques chromosomiques ou

extrachromosomiques : mutations sur des gènes existants (gènes codant pour des cibles des

antibiotiques, gènes régulateurs…) ou incorporation de nouveaux gènes codant à des

mécanismes de résistances (Levy et Marshall, 2004 ; Zomahoun, 2005 ; Mathur et Singh,

2005). Ces gènes peuvent être originaires des micro-organismes producteurs d’antibiotiques

(Davies, 1997) ou bien des gènes dont les produits originaux jouent un rôle dans le

métabolisme bactérien mais qui ont subi des mutations à plusieurs reprises qui ont changé

leurs substrats de substrats appropriés à des voies de biosynthèse ou biodégradation à des

antibiotiques (Davies, 1994). Cette résistance peut être disséminée par transfert horizontal

entre bactéries (Mathur et Singh, 2005).

Le développement de la résistance aux antibiotiques chez les bactéries est basé

principalement sur deux facteurs : la présence de gènes de résistance et la pression de

sélection imposée par l'utilisation des antibiotiques (Levy, 1992). Cette pression joue un rôle

clé dans l'émergence de bactéries résistantes : quand une population bactérienne mixte est

Page 24: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

16

exposée à des antibiotiques, il est probable qu'il y aura des bactéries résistantes à la

concentration appliquée de ces agents. Cependant, sous la pression de sélection, le nombre de

ces bactéries va augmenter et certaines d’elles peuvent transmettre leurs gènes de résistance à

d’autres membres de la population (Aarestrup, 1999).

1.3.1. L’antibiorésistance chez les bactéries lactiques :

Les aliments fermentés ou non, qui ne subissent pas de traitement avant leur consommation,

peuvent constituer un véhicule pour les bactéries résistantes aux antibiotiques en conférant

ainsi un lien direct entre la microflore indigène des animaux et celle du tractus gastro-

intestinal de l’Homme (Mathur et Singh, 2005). En effet, ces produits contiennent des

bactéries lactiques qui pénètrent en grand nombre dans nos intestins et interagissent avec

notre flore intestinale ; il se peut que certaines de ces bactéries soient porteuses de gènes

d’antibiorésistance potentiellement transmissibles et il est possible que cette résistance soit

transmise à des populations bactériennes humaines, notamment opportunistes et pathogènes, à

travers la chaine alimentaire (Mathur et Singh, 2005 ; Ammor et al., 2007). Ainsi, ces

bactéries occupent, comme a été déjà indiqué, une grande variété d’habitats ce qui augmente

les possibilités de leur implication dans le phénomène d’antibiorésistance. De

même, l’introduction commerciale de probiotiques contenant des souches résistantes aux

antibiotiques peut également avoir des conséquences négatives dans le cas ou la résistance est

transférée à des pathogènes intestinaux (Mathur et Singh, 2005).

1.3.1.1. Génétique de l’antibiorésistance chez les bactéries lactiques :

La sensibilité réduite à certains antibiotiques n'est pas une caractéristique inhabituelle des

bactéries lactiques. Plusieurs de ces résistances peuvent être dues à des caractéristiques

intrinsèques complexes tels que les propriétés métaboliques des bactéries (Kastner et al.,

2006), et à la présence d’un grand nombre de ces bactéries dans les produits fermentés et le

tractus gastro-intestinal favorisant ainsi l’apparition de différents mécanismes de résistance

par mutations (Ammor et al., 2007). Les données disponibles sur les résistances intrinsèques

chez les bactéries lactiques sont relativement rares ; le tableau 1 en illustre quelques unes.

Cependant, il existe toujours des différences entre et à l’intérieur des espèces.

Ces bactéries peuvent également, comme a été déjà évoqué, acquérir des gènes de résistance

provenant des autres bactéries de l’écosystème dont elles font partie. Ces gènes peuvent être

portés sur le chromosome principal de la bactérie ou sur des éléments génétiques mobiles

Page 25: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

17

(plasmides, transposons, intégrons), et ils ont, dans tous les cas, la capacité de se transmettre

entre les bactéries qui, du coup, acquièrent l’élément responsable de leur nouvel état de

résistance face à tel ou tel antibiotique (Davies, 1994 ; Tremblay, 2007).

Tableau 1 : Quelques résistances naturelles rencontrées chez les bactéries lactiques

Espèces Antibiotiques Références

Entérocoques céphalosporines, faibles concentrations d’aminosides et de clindamycine

Knudtson et Hartman, 1993 ; Teuber et al., 1999

Lactobacilles vancomycine* Simpson et al., 1988 ; Hamilton-Miller et Shah, 1998

Certains lactobacilles vancomycine*, bacitracine, céfoxitine et ciprofloxacine, acide fusidique, kanamycine et gentamicine, métronidazole, nitrofurantoïne, norfloxacine, streptomycine, sulfamides

Danielsen et Wind, 2003

Pédiocoques vancomycine* Simpson et al., 1988 ; Hamilton-Miller et Shah, 1998

Leuconostocs vancomycine* Simpson et al., 1988 ; Hamilton-Miller et Shah, 1998

Streptocoques aminoglycosides, péfloxacine Euzéby, 2007 * La résistance élevée des lactobacilles, pédiocoques et Leuconostocs à la vancomycine est considérée comme un critère d’identification qui leur distingue des autres bactéries Gram positives (Simpson et al., 1988 ; Hamilton-Miller et Shah, 1998).

- Le chromosome :

La taille du chromosome des bactéries lactiques avait été estimée entre 1,8 et 3,4 Mb selon

les espèces, et elle peut varier sensiblement au sein d’une même espèce (Davidson et al.,

1996). A titre d’exemple, Lb. plantarum et En. Faecalis possèdent les plus grands

chromosomes avec une taille aux environs de 3,4 Mb (Renault, 2008) et ceux de Lc. lactis

IL1403 et Lb. gasseri ATCC 33323 ont des tailles de 2,42 Mb et 1.96 Mb, respectivement

(Morelli et al., 2004).

Page 26: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

18

Les gènes portés par les chromosomes de ces bactéries sont généralement ceux

indispensables à la survie de ces dernières (Luquet, 1994). Toutefois, Danielsen (2002) a

démontré que le gène de résistance à la tétracycline tetM détecté chez six différentes souches

de lactobacilles n’est pas porté par des plasmides mais il est probablement situé sur le

chromosome.

- Les plasmides :

Les plasmides sont des ADN circulaires ou linéaires, de tailles inférieures à 400 kb,

autoréplicatifs, qui peuvent exister séparément du chromosome bactérien ou y être intégrés

(Prescott, 2004 ; Morelli et al., 2004 ; Renault, 2008). Ces ADN, confèrent souvent des

avantages importants à leurs cellules hôtes grâce aux gènes qu’ils peuvent porter et qui codent

pour des propriétés diverses telles que la fermentation des sucres, l'hydrolyse des protéines, la

production d'exopolysaccharides et la résistance aux antibiotiques (Prescott, 2004 ; Morelli et

al., 2004 ; Mathur et Singh, 2005 ; Renault, 2008).

Une souche peut contenir un voire plusieurs plasmides, les lactobacilles par exemple

peuvent contenir de un jusqu’à seize molécules par souche (Mathur et Singh, 2005 ; Renault,

2008). Ainsi, chaque plasmide peut exister en un nombre spécifique de copies allant de une à

deux copies pour les molécules de grandes tailles jusqu’à plusieurs copies pour celles qui sont

petites (Clewell, 2005).

Ces molécules sont divisées en deux catégories : la première regroupe les plasmides

conjugatifs qui portent des gènes qui leur permettent d’engendrer leur propre transfert par

conjugaison (Lanka et Wilkins, 1995) ; ces plasmides sont fréquents chez les entérocoques,

les lactocoques, les leuconostocs, les pédiocoques et certaines souches de lactobacilles

(Davidson et al., 1996). Et la deuxième est celle des plasmides non conjugatifs ou

mobilisables qui ne peuvent être transférés entre les cellules que par des plasmides conjugatifs

(Lanka et Wilkins, 1995), des facteurs chromosomiques F (chromosomally encoded sex-like

factors) (Gasson et al., 1995) ou des bactériophages (Poyart, 2003).

Les plasmides de résistance (plasmides R) peuvent porter de un jusqu'à une dizaine de gènes

de résistance (Prescott, 2004 ; Zomahoun, 2005) et sont en constante évolution et leurs

déterminants de résistance sont souvent modifiés par des transposons, des recombinaisons

Page 27: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

19

homologues ou des intégrations de cassettes d'intégrons (Prescott, 2004). Des exemples de ces

plasmides sont montrés dans le tableau suivant :

Tableau 2 : Exemples de plasmides portant des gènes de résistances aux antibiotiques

Plasmides Souches hôtes Résistances codées

Références

Con

juga

tifs

pK214 (30 kb)

Lactococcus lactis K214

Streptomycine (str), Tétracycline (tetS), Chloramphénicol (cat), Macrolides- Lincosamides- Streptogramines (mdtA)

Perreten et al., 1997a ; Perreten et al., 2001

pRE25 (49 kb)

Enterococcus faecalis RE25

Chloramphénicol (cat), cinq différents Macrolides et deux Lincosamides (ermB), trois Aminosides

Schwarz et al., 2001 ; Mathur et Singh, 2005

pAM β1 (26.5 kb)

Enterococcus faecalis

Macrolides-Lincosamides-Streptogramines

Clewell et al., 1974

pLFE1 (40,31 kb)

Lactobacillus plantarum M345

Erythromycine (erm B)

Feld et al., 2008

Non

con

juga

tifs

pCAT

Lactobacillus plantarum caTC2R

Chloramphénicol (cat)

Ahn et al., 1992

pMD5057 (10,9 kb)

Lactobacillus plantarum 5057

Tétracycline (tetM) Danielsen, 2002

pLME300

Lactobacillus fermentum ROT1

Erythromycine (erm), Streptogramine A

Gfeller et al., 2003

- Les transposons :

Les transposons sont des séquences d’ADN de taille allant de 16 à 70 kb, ayant comme

caractéristique d’être capables de se déplacer d’une molécule d’ADN (chromosome ou

Page 28: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

20

plasmide) à une autre ou d’un site à un autre à l’intérieur de la même molécule (Mahillon et

Chandler, 1998 ; Zomahoun, 2005 ; Mathur et Singh, 2005).

Ces éléments peuvent être constitués de séquences simples appelées séquences d'insertion

(IS) dont la taille est généralement inférieure à 2,5 kb. Les IS ne contiennent que les gènes

nécessaires à la transposition, qui sont flanqués par des séquences répétées inversées courtes.

Il existe également des transposons dont la structure est beaucoup plus complexe, ce sont les

transposons composites qui contiennent des gènes supplémentaires flanqués par des

séquences IS (Morelli et al., 2004 ; Renault, 2008).

Les transposons peuvent être conjugatifs en raison de leur structure modulaire qui fait qu’un

antibiotique auquel ils confèrent la résistance peut stimuler spécifiquement leur transfert par

conjugaison d’une bactérie à une autre (Fitzgerald et Gasson, 1988 ; Doucet-Populaire et al.,

1991, Ammor et al., 2007). Ces transposons semblent être un moyen extrêmement important

de dissémination des gènes de résistance aux antibiotiques puisqu’ils ne se répliquent pas,

affrontés à des problèmes d’exclusion ou d’incompatibilité comme est le cas avec les

plasmides (Ammor et al., 2007).

Chez les bactéries lactiques, les transposons conjugatifs codant des résistances aux

antibiotiques n’ont été rapportés que chez les entérocoques et les streptocoques où ils codent

pour des résistances aux chloramphenicol (cat), tétracycline (tetM), érythromycine (ermAM,

ermB) et kanamycine (aphA-3) (Perreten et al., 1997b ; Huys et al., 2004 ; Mathur et Singh,

2005). Parmi ces transposons on peut citer : Tn916, Tn917, Tn918, Tn920, Tn925 et Tn2702

chez En. faecalis, Tn5233 chez En. faecium, Tn1545 chez En. sp. et Tn93951 chez S.

agalactiae (Mathur et Singh, 2005).

- Les intégrons :

Les intégrons sont des éléments génétiques contenant un ou plusieurs gènes de résistance

sous forme de cassettes. L’intégron lui-même est une structure immobile, dépourvue de

réplication autonome, portée par des plasmides, des transposons ou plus rarement sur le

chromosome des bactéries. Ce sont les cassettes qui constituent les unités mobiles qui peuvent

être facilement intégrées dans un intégron par un mécanisme de recombinaison à site

spécifique (Ploy et al., 2005 ; Tremblay, 2007 ; Courvalin, 2008).

Page 29: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

21

Un intégron est constituée d’un gène intI, codant une intégrase chargée d'exciser et

d'intégrer les cassettes, d’un site de recombinaison spécifique nommé attl où l'intégrase va

intégrer préférentiellement les cassettes et d’un promoteur Pc qui permet l’expression des

cassettes. Les cassettes elles-mêmes contiennent un autre élément de recombinaison nommé

attC qui est aussi reconnu par l'intégrase (Ploy et al., 2005 ; Tremblay, 2007).

Ces éléments ont été principalement étudiés chez les bactéries Gram négatives mais ils ont

été également détectés chez certaines bactéries à Gram positif (corynebactéries et

entérocoques) (Ploy et al., 2005 ; Tremblay, 2007). A titre d’exemple, Clark et al. (1999) ont

pu mettre en évidence la cassette aadA1, codant la résistance à la streptomycine et à la

spectinomycine chez En. faecalis mais la structure de l’intégron n’a pas été entièrement

caractérisée.

1.3.1.2. Moyens du transfert des gènes de résistance :

La résistance peut être acquise soit par des mutations dans le génome, on parlera alors de

transmission verticale à la descendance, soit par l’acquisition de nouveaux gènes par transfert

horizontal (Davison, 1999 ; Courvalin, 2008). Les gènes de résistance qui ont pu être tracés

chez les bactéries isolées chez les animaux et celles isolées chez l’Homme sont non

distinguables. Il faut considérer a priori que le transfert horizontal de gènes de résistance

s’opère dans les deux sens entre les animaux et l’Homme (AFSSA, 2006). Ce transfert se fait

principalement selon trois axes qui sont la transformation, la transduction et la conjugaison.

- La transformation :

La transformation bactérienne survient lorsque de l'ADN étranger présent dans le milieu

extracellulaire est absorbé dans une cellule dite «compétente», elle permet un brassage

génétique entre des bactéries très différentes (Joset et Guespin-Michel, 1993 ; Davison, 1999 ;

Prescott, 2004). La compétence des bactéries est un phénomène lié à la perméabilité de la

membrane, qui peut être induit (via des chocs électriques, thermiques ou des agents

chimiques) ou se retrouver naturellement chez certaines espèces, seulement, comme S.

pneumoniae et Bacillus subtilis. (Joset et Guespin-Michel, 1993 ; Prescott, 2004 ; Mathur et

Singh, 2005).

Ce phénomène naturel n'a été décrit chez les bactéries lactiques que chez Ln. carnosum

(Helmark et al., 2004); Cependant, un système de transformation partiellement opérationnel

Page 30: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

22

semblable à celui de S. pneumoniae a été identifié chez S. thermophilus (Blomqvist et al.,

2006) de même que des opérons de compétence naturelle chez Lc. lactis IL1403 (Bolotin et

al., 1999). Malgré ces découvertes, le mécanisme de transformation reste toujours mal connu

chez ce groupe bactérien mais il peut être induit artificiellement ; en effet, plusieurs auteurs

ont réussi à transformer des lactocoques (Holo et Nes, 1989), des lactobacilles (Badii et al.,

1989 ; Beasley et al., 2004 ; Ziane, 2008) et des pédiocoques (Caldwell et al., 1996 ; Ziane,

2008) par électroporation.

- La transduction :

Ce mécanisme se produit lors de l'encapsidation erronée d'ADN génomique bactérien au

cours du cycle de réplication d'un bactériophage, puis de l'infection d'une autre bactérie par ce

phage. Dans le cas des phages tempérés, qui s’intègre dans le génome de l’hôte au cours de

leur cycle, la transduction peut être limitée aux gènes situés à proximité du site d’insertion.

On parle alors de transduction localisée, par opposition à la transduction généralisée au cours

de laquelle n’importe quel fragment de l’ADN de l’hôte est intégré dans les capsides

phagiques. Le matériel génétique ainsi transféré peut alors être intégré à son nouvel hôte par

recombinaison homologue (Joset et Guespin-Michel, 1993 ; Nicklin et al., 2000 ; Renault,

2008).

Ce mode de transmission d'ADN étranger est le premier à être exploité et utilisé pour le

transfert des caractères à intérêt technologique entre les différentes souches lactiques

(Fitzgerald et Gasson, 1988). Cependant, son importance en tant que moyen de diffusion des

gènes d’antibiorésistance est encore discutable en raison de la grande spécificité des phages

(Joset et Guespin-Michel, 1993 ; Morelli et al., 2004 ; Mathur et Singh, 2005 ; Ammor et al.,

2007).

- La conjugaison :

Il s'agit d'un processus d'échange d'ADN se produisant lors d’un contact entre une cellule

donneuse et une cellule réceptrice (Joset et Guespin-Michel, 1993 ; Davison, 1999 ; Morelli et

al., 2004). La série de gènes nécessaires pour réaliser la conjugaison se retrouve souvent sur

un plasmide conjugatif porté par la cellule donneuse, mais peut également se retrouver au

niveau de son chromosome (Joset et Guespin-Michel, 1993 ; Clewell, 2005 ; Renault, 2008).

Chez les bactéries Gram positives, y compris les bactéries lactiques, le contact est établi

grâce à des mécanismes spécialisés telle que la production d’une protéine de surface par la

cellule donatrice, qui permet l’attachement de celle-ci à la cellule réceptrice. L’expression de

Page 31: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

23

cette protéine est induite par des phéromones de la cellule réceptrice (Clewell, 1993). Une fois

le contact établi, un plasmide ou une partie du chromosome possédant l'origine de transfert

(oriT) pourra être transmis (Joset et Guespin-Michel, 1993 ; Clewell, 2005).

Ce mécanisme est considéré comme le principal responsable des transferts horizontaux de

gènes de l’antibiorésistance (Teuber et al., 1999 ; Normark et Normark, 2002 ; Clewell,

2005). Les systèmes de conjugaison autochtones sont très communs chez les lactocoques ce

qui reflète l'abondance de plasmides chez ces bactéries (Mathur et Singh, 2005). Ainsi, la

littérature décrit plusieurs travaux qui montre la possibilité de conjugaison entre les autres

espèces de bactéries lactiques (Neve et al., 1984 ; Morelli et al., 1988 ; Dessart and Steenson,

1991 ; Igimi et al., 1996 ; Perreten et al., 1997b ; Teuber et al., 1999 ; Schwarz et al., 2001 ;

Gevers et al., 2003 ; Ouoba et al., 2008).

1.3.2. Mécanismes de résistance aux antibiotiques chez les bactéries Gram positives :

Sur le plan biochimique, les bactéries ont développé de grands mécanismes qui empêchent

l’interaction de l’antibiotique avec sa cible (figure 3, tableau 3). Trois principaux types de

stratégies sont employées par les bactéries à gram positif, y compris les bactéries lactiques,

pour annuler l’effet des antibiotiques sur elles : l’inactivation ou la modification des

antibiotiques, la modification de la cible et l’efflux des antibiotiques à l’extérieur de la cellule

par des pompes énergie dépendantes (Walsh, 2003 ; Tenover, 2006).

Figure 3 : Illustration des mécanismes de résistance aux antibiotiques chez les bactéries Gram positives (Savard, 2008)

Page 32: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

24

Tableau 3 : Principaux mécanismes de résistance aux antibiotiques chez les bactéries Gram positives (Zomahoun, 2005; http://www.microbes-edu.com/index.html)

Mécanismes de résistance

Antibiotiques

Protéines impliquées

Inac

tivat

ion/

m

odifi

catio

n en

zym

atiq

ue - Aminosides

- Bétalactamines - Chloramphénicol - Macrolides - Lincosamides - Streptogramines A, B

- Acétyltransférases (AAC), Nucléotidyltransférases (ANT), phosphotransférases (APH) - Bétalactamases - Acétyltransférases (VatA-E, Cat) - Estérases, phosphotransférases ((mphA-C) - Nucléotidyltransférases (LinA, LnuA, LinB....) - Acétyltransférases, hydrolases

Alté

ratio

n de

la c

ible

- Aminosides - Bétalactamines - Macrolides, Lincosamides, Streptogramines - Quinolones - Rifampicine - Sulfamides - Tétracyclines - Triméthoprime - Glycopeptides

- Altération des protéines ribosomales (Protéines L22…) - Altération ou nouvelle protéine liant la pénicilline (PLP2a) - Méthylation de l’ARN ribosomal (Méthylases Erm) - Altération de la topo-isomérase II et IV - Altération de l’ARN-polymérase - DHPS (dihydroptéroate synthétase) insensible - Protection ribosomale Tet(M)-(T) - DHFR (dihydrofolate réductase) insensible - Modification de la structure du précurseur du peptidoglycane

Effl

ux a

ctif

(s

ystè

mes

de

tran

spor

t m

embr

anai

re)

- Bétalactamines - Macrolides - Lincosamides - Tétracyclines - Quinolones

- Mex, Mar, AcrAB-TolC - MFS (MdtA), MsrA, ABC - LsA - Tet(A)-(L)

1.3.2.1. Inactivation ou modification de l’antibiotique :

Ce mécanisme se produit via la production, par les bactéries, d’enzymes capables de

détruire des liens chimiques nécessaires à l’intégrité fonctionnelle des antibiotiques

(modification ou hydrolyse). Les substrats de ces enzymes sont les bétalactamines, les

aminosides, le chloramphénicol, les macrolides, les lincosamides, les streptogramines et les

tétracyclines (Chopra, 2001 ; Zomahoun, 2005).

Page 33: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

25

- Enzymes inactivant les bétalactamines :

La nature de ces enzymes, appelées bétalactamases, leurs différents types ainsi que leur

présence chez les bactéries Gram positives seront présentés en détail dans le chapitre 1.3.3.

- Enzymes inactivant les aminosides :

Les aminosides peuvent être modifiés par l’ajout de trois types de groupements chimiques

sur leur structure par les enzymes intracellulaires aminosides Phosphotransférases (APH),

aminosides Nucléotidyltransférases (ANT) et aminosides N-Acétyltransférases (AAC) (Poole,

2002 ; Zomahoun, 2005). Ces modifications vont mener à l’acétylation, la phosphorylation et

l’adénylation de ces antibiotiques qui perdront donc la capacité de se fixer sur leur cible,

l’ARN du ribosome (Shaw et al., 1993 ; Zomahoun, 2005). Les gènes codant pour les

enzymes inactivant les aminosides sont, principalement, portés par des plasmides

autotransférables ou des transposons (Zomahoun, 2005), bien que certains semble être situés

sur le chromosome bactérien (Poole, 2002), et ils peuvent également coder pour la résistance

à d'autres antibiotiques (Zomahoun, 2005).

- Enzymes inactivant les macrolides, lincosamides et streptogramines :

Ces enzymes ont une faible influence sur la fréquence de la résistance aux antibiotiques de

la famille des MLS. Chez les Staphylococcus, des enzymes inactivant l’érythromycine, les

streptogramines A et B ou les lincosamides ont été décrites (Zomahoun, 2005). Des

résistances à d’autres macrolides par inactivation enzymatique sont aussi connues (Poole,

2002).

- Enzymes inactivant les chloramphénicols :

La résistance aux chloramphénicols résulte, typiquement, de l’action des chloramphénicol

acetyltransférases dont les gènes codant sont portés sur des plasmides présents chez certaines

espèces appartenant au genres Staphylococcus, Streptococcus, Neisseria et Haemophilus

(Poole, 2002 ; Zomahoun, 2005).

- Enzymes inactivant la tétracycline :

L’inactivation de cet antibiotique résulte de l’action des produits des gènes tetT et X. Ce

phénomène n’est connu que dans quelques rares cas (Poole, 2002).

Page 34: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

26

1.3.2.2. Modification de la cible :

- Modification des sites de fixation sur le peptidoglycane :

Les bactéries peuvent produire de nouvelles PLPs ou y introduire des mutations. Dans les

deux cas, les PLPs auront moins d’affinité pour les bétalactamines (Hakenbeck et al., 1999 ;

Walsh, 2000). Ce mécanisme de résistance est le plus fréquent chez les bactéries à Gram

positif qui ne synthétisent pas ou rarement de bétalactamases (Poole, 2002). A titre

d’exemple, la résistance des entérocoques aux pénicillines peut être en relation avec une

hyperproduction (modification mutationnelle) de PLP d'affinité médiocre telle que les PLP3

(Zomahoun, 2005).

Une résistance au glycopeptides peut, également, résulter de l’altération des sites de fixation

de ces antibiotiques sur le peptidoglycane (Wright, 2003). La résistance à la vancomycine, par

exemple, est due à la synthèse de pentapeptides anormaux possédant à leur extrémité un D-

ala-D-ser ou D-ala-D-lactate à la place du D-ala-D-ala. Cette synthèse est catalysée par les

produits des gènes van (Cetinkaya et al., 2000) portés par le transposon Tnl546 (Tremblay,

2007).

- Modification de la cible ribosomale :

Toute modification acquise par mutation de la cible ribosomale diminue l’affinité du site de

fixation de l’antibiotique et rend la bactérie résistante. Ainsi on peut observer des résistances

aux :

Macrolides et lincosamides :

La résistance aux macrolides et lincosamides, la plus fréquemment rencontrée, se manifeste

par la méthylation de l’ARNr 23S par des ARN méthylases (Leclercq et Courvalin, 1991 ;

Schmitz et al., 2000 ; Poole, 2002) dont les gènes codant erm (erythromycin resistance

methylase) sont situés sur des plasmides ou des transposons (Leclercq et Courvalin, 1991).

Tétracyclines :

Les gènes de résistance à la tétracycline tel que tetM et tetL codent pour un mécanisme de

« protection ribosomale », encore mal compris, qui empêche l’association de la tétracycline

avec sa cible ribosomale (Chopra et Roberts, 2001). Ces déterminants peuvent être portés par

le chromosome, des plasmides, des transposons ou des intégrons (Chopra, 2001).

Page 35: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

27

Aminosides :

La résistance à ces antibiotiques peut résulter de mutations au niveau de leur cible

ribosomale (Poole, 2002). C’est ainsi que les streptomycines deviennent inefficaces à la suite

d’une mutation dans la protéine S12 du ribosome (Hogg, 2005). Ce mécanisme est moins

rarement rencontré par rapport à celui de l’inactivation enzymatique (Zomahoun, 2005).

- Modification des enzymes intervenant lors de la synthèse des acides nucléiques :

Des mutations dans les gènes gyrA, gyrB (sous-unités A et B de l’ADN gyrase), parC et

parE (sous-unités C et E de la topoisomérase IV) peuvent entraîner la production d’ADN

gyrases et de topoisomérases insensibles à l’action des quinolones et fluoroquinolones. Elles

peuvent également mener à la production d’une transcriptase modifiée qui est à l’origine des

résistances aux rifamycines ((Edgar et Bibi, 1997 ; Zomahoun, 2005), et à la production de

DHPS et DHFR insensibles à l’action des sulfamides et du triméthoprime, respectivement ; la

résistance à ces derniers antibiotiques peut être, également, codée par des plasmides ou des

transposons (Zomahoun, 2005).

1.3.2.3. Pompes à efflux actif :

Il s'agit de transporteurs protéiques transmembranaires qui tirent leur énergie soit de la force

proton-motrice, soit de l’hydrolyse de l’ATP. Leur fonction native est d'éliminer à l'extérieur

de la bactérie des constituants inutiles à celle-ci et présents dans son cytoplasme. Ces pompes

moléculaires permettent une sortie d’antibiotique plus rapide que l’entrée ; ainsi, la

concentration intracellulaire d’antibiotique demeure à un niveau faible et inefficace (Edgar et

Bibi, 1997 ; Walsh, 2000 ; Courvalin, 2008). Ces pompes peuvent contribuer à des résistances

intrinsèques ou acquises (Poole, 2002).

Page 36: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

28

Figure 4 : Structure des systèmes d’efflux actif (Courvalin, 2008)

Quatre familles de pompes à efflux sont impliquées dans la résistance aux antibiotiques

(figure 4) : la famille ABC (ATP Binding Cassette) qui rassemble des transporteurs primaires

hydrolysant l’ATP, et les familles RND (Resistance Nodulation and cell Division), MSF

(Major Facilitation Superfamily) et SMR (Small Multidrug Resistance) qui correspondent à

des transporteurs secondaires utilisant le gradient de protons (H+) (Tremblay, 2007 ;

Courvalin, 2008).

Ces mécanismes peuvent être très spécifiques (résistance aux tétracyclines) ou d’une

spécificité médiocre et sont, donc, responsables de multirésistance (Courvalin, 2008). Ils

peuvent résulter d’un transfert de plasmides ou de transposons ou bien d’une surexpression,

suite à une mutation ou plus, d’un système résident codé par le chromosome (NorA de

Staphylococcus aureus) (Poole, 2002 ; Courvalin, 2008).

Chez les bactéries à gram positif, les pompes à efflux sont le plus souvent associées au

fluoroquinolones et à la tétracycline ; les pompes transportant ces derniers sont codées par les

gènes tet qui sont, généralement, portés sur un plasmide ou un transposon. Ce mécanisme est

également utilisé pour éliminer les macrolides (gènes mdtA et msrC), le Chloramphenicol

(gène cmlA ) et les bétalactamines (Walsh 2000 ; Poole, 2002).

Chez Lc. lactis K214, un transporteur multidrogues a été décrit. Il s’agit du LmrP,

transporteur proton dépendant, qui confère la résistance aux macrolides, lincosamides

Page 37: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

29

streptogramines et tétracyclines, et qui est codé par le gène mdt (A) porté sur le plasmide

pK214 (Perreten et al., 2001). Ce dernier gène a été également détecté chez Lc. garvieae mais

il diffère du gène original de la première souche par deux mutations et par son emplacement

chromosomique (Walther, 2008).

1.3.3. Les bétalactamases :

Le mécanisme majeur de résistance aux bétalactamines, en particulier chez les bactéries à

Gram négatif, est la production de bétalactamases (Poole, 2004 ; Doi et Paterson, 2007),

enzymes qui hydrolysent la liaison amide du noyau bétalactame de ces antibiotiques en les

empêchant ainsi d'aller se lier à leurs cibles qui sont les protéines liant la pénicilline (PLPs)

(Walsh, 2000 ; Poole, 2004 ; Zomahoun, 2005).

Ces enzymes, très nombreuses et variées, sont définies par certains caractères (Zomahoun,

2005) qui sont :

- La localisation : elle est extracellulaire pour les bactéries Gram positives et périplasmique

pour les bactéries Gram négatives.

- La biogenèse : elle est inductible (pénicillinases du Staphylococcus aureus et

céphalosporinases des bactéries Gram négatives) ou constitutive (pénicillinases des bactéries

Gram positives).

- Le déterminisme génétique.

- La sensibilité aux inhibiteurs tels que l’acide clavulanique (les pénicillinases sont inhibées

par cet agent tandis que les céphalosporinases y résistent).

La résistance via la production de bétalactamases résulte soit de la dérépression naturelle ou

mutationnelle des gènes chromosomiques, ou bien de l'acquisition d’éléments génétiques

extrachromosomiques portant des gènes codants à ces enzymes. Les mutations peuvent être

individualisées soit au niveau des gènes de régulation soit au niveau des gènes de structure

codant pour ces enzymes (Poole, 2004 ; Zomahoun, 2005).

1.3.3.1. Classification des bétalactamases :

La classification moléculaire des bétalactamases (Classification d’Ambler) est basée sur la

similitude de leurs séquences nucléotidiques et celles d'acides aminés (Bradford, 2001).

Quatre classes moléculaires de bétalactamases sont connues (tableau 4), dont les

pénicillinases classe A, les métallo-bétalactamases classe B, les céphalosporinases classe C et

Page 38: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

30

les oxacillinases classe D. Les enzymes de classes A, C, et D ont la serine comme site actif

tandis que les enzymes de classe B ont besoin de l’ion zinc pour effectuer leur activité

catalytique (Poole, 2004 ; Doi et Paterson, 2007).

Tableau 4 : Classification et propriétés des bétalactamases (Poole, 2004)

Page 39: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

31

1.3.3.2. Les différents types de bétalactamases :

- Les pénicillinases :

Ces enzymes peuvent être produites par les bactéries Gram négatives comme par celle à

Gram positif. Elles ont pour substrat préférentiel les pénicillines (Zomahoun, 2005) et elles

peuvent appartenir aux classes A et D (Poole, 2004).

- Les bétalactamases à spectre étendu (BLSE) :

Les BLSE sont typiquement codées par les plasmides mais elles sont également présentes

sur les chromosomes, souvent en association avec les intégrons. Elles sont généralement

inhibées par les inhibiteurs de bétalactamases, et sont produites par les bactéries Gram

négatives (Poole, 2004) auxquelles elles confèrent une résistance aux pénicillines,

céphalosporines (première, deuxième et troisième génération) et monobactams (Poole, 2004 ;

Akujobi et al., 2008), tout en conservant leur sensibilité aux céphalosporines de quatrième

génération et aux carbapénèmes (Poole, 2004). Ces enzymes dérivent, principalement, des

bétalactamases de classes A (TEM-1, TEM-2, SHV-1). Des BLSE de classe D (OXA) sont

également connues (Poole, 2004).

- Les céphalosporinases :

Les céphalosporinases de classe C (AmpC) sont produites par de nombreuses bactéries

Gram négatives. Elles ont un large spectre d’activité contre la plupart des pénicillines et

céphalosporines incluant, dans de nombreux cas, les céphalosporines de quatrième génération

et les monobactams avec des spécificités variées (Poole, 2004 ; Sundin, 2009). Elles sont

inefficaces contre les carbapénèmes et relativement insensibles aux inhibiteurs de

bétalactamases (Poole, 2004).

Les gènes codant les AmpC ont une localisation chromosomique ou plasmidique (Poole,

2004 ; Sundin, 2009), et beaucoup d'entre eux sont associés à des intégrons et des transposons

(Walther-Rasmussen et Hoiby, 2002). Les plasmides codants les AmpC peuvent également

porter des déterminants de résistance à des antibiotiques autres que les bétalactamines

entrainant, ainsi, l’apparition de multirésistance (Poole, 2004).

Page 40: Université d’ORAN Faculté des Sciences Département de ...

II nnttrroodduuccttiioonn

32

- Les Carbapénémases :

La majorité des carbapénémases appartiennent aux bétalactamases de classes A et B (Poole,

2004). En plus des carbapénèmes, ces enzymes peuvent hydrolyser les pénicillines, les

céphalosporines et l'aztréonam et elles sont inhibées par l’acide clavulanique et le tazobactam

(Moland et al., 2008). Ces enzymes sont portés par les plasmides ou les chromosomes (Poole,

2004).

1.3.3.3. Les bétalactamases des bactéries à Gram positif :

Contrairement aux bactéries à Gram négatif, la résistance des bactéries Gram positives aux

bétalactamines se manifeste, le plus souvent, par l’altération de leurs cibles (Poole, 2004).

Cependant, certaines de ces bactéries sont également productrices de bétalactamases (Poole,

2004 ; Doi et Paterson, 2007).

Des pénicillinases chromosomiques et plasmidiques (ex : Blaz) sont répandues chez les

souches de Staphylococcus aureus (Dyke et Gregory, 1997). Une bétalactamase plasmidique

(Blaz), suggérée être originaire d’un staphylocoque, a été également décrite chez

Enterococcus faecalis (Smith et Murray, 1992). Des études sur Bacillus anthracis ont révélé

la présence de deux gènes chromosomiques bla1et bla2 (Chen et al., 2003) codant,

respectivement, pour une pénicillinase classe A et une métallo-bétalactamase (Materon et al.,

2003), mais elles sont faiblement exprimées (Chen et al., 2003). Il a été également rapporté

que les métallo-bétalactamases chromosomiques sont naturellement présentes chez de

nombreuses espèces de bactéries à Gram positif (Bradford, 2001).

Page 41: Université d’ORAN Faculté des Sciences Département de ...
Page 42: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

34

2.1. Souches bactériennes :

Les 83 souches lactiques utilisées dans cette étude (tableau 5) proviennent du souchier du

laboratoire de Biologie des Microorganismes et de Biotechnologie (LBMB). Elles ont été

isolées à partir de différents écosystèmes et elles appartiennent à divers genres bactériens (37

lactobacilles et 46 coques lactiques).

Tableau 5 : Souches lactiques étudiées

Souche Origine (pré) Identifiée à LVK9, LVK11, LVK12, LVK13, LVK14, LVK15, LVK24, LVK27, LVK29, LVK30, LVK31, LVK32

Lait de vache (El-Kerma) (Karam, 1995)

Lactobacillus sp.

LVK21 Lactococcus sp. LVK25 Enterococcus sp. CHTD27 Lait de chamelle (Tindouf)

(Belkheir , 2004) Lactobacillus brevis

BH14 Lait de chamelle (Illizi) (Bounoua, 2005)

Lactobacillus plantarum

MA1 Machroub* (Rélizane)

(Bouziani et Sabaha, 2006)

Pediococcus sp.

MA7

Streptococcus thermophilus

GHB8, GHB11, GHB15, GHB17, GHB24

Ghars** (Biskra) (Benmouna, 2008)

Lactococcus sp.

GHB1, GHB2, GHB3, GHB4, GHB5, GHB6, GHB7, GHB9, GHB10, GHB12, GHB13, GHB14, GHB16, GHB18, GHB19, GHB20, GHB21, GHB22, GHB23, GHB25

Enterococcus sp.

V1, V2, V3, V6-1, V6-2, V10-1, V10-2, V11, V13-1, V17, V19, V24, V26-1, V26-2

Viande bovine fraiche (Mostaganem) (Benbernou,

2008)

Lactococcus lactis ssp lactis

V9, V18 Lactococcus lactis ssp cremoris V7, V8, V12, V13-2, V14, V16, V20, V21, V23, V25, V27

Lactobacillus sp.

CHM1 Lait de chamelle (Mauritanie)

(Cheikh, 2008)

Enterococcus sp. CHM5, CHM9, CHM11, CHM12, CHM16, CHM17, CHM18, CHM19, CHM20

Lactobacillus sp.

J3 Jéjunum poulet (Idoui, 2008) Lactobacillus helveticus J4 Lactobacillus delbrueckii G6 Gésier (Idoui, 2008) Lactobacillus helveticus

*: blé fermenté **: pâte de dattes

Page 43: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

35

2.2. Confirmation de l’appartenance des souches au groupe lactique et de leur pureté:

L’observation macroscopique des colonies après culture des souches sur milieu MRS (De

Man et al., 1960), la recherche de catalase et l’examen microscopique à l’immersion des

bactéries après coloration de Gram permettent de déterminer l’appartenance de nos souches

au groupe lactique. Le dernier test permet également de vérifier leur pureté.

2.3. Conservation des souches :

Les souches étaient conservées en double exemplaire à +4°C sur milieu gélosé incliné MRS,

ainsi que congelées à -20°C en lait écrémé à 10% ou en milieu MRS additionné de 20% de

glycérol.

2.4. Antibiogramme en milieu solide :

- Technique :

Tout d’abord, des précultures des souches à étudier étaient préparées en prélevant une

colonie de chaque souche conservée sur gélose inclinée (MRS) et en la mettant dans 5ml de

milieu de culture liquide. Ces précultures étaient incubées à 30°C pendant 18 heures (DO600nm

= 1).

Ensuite, du milieu solide était coulé dans des boites Pétri stériles et il était laissé solidifier.

Un tube contenant 15ml de milieu molle (contenant 50% d’agar) était ensemencé par 1ml de

chaque préculture puis coulé sur la couche de milieu solide contenu dans la boite Pétri.

Une fois le milieu séché, les disques d’antibiotiques (tableau 6) étaient déposés stérilement à

la surface du milieu.

Après incubation à 30°C pendant 24 heures, le diamètre des zones d’inhibition observées

autour des disques était mesuré. Nous avons considéré que pour un diamètre inférieur à 15

mm la souche est résistante -R- à l’antibiotique testé, et pour un diamètre supérieur ou égal à

15 mm, elle est sensible -S- (Karam et Karam, 1994).

Page 44: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

36

- Antibiotiques testés :

Tous les disques d’antibiotiques utilisés dans cette étude (tableau 6) proviennent de

Bioanalyse LTD (Turquie) à l’exception de l’oxacilline et l’amikacine qui proviennent des

laboratoires Hi Media (Mumbai).

Tableau 6 : Les différents disques d’antibiotiques utilisés

Antibiotique Charge/disque Famille Mécanisme d’action

Oxacilline (OX) 5 µg Bétalactamines

Inhibition de la synthèse du peptidoglycane

Pénicilline G (P) 10 UI Amoxicilline (AX) 25 µg Amoxicilline + Acide clavulanique (AMC)

20/10 µg

Ampicilline (AM) 10 µg Ticarcilline (TIC) 75 µg Céfalexine (CL) 30 µg Céfazoline (CZ) 30 µg Céfoxitine (FOX) 30 µg Céfotaxime (CTX) 30 µg Ceftazidine (CAZ) 30 µg Céfixime (CFM) 5 µg Imipéneme (IPM) 10 UI Spiramycine (SP) 100 µg Macrolides

Inhibition de la synthèse des protéines

Erythromycine (E) 15 µg Amikacine (AK) 30 µg

Aminosides ou aminoglycosides

Kanamycine (K) 30 µg Gentamycine (CN) 10 µg Tobramycine (TOB) 10 µg Nitrofurantoïne (F) 300 µg Nitrofuranes

Inhibition de la synthèse de l'ADN

Nitroxoline (NTX) 30 UI Ofloxacine (OFX) 5 µg Fluoroquinolones

Doxycycline (DO) 30 µg Tétracyclines

Inhibition de la synthèse des protéines

Tétracycline 30 µg

Rifampicine (RA) 5 µg Rifamycines (Ansamycines)

Blocage de la synthèse des ARN messagers

Page 45: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

37

2.5. Détermination des concentrations minimales d’inhibition des antibiotiques (CMI) :

La détermination des CMI était réalisée en milieu solide en suivant la méthode décrite par

Ziane (2008). Nous avons procédé comme suit :

- Une solution mère de chaque antibiotique (tétracycline, érythromycine, amoxicilline et

pénicilline G) était préparée à une concentration initiale de 5 mg/ml (tableau 7) puis diluée,

dans du milieu MRS en surfusion, à des concentrations finales allant de 0,5 à 400 µg/ml.

Tableau 7 : Solutions mères d’antibiotiques

Formule utilisée pour la préparation des solutions

mères d’antibiotique Antibiotiques Solvants

W = (C x V) / P W : poids de la poudre d’antibiotique (mg) à dissoudre dans un volume de solvant (ml). C : concentration de la solution mère (mg/ml). P : indice de pureté de l’antibiotique.

Tétracycline

Ethanol 95% Erythromycine Amoxicilline

Eau distillée Pénicilline G

- Chaque dilution d’antibiotique était coulée dans une boite Pétri et après séchage du milieu,

les boites étaient ensemencées en surface à l’aide d’un inoculateur multipoint préalablement

trempé dans les puits d’une microplaque contenant les précultures de 18 heures des souches à

étudier. Une boite témoin contenant du milieu sans antibiotique était également ensemencée.

- Après séchage des inoculums, les boites étaient incubées à 30°C pendant 24 à 48 heures et la

lecture des CMI était effectuée à l’œil nu en comparant la croissance des souches par rapport

à la boite témoin. Les CMI correspondaient à la concentration minimale de chaque

antibiotique pour laquelle aucune croissance n’était visible (Phillips et al., 1991).

Page 46: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

38

2.6. Recherche d’ADN plasmidique :

Les souches sélectionnées pour rechercher leurs plasmides sont : Lactobacillus sp. V16,

Lactococcus lactis ssp lactis V17 et Lactococcus lactis ssp cremoris V18.

2.6.1. Extraction d’ADN plasmidique :

Le principe commun de la plupart des méthodes d’extraction d’ADN plasmidique repose sur trois grandes phases :

- Lyse alcaline des cellules bactériennes. - Elimination des contaminants majeurs (ADN chromosomique, protéines, ARN). - Concentration de l’ADN plasmidique par précipitation alcoolique.

Nous avons utilisé la technique d’O’Sullivan et Klaenhammer (1993) à laquelle nous avons apporté quelques modifications : cycles de congélation/décongélation pour bien fragiliser les parois bactériennes, et extractions au phénol seul et au chloroforme seul pour une meilleure déprotéinisation (Holmes et Quigley, 1981). Nous avons procédé de la manière suivante :

Lavage du culot d’ADN plasmidique avec de l’éthanol 70% suivi de séchage à l’air libre

Ajout de 1ml d’éthanol absolu froid (-20°C) à la phase aqueuse Agitation par retournement ; Centrifugation : 12000 trs/min, + 4°C, 15 min

Récupération de la phase liquide et ajout d’un volume égal de chloroforme Agitation prolongée par retournement ; Centrifugation : 12000 trs/min, + 4°C, 15 min (Cette étape est répétée deux fois pour assurer l’élimination de toute trace de phénol)

Récupération de la phase liquide et ajout d’un volume égal de phénol-chloroforme (v/v) Agitation prolongée par retournement, Centrifugation : 12000 trs/min, + 4°C, 15 min

Récupération de la phase liquide et ajout de 200 µl d’acétate d’ammonium et 350 µl de phénol-chloroforme (v/v) ; Agitation prolongée par retournement, Centrifugation : 12000 trs/min, + 4°C, 15 min

Dissolution du culot dans 320 µl d’eau distillée stérile Ajout d’un même volume de phénol (pH 8), Agitation prolongée par retournement

Centrifugation : 12000 trs/min, + 4°C, 15 min

Culture de 18 heures de la souche dans 5 ml de milieu MRS contenant un disque de 30 µg de tétracycline

Récupération du culot cellulaire par centrifugation (12000 trs/min, +4°C, 15 min)

Lavage du culot cellulaire deux fois dans de l’eau distillée stérile Resuspension du culot dans 200 µl d’eau distillée stérile

Cycles de congélation/décongélation

Ajout de 200µl d’une solution de saccharose à 25% contenant 30 mg/ml de lysozyme Incubation 1 heure à 37°C

Ajout de 400 µl d’une solution de NaOH 0,2N contenant 3% SDS (pH 12,4) Incubation 15 min à température ambiante

Dissolution du culot plasmidique dans 40 µl de TE (50 mM Tris-HcL, 5 Mm EDTA, pH 7,5) contenant 0,1 mg/ml d’ARNase ; Incubation 1 heure à 37°C ;

Conservation à 0°C

Page 47: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

39

2.6.2. Electrophorèse sur gel d’agarose : (Neve et al., 1984 ; Sambrook et Russel, 2001)

Il s’agit d’une électrophorèse horizontale sur gel d’agarose à 0,8%. Un volume de 20 µl de

chaque solution d’ADN additionnée de tampon de charge (5 à 10 µl) était déposé dans les

puits du gel d’agarose. La cuve était remplie de tampon de migration TBE (pH 8) puis la

migration était effectuée sous un voltage constant et elle était stoppée lorsque le tampon de

charge arrivait au front du gel.

Du bromure d’éthidium était ajouté au gel d’agarose, à une concentration finale de 0,5

µg/ml, afin de visualiser l’ADN sous la lumière ultraviolette.

Les plasmides de la souche Escherichia coli V517 (Macrina et al., 1978) étaient utilisés

comme standard de poids moléculaires, dont les tailles sont : 55.5, 7.4, 5.7, 5.3, 4.0, 3.1, 2.8 et

2.2 Kpb.

Solutions pour l’électrophorèse sur gel d’agarose :

Tampon de migration : TBE

89 mM Tris-HCl 2,5 mM EDTA 89 mM acide borique pH 8

Tampon de charge :

3 ml Glycérol 75 mg Bleu de bromophénol 7 ml Eau distillée

2.7. Purification de l’ADN plasmidique par électroélution :

Nous avons utilisé la technique décrite par Ziane (2008) que la figure 5 illustre :

- Le fragment du gel correspondant à l’ADN plasmidique de la souche Lactobacillus sp. V16

était découpé à l’aide d’une spatule stérile sous lumière ultraviolette. Il était, ensuite, placé sur

un tamis dans une cuve d’électroélution dont les compartiments sont remplis de tampon de

migration TBE.

- Un courant électrique de 100 Volts était appliqué pendant 2 heures, provoquant ainsi

l’élution de l’ADN du gel pour aller dans une couche de 200 µl d’acétate de sodium (3,5 M,

pH 5,2). Le champ électrique était inversé, ensuite, pendant 15 min et le volume d’acétate de

sodium contenant l’ADN plasmidique était récupéré dans un tube Eppendorf.

- Cet ADN était, après, soumis à une extraction phénolique, précipité par l’alcool et le culot

d’ADN plasmidique était, enfin, repris dans 15 µl d’eau distillée après son séchage.

Page 48: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

40

Figure 5 : Schéma de la technique de l'électroélution

2.8. Transformation de la souche Pediococcus sp. MA1 par électroporation : - Culture de la souche réceptrice : (Hols et al., 1997 ; Holo et Nes, 1989 ; Badii et al., 1989)

60 ml de milieu MRS contenant 20 mM de D/L thréonine était ensemencé avec un inoculum

issu d’une préculture de 18 heures de la souche réceptrice, puis incubé environ 5 heures à

30°C jusqu’à l’obtention d’une DO600nm de 0,8.

- Préparation des cellules compétentes : (Serror et al., 2002 ; Badii et al., 1989)

Les cellules étaient récoltées par centrifugation (15 min, 8000 trs/min, + 4°C), puis le culot

était lavé deux fois avec 60 ml puis 20 ml de tampon d’électroporation E.B froid (0,4M

saccharose, 1mM MgCl2, 5mM KH2PO4, pH 6) et il était ensuite resuspendu dans 5 ml de

tampon E.B.

Page 49: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

41

- Électroporation : (Badii et al., 1989)

100 µl de la suspension cellulaire étaient transférés stérilement au fond de la cuvette

d’électroporation préalablement stockée au froid (-20°C), puis 15 µl d’ADN plasmidique

précédemment élué était ajouté à la suspension. Après incubation du mélange dans la glace

pendant 1 à 2 min, la cuvette était placée dans l’électroporateur (Gene Pulser, Bio Rad). Les

paramètres d’électrotransformation utilisés étaient de 25 µF, 800 Ω et 1492 V pour un pulse

de 2,7 ms.

La préparation était, ensuite, diluée au 1/10 dans du milieu MRS froid (4°C) et incubée

pendant 3 heures à 37°C, puis conservée à 0°C.

- Sélection des transformants :

La sélection des clones transformants était réalisée sur milieu MRS contenant la tétracycline

à une concentration supérieure à celle qui a inhibé la souche réceptrice Pediococcus sp. MA1

non transformée : Un inoculum, prélevé à partir de la préparation issue de l’électroporation,

était étalé par inondation sur ce milieu puis incubé à 30°C pendant plus de 48 heures. Une

boite témoin ne contenant pas de tétracycline était également ensemencée. Ainsi, des cultures

témoins de la souche réceptrice et celle donneuse étaient réalisées sur milieu avec et sans

tétracycline.

2.9. Recherche d’activité bétalactamase : 2.9.1. Test de synergie : (Philippon et Arlet, 2006)

Il s’agit d’une démonstration phénotypique de la production d’une bétalactamase à spectre

élargi par la mise en évidence d’une image de synergie entre un disque de céphalosporine

(troisième génération) et un disque d’Amoxicilline /acide clavulanique (AMC).

♦ Souches testées : LVK24, CHM1, MA7, G6, GHB15, GHB21, V3, V7, V13-1, V16,

V17, V18, V19, V26-1.

♦ Technique :

Un disque CTX (céfotaxime) et un disque AMC (amoxicilline + acide clavulanique) étaient

appliqués, à une distance de 1,5 cm, sur un milieu MRS préalablement ensemencé par la

souche à tester.

Page 50: Université d’ORAN Faculté des Sciences Département de ...

MMaattéérr iieell eett MMéétthhooddeess

42

♦ Lecture :

Après incubation à 30°C pendant 24 heures, le résultat était considéré positif lorsqu’une

image de synergie entre les deux disques était observée.

2.9.2. Test 3D : (Coudron et al., 2000)

Ce test permet une confirmation phénotypique de la production de bétalactamases de classe

C (AmpC) chez les bactéries résistantes aux bétalactamines.

♦ Souches testées : LVK27, LVK24, CHM1, MA7, G6, GHB15, GHB21, V3, V7, V13-

1, V16, V17, V18, V19, V26-1.

♦ Technique :

- La surface d’un milieu MRS en boite était ensemencée avec une souche indicatrice sensible

au céfoxitine FOX (LVK27).

- Un disque FOX était placé au milieu de la boite.

- Avec une lame stérile, une fissure était crée à quelques millimètres du bord du disque dans

une direction radiale extérieure.

- Un inoculum d’une préculture de 18 heures de la souche à tester, qui est résistante au FOX,

était inoculé dans la fissure.

- Les boites étaient incubées pendant 24 heures, à 30°C.

♦ Lecture :

Une déformation claire de la zone d’inhibition autour du FOX est interprétée comme

résultat positif, la souche testée est donc considérée comme productrice d’AmpC. Si aucune

déformation n’est observée, le résultat est négatif.

Page 51: Université d’ORAN Faculté des Sciences Département de ...
Page 52: Université d’ORAN Faculté des Sciences Département de ...

3.1. Confirmation de l’appartenance des souches au groupe lactique

L’ensemble des bactéries lactiques étudiées ont poussé après 24 à 48 heures d’incubation.

Les colonies observées sont blanchâtres, lisses, rondes, légèrement bombées, à as

crémeux et à pourtour régulier. Selon les souches, la taille des colonies varient de petite à un

peu plus grande. En général, les colonies des lactobacilles sont plus grandes que celle des

coques (V7 et V27 par rapport aux GHB

Elles sont toutes à Gram positif et à catalase

D’après l’examen microscopique, 46 souches

CHM1,…) et les 37 restantes sont des coccobacilles (LVK9, V12, CHM12,…) ou des bacilles

(V7, G6,…) plus au moins allongés (figure 6).

(A)

Figure 6 : Aspect microscopique de quelques souches (A): Lactococcus lactis ssp lactis

RRéé

Confirmation de l’appartenance des souches au groupe lactique et de leur pureté

L’ensemble des bactéries lactiques étudiées ont poussé après 24 à 48 heures d’incubation.

Les colonies observées sont blanchâtres, lisses, rondes, légèrement bombées, à as

crémeux et à pourtour régulier. Selon les souches, la taille des colonies varient de petite à un

peu plus grande. En général, les colonies des lactobacilles sont plus grandes que celle des

V7 et V27 par rapport aux GHB).

Gram positif et à catalase négative.

D’après l’examen microscopique, 46 souches sont cocciformes (LVK21, GHB15,

CHM1,…) et les 37 restantes sont des coccobacilles (LVK9, V12, CHM12,…) ou des bacilles

(V7, G6,…) plus au moins allongés (figure 6).

(B)

(C)

Aspect microscopique de quelques souches (G x100)Lactococcus lactis ssp lactis V2 ; (B): Lactobacillus helveticus G6

(C): Enterococcus sp. GHB21

ééssuull ttaattss eett DDiissccuussssiioonn

44

et de leur pureté :

L’ensemble des bactéries lactiques étudiées ont poussé après 24 à 48 heures d’incubation.

Les colonies observées sont blanchâtres, lisses, rondes, légèrement bombées, à aspect

crémeux et à pourtour régulier. Selon les souches, la taille des colonies varient de petite à un

peu plus grande. En général, les colonies des lactobacilles sont plus grandes que celle des

sont cocciformes (LVK21, GHB15, V2,

CHM1,…) et les 37 restantes sont des coccobacilles (LVK9, V12, CHM12,…) ou des bacilles

100) G6 ;

Page 53: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

45

3.2. Détermination de la sensibilité des souches aux différents antibiotiques testés :

Au cours de cette étude, nous avons eu recours à la méthode de l’antibiogramme en milieu

solide (MRS) pour déterminer la sensibilité de 83 bactéries lactiques (appartenant aux genre

Lactococcus, Enterococcus, Streptococcus, Pediococcus et Lactobacillus) à 25 antibiotiques

de différentes familles.

Des exemples de résultats obtenus sont montrés dans les figures 7 et 8 qui représentent des

antibiogrammes des souches Lactobacillus sp. V16 et Pediococcus sp. MA1, respectivement.

Figure 7 : Antibiogramme de la souche Lactobacillus sp. V16

Figure 8 : Antibiogramme de la souche Pediococcus sp. MA1

Le tableau 8 rassemble les résultats obtenus par la méthode de l’antibiogramme en milieu solide. Ceci permet de conclure aux phénotypes et de suggérer des génotypes des bactéries par rapport aux différents antibiotiques utilisés.

OX

P

AX

AM

AMC IPM

CFM

SP

AK

CAZ

RA SP E

TOB

CN

DO

OFX TE K

NTX

Page 54: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

46

Tableau 8 : Profils de résistance des bactéries lactiques étudiées (méthode de l’antibiogramme en milieu solide)

Origine Souche Code Profil de résistance

Lait de vache (El-Kerma)

Lactobacillus sp.

LVK9 OXR CAZR CFMR SPR ER AK R KR CNR TOBR NTXR OFXR RAR LVK11 OXR CAZR CFMR SPR AK R KR CNR TOBR FR NTXR OFXR

LVK12 OXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR

LVK13 OXR CTXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR

LVK14 OXR CAZR CFMR SPR AK R KR CNR TOBR NTXR OFXR

LVK15 OXR CAZR CFMR SPR AK R KR CNR TOBR NTXR OFXR

LVK24 OXR AMCR CLR CZR FOXR CTXR CAZR CFMR SPR KR CNR TOBR FR NTXR OFXR

LVK27 OXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR

LVK29 OXR CAZR CFMR SPR AKR KR CNR TOBR NTXR OFXR

LVK30 OXR CAZR CFMR SPR AKR KR CNR TOBR NTXR OFXR

LVK31 OXR CLR CZR FOXR CTXR CAZR CFMR SPR AK R KR CNR TOBR NTXR OFXR

LVK32 OXR CTXR CAZR CFMR AK R KR CNR TOBR

Lactococcus sp. LVK21 OXR CLR FOXR CAZR CFMR CNR TOBR RAR

Enterococcus

sp. LVK25 OXR CLR CZR CTXR CAZR CFMR AKR KR CNR TOBR NTXR

Lait de chamelle (Tindouf)

Lactobacillus brevis

CHTD27 OXR CZR FOXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR

Lait de chamelle (Illizi)

Lactobacillus plantarum

BH14 OXR FOXR CAZR CFMR AK R KR CNR TOBR

- OX : oxacilline, P : pénicilline G, AX : amoxicilline, AMC : amoxicilline + acide clavulanique, AM : ampicilline, TIC : ticarcilline, CL : céfalexine, CZ : céfazoline, FOX : céfoxitine, CTX : céfotaxime, CAZ : Ceftazidine, CFM : céfixime, SP : spiramycine, E : érythromycine, AK : amikacine, K : kanamycine, CN : gentamycine, TOB : tobramycine, F : nitrofurantoïne, NTX : nitroxoline, OFX : ofloxacine, DO : doxycycline, TE : tétracycline, RA : rifampicine.

- R : Résistant - Toutes les souches testées ont été sensibles à l’imipéneme (IPM).

Page 55: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

47

Tableau 8 (suite 1): Profils de résistance des bactéries lactiques étudiées (méthode de l’antibiogramme en milieu solide)

Origine Souche Code Profil de résistance

Gésier Lactobacillus

helveticus G6 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR DOR TER RAR

Ghars (Biskra) Enterococcus

sp.

GHB1 OXR PR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR GHB2 OXR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB3 OXR PR TICR CLR CZR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB4 OXR PR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB5 OXR PR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER KR CNR TOBR FR NTXR OFXR RAR

GHB6 OXR PR AXRTICR CLR CZR FOXR CTXR CAZR CFMR SPR ER KR CNR TOBR FR NTXR OFXR RAR

GHB7 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB9 OXR PR AMR CLR CZR FOXR CTXR CAZR CFMR SPR ER KR CNR TOBR NTXR OFXR RAR

GHB10 OXR PR CLR CZR FOXR CTXR CAZR CFMR SPR ER KR CNR TOBR NTXR OFXR RAR

GHB12 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB13 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB14 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB16 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB18 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB19 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB20 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB21 OXR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB22 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

- OX : oxacilline, P : pénicilline G, AX : amoxicilline, AMC : amoxicilline + acide clavulanique, AM : ampicilline, TIC : ticarcilline, CL : céfalexine, CZ : céfazoline, FOX : céfoxitine, CTX : céfotaxime, CAZ : Ceftazidine, CFM : céfixime, SP : spiramycine, E : érythromycine, AK : amikacine, K : kanamycine, CN : gentamycine, TOB : tobramycine, F : nitrofurantoïne, NTX : nitroxoline, OFX : ofloxacine, DO : doxycycline, TE : tétracycline, RA : rifampicine.

- R : Résistant - Toutes les souches testées ont été sensibles à l’imipéneme (IPM).

Page 56: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

48

Tableau 8 (suite 2) : Profils de résistance des bactéries lactiques étudiées (méthode de l’antibiogramme en milieu solide)

Origine Souche Code Profil de résistance

Ghars (Biskra)

Enterococcus sp.

GHB23 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB25 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

Lactococcus sp.

GHB8 OXR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB11 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

GHB15 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB17 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR RAR

GHB24 OXR PR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR RAR

Lait de chamelle

(Mauritanie)

Enterococcus sp.

CHM1 OXR PR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

Lactobacillus sp.

CHM5 OXR AMCR CLR CZR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM9 OXR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM11 OXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM12 OXR AMCR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM16 OXR CAZR CFMR SPR AKR KR CNR TOBR OFXR DOR TER RAR

CHM17 OXR AMCR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM18 OXR AMCR CLR CZR FOXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR RAR

CHM19 OXR AMCR FOXR CAZR CFMR SPR AKR KR CNR TOBR NTXR OFXR DOR TER

CHM20 OXR FOXR CAZR CFMR SPR AK R KR CNR TOBR NTXR OFXR DOR TER

Jéjunum poulet

Lactobacillus helveticus

J3 OXR AMCR TICR CLR CZR FOXR CAZR CFMR SPR AKR KR CNR TOBR OFXR TER RAR

Lactobacillus delbrueckii

J4 OXR AMCR TICR CLR CZR FOXR CAZR CFMR SPR AKR KR CNR TOBR NTXR OFXR

- OX : oxacilline, P : pénicilline G, AX : amoxicilline, AMC : amoxicilline + acide clavulanique, AM : ampicilline, TIC : ticarcilline, CL : céfalexine, CZ : céfazoline, FOX : céfoxitine, CTX : céfotaxime, CAZ : Ceftazidine, CFM : céfixime, SP : spiramycine, E : érythromycine, AK : amikacine, K : kanamycine, CN : gentamycine, TOB : tobramycine, F : nitrofurantoïne, NTX : nitroxoline, OFX : ofloxacine, DO : doxycycline, TE : tétracycline, RA : rifampicine.

- R : Résistant - Toutes les souches testées ont été sensibles à l’imipenème (IPM).

Page 57: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

49

Tableau 8 (suite 3) : Profils de résistance des bactéries lactiques étudiées (méthode de l’antibiogramme en milieu solide)

Origine Souche Code Profil de résistance

Machroub (Rélizane)

Pediococcus sp. MA1 OXR CLR CZR FOXR CAZR CFMR AKR KR CNR TOBR NTXR

Streptococcus thermophilus

MA7 OXR PR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR

Viande bovine fraiche

(Mostaganem)

Lactobacillus sp.

V7 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR

OFXR DOR TER RAR

V8 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR TER RAR

V12 OXR AMCR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR OFXR

V13-2 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

V14 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

V16 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR

OFXR DOR TER RAR

V20 OXR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR DOR TER RAR

V21 OXR PR AMCR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR DOR TER RAR

V23 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR DOR TER RAR

V25 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR NTXR OFXR TER RAR

V27 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR AKR KR CNR TOBR NTXR OFXR TER RAR

- OX : oxacilline, P : pénicilline G, AX : amoxicilline, AMC : amoxicilline + acide clavulanique, AM : ampicilline, TIC : ticarcilline, CL : céfalexine, CZ : céfazoline, FOX : céfoxitine, CTX : céfotaxime, CAZ : Ceftazidine, CFM : céfixime, SP : spiramycine, E : érythromycine, AK : amikacine, K : kanamycine, CN : gentamycine, TOB : tobramycine, F : nitrofurantoin, NTX : nitroxoline, OFX : ofloxacine, DO : doxycycline, TE : tétracycline, RA : rifampicine.

- R : Résistant - Toutes les souches testées ont été sensibles à l’imipenème (IPM).

Page 58: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

50

Tableau 8 (suite 4) : Profils de résistance des bactéries lactiques étudiées (méthode de l’antibiogramme en milieu solide)

Origine Souche Code Profil de résistance

Viande bovine fraiche

(Mostaganem)

Lactococcus lactis ssp lactis

V1 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR TER

V2 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR DOR TER RAR

V3 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

V6-1 OXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR DOR TER RAR

V6-2 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR OFXR DOR TER RAR

V10-1 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AK R KR CNR TOBR OFXR DOR TER RAR

V10-2 OXR AX R AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR OFXR DOR V11 OXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR NTXR OFXR DOR TER RAR

V13-1 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR NTXR OFXR DOR

TER RAR

V17 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

V19 OXR PR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR DOR

RAR

V24 OXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR AK R KR CNR TOBR FR OFXR DOR

V26-1 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

V26-2 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR SPR ER AKR KR CNR TOBR FR NTXR

OFXR DOR TER RAR

Lactococcus lactis ssp cremoris

V9 OXR AMCR AMR CLR CZR CTXR CAZR CFMR ER AKR KR CNR TOBR OFXR RAR

V18 OXR PR AXR AMCR AMR TICR CLR CZR FOXR CTXR CAZR CFMR ER AKR KR CNR TOBR FR NTXR OFXR DOR TER RAR

- OX : oxacilline, P : pénicilline G, AX : amoxicilline, AMC : amoxicilline + acide clavulanique, AM : ampicilline, TIC : ticarcilline, CL : céfalexine, CZ : céfazoline, FOX : céfoxitine, CTX : céfotaxime, CAZ : Ceftazidine, CFM : céfixime, SP : spiramycine, E : érythromycine, AK : amikacine, K : kanamycine, CN : gentamycine, TOB : tobramycine, F : nitrofurantoin, NTX : nitroxoline, OFX : ofloxacine, DO : doxycycline, TE : tétracycline, RA : rifampicine.

- R : Résistant - Toutes les souches testées ont été sensibles à l’imipenème (IPM).

Page 59: Université d’ORAN Faculté des Sciences Département de ...

D’après l’ensemble de ces résultats, nous observons que toutes les souches ont résisté à

l’oxacilline, la ceftazidine et le

que nous avons effectué nos tests sur le milieu MRS, cela nous permet d’infirmer l’hypothèse

suggérant que ce milieu peut inactiver l’imipenème (Ammor

Pour le reste des antibiotiques, une hétérogénéité de résistance a été remarquée en fonction

des souches, des genres auxquels elles appartiennent et de

Le comportement de l’ensemble de nos souches ainsi que celui de ces dernières selon leur

appartenance, par genre, vis-à

illustrés dans la figure 9 et le tableau 9.

Figure 9 : Antibiorésistance chez les bactéries lactiques étudiées

0

10

20

30

40

50

60

70

80

90

100

Bét

alac

tam

ines

% de souches

résistantes

Toutes les souches

RRéé

D’après l’ensemble de ces résultats, nous observons que toutes les souches ont résisté à

ceftazidine et le céfixime mais elles ont été sensibles à l’imipenème. Sachant

que nous avons effectué nos tests sur le milieu MRS, cela nous permet d’infirmer l’hypothèse

suggérant que ce milieu peut inactiver l’imipenème (Ammor et al., 2007).

reste des antibiotiques, une hétérogénéité de résistance a été remarquée en fonction

des souches, des genres auxquels elles appartiennent et de leurs origines.

Le comportement de l’ensemble de nos souches ainsi que celui de ces dernières selon leur

à-vis de chaque antibiotique et des familles d’antibiotiques

dans la figure 9 et le tableau 9.

Antibiorésistance chez les bactéries lactiques étudiées

Bét

alac

tam

ines

Mac

rolid

es

Am

inos

ides

Nitr

ofur

anes

Flu

oroq

uino

lone

s

Tét

racy

clin

es

Toutes les souches Lactococcus Enterococcus Lactobacillus

ééssuull ttaattss eett DDiissccuussssiioonn

51

D’après l’ensemble de ces résultats, nous observons que toutes les souches ont résisté à

ont été sensibles à l’imipenème. Sachant

que nous avons effectué nos tests sur le milieu MRS, cela nous permet d’infirmer l’hypothèse

reste des antibiotiques, une hétérogénéité de résistance a été remarquée en fonction

Le comportement de l’ensemble de nos souches ainsi que celui de ces dernières selon leur

vis de chaque antibiotique et des familles d’antibiotiques sont

Antibiorésistance chez les bactéries lactiques étudiées

Rifa

myc

ines

Lactobacillus

Page 60: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

52

Tableau 9 : Taux de résistance (%) des bactéries étudiées / antibiotique

Antibiotique

Toutes les souches

Lactobacillus Lactococcus Enterococcus

OX 100 100 100 100 P 54,22 27,02 63,63 86,36 AX 15,66 10,81 31,81 04,54 AMC 59,04 54,05 86,36 54,54 AM 39,76 21,62 77,27 31,81 TIC 65,06 37,83 90,90 86,36 CL 79,52 54,05 100 100 CZ 79,52 56,76 95,45 100 FOX 79,52 62,16 95,45 90,90 CTX 75,90 48,65 95,45 100 CAZ 100 100 100 100 CFM 100 100 100 100 IPM 0 0 0 0 SP 51,80 81,08 27,27 27,27 E 63,85 45,94 68,18 95,45 AK 91,56 97,30 95,45 81,81 K 97,59 100 95,45 100 CN 98,79 100 100 100 TOB 98,79 100 100 100 F 31,32 13,51 50 45,45 NTX 86,74 89,19 68,18 100 OFX 93,97 94,60 95,45 95,45 DO 30,12 29,73 63,63 0 TE 32,53 40,54 54,54 0 RA 71,08 51,35 86,36 95,45

D’après ces résultats, nous remarquons que les réponses de l’ensemble de nos souches aux

antibiotiques testés sont variables selon les familles auxquelles appartiennent ces molécules et

ce, même à l’intérieur d’une même famille.

• Nos souches ont présenté une résistance très élevée aux antibiotiques appartenant

aux familles des aminosides et des fluoroquinolones (représenté par l’ofloxacine)

avec des pourcentages de 96,68% et 93,97%, respectivement. Pour les aminosides,

les taux de résistance des 4 antibiotiques testés ont dépassé les 90%.

Page 61: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

53

• Un pourcentage élevé de résistance à la rifampicine (71,08%), aux bétalactamines

(65,25%), aux nitrofuranes (59,03%) et aux macrolides (57,82%) a été enregistré.

• Pour les bétalactamines, toutes les souches testées ont résisté à l’oxacilline, la

ceftazidine et le céfixime. Des pourcentages de résistance dépassant les 75% ont été

constatés pour la céfalexine, la céfazoline, le céfoxitine et le céfotaxime. Pour le

reste des bétalactamines, les taux de résistance ont varié de 15,66% pour

l’amoxicilline à 65,06% pour la ticarcilline. Quant aux nitofuranes, la plupart des

souches ont résisté à la nitroxoline (86,74%) mais seulement 31,32% de ces souches

l’ont fait pour le nitrofurantoïne. En ce qui concerne les macrolides, les taux de

résistance à la spiramycine et l’érythromycine ne différaient pas beaucoup ; ils ont

été de 51,80% et 63,85%, respectivement.

• La résistance la moins élevée a été observée avec les antibiotiques de la famille des

tétracyclines pour laquelle les pourcentages de résistance ont été de 32,53% pour la

tétracycline et 30,12% pour la doxycycline.

Il est à noter que la différence de sensibilité d’une bactérie aux antibiotiques d’une même

famille a été déjà signalée par Walther et al. (2008), qui ont trouvé qu’une souche de

Lactococcus lactis a résisté à l’amikacine, la kanamycine et la streptomycine grâce au gène de

résistance aux aminosides aac(6`)-Ie-aph(2`)-Ia qu’elle héberge mais elle s’est montrée

sensible à la gentamycine, ainsi que par Schnellmann et al. (2006) et Walther et Perreten

(2007) qui ont détecté également des gènes de résistance aux aminosides chez des

staphylocoques de phénotype sensible.

Comme le montre la figure 9 et le tableau 9, nous pouvons également observer des

différences de taux de résistance en fonction des genres auxquels appartiennent nos bactéries :

- Lactococcus :

Ces bactéries ont été majoritairement résistantes à l’ofloxacine (95,45%) et aux aminosides

(97,72%). Un grand nombre de ces bactéries a également résisté à la rifampicine (86,36%) et

aux bétalactamines (79,72%). Pour ces derniers, à l’exception de l’amoxicilline auquel

seulement 31,81% des lactocoques ont résisté et de l’imipenème qui était efficace à 100%,

Page 62: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

54

aucun lactocoque ne s’est montré sensible à l’action de l’oxacilline, la céfalexine, la

ceftazidine et le céfixime. Ainsi, plus de 63% de ces bactéries ont résisté à la pénicilline,

l’ampicilline, l’association de l’amoxicilline et l’acide clavulanique, la ticarcilline, la

céfazoline, le céfoxitine et le céfotaxime. Ces résultats concordent avec les données de la

littérature pour l’ofloxacine (Kastner et al., 2006), les aminosides (Temmerman et al., 2002 ;

Herreros et al., 2005 ; Kastner et al., 2006 ; Ziane, 2008), l’oxacilline (Herreros et al., 2005 ;

Kastner et al., 2006), le céfoxitine (Herreros et al., 2005 ; Flórez et al., 2005 ; Alebouyeh, et

al., 2005 ; Ziane, 2008), l’amoxicilline, le céfotaxime et la céfazoline (Ziane, 2008),

l’imipéneme (De Fabrizio et al., 1994 ; Ammor et al., 2007), et la rifampicine (De Fabrizio et

al., 1994 ; Herreros et al., 2005). Ainsi, pour ce dernier antibiotique, 48% de résistance chez

des lactocoques a été enregistré par Ziane (2008). En revanche, la sensibilité de ces bactéries à

la gentamycine (De Fabrizio et al., 1994 ; Walther et al., 2008), l’ampicilline (De Fabrizio et

al., 1994 ; Herreros et al., 2005 ; Ammor et al., 2007 ; Toomey et al., 2010), l’oxacilline (De

Fabrizio et al., 1994), l’amoxicilline, la ticarcilline et la rifampicine (Ammor et al., 2007) et la

pénicilline G (De Fabrizio et al., 1994 ; Ammor et al., 2007 ; Walther et al., 2008) a été déjà

indiquée.

Les taux de résistance des lactocoques aux antibiotiques des familles des nitrofuranes et des

tétracyclines ont été compris entre 50% et 68,18% ; cela était également le cas avec

l’érythromycine. En revanche, seulement 27,27% de ces bactéries ont résisté à la spiramycine.

Ces données sont d’une similarité avec ceux rapportés par différents auteurs concernant le

comportement des lactocoques vis-à-vis des nitrofuranes (Herreros et al., 2005 ; Kastner et

al., 2006 ; Walther et al., 2008), de la tétracycline (Delgado et Mayo, 2004 ; Kastner et al.,

2006 ; Walther et al., 2008 ; Toomey et al., 2010) et de l’érythromycine (Raha et al., 2002 ;

Ziane, 2008 ; Walther et al., 2008). Cependant, d’autres travaux ont montré la susceptibilité

de ces bactéries au deuxième (De Fabrizio et al., 1994 ; Perreten et al., 2001 ; Herreros et al.,

2005 ; Alebouyeh, et al., 2005 ; Ziane, 2008) et au troisième antibiotique (De Fabrizio et al.,

1994 ; Perreten et al., 2001 ; Flórez et al., 2005 ; Hummel et al., 2007).

- Enterococcus :

Chez ces bactéries, nous avons enregistré 95,45% de résistance à l’ofloxacine, à la

rifampicine et aux aminosides. Cependant, aucune de ces souches n’a résisté à l’action des

tétracyclines testées. Des comportements similaires à ceux montrés par nos souches

d’Enterococcus ont été notés par Belicova et al. (2007), Ziane (2008) qui a constaté 20% de

Page 63: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

55

résistance, et Valenzuela et al. (2009) vis-à-vis de la rifampicine, par Franz et al. (2001),

Lopes et al. (2003) et Ziane (2008) vis-à-vis des aminosides et par Alebouyeh et al. (2005),

Ziane (2008) et Toomey et al. (2010) vis-à-vis de la tétracycline. Par contre, d’autres auteurs

ont enregistré la résistance des entérocoques à ce dernier antibiotique (Butaye et al., 2000 ;

Franz et al., 2001 ; Huys et al., 2004 ; Maïetti et al., 2007 ; Valenzuela et al., 2009) ainsi que

leur sensibilité aux aminosides (Belicova et al., 2007, Maïetti et al., 2007).

Pour les nitrofuranes et les macrolides, nous avons observé une hétérogénéité de résistance

au sein de chaque famille : bien que les entérocoques testés aient majoritairement résisté à la

nitroxoline et l’érythromycine (100% et 95,45%, respectivement), leurs taux de résistance au

nitrofurantoïne et à la spiramycine étaient de 45,45% et 27,27%, respectivement. La

susceptibilité réduite au nitrofurantoïne (Valenzuela et al., 2009) et à l’érythromycine (Franz

et al., 2001 ; Citak et al., 2004 ; Ziane, 2008 ; Valenzuela et al., 2009 ; Toomey et al., 2010) a

été, déja, observée chez des souches d’Enterococcus. Cependant, leur sensibilité au deuxième

antibiotique a été montrée par les résultats de différentes études (Flórez et al., 2005 ; Belicova

et al., 2007, Maïetti et al., 2007).

En ce qui concerne les bétalactamines, tous les entérocoques ont résisté à l’oxacilline, la

céfalexine, le céfotaxime, la ceftazidine et le céfixime, mais ils ont été sensibles à

l’imipéneme. Pour le reste des bétalactamines, à l’exception de l’amoxicilline (31,81% de

résistance), les taux de résistance ont varié de 54,54% pour l’association de l’amoxicilline et

l’acide clavulanique à 90,90% pour le céfoxitine. Ces résultats sont en accord avec ceux

obtenus, chez les entérocoques, pour l’oxacilline (Citak et al., 2004), l’ampicilline et la

pénicilline G (Franz et al., 2001) et pour l’amoxicilline, la céfazoline, la céfalexine, le

céfoxitine et le céfotaxime (Ziane, 2008). D’autres auteurs ont, au contraire, constaté la

susceptibilité élevée des entérocoques à l’ampicilline (Klein et al., 1998 ; Davies et Roberts,

1999 ; Franz et al., 2001 ; Maïetti et al., 2007; Valenzuela et al., 2009 ; Toomey et al., 2010)

et à la pénicilline G (Valenzuela et al., 2009).

- Lactobacillus :

La plupart des lactobacilles testés ont résisté à l’ofloxacine (94,60%) et aux aminosides

(99,32%). Les taux de résistance de ces souches aux macrolides, bétalactamines, nitrofuranes

et rifampicine ont été compris entre 63,51% et 51,35%. Ceci est en accord avec les résultats

obtenus par Danielsen et Wind (2003), Gevers et al. (2003), Elkins et Mullis (2004), Coppola

Page 64: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

56

et al. (2005), Herreros et al. (2005), Rojo-Bezares et al. (2006), Kastner et al. (2006),

D’Aimmo et al. (2007) et Ziane (2008) pour les aminosides, par Gupta et Mittal (1995),

Danielsen et Wind (2003), Coppola et al. (2005), Kastner et al. (2006), Ouoba et al. (2008)

pour les fluoroquinolones et par Herreros et al. (2005) et Coppola et al. (2005) pour la

rifampicine. Par contre, une sensibilité des lactobacilles à la gentamycine et la kanamycine a

été observée par Swenson et al. (1990). Ainsi, d’autres auteurs (Swenson et al., 1990 ;

Dalache et al., 2003 ; D’Aimmo et al., 2007 ; Ziane, 2008) ont constaté la sensibilité de la

quasi-totalité des lactobacilles qu’ils ont étudié à la rifampicine.

Pour les macrolides et les nitrofuranes, ce sont la nitroxoline et la spiramycine qui ont été

les moins efficaces avec des pourcentages de résistance dépassant les 80%, contrairement au

nitrofurantoïne et l’érythromycine auxquelles les fréquences de résistance des lactobacilles

étaient de 45,94% et 13,51%, respectivement. Plusieurs auteurs ont rapporté la résistance des

lactobacilles au nitrofurantoïne (Danielsen et Wind, 2003 ; Herreros et al., 2005 ; Kastner et

al., 2006) et à l’érythromycine (Cauwerts et al., 2006 ; Toomey et al., 2010) tandis que

d’autres ont constaté des phénotypes de sensibilité à ce dernier antibiotique chez les

lactobacilles qu’ils ont étudiés (Swenson et al., 1990 ; Olukoya et al., 1993 ; Gupta et Mittal,

1995 ; Temmerman et al., 2002 ; Coppola et al., 2005 ; Rojo-Bezares et al., 2006 ; D’Aimmo

et al., 2007 ; Ziane, 2008).

Quant aux bétalactamines, une hétérogénéité de résistance a été constaté : toutes les souches

ont été résistantes à l’oxacilline, la ceftazidine et le céfixime mais sensibles à l’imipéneme.

Les taux de résistance aux autres bétalactamines ont varié de 10,81% pour l’amoxicilline à

62,16% pour le céfoxitine. Ces résultats rejoignent ceux enregistrés par Herreros et al. (2005)

et Coppola et al. (2005) pour le céfoxitine et l’oxacilline, par Kastner et al. (2006) pour ce

dernier antibiotique et pour le céfotaxime et la pénicilline G, par Olukoya et al. (1993) et

Toomey et al. (2010) pour l’ampicilline et la pénicilline G, par Ziane (2008) pour la

céfazoline, la céfalexine, le céfotaxime et le céfoxitine, par Danielsen et Wind (2003) et

Delgado et al. (2005) pour le céfoxitine, et par Gevers et al. (2003) pour la pénicilline G.

Néanmoins, la sensibilité des lactobacilles à l’ampicilline et la pénicilline G a été rapportée

par d’autres auteurs (Gupta et Mittal, 1995 ; Herreros et al., 2005 ; Coppola et al., 2005 ;

D’Aimmo et al., 2007) et (Temmerman et al., 2002), respectivement.

Page 65: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

57

Les tétracyclines étaient d’une efficacité moyenne sur les lactobacilles, comparés aux

lactocoques et aux entérocoques. Les taux de résistance à ces antibiotiques étaient de 40,54%

pour la tétracycline et de 29,73% pour la doxycycline. Ces résultats sont à rapprocher de ceux

qui ont montré la sensibilité de plus de la moitié des lactobacilles étudiés à la doxycycline

(Dalache et al., 2003) et à la tétracycline (Olukoya et al., 1993 ; Gupta et Mittal, 1995 ;

Temmerman et al., 2002 ; Herreros et al., 2005). Cependant, des résistances à ce dernier

antibiotique ont été observées par Kastner et al. (2006) et Toomey et al. (2010).

- Streptococcus thermophilus :

Cette souche a résisté à tous les aminosides et à la plupart des bétalactamines testées (à

l’exception de l’imipéneme, l’amoxicilline et l’association amoxicilline + acide

clavulanique) ; cependant, elle s’est montrée sensible à l’ofloxacine, à la rifamycine et à tous

les macrolides et tétracyclines testés. Par ailleurs, en ce qui concerne les nitrofuranes, cette

souche n’a résisté qu’à l’action de la nitroxoline. Ces résultats rejoignent ceux décrits chez

des souches de Streptococcus thermophilus pour les aminosides (Aslim et Beyatli, 2004 ;

D’Aimmo et al., 2007), la pénicilline G (Aslim et Beyatli, 2004), le céfoxitine (Alebouyeh et

al., 2005 ; Ziane, 2008), la céfazoline, la céfalexine, le céfotaxime et l’amoxicilline (Ziane,

2008), la rifampicine (D’Aimmo et al., 2007 ; Ziane, 2008), l’érythromycine (D’Aimmo et

al., 2007 ; Ammor et al., 2007 ; Hummel, 2007 ; Ziane, 2008) et la tétracycline (Aslim et

Beyatli, 2004 ; D’Aimmo et al., 2007 ; Ammor et al., 2007). En revanche, d’autres études ont

montré la résistance des souches de cette espèce à ce dernier antibiotique (Hummel, 2007 ;

Ziane, 2008) ainsi que leur sensibilité à l’ampicilline et à la pénicilline G (D’Aimmo et al.,

2007 ; Ammor et al., 2007).

- Pediococcus sp. :

La seule souche appartenant à ce genre, qui est Pediococcus sp. MA1, n’a résisté qu’à la

nitroxoline, aux aminosides, et aux bétalactamines suivantes : oxacilline, céfalexine,

céfazoline, céfoxitine, ceftazidine et céfixime. De nombreux auteurs ont obtenus des résultats

semblables aux nôtres pour les aminosides (Swenson et al., 1990 ; Rojo-Bezares et al., 2006 ;

Kastner et al., 2006 ; O’Connor et al., 2007 ; Ammor et al., 2007), l’oxacilline (Kastner et al.,

2006), la céfazoline et le céfoxitine (Ziane, 2008), la céfalexine (O’Connor et al., 2007 ;

Ziane, 2008), la ceftazidine (O’Connor et al., 2007), le céfotaxime (Kastner et al., 2006 ;

O’Connor et al., 2007 ; Ziane, 2008), l’imipéneme et la pénicilline G (Ammor et al., 2007),

l’érythromycine (Swenson et al., 1990 ; Rojo-Bezares et al., 2006 ; Ammor et al., 2007 ;

Page 66: Université d’ORAN Faculté des Sciences Département de ...

Toomey et al., 2010), la tétracycline (Swenson

2008 ; Toomey et al., 2010) et la rifampicine (Swenson

Ziane, 2008). Au contraire, des résistances au nitrofurantoïne et à l’ofloxacine (Kastner

2006), à la pénicilline G (O’Connor

Ammor et al., 2007) ainsi qu’à la tétracycline (Kastner

été également observées chez des souches de

La variabilité de la sensibilité des souches étudiées semble dépendre également de leur

origines (figure 10) :

Figure 10 : Comparaison des antibiorésistances des souches étudiées, selon leurs origines

Toutes les souches isolées de la viande ont résisté à l’action des aminosides et de

l’ofloxacine. Les taux de résistances de ces souches aux antibiotiques des autres familles ont

varié de 61,10% pour les nitrofuranes à 85,18% pour la rifampicine.

Une hétérogénéité de résistance a été observée chez les souches isolées du lait de chamelle.

Les antibiotiques les moins efficaces sur ces souches étaient ceux appartenant aux familles

des fluoroquinolones (ofloxacine) et des aminosides (91,66% de résistance

famille) ; cependant seulement 25% de ces souches ont résisté aux tétracyclines. Pour les

0

10

20

30

40

50

60

70

80

90

100

Bét

alac

tam

ines

% de souches

résistantes

RRéé

acycline (Swenson et al., 1990 ; Rojo-Bezares

, 2010) et la rifampicine (Swenson et al., 1990 ; Ammor

Ziane, 2008). Au contraire, des résistances au nitrofurantoïne et à l’ofloxacine (Kastner

2006), à la pénicilline G (O’Connor et al., 2007), à l’érythromycine (O’Connor

, 2007) ainsi qu’à la tétracycline (Kastner et al., 2006 ; Ammor

été également observées chez des souches de Pediococcus.

variabilité de la sensibilité des souches étudiées semble dépendre également de leur

Comparaison des antibiorésistances des souches étudiées, selon leurs origines

Toutes les souches isolées de la viande ont résisté à l’action des aminosides et de

l’ofloxacine. Les taux de résistances de ces souches aux antibiotiques des autres familles ont

varié de 61,10% pour les nitrofuranes à 85,18% pour la rifampicine.

e hétérogénéité de résistance a été observée chez les souches isolées du lait de chamelle.

Les antibiotiques les moins efficaces sur ces souches étaient ceux appartenant aux familles

des fluoroquinolones (ofloxacine) et des aminosides (91,66% de résistance

; cependant seulement 25% de ces souches ont résisté aux tétracyclines. Pour les

Mac

rolid

es

Am

inos

ides

Nitr

ofur

anes

Flu

oroq

uino

lone

s

Tét

racy

clin

es

Rifa

myc

ines

Souches isolées de la viande

Souches isolées du lait de chamelle de différentes originesSouches isolées du lait de vache

Souches isolées du Ghars

ééssuull ttaattss eett DDiissccuussssiioonn

58

Bezares et al., 2006 ; Ziane,

; Ammor et al., 2007 ;

Ziane, 2008). Au contraire, des résistances au nitrofurantoïne et à l’ofloxacine (Kastner et al.,

, 2007), à l’érythromycine (O’Connor et al., 2007 ;

; Ammor et al., 2007) ont

variabilité de la sensibilité des souches étudiées semble dépendre également de leurs

Comparaison des antibiorésistances des souches étudiées, selon leurs origines

Toutes les souches isolées de la viande ont résisté à l’action des aminosides et de

l’ofloxacine. Les taux de résistances de ces souches aux antibiotiques des autres familles ont

e hétérogénéité de résistance a été observée chez les souches isolées du lait de chamelle.

Les antibiotiques les moins efficaces sur ces souches étaient ceux appartenant aux familles

des fluoroquinolones (ofloxacine) et des aminosides (91,66% de résistance pour chaque

; cependant seulement 25% de ces souches ont résisté aux tétracyclines. Pour les

Souches isolées de la viande

Souches isolées du lait de chamelle de différentes originesSouches isolées du lait de vache

Souches isolées du Ghars

Page 67: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

59

autres familles d’antibiotiques testés, les taux de résistance étaient de : 66,66% (macrolides),

58,33% (rifamycines), 42,94% (bétalactamines) et 41,66% (nitrofuranes).

En ce qui concerne les souches isolées du lait de vache, elles ont été toutes sensibles à la

doxycycline et la tétracycline, et seulement un faible nombre d’entre elles a résisté à la

rifampicine (14,28%), les bétalactamines (31,31%) et les macrolides (32,14%). La moitié de

ces souches se sont montrées sensibles à l’action des nitrofuranes mais la plupart d’elles ont

résisté à l’ofloxacine (78,57%) et aux aminosides (94,64%).

Pour les souches isolées du Ghars, elles ont toutes résisté à la rifampicine et l’ofloxacine

mais aucune d’entres elles n’a résisté à l’action des tétracyclines. Les antibiotiques des autres

familles ont été moins efficaces sur ces souches avec des taux de résistances qui variaient de

66% pour les macrolides à 96% pour les aminosides.

Pour les souches isolées du Machroub, la souche Streptococcus thermophilus MA7 a résisté

à un nombre d’antibiotique plus élevé que la souche Pediococcus sp. MA1 (tableau 8).

La souche Lactobacillus helveticus G6, isolée du gésier, a résisté à la plupart des

antibiotiques testés à l’exception de l’amoxicilline, l’ampicilline, l’imipéneme, la spiramycine

et le nitrofurantoïne (tableau 8).

Les souches isolées du jéjunum du poulet, Lactobacillus helveticus J3 et Lactobacillus

delbrueckii J4, ont approximativement le même profil de résistance (tableau 8). Ces souches

n’ont été sensibles qu’à la pénicilline, l’amoxicilline, l’ampicilline, le céfotaxime,

l’imipéneme, l’érythromycine, le nitrofurantoïne et la doxycycline. Pour la nitroxoline, la

tétracycline et la rifampicine, seulement l’une des deux souches à résisté à leurs actions.

D’après ces résultats, on peut conclure que les souches les plus résistantes aux

antibiotiques sont celles isolées de produits d’origine animale (viande bovine, lait de

chamelle, gésier, jéjunum poulet). Ceci est assez attendu, vue l’utilisation intensive des

antibiotiques, appartenant à des classes auxquels appartiennent les molécules que nous avons

testées ou bien eux même, en élevage des animaux en Algérie (Bouguedour, 2008 ; Zeghilet,

2009). Il est bien admis que cet usage, à des fins thérapeutiques ou prophylactiques, peut être

à l'origine de l’apparition d’antibiorésistances chez les bactéries de la flore digestive des

Page 68: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

60

animaux et de la présence de résidus d'antibiotiques dans le lait et la chair des animaux, qui

peuvent également conduire à la sélection de bactéries résistantes aux antibiotiques. En effet,

une recherche effectuée par Tarzaali et al. (2008) a mis en évidence la présence de résidus de

tétracyclines et de bétalactamines dans des échantillons de lait cru de vache provenant de

plusieurs régions du centre algérien (89,09% et 65,46% de laits positifs pour les tétracyclines

et les bétalactamines, respectivement) ; de même, Benmohand et Benouadah (2008) ont

détecté des résidus de pénicilline G et d’érythromycine dans des échantillons de poulet de

chair. Cependant, la résistance modérée des souches isolées du lait de vache est probablement

due au fait que les animaux à partir desquels ce lait provient ont été élevés de manière

traditionnelle (alimentation non supplémentée d’antibiotiques, …) ce qui a conduit à une

faible pression de sélection pour les antibiotiques dans cet environnement comparé aux autres

milieux.

D’autre part, la fréquence de résistance très élevée des souches isolées du Ghars aux

différents antibiotiques, exceptés ceux appartenant à la classe des tétracyclines, pourrait

s’expliquer par le fait que les antibiotiques ont été d’un grand usage en tant que

phytosanitaires pour protéger ou traiter les palmiers desquels proviennent les dattes qui ont

servi de matière première pour la production du Ghars. Ainsi, il se peut que des bactéries

résistantes provenant des travailleurs aient contaminé le Ghars au cours de sa production et

ont pu transférer les résistances qu’elles possèdent aux autres bactéries présentes dans ce

produit.

En plus de la variabilité des genres auxquels appartiennent les souches étudiées et des

origines desquelles elles proviennent, l’hétérogénéité des profils de résistance de ces souches

peut être attribuée à d’autres facteurs comme :

- La nature des antibiotiques : les antibiotiques lipophiles comme la doxycycline ont un

accès plus facile à l’intérieur des bactéries que ceux hydrophiles (bétalactamines) vue la

composition de la paroi bactérienne (Zomahoun, 2005).

- L’état physiologique des bactéries : selon Dhar et McKinney (2007), les phases et vitesses

de croissance ainsi que l’âge des cellules peuvent entrainer des variations de résistance aux

Page 69: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

61

antibiotiques. Les bétalactamines, par exemple, ne sont actifs que sur les bactéries en

croissance (Walsh, 2003).

- Les activités physiologiques et biochimiques des bactéries : l’imperméabilité de la paroi

cellulaire semble être l’un des mécanismes de résistance des lactobacilles à des antibiotiques

de la classe des bétalactamines du moment que les espèces de ce genre sont dépourvues de

cytochromes (Condon, 1983). Ainsi, des systèmes autolytiques défectueux de la paroi

cellulaire peuvent être à l’origine des différences de sensibilité aux antibiotiques agissant sur

cette cible (Kim et al., 1982).

- Le profil génétique des bactéries : il se peut que des bactéries parmi celles que nous avons

testé hébergent des gènes de résistance que certaines d’autres en sont dépourvues (Devirgiliis

et al., 2008).

- Le changement de la bactérie pour une forme L : il s’agit d’une résistance non génétique,

donc non transmissible, qui se produit de façon transitoire lorsque une bactérie cesse de

produire la majeure partie de sa paroi ce qui la rend insensible aux agents antimicrobiens qui

agissent sur la synthèse de la paroi. Ce mécanisme est souvent une conséquence du milieu ou

d'un changement brusque dans le métabolisme d'une bactérie (Tremblay, 2007).

- Le milieu de culture : ce facteur peut influencer la susceptibilité des bactéries aux

antibiotiques de même que l’efficacité de ces derniers (Huys et al., 2002 ; Tremblay, 2007 ;

Ammor et al., 2007 ; Devirgiliis et al., 2008). A titre d’exemple, Ammor et al. (2007) ont

rapporté que le milieu MRS peut inactiver certains antibiotiques.

À la lumière des résultats sus cités et du tableau 8, il est bien remarquable que la fréquence

de multirésistances (ou polyrésistances) est très élevée parmi les bactéries sujettes de notre

étude :

• les souches d’Enterococcus ont montré des résistances à un nombre qui varie de 11 à

20 antibiotiques de 3 à 6 familles différentes, respectivement.

• les lactocoques ont résisté à un nombre variant de 8 à 24 antibiotiques de 3 à 7

familles différentes, respectivement.

Page 70: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

62

• les lactobacilles ont présenté des résistances vis-à-vis de 8 à 24 antibiotiques de 2 à 7

familles différentes.

• Pediococcus sp. MA1 et Streptococcus thermophilus MA7 ont montré des résistances

à 11 antibiotiques de 3 familles différentes et à 16 antibiotiques de 4 familles

différentes, respectivement.

Cela est en concordance avec les différents rapports qui indiquent qu’un nombre croissant

de souches lactiques présentant des résistances à des antibiotiques de familles différentes sont

isolées, et cela quelque soit leurs origines et leur appartenance (Klein et al., 1998 ; Davies et

Roberts, 1999 ; Halami et al., 2000 ; Temmerman et al., 2002 ; Dalache et al., 2003 ; Herreros

et al., 2005; Mathur et Singh, 2005 ; Kastner et al., 2006 ; Ziane, 2008 ; Toomey et al., 2010).

Le phénomène de multirésistance est généralement du soit à une résistance croisée, c'est-à-

dire résistance de la bactérie à tous les membres d’une classe d’antibiotiques due à un seul

mécanisme de résistance (Chopra and Roberts, 2001 ; Courvalin, 2008) ou à des antibiotiques

de classes différentes ayant la même cible d’action quand cette dernière est modifiée par un

produit de gène de résistance (Roberts et al., 1999 ; Courvalin, 2008), soit à la présence de

plasmides porteurs de plusieurs gènes conférant la résistance à divers familles d’antibiotiques

comme c’est le cas avec le plasmide pK214 qui a été rapporté chez la souche Lactococcus

lactis K214 isolée du fromage à base de lait cru et qui porte des gènes codant la résistance à la

streptomycine, la tétracycline et le chloramphénicol ainsi qu’un gène codant un système

d’efflux (mdtA ) qui confère la résistance à l’érythromycine et la tétracycline (Perreten et al.,

1997a ; Perreten et al., 2001). Un autre transporteur multidrogues (LmrP) a été décrit chez

une autre souche de Lc. lactis, il code la résistance aux macrolides, lincosamides,

streptogramines et à la tétracycline (van Veen et al., 1999).

D’autre part, il est à noter que les taux de résistances très élevés des bactéries testées vis-à-

vis de certaines familles d’antibiotiques, particulièrement celles des aminosides et des

quinolones, indique fort probablement des résistances intrinsèques à ces molécules comme

cela a été rapporté par Teuber et al. (1999), Danielsen et Wind (2003), Rojo-Bezares et al.

(2006), Euzéby (2007) et Ouoba et Jensen (2008). Elkins et Mullis (2004) ont noté que la

résistance intrinsèque des bactéries lactiques aux aminosides est probablement due à la

structure de leur paroi cellulaire et l’imperméabilité de leur membrane plasmique, qui sont

complémentées dans certains cas par des mécanismes d’efflux actif. De même, Petersen et

Page 71: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

63

Jensen (2004) ont associé la résistance naturelle des bactéries à Gram positif, y compris les

bactéries lactiques, aux quinolones et fluoroquinolones à une substitution dans la séquence

QRDR de la gyrA (sous-unité A de l’ADN gyrase) qui transforme la sérine de la position 83

en une arginine, ou le glutamate de la position 87 en une glycine ou lysine, ou encore la sérine

de la position 80 en une leucine ou isoleucine.

3.3. Détermination des concentrations minimales d’inhibition des antibiotiques (CMI) :

Notre étude a été poursuivie, comme nous l’avons déjà indiqué, par la détermination des

concentrations minimales inhibitrices (CMI) de divers antibiotiques, qui sont la tétracycline,

l’érythromycine, l’amoxicilline et la pénicilline G, chez 16 de nos souches.

Les CMI sont exprimées en mg/ml ou en µg/ml (Mathur et Singh, 2005). Le tableau 10

montre les valeurs de CMI des divers antibiotiques estimées chez l’ensemble des souches

testées : ces valeurs sont de l'ordre de 0,5 à plus de 200 µg/ml pour les deux bétalactamines

(amoxicilline et pénicilline G) et d’à peu près 8 à plus de 200 µg/ml pour la tétracycline et

l'érythromycine. Cela indique que, selon Walsh (2003), les souches testées sont soit

résistantes (CMI ≥ 32 µg/ml) soit sensibles (CMI < 8 µg/ml) ou bien elles ont des résistances

intermédiaires (8 ≤ CMI < 32 µg/ml).

- CMI de la pénicilline G :

Les souches testées étaient majoritairement sensibles à la pénicilline G. En effet, nous avons

enregistré des CMI qui ne dépassaient pas les 0,5µg/ml pour certaines souches comme

Pediococcus sp. MA1, et des CMI comprises entre 2 et 5µg/ml ou entre 5 et 8µg/ml pour

d’autres telles qu’Enterococcus sp. GHB22 et Lactococcus lactis ssp. lactis V17,

respectivement. Des exceptions ont été observées pour les souches Lactobacillus helveticus

G6, Lactobacillus sp. V7 et Lactobacillus sp. V16 pour lesquelles les valeurs de CMI ont

dépassé 200µg/ml.

Nos observations sont en concordance avec les résultats de différentes études qui rapportent

des valeurs de CMI basses pour la pénicilline G. Ces CMI sont ≤ 2µg/ml chez des

pédiocoques (Halley et Blaszyk, 1998 ; Rojo-Bezares et al., 2006), comprises entre 2 et

8µg/ml chez des lactocoques et des entérocoques (Ziane, 2008), ≤ 4µg/ml chez des

lactobacilles (Halley et Blaszyk, 1998 ; Danielsen et Wind, 2003 ; Rojo-Bezares et al., 2006 ;

D’Aimmo et al., 2007 ; Ouoba et al., 2008 ; Ziane, 2008) et ≤ 2µg/ml chez des souches de

Page 72: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

64

Streptococcus thermophilus (D’Aimmo et al., 2007 ; Ziane, 2008). De même, des valeurs de

CMI élevées ont été constatées par Halley et Blaszyk (1998) et Zarazaga et al. (1999) chez

des lactobacilles.

Tableau 10 : Concentrations minimales d’inhibition (µg/ml) des antibiotiques testés

CMI pénicilline G

CMI amoxicilline

CMI érythromycine

CMI tétracycline Souche

0,5< 2> 5≤

50> 100≤

8> 15≤

Pediococcus sp. MA1

Pediococcus

0,5<

5> 8≤

5> 8≤

5> 8≤

Streptococcus thermophilus

MA7 Streptococcus

2> 5≤

5> 8≤

100> 150≤

5> 8≤

Enterococcus sp. GHB21

Enterococcus

2> 5≤

5> 8≤

100> 150≤

5> 8≤

En. sp. GHB22

2> 5≤

5> 8≤

100> 150≤

8> 15≤

Enterococcus sp. CHM1

2> 5≤

5> 8≤

50> 100≤

8> 15≤

Enterococcus sp. LVK25

2> 5≤

15> 20≤

200 > 300≤

5> 8≤

Lactococcus sp. GHB15

Lactococcus

5> 8≤

200> 300≤

150> 200≤

200> 300≤

Lactococcus lactis ssp. lactis V17

5> 8≤

200> 300≤

150 > 200≤

200 > 300≤

Lactococcus lactis ssp. cremoris V18

5> 8≤

200> 300≤

150 > 200≤

200> 300≤

Lactococcus lactis ssp. lactis V26-1

200> 300≤

200 > 300≤

50> 100≤

100> 150≤

Lactobacillus helveticus G6

Lactobacillus

0,5<

0,5<

5> 8≤

40> 50≤

Lactobacillus sp. LVK32

200> 300≤

200> 300≤

50> 100≤

100> 150≤

Lactobacillus sp. V7

200> 300≤

200> 300≤

50> 100≤

100> 150≤

Lactobacillus sp. V16

0,5<

0,5<

20> 32≤

50> 100≤

Lactobacillus sp. CHM16

0,5<

0,5 <

20> 32≤

50> 100≤

Lactobacillus sp. CHM19

Page 73: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

65

- CMI de l’amoxicilline :

Seule la souche Lactococcus sp. GHB15 avait une résistance intermédiaire à l’amoxicilline

(15 < CMI ≤ 20µg/ml). Pour le reste des souches, tous les lactocoques ainsi que Lactobacillus

sp. V7 et V16 et Lactobacillus helveticus G6 ont résisté à des concentrations de cet

antibiotique supérieures à 200µg/ml, alors que les autres lactobacilles, les entérocoques, les

souches Pediococcus sp. MA1 et Streptococcus thermophilus étaient tous sensibles (CMI ≤

8µg/ml).

Il y a relativement très peu d’études qui ont porté sur la détermination des CMI de

l’amoxicilline chez les bactéries lactiques. En effet, Halley et Blaszyk (1998) ont décrit des

CMI ≤ 8µg/ml pour cet antibiotique contre des lactobacilles et des pédiocoques.

- CMI de la tétracycline :

Une variabilité de sensibilité a été observée pour cet antibiotique : bien que Streptococcus

thermophilus MA7 s’est montrée sensible (5 < CMI ≤ 8µg/ml), Pediococcus sp. MA1 avait

une résistance intermédiaire. Les entérocoques isolés du Ghars étaient sensibles à la

tétracycline, tandis que ceux isolés des laits de vache et de chamelle avaient des résistances

intermédiaires. Quant aux lactobacilles, ils ont été tous résistants à cet antibiotique (40 <

CMI ≤ 150µg/ml) ; c’est le même cas pour les lactocoques isolés de la viande (200 < CMI ≤

300 µg/ml) et cela contrairement à celui de la souche Lactococcus sp. GHB15 isolée du Ghars

dont la CMI était ≤ 8µg/ml.

Plusieurs auteurs ont obtenus des résultats similaires aux nôtres :

• Chez des lactobacilles, Ziane (2008), Ouoba et al. (2008), Devirgiliis et al. (2008) et

Toomey et al. (2010) ont trouvé des CMI (32, 80 et 256µg/ml) indiquant des

résistances variables à la tétracycline.

• Chez des lactocoques, des résistances à cet antibiotique (CMI > 32µg/ml) ont été

enregistrées par Walther et al. (2008), de même que des sensibilités ont été notées par

ces mêmes auteurs et par Toomey et al. (2010).

• Chez des entérocoques, Valenzuela et al. (2009) ont constaté que des bactéries

appartenant à ce genre ont moyennement résisté à la tétracycline (8 ≤ CMI ≤

16µg/ml), tandis que les CMI observées par Toomey et al. (2010) étaient ≤ 2µg/ml.

• chez Streptococcus thermophilus, D’Aimmo et al. (2007) ont rapporté des CMI de

0,5µg/ml.

Page 74: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

66

Au contraire, certaines de ces études ainsi que d’autres ont également montré la

susceptibilité (0,125 ≤ CMI ≤ 8µg/ml) des pédiocoques (Walther et al., 2008 ; Toomey et al.,

2010) et des lactobacilles (D’Aimmo et al., 2007 ; Ouoba et al., 2008 ; Devirgiliis et al.,

2008 ; Toomey et al., 2010) à la tétracycline, ainsi que la résistance intermédiaires (CMI ≤

16µg/ml) de ces derniers (Halley et Blaszyk, 1998).

- CMI de l’érythromycine :

La plupart des souches se sont révélées résistantes à l’érythromycine avec des CMI

comprises entre 50 et plus de 200µg/ml. Au contraire, les souches Streptococcus thermophilus

MA7 et Lactobacillus sp. LVK32 étaient sensibles à cet antibiotique, tandis que les deux

lactobacilles isolés du lait de chamelle Lactobacillus sp. CHM16 et CHM19 ont présenté des

résistances intermédiaires (20 < CMI ≤32 µg/ml).

Les seuils de sensibilité de la plupart de nos souches s'avèrent supérieurs à ceux décrits dans

la littérature pour l’érythromycine. Entre autres, divers travaux ont montré la sensibilité et/ou

la résistance intermédiaire des pédiocoques avec des CMI ≤ 1µg/ml (Halley et Blaszyk,

1998 ; Rojo-Bezares et al., 2006 ; Toomey et al., 2010), des entérocoques avec des CMI ≤

16µg/ml (Valenzuela et al., 2009 ; Toomey et al., 2010), des lactocoques avec des CMI avec

des CMI ≤ 16µg/ml ( Walther et al., 2008) et des lactobacilles avec des CMI ≤ 8µg/ml

(Halley et Blaszyk, 1998 ; Rojo-Bezares et al., 2006 ; D’Aimmo et al., 2007 ; Ouoba et al.,

2008 ; Devirgiliis et al., 2008 ; Toomey et al., 2010). Cependant, D’Aimmo et al. (2007) et

Ouoba et al. (2008) ont rapporté quelques résultats comparables aux nôtres pour des souches

de Streptococcus thermophilus (CMI ≤ 0,5µg/ml) et des lactobacilles (CMI ≥ 32µg/ml),

respectivement.

D’après ces résultats, nous déduisons que l’érythromycine était la moins efficace sur les

souches que nous avons testé, contrairement à la pénicilline G dont l’efficacité était aussi

élevée que celle de l’amoxicilline (ces deux antibiotiques appartiennent à la même famille).

3.4. Détection des plasmides des bactéries lactiques :

Nous avons adapté la méthode d’O’Sullivan et Klaenhammer (1993) pour rechercher la

présence de plasmides susceptibles d’être porteurs de gènes de résistance à la tétracycline

chez trois de nos souches Lactobacillus sp. V16, Lactococcus lactis ssp. lactis V17 et

Page 75: Université d’ORAN Faculté des Sciences Département de ...

Lactococcus lactis ssp. cremoris

dépassant les 100 µg/ml de cet antibiotique. La souc

inhibée par des concentrations inférieures à 15

Les résultats obtenus indiquent la présence d’au moins une bande d’ADN plasmidique chez

chacune des souches résistantes alors qu’aucune

(figure 11).

Figure 11 : Profil électrophorétique de l’ADN plasmidique des souches étudiées(MT

3.5. Purification de l’ADN plasmidique :

L’ADN plasmidique de la souche

électroélution comme a été décrit en chapitre 2.7. Cet ADN (figure 12), nommé pLSV16,

était, ensuite utilisé dans l’expérience d’électrotransformation afin de préci

résistance de cette souche à la tétracycline.

RRéé

Lactococcus lactis ssp. cremoris V18 qui se sont montrées résistantes à des concentrations

g/ml de cet antibiotique. La souche Pediococcus sp.

inhibée par des concentrations inférieures à 15 µg/ml, a été utilisée comme témoin.

Les résultats obtenus indiquent la présence d’au moins une bande d’ADN plasmidique chez

chacune des souches résistantes alors qu’aucune bande n’a été révélée chez la souche témoin

Profil électrophorétique de l’ADN plasmidique des souches étudiées(MT : marqueurs de taille en Kpb)

3.5. Purification de l’ADN plasmidique :

L’ADN plasmidique de la souche Lactobacillus sp. V16 était récupéré du gel d’agarose par

décrit en chapitre 2.7. Cet ADN (figure 12), nommé pLSV16,

était, ensuite utilisé dans l’expérience d’électrotransformation afin de préci

à la tétracycline.

ééssuull ttaattss eett DDiissccuussssiioonn

67

V18 qui se sont montrées résistantes à des concentrations

Pediococcus sp. MA1, qui a été

été utilisée comme témoin.

Les résultats obtenus indiquent la présence d’au moins une bande d’ADN plasmidique chez

révélée chez la souche témoin

Profil électrophorétique de l’ADN plasmidique des souches étudiées

V16 était récupéré du gel d’agarose par

décrit en chapitre 2.7. Cet ADN (figure 12), nommé pLSV16,

était, ensuite utilisé dans l’expérience d’électrotransformation afin de préciser son rôle dans la

Page 76: Université d’ORAN Faculté des Sciences Département de ...

Figure 12 : ADN plasmidique de la souche

3.6. Transformation de la souche

Nous avons précédemment remarqué que les souches résistantes à la tétracycline

Lactobacillus sp. V16, Lactococcus lactis ssp lactis

V18 hébergent de l’ADN plasmidique, alors que la souche

pas en contenir (figure 11).

Plusieurs auteurs ont démontré que des gènes de résistance à la tétracycline sont localisés

sur des plasmides chez les bactéries lactiques, notamment les lactobacilles (Vescovo

1982 ; Gevers et al., 2003 ; Dani

2008). Ainsi, dans le but de confirmer l’implication des plasmides dans la résistance

bactérienne aux antibiotiques, nous avons tenté de transformer la souche

MA1 (souche réceptrice) par de l’ADN plasmidique de la souche

(souche donneuse) qu’on a dénommé pLSV16.

Ce plasmide était « introduit

sélection des clones transformants était effectuée sur milieu MRS contenant 20

tétracycline.

RRéé

ADN plasmidique de la souche Lactobacillus sp. V16 récupéré pour les expériences d’électroélution

3.6. Transformation de la souche Pediococcus sp. MA1 :

Nous avons précédemment remarqué que les souches résistantes à la tétracycline

Lactococcus lactis ssp lactis V17 et Lactococcus lactis ssp cremoris

V18 hébergent de l’ADN plasmidique, alors que la souche Pediococcus sp.

Plusieurs auteurs ont démontré que des gènes de résistance à la tétracycline sont localisés

sur des plasmides chez les bactéries lactiques, notamment les lactobacilles (Vescovo

, 2003 ; Danielsen, 2002 ; Kastner et al., 2006 ; Huys et al.

2008). Ainsi, dans le but de confirmer l’implication des plasmides dans la résistance

bactérienne aux antibiotiques, nous avons tenté de transformer la souche

trice) par de l’ADN plasmidique de la souche Lactobacillus sp.

(souche donneuse) qu’on a dénommé pLSV16.

introduit » dans la souche réceptrice par électrotransformation et la

sélection des clones transformants était effectuée sur milieu MRS contenant 20

ééssuull ttaattss eett DDiissccuussssiioonn

68

récupéré pour les

Nous avons précédemment remarqué que les souches résistantes à la tétracycline

Lactococcus lactis ssp cremoris

Pediococcus sp. MA1 ne semble

Plusieurs auteurs ont démontré que des gènes de résistance à la tétracycline sont localisés

sur des plasmides chez les bactéries lactiques, notamment les lactobacilles (Vescovo et al.,

et al., 2006 ; Ziane,

2008). Ainsi, dans le but de confirmer l’implication des plasmides dans la résistance

bactérienne aux antibiotiques, nous avons tenté de transformer la souche Pediococcus sp.

Lactobacillus sp. V16

» dans la souche réceptrice par électrotransformation et la

sélection des clones transformants était effectuée sur milieu MRS contenant 20 µg/ml de

Page 77: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

69

Aucun clone transformant n’a poussé dans ces conditions de sélection, après 7 jours

d’incubation (tableau 11).

Tableau 11 : Sélection des clones transformants

+TE -TE Lactobacillus sp. V16 Croissance après 24h

d’incubation Croissance après 24h d’incubation

Pediococcus sp. MA1 Absence de croissance même après 7 jours d’incubation

Croissance après 24h d’incubation

pLSV16 / MA1 Absence de croissance même après 7 jours d’incubation

Croissance après 24h d’incubation

L’échec de l’électrotransformation peut être du à divers facteurs : - Comme le montre la figure 12, la bande correspondante à l’ADN pLSV16 est d’une faible

intensité ce qui reflète que la quantité d’ADN pur récolté par électroélution et donc celle de

l’ADN transformant n’était peut être pas suffisante pour « réussir » la transformation. Il a été

rapporté que l’augmentation de la concentration d’ADN utilisé pour l’électrotransformation

favorise les chances d’obtention de clones transformants et conduit à l’augmentation du

nombre de ces derniers (Rixon et Warner, 2003 ; Rodriguez et al., 2007). Dans ce même

contexte, Serror et al. (2002) ont indiqué que la quantité d’ADN requise pour que la

transformation soit plus efficace est comprise entre 0,3 et 2µg.

- Les paramètres électriques de l’électroporation n’étaient pas optimaux. En effet,

Rodriguez et al. (2007) ont rapporté que la puissance du champ électrique a une influence

positive sur la probabilité d’obtention de clones transformants.

- La grande taille du plasmide. Certains auteurs ont décrit que la fréquence

d’électrotransformation est inversement proportionnelle à la taille de l’ADN transformant

(Gasson et Fitzgerald, 1994 ; Rixon et Warner, 2003 ; Beasley et al., 2004).

- L’instabilité de ce plasmide provenant d’un lactobacille dans l’environnement

« pédiocoque » : il se peut que, même si ce plasmide a pu pénétrer à l’intérieur des cellules

réceptrices, il a été perdu par dilution aux cours des divisions cellulaires pendant la période

d’incubation, ou encore a été dégradé par des enzymes de restriction de la cellule réceptrice.

- Les gènes que porte ce plasmide n’ont pas pu s’exprimer chez un pédiocoque.

- Ces gènes codent pour des fonctions autres que la résistance à la tétracycline.

Page 78: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

70

3.7. Recherche d’activité bétalactamase :

La résistance d’un grand nombre de nos souches à la plupart des bétalactamines testées

(tableau 8) nous a suscité à rechercher la présence d’enzymes dégradant ces molécules, ou

bétalactamases, chez quelques unes de ces souches.

Bien que l’activité bétalactamase représente un sujet très abondant parmi les études portant

sur l’antibiorésistance chez les bactéries à Gram négatif (Yong et al., 2002 ; Lee et al., 2005 ;

Pieboji, 2007 ; Dias et al., 2008 ; Akujobi et al., 2008 ; Drissi, 2008 ; Faure, 2009), il n y a

que très peu de travaux qui l’ont abordé chez les bactéries lactiques (Rojo-Bezares et al.,

2006).

De nombreux tests permettant de rechercher la présence des différents types de

bétalactamases chez les bactéries résistantes sont décrits dans la littérature, parmi lesquels on

cite le test iodométrique (Courvalin et al., 1985), le test de Hodge (Yong et al., 2002) et le test

à l’EDTA (Jesudason et al., 2005). Dans notre étude, nous avons utilisé deux tests qui sont le

test de synergie et le test 3D. Ces tests ont été détaillés dans le chapitre 2.9.

Pour le premier test, l’image de synergie entre les deux disques d’AMC (Amoxicilline

associée à l’acide clavulanique) et de CTX (céfotaxime) n’a été observée que chez les souches

Lactococcus sp. GHB15 et Enterococcus sp. GHB21 (figure 13). Cela pourrait être traduit par

le fait que ces souches sont productrices de bétalactamases à spectre élargi BLSE, bien que la

production de ces enzymes ne soit rapportée, à notre connaissance, que chez des bactéries à

Gram négatif (Garcia-Rodriguez et Jones, 2002 ; Poole, 2004).

Dans le test 3D, aucune déformation de la zone d’inhibition autour du disque de céfoxitine

(FOX) n’a été observée (figure 14), et cela pour toutes les souches testées. Ces souches ne

produisent, donc, pas de céphalosporinases chromosomiques AmpC. Ce résultat concorde

avec les données de la littérature qui indiquent l’absence de ces enzymes chez les bactéries à

Gram positif (Goossens, 2001 ; Poole, 2004 ; Sundin 2009).

Page 79: Université d’ORAN Faculté des Sciences Département de ...

RRééssuull ttaattss eett DDiissccuussssiioonn

71

Figure 13 : Image de synergie entre AMC et CTX

Figure 14 : Résultat du test 3D

GHB21

V3

V7

G6

V13-1

Page 80: Université d’ORAN Faculté des Sciences Département de ...
Page 81: Université d’ORAN Faculté des Sciences Département de ...

CCoonncclluussiioonn eett PPeerrssppeeccttiivveess

73

Les bactéries lactiques, comme toute autre bactérie, peuvent être naturellement résistantes à

des antibiotiques ou acquérir cette résistance de leur environnement grâce aux transferts

possibles de gènes codants ces traits - qui auront certainement des conséquences négatives sur

l’état de santé de l’Homme - entre les différentes bactéries. La présence de tels gènes chez une

bactérie lactique lui permet d’annuler l’effet des antibiotiques sur elle par différents

mécanismes dont l’inactivation enzymatique de ces molécules et la modification de leurs

cibles.

Au cours de ce travail, nous avons étudié le comportement de 83 souches autochtones de

bactéries lactiques vis-à-vis de 25 antibiotiques appartenant à 7 familles différentes. A

l’exception de l’oxacilline, la ceftazidine et le céfixime auxquels toutes nos souches ont

résisté et de l’imipéneme qui était efficace sur toutes ces souches, les réponses aux

antibiotiques testés étaient variables selon les classes auxquelles appartiennent ces molécules

et même à l'intérieur d'une même classe. Dans l'ensemble, nos souches ont présenté une

résistance beaucoup plus élevée aux antibiotiques des familles des aminosides et des

fluoroquinolones avec des pourcentages dépassant les 90% et cela par rapport à leur résistance

aux rifamycines (71,08%), bétalactamines (65,25%), macrolides (57,82%) et nitrofuranes

(59,03%) ; la résistance la moins élevée a été observée avec les antibiotiques de la famille des

tétracyclines (31,32%). La variabilité de la sensibilité de nos souches semble dépendre

également du genre auquel elles appartiennent et de leur origine. De plus, nous avons

remarqué une fréquence élevée de multirésistance parmi les souches que nous avons étudiées.

Ce screening a conduit à la détermination des concentrations minimales inhibitrices (CMI)

de divers antibiotiques (pénicilline G, amoxicilline, érythromycine et tétracycline) chez 16 de

nos souches. Les valeurs de CMI estimées étaient de l'ordre de 0,5 à plus de 200µg/ml pour

les deux bétalactamines et d’à peu près 8 à plus de 200µg/ml pour l'érythromycine et la

tétracycline.

La présence de plasmides - susceptibles d'être porteurs de gènes de résistance à la

tétracycline - est montrée chez trois de nos souches résistantes à cet antibiotique avec des

valeurs de CMI dépassant les 100 µg/ml (Lactobacillus sp. V16, Lactococcus lactis ssp. lactis

V17 et Lactococcus lactis ssp. cremoris V18) : ces trois bactéries contiennent, chacune, au

moins une bande d'ADN plasmidique. Après avoir tenté de transformer une souche dépourvue

de plasmides avec l’un des plasmides de la souche Lactobacillus sp. V16 en vue d’affirmer

Page 82: Université d’ORAN Faculté des Sciences Département de ...

CCoonncclluussiioonn eett PPeerrssppeeccttiivveess

74

son rôle dans la résistance de cette souche à la tétracycline, nous n’avons obtenu aucun clone

transformant, ce qui ne nous a pas permis de confirmer notre hypothèse. Ce résultat mérite

d’être confirmé par des expériences complémentaires.

Les résultats du screening d’antibiorésistance chez nos souches montrent la résistance d’un

grand nombre de nos souches à la plupart des bétalactamines testées. Cette observation nous a

conduit à rechercher la présence d’enzymes dégradant ces molécules, ou bétalactamases, chez

quelques unes de ces souches. Les tests réalisés pour cet objectif ont montré que les souches

Lactococcus sp. GHB15 et Enterococcus sp. GHB21 produisent des BLSE mais qu’aucune de

ces souches n'est productrice d'AmpC.

Ces résultats suggèrent que les bactéries que nous avons étudiées sont des réservoirs de

gènes de résistance à différents antibiotiques, cela doit amener à penser aux conséquences

négatives que peut avoir la présence de telles bactéries dans les aliments car la possibilité de

transferts géniques entre les bactéries est toujours probable. Comme nous n’avons pas réussi à

confirmer l’implication des plasmides dans les résistances observées et à concrétiser le

concept de la possibilité d’acquisition de tels traits par transfert horizontal de gènes, il serait

très intéressant de continuer à travailler sous cette optique tout en essayant d’optimiser les

protocoles expérimentaux et de mener des études plus approfondies telle est la recherche

directe et la caractérisation des gènes de résistance chez nos bactéries.

Page 83: Université d’ORAN Faculté des Sciences Département de ...
Page 84: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

76

Aarestrup, F. M. (1999). Association between the consumption of antimicrobial agents in animal

husbandry and the occurrence of resistant bacteria among food animals. Int. J. Antimicrob. Agents. 12:

279-285.

Afssa. (2006). Usages vétérinaires des antibiotiques, résistance bactérienne et conséquences pour la santé

humaine. Rapport rédigé par l’agence française de sécurité sanitaire des aliments.

Ahn, C., Collins-Thompson, D., Duncan, C. et Stiles, M. E. (1992). Mobilization and location of the

genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid.

27: 169-176.

Akloul, K. (2008). Approche thérapeutique des affections respiratoires du mouton. 6ème journées des

Sciences Vétérinaires, Ecole Nationale Vétérinaire d’El-Harrach, Alger, 19-20 avril 2008.

Akujobi, C. O., Ogbulie, J. N. et Alisi, C. S. (2008). Occurrence of extended-spectrum betalactamases in

Escherichia coli isolated from piggery farms in Imo State, Nigeria. World J. Microbiol. Biotechnol.

24: 2167-2170.

Alebouyeh, M., Amirmozafari, N. et Forohesh, H. (2005). Evaluation of virulence factors and plasmid

related transmissibility among different isolates of Enterococci. Ir. Biomed. J. 9 (2): 51-55.

Ammor, M. S., Floréz, A. B. et Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid

bacteria and bifidobacteria . Food Microbiol. 24: 559-570.

ANMV. (2008). Rapport (du 22/02/08) sur le suivi des ventes de médicaments vétérinaires contenant des

antibiotiques en France en 2006.

Aslim, B. et Beyatli, Y. (2004). Antibiotic resistance and plasmid DNA contents of Streptococcus

thermophilus strains isolated from Turkish yoghurts. Turk. J. Vet. Anim. Sci. 28: 257-263.

Atlan D., Béal, C., Champomier-Vergès, M. C., Chapot-Chartier, M. P., Chouayekh, H., Cocaign-

Bousquet, M., Deghorain, M., Gaudu, P., Gilbert, C., Goffin, P., Guédon, E., Guillouard, I.,

Guzzo, J., Hols, P., Juillard, V., Ladero, V., Lindley, N., Lortal, S., Loubière, P., Maguin, E.,

Monnet, C., Monnet, V., Rul, F., Tourdot-Maréchal, R. et Yvon, M. (2008). Métabolisme et

ingénierie métabolique. In bactéries lactiques: de la génétique aux ferments. pp. 271-511. ed. Corrieu

G. et Luquet F. M., Tec & Doc, Paris.

Axelsson, L. T. (2004). Lactic Acid Bacteria: Classification and Physiology. In Lactic Acid Bacteria :

Microbiological and Functional Aspects, 3rd Ed. pp. 1-66. ed. Salminen, S., Wright, A. et Ouwehand,

A., Marcel Dekker Inc, New York.

Badii, R., Jones S. et Warner P. J. (1989). Sphaeroplast and electroporation-mediated transformation of

Lactobacillus plantarum. Lett. Appl. Microbiol. 9: 41-44.

Beasley, S. S., Takala, T. M., Reunanen, J., Apajalahti, J. et Saris, P. E. J. (2004). Characterization

and Electrotransformation of Lactobacillus crispatus Isolated from Chicken Crop and Intestine.

Poultry Sci. 83: 45-48.

Page 85: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

77

Belicova, A., Krizkova, L., Krajcovic, J., Jurkovic, D., Sojka, M., Ebringer, L. et Dusinsky, R. (2007).

Antimicrobial susceptibility of Enterococcus species isolated from Slovak Bryndza cheese. Folia

Microbiol. 52 (2): 115-119.

Belkheir, K. (2004). Identification des souches de Lactobacillus isolées de lait de chamelle de Tindouf :

étude de leur activité protéolytique. Mémoire d’ingéniorat d’état, Université d’Oran, Algérie.

Benbernou, S. (2008). Effet inhibiteur des bactéries lactiques isolées de viandes bovines sur des germes

indésirables. Mémoire de magister, école nationale vétérinaire, Alger, Algérie.

Benmohand, C. et Benouaddah, A. (2008). Contribution à la recherche des résidus d'antibiotiques dans le

muscle du bréchet du poulet de chair. 6ème journées des Sciences Vétérinaires, Ecole Nationale

Vétérinaire d’El-Harrach, Alger, 19-20 avril 2008.

Benmouna, Z. (2008). Bactériocines des coques lactiques isolées de “Ghars” de la région de Biskra.

Mémoire d’ingéniorat d’état, Université d’Oran, Algérie.

Bernardeau, M., Vernoux J. P., Henri-Dubernet, S. et Guéguen, M. (2008). Safety assessment of dairy

microorganisms: The Lactobacillus genus. Int. J. Food Microbiol. 126: 278-285.

Blomqvist, T., Steinmoen, H. et Havarstein, L. S. (2006). Natural genetic transformation: a novel tool for

efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl. Environ.

Microbiol. 72: 6751-6756.

Bolotin, A., Mauger, S., Malarme, K., Ehrlich, S. D. et Sorokin, A. (1999). Low-redundancy sequencing

of the entire Lactococcus lactis IL1403 genome. Ant. van Leew. 76: 27-76.

Bouguedour, R. (2008). Legislation, enregistrement et procedures de controle des medicaments

veterinaires au Maghreb. Conférence de l’OIE sur les médicaments vétérinaires en Afrique, Dakar, 25-

27 mars 2008.

Bounoua, M. D. (2005). Isolement et préidentification de bactéries lactiques de différents laits de

chamelles du sud Algérien. Mémoire d’ingéniorat d’état, Université d’Oran, Algérie.

Bouziani, I. et Sebaha, F. Z. (2006). Isolement et Identification des bactéries lactiques à partir de Blé

Fermenté : étude Technologique et extraction d’ADN plasmidique. Mémoire d’ingéniorat d’état,

Université de Mostaganem, Algérie.

Bradford, P. (2001). Extended-spectrum betalactamases in the 21st century: characterization,

epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14: 933-951.

Bryskier, A. (1999). Antibiotiques, agents antibactériens et antifongiques. Ellipses Marketing. 1216 p.

Butaye, P., Damme, K. V., Devriese, L. A., Damme, L. V., Baele, M., Lauwers, S. et Haesebrouck, F.

(2000). In vitro susceptibility of Enterococcus faecium isolated from food to growth-promoting and

therapeutic antibiotics. Int. J. Food Microbiol. 54: 181-187.

Caldwell, S. L., McMahon, D. J., Oberg, C. J. et Broadbent, J. R. (1996). Development and

Characterization of Lactose-Positive Pediococcus Species for Milk Fermentation. Appl. Environ.

Microbiol. 62 (3): 936-941.

Page 86: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

78

Cauwerts, K., Pasmans, F., Devriese, L. A., Martel, A., Haesebrouck, F. et Decostere, A. (2006).

Cloacal Lactobacillus isolated from broilers show high prevalence of resistance towards macrolide and

lincosamide antibiotics. Avian Pathol. 35 (2): 160-164.

Cetinkaya, Y., Falk, P. et Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clin. Microbiol.

Rev. 13: 686-707.

Charpentier, E. et Novak, R. (2000). Mort bactérienne et antibiotiques de la famille des bétalactamines.

Méd./sci. 16: 1125-7.

Cheikh, O. A. M. (2008). Résistance et adaptation au sel chez des lactobacilles isolés de lait de chamelle

de Mauritanie. Mémoire d’ingéniorat d’état, Université d’Oran, Algérie.

Chen, Y., Succi, J., Tenover, F. C. et Koehler, T. M. (2003). betalactamases genes of the penicillin

susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 185: 823-830.

Chopra, I. (2001). Glycylcyclines : third-generation tetracycline antibiotics. Curr. Opin. Pharmacol. 1:

464-469.

Chopra, I. et Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular

biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65: 232-260.

Citak, S., Yucel, N. et Orhan, S. (2004). Antibiotic resistance and incidence of Enterococcus species in

Turkish white cheese. Int. J. Dairy Technol. 57: 27.

Clark, N., Olsvik, O., Swensen, J. M., Spiegel, C. A. et Tenover, F. C. (1999). Detection of a

streptomycin adenyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob. Agents Chemother.

43: 157-60.

Clewell, D. B. (1993). Bacterial Sex Pheromone-Induced Plasmid Transfer. Cell. 73 (1): 9-12.

Clewell, D. B. (2005). Antibiotic Resistance Plasmids in Bacteria. Encyclo. life sci., John Wiley and Sons,

Ltd.

Clewell, D. B., Yagi, Y., Dunny, G. M. et Schultz, S. K. (1974). Characterization of three plasmid

deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid

determining erythromycin resistance. J. Bacteriol. 117: 283-289.

Condon, S. (1983). Aerobic metabolism of lactic acid bacteria. Ir. J. Food Sci. Technol. 7: 15-25.

Coppola, R., Succi, M., Tremonte, P., Reale, A., Salzano, G. et Sorrentino, E. (2005). Antibiotic

susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Lait. 85:

193-204.

Coudron, P. E., Moland, E. S. et Thomson, K. S. (2000). Occurrence and detection of AmpC

betalactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at

Veterans Medical Center. J. Clin. Microbiol. 38: 1791-1796.

Courvalin, P., Goldstein, G., Philippon, A. et Sirot, J. (1985). Antibiogramme. MPC Ed. 225-235.

Courvalin, P. (2008). La résistance des bactéries aux antibiotiques: combinaisons de mécanismes

biochimiques et génétiques. Bull. Acad. Vét. (France), tome 161, n°1.

Page 87: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

79

D'Aimmo, M. R., Modesto, M. et Biavati, B. (2007). Antibiotic resistance of lactic acid bacteria and

Bifidobacterium isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115: 35-42.

Dalache, F., Kacem, M. et Karam, N. E. (2003). Antibioresistance of lactic acid bacteria isolated from

cow’s, goat’s, sheep’s and camel’s raw milks of Algeria. Renc. Rech. Ruminants. 10: 231.

Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from

Lactobacillus plantarum 5057 reveals a composite structure. Plasmid. 48: 98-103.

Danielsen, M. et Wind A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food

Microbiol. 82: 1-11.

Davidson, B. E., Kordias, N., Dobos, M. et Hillier A. J. (1996). Genomic organization of lactic acid

bacteria. Ant. van Leeuw. 70 (2-4): 161-183.

Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science. 264: 375-

382.

Davies, J. (1997). Origins, acquisition and dissemination of antibiotic resistance determinants. In

Antibiotic resistance: origins, evolution, selection and spread. pp. 15-27. ed. Chadwick, D. J. et

Goode, J., Ciba Foundation Symposium, vol 207, Wiley, Chichester.

Davies, R. et Roberts, T. A. (1999). Antimicrobial susceptibility of enterococci recovered from

commercial swine carcasses: effect of feed additives. Lett. Appl. Microbiol. 29: 327-333.

Davison, J. (1999). Genetic exchange between bacteria in the environment. Plasmid. 42: 73-91.

De Fabrizio, S. V., Parada, J. L. et Ledford, R. A. (1994). Antibiotic resistance of Lactococcus lactis :

an approach of genetic determinants location through a model system. Microbiol. Aliment. Nutr. 12:

307-315.

Delgado, S. et Mayo, B. (2004). Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus

spp. strains isolated from Northern Spain starter-free farmhouse cheeses. Int. J. Food Microbiol . 90:

309-319.

Delgado, S., Flórez, A. B. et Mayo, B. (2005). Antibiotic susceptibility of Lactobacillus and

Bifidobacterium species from the human gastrointestinal tract. Curr. Microbiol. 50: 202-207.

Dellaglio, F., Dicks, L.M.T. et Torriani, S. (1995). The genus Leuconostoc. In The Genera of Lactic Acid

Bacteria. pp. 235-278. ed. Wood, B. J. B. et Holzapfel,W. H., Blackie Academic & Professional,

London.

Delorme, C. (2008). Safety assessment of dairy microorganisms: Streptococcus thermophilus. . Int. J.

Food Microbiol. 126 : 274-277.

De Man, J. C., Rogosa, M. E. et Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. J.

Appl. Bact. 23: 130-135.

De Roissart, H. et Luquet, F. M. (1994). Bactéries lactiques, I et II. Lorica, France.

Dessart, S. R. et Steenson, L. R. (1991). High frequency intergeneric and intrageneric transfer conjugal

transfer of drug resistance plasmids in Leuconostoc mesenteroides ssp. cremoris. J. Dairy Sci. 74:

2912-2919.

Page 88: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

80

Devirgiliis, C., Caravelli, A., Coppola, D., Barile, S. et Perozzi, G. (2008). Antibiotic resistance and

microbial composition along the manufacturing process of Mozzarella di Bufala Campana. Int. J.

Food Microbiol. 128: 378-384.

Dhar, N. et McKinney, J. D. (2007). Microbial phenotypic heterogeneity and antibiotic tolerance. Curr.

Op. Microbiol. 10: 30-38.

Dias, R. C. S., Borges-Neto, A. A., Ferraiuoli, G. I. D., de-Oliveira, M. P., Riley, L. W. et Moreira, B.

M. (2008). Prevalence of AmpC and other betalactamases in enterobacteria at a large urban university

hospital in Brazil. Diagn. Microbiol. Infect. Dis. 60: 79-87.

Doi, Y. et Paterson, D. L. (2007). Detection of plasmid-mediated class C betalactamases. Int.J. Infect.

Dis.11: 191-197.

Doucet-Populaire, F., Trieu-Cuot, P., Dosbaa, I., Andremont, A. et Courvalin, P. (1991). Inducible

transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in

the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother. 35: 185-187.

Drissi, M. (2008). Etude de la résistance aux antibiotiques de Pseudomonas aeruginosa au niveau du

C.H.U de Tlemcen. Mécanismes de résistance aux bétalactamines. Thèse de doctorat d’état, Université

de Tlemcen, Algérie.

Dyke, K. et Gregory, P. (1997). Resistance to betalactam antibiotics : resistance mediated by

betalactamases. In The Staphylococci in Human Disease. pp. 139-157. ed. Crossley, K. B. et Archer,

G. L., Churchill Livingstone, New York.

Edgar, R. et Bibi, E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an

extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179: 2274-2280.

Elkins, C. A. et Mullis, L. B. (2004). Bile-mediated aminoglycoside sensibility in Lactobacillus species

likely results from increased membrane permeability attributable to cholic acid. Appl. Environ.

Microbiol.70: 7200-7209.

El Zoeiby, A. et Sanschagrin, F. (2003). "Structure and function of the Mur enzymes: development of

novel inhibitors". Mol. Microbiol. 47 (1): 1-12.

Euzéby, P. (2007). Abrégé de Bactériologie Générale et Médicale. Récupéré de

http://www.bacteriologie.net/generale/resistancenaturelle.html

Faure, S. (2009). Transfert d’un gène de résistance aux bétalactamines blaCTX-M-9 entre Salmonella et

les entérobactéries de la flore intestinale humaine : impact d’une antibiothérapie. Thèse de doctorat,

Université de Rennes 1, France.

Feld, L., Bielak, E., Hammer, K. et Wilcks, A. (2009). Characterization of a small erythromicin

resistance plasmid pLFE1 from the food-isolate Lactobacillus plantarum M345. Plasmid. xx: xxx-xxx.

Fitzgerald, G. F. et Gasson, M. J. (1988). In vivo gene transfer systems and transposons. Biochimie. 70:

489-502.

Flórez, A. B., Delgado, S. et Mayo, B. (2005). Antimicrobial susceptibility of lactic acid bacteria isolated

from a cheese environment. Can. J. Microbiol. 51: 51-58.

Page 89: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

81

Flórez, A. B., Ammor, M. S. et Mayo, B. (2008). Identification of tet(M) in two Lactococcus lactis strains

isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of

tetracycline resistance to lactococci and enterococci. Int. J. Food Microbiol. 121: 189-194.

Franz, C. M., Muscholl-Silberhorn, A. B., Yousif, N. M., Vancanneyt, M., Swings, J. et Holzapfel, W.

H. (2001). Incidence of virulence factors and antibiotic resistance among Enterococci isolated from

food. Appl. Environ. Microbiol. 67: 4385-4389.

Franz, C. M. A. P. et Holzapfel, W. H. (2004). The Genus Enterococcus: Biotechnological and Safety

Issues. In Lactic Acid Bacteria : Microbiological and Functional Aspects, 3rd Ed. pp. 199-248. ed.

Salminen, S., Wright, A. et Ouwehand, A., Marcel Dekker Inc, New York.

Garcia-Rodriguez, J. A. et Jones, R. N. (2002). Antimicrobial resistance in Gram negative isolates from

European intensive care units: data from the Meropenem Yearly Susceptibility Test Information

Collection (MYSTIC) programme. J. Chemother. 14: 25-32.

Gasson, M. J. et Fitzgerald, G. F. (1994). Gene transfer systems and transposition. pp. 22. In Genetics

and Biotechnology of Lactic Acid Bacteria. ed. Gasson, M. J. et de Vos, W. M., Blackie Academic &

Professional, London.

Gasson, M. J., Godon, J. J., Pillidge, C. J., Eaton, T. J., Jury, K. et Shearman, C. A. (1995).

Characterization and exploitation of conjugation in Lactococcus lactis. Int. Dairy J. 5: 757-762.

Gevers, D., Danielson, M., Huys, G. et Swings, J. (2003). Molecular characterization of tet (M) genes in

Lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 69:

1270-1275.

Gfeller, K. Y., Roth, M., Meile, L. et Teuber, M. (2003). Sequence and genetic organization of the 19.3-

kb erythromycin and dalfopristin resistance plasmid pLME300 from Lactobacillus fermentum ROT1.

Plasmid. 50: 190-201.

Goossens, H. (2001). MYSTIC program: summary of European data from 1997 to 2000. Diagn. Microbiol.

Infect. Dis. 41: 183-189.

Gupta, P. K. et Mittal, B. K. (1995). Antibiotic sensitivity pattern of various Lactobacilus acidophilus

strains. Indian J. Exp. Biol. 33: 620-621.

Hakenbeck, R., Grebe, T., Zahner, D. et Stock, J. B. (1999). betalactam resistance in Streptococcus

pneumonia : penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol. 33: 673-

678.

Halami, P. M., Chandrashekar, A. et Nand, K. (2000). Lactobacillus farciminis MD, a newer strain with

potential for bacteriocin and antibiotic assay. Lett. Appl. Microbiol. 30: 197-202.

Halley, R. A. et Blaszyk, M. (1998). Antibiotic challenge of meat starter cultures and effects upon

fermentations. Food Res. Int. 30 (1): 513-522.

Hamilton-Miller, J. M. T. et Shah S. (1998). Vancomycin susceptibility as an aid to the identification of

lactobacilli. Lett. Appl. Microbiol. 26: 153-154.

Page 90: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

82

Helmark, S., Hansen, M. E., Jelle, B., Sorensen, K. I. et Jensen, P. R. (2004). Transformation of

Leuconostoc carnosum 4010 and evidence for natural competence of the organism. Appl. Environ.

Microbiol. 70: 3695-3699.

Herreros, M. A., Sandoval, H., González, L., Castro, J. M., Fresno, M. E. et Tornadijo, M. E. (2005).

Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a

spanish goat’s milk cheese). Food Microbiol. 22: 455-459.

Hogg, S. (2005). Essential Microbiology. John Wiley and Sons editions.

Holmes, D. S., et Quigley M. (1981). A rapid boiling method for the preparation of bacterial plasmids.

Anal. Biochem. 114: 193-197.

Holo, H. et Nes I. F. (1989). High-frequency transformation, by electroporation, of Lactococcus lactis

subs. Cremoris growing with glycine in osmotically stabilized medium. Appl. Environ. Microbiol. 55

(12): 3119-3123.

Hols, P., Slos, P., Dutot, P., Reymond, J., Chabot, P., Belplace, B., Delcour, J. et Mercerier, A. (1997).

Efficient secretion of the model antigen M6 GP 41E in Lactobacillus plantarum NCIMB 8826.

Microbiology. 143: 2733-2741.

Hummel, A., Holzapfel, W. H. et Franz, C. M. A. P. (2007). Characterisation and transfer of antibiotic

resistance genes from enterococci isolated from food. Syst. Appl. Microbiol. 30: 1-7.

Huys, G., D’Haene, K. et Swings, J. (2002). Influence of the culture medium on antibiotic susceptibility

testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett. Appl.

Microbiol. 34: 402-406.

Huys, G., D’Haene, K., Collard, J. M. et Swings, J. (2004). Prevalence and molecular characterization of

tetracycline resistance in Enterococcus isolates from food. Appl. Environ. Microbiol. 70: 1555-1562.

Huys, G., D’Haene, K. et Swings, J. (2006). Genetic basis of tetracycline and minocycline resistance in

potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob. Agents Chemother. 50:

1550-1551.

Idoui, T. (2008). Les bactéries lactiques indigènes : isolement, identification et propriétés technologiques.

Effet probiotiques chez le poulet de chair ISA15, le lapin de souche locale et le rat wistar. Thèse de

doctorat d’état, Université d’Oran, Algérie.

Igimi, S., Ryu, C. H., Park, S. H., Sasaki, Y., Sasaki, T. et Kumagai, S. (1996). Transfer of conjugative

plasmid pAM-beta-1 from Lactococcus lactis to mouse intestinal bacteria. Lett. Appl. Microbiol. 23:

31-35.

Jesudason, M. V., Kandathil, A. J. et Belaji, V. (2005). Comparison of two methods to detect

carbapenemases and metallo-betalactamases production in clinical isolates. Indian J. Med. Res. 121:

780-783.

Joset, F., Guespin-Michel, J. (1993). Prokaryotic genetics: génome organization, transfer and

plasticity. Blackwell Pub, Williston, Vermont, USA.

Page 91: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

83

Karam, N-E. (1995). Constitution d'un souchier de bactéries lactiques à intérêt biotechnologique : étude

biochimique et moléculaire. Thèse de doctorat d’état, Université d'Oran, Algérie.

Karam, N-E. et Karam H. (1994). Isolement et caractérisation de bactéries lactiques de laits crus

d'Algérie. In Alimentation, Génétique et Santé de l'enfant. pp. 257-264. ed. Desjeux, J. F. et Touhami

M., l'Harmattan.

Kastner, S., Perreten, V., Bleuler, H., Hugenschmidt, G., Lacroix, C., et Meile, L. (2006). Antibiotic

susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst.

Appl. Microbiol. 29: 145-155.

Kim, K. S., Morrison, J. O. et Bayer, A. S. (1982). Deficient autolytic enzyme activity in antibiotic-

tolerant lactobacilli. Infect. Immun. 36: 582-585.

Klein, G., Pack, A. et Reuter, G. (1998). Antibiotic resistance patterns of enterococci and occurrence of

vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol.

64: 1825-1830.

Knudtson, L. M. et Hartman, P. A. (1993). Antibiotic resistance among enterococcal isoaltes from

environmental and clinical sources. J. Food Protec. 56: 489-492.

Lanka, E. et Wilkins, B. M. (1995). DNA processing reactions in bacterial conjugation. Annu. Rev.

Biochem. 64: 141-169.

Leclercq, R. et Courvalin, P. (1991). Bacterial resistance to macrolide, lincosamide, and streptogramin

antibiotics by target modification. Antimicrob. Agents Chemother. 35: 1267-1272.

Lee, K., Hong, S. G., Park, Y. G., Lee, H. S., Song, W., Jeong, J., Yong, D. et Chong, Y. (2005).

Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC betalactamases

producing isolates of Escherichia coli and Klebsiella pneumonia. Diagn. Microbiol. Infect. Dis. 53:

319-323.

Leroy F. et de Vuyst L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation

industrie. Trends Food Sci. Technol. 15: 67-78.

Levy, S. B. (1992). The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle. Plenum Press,

New York.

Levy, S. B., Marshall, B. (2004). Antibacterial resistance world wide: causes, challenges and responses.

Nat. Med. Rev. 10: S122-S129.

Lopes, M. d. F. S., Ribeiro, T., Martins, M. P., Tenreiro, R. et Crespo, M. T. B. (2003). Gentamicin

resistance in dairy and clinical enterococcal isolates and in reference strains. J. Antimicrob.

Chemother. 52: 214-219.

Luquet, F. M. (1994). Lait et produits laitiers. Tec & Doc, Lavoisier, Paris.

Macrina, F. L., Kopecko, D. J., Jones, K. R., Ayers, D. J. et McCowen S. M. (1978). A multiple

plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules.

Plasmid. 1: 417-420.

Mahillon, J. et Chandler, M. (1998). Insertion séquences. Microbiol. Mol. Biol. Rev. 62: 725-774.

Page 92: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

84

Maietti, L., Bonvini, B., Huys, G. et Giraffa, G. (2007). Incidence of antibiotic resistance and virulence

determinants among Enterococcus italicus isolates from dairy products. Syst. Appl. Microbiol. 30:

509-517.

Materon, I. C., Queenan, A. M., Koehler, T. M., Bush, K. et Palzkill, T. (2003). Biochemical

characterization of betalactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob. Agents

Chemother. 47: 2040-2042.

Mathur, S. et Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria- a review. Int. J. Food

Microbiol. 105: 281– 295.

Mäyra-Mäkinen, A. et Bigret M. (2004). Industrial Use and Production of Lactic Acid Bacteria. In

Lactic Acid Bacteria : Microbiological and Functional Aspects, 3rd Ed. pp. 175-198. ed. Salminen, S.,

Wright, A. et Ouwehand, A., Marcel Dekker Inc, New York.

Mimoz. O. (2003). Impact des résistances bactériennes. Conférences d'actualisation, Elsevier SAS. p. 665-

672.

Ming, L. J. et Epperson, J. D. (2002). Metal binding and structure-activity relationship of the

metalloantibiotic peptide bacitracin. J. Inorg. Biochem. 91 (1): 46-58.

Moland, E. S., Kim, S. Y., Hong, S. G. et Thomson, S. K. (2008). Newer betalactamases: Clinical and

Laboratory Implications, part II. Clin. Microbiol. Newslett. 30 (11): xxx-xxx.

Morelli, L., Sarra, P. G. et Bottazzi, V. (1988). In vivo transfer of pAM-beta-1 from Lactobacillus reuteri

to Enterococcus faecalis. J. Appl. Bact. 65: 371-375.

Morelli, L., Vogensen, F. K. et Wright, A. (2004). Genetics of Lactic Acid Bacteria. In Lactic Acid

Bacteria : Microbiological and Functional Aspects, 3rd Ed. pp. 249-293. ed. Salminen, S., Wright, A.

et Ouwehand, A., Marcel Dekker Inc, New York.

Neve, H., Geis, A. et Teuber, M. (1984). Conjugal transfer and characterization of bacteriocin plasmids in

group N (lactic acid) streptococci. J Bacteriol. 157 (3): 833-858.

Nicklin, J., Graeme-Cook, K., Pafet, T. et Killington, R. (2000). L’essentiel en microbiologie. Berti

editions.

Nissen, H., Holck, A. et Dainty, R. H. (1994). Identification of Carnobacterium spp. and Leuconostoc

spp. in meat by genus-specific 16S rRNA probes. Lett. Appl. Microbiol. 19: 165-168.

Normark, B. H. et Normark, S. (2002). Evolution and spread of antibiotic resistance. J. Intern. Med. 252:

91-106.

O’Connor, E. B., O’Sullivan, O., Stanton, C., Danielsen, M., Simpson, P. J., Callanan, M. J., Ross, R.

P. et Hill, C. (2007). pEOC01: a plasmid from Pediococcus acidilactici which encodes an identical

streptomycin resistance (aadE) gene to that found in Campylobacter jejuni. Plasmid. 58: 115-126.

Ogawara, H. (1981). Antibiotic resistance in pathogenic and producing bacteria with special reference to

betalactam antibiotics. Microbiol. Rev. 45 (4): 591-619.

Ogier, J. C. et Serror, P. (2008). Safety assessment of dairy microorganisms: The Enterococcus genus.

Int. J. Food Microbiol. 126: 291-301.

Page 93: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

85

Ogier, J. C. Casalta, E., Farrokh, C. et Saïhi, A. (2008). Safety assessment of dairy microorganisms :

The Leuconostoc genus. Int. J. Food Microbiol. 126 :286-290.

Olukoya, D. K., Ebigwei, S. I., Adebawo, O. O. et Osiyemi, F. O. (1993). Plasmid profiles and antibiotic

susceptibility patterns of Lactobacillus isolated from fermented foods in Nigeria. Food Microbiol. 10:

279-285.

O’Sullivan D. J. et Klaenhammer, T. R. (1993). Rapid mini-prep isolation of high-quality plasmid DNA

from Lactococcus and Lactobacillus ssp. Appl. Environ. Microbiol. 59 (8): 2730-2733.

Ouoba, L. I. I., Lei, V., Jensen, L. B. (2008). Resistance of potential probiotic lactic acid bacteria and

bifidobacteria of African and European origin to antimicrobials: Determination and transferability of

the resistance genes to other bacteria. Int. J. Food Microbiol. 121: 217-224

Ouwehand, A. C., Salminen, S. et Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Ant.

van Leew. 82: 279-289.

Paquet-Bouchard, C. (2006). Caractérisation moléculaire de la protéine antibiotique P1 du phage AP205.

Maîtrise en microbiologie-immunologie, Université de Laval, Québec.

Perreten, V., Schwarz, F., Cresta, L., Boeglin, M., Dasen, G., Teuber, M. (1997a). Antibiotic resistance

spread in food. Nature. 389: 801-802.

Perreten, V., Kolloffel, B. et Teuber, M. (1997b). Conjugal transfer of the Tn916-like transposon TnFO1

from Enterococcus faecalis isolated from cheese to other Gram-positive bacteria. System Appl.

Microbiol. 20: 27-38.

Perreten, V., Schwarz, F. V., Teuber, M. et Levy, S. B. (2001). Mdt(A), a new efflux protein conferring

multiple antibiotic resistance in Lactococcus lactis and E. coli. Antimicrob. Agents Chemother. 45:

1109-1114.

Petersen, A. et Jensen, L. B. (2004). Analysis of gyrA and parC mutations in enterococci from

environmental samples with reduced susceptibility to ciprofloxacin. FEMS Microbiol. Lett. 231: 73-

76.

Philippon, A. (2006). Antibiotiques I. Cours de Bactériologie Générale. Faculté de Médecine COCHIN-

PORT-ROYAL, Université PARIS V. Récupéré de : http://ufr2.free.fr/d1/10.antibiotiques1. pdf.

Philippon, A. et Arlet, G. (2006). Bétalactamases de bacilles à Gram négatif : le mouvement perpétuel.

Ann. Biol. Clin. 64 (1): 37-51.

Phillips, I., Andrews, J. M., Bridson, E., Cooke, E. M., Spencer, R. C., Holt, H. A., Wise, R., Bint, A.

J., Brown, D. F. J., Greenwood, D., King, A. et Williams, R. J. (1991). A Guide to Sensitivity

Testing. Report of the Working Party on Antibiotic Sensitivity Testing of the British Society for

Antimicrobial Chemotherapy.

Pieboji, J. G. (2007). Caractérisation des bétalactamases et leur inhibition par les extraits de plantes

médicinales. Thèse de doctorat, Université de Liège, Belgique.

Ploy, M. C., Gassama, A., Chainier, D. et Denis, F. (2005). Les intégrons en tant que support génétique

de résistance aux antibiotiques. Immun. Biol. spécial. 20: 343-352.

Page 94: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

86

Podie-Magne N. K. (1999). Evaluation de la sensibilité aux antibiotiques des germes les plus fréquemment

isolés au laboratoire de bactériologie du CNHU de Cotonou. Thèse de doctorat, Université du Mali.

Poole, K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. J. Appl.Microbiol. 92: 55S-

64S.

Poole, K. (2004). Resistance to betalactam antibiotics. Cell. Mol. Life Sci. 61: 2200-2223.

Pot, B. (2008). The taxonomy of lactic acid bacteria. In bactéries lactiques: de la génétique aux ferments.

pp. 1-152. ed. Corrieu G. et Luquet F.M., Tec & Doc, Lavoisier, Paris.

Prescott, L. M., Harley, J.P., Klein, D.A. (2004). Microbiology. McGraw-Hill Higher Education.

Raha, A. R., Ross, E., Yusoff, K., Manap, M. Y. et Ideris, A. (2002). Characterisation and molecular

cloning of an erythromycin resistance plasmid of Lactococcus lactis isolated from chicken cecum. J.

Biochem. Mol. Biol. Biophys. 6: 7-11.

Renault, P. (2008). Génétique des bactéries lactiques. In bactéries lactiques : de la génétique aux ferments.

pp. 153-269. ed. Corrieu G. et Luquet F.M., Tec & Doc, Lavoisier, Paris.

Rixon, J. E. et Warner, P. J. (2003). Introduction: Background, Relevant Genetic Techniques and Terms.

In Lactic acid bacteria: Genetics of Lactic Acid Bacteria. pp. 1-24. ed. Wood, B. J. B. et Warner,P. J.,

vol 3, Kluwer Academic/Plenum Publishers, New York.

Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Rood, J. et Seppala, H. (1999). Nomenclature

for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents

Chemother. 43: 2823-2830.

Rodriguez, C., Alegre, T. et Mesas, J. M. (2007). Optimization of technical conditions for the

transformation of Pediococcus acidilactici P60 by électroporation. Plasmid. 58 (1): 44-50.

Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, R. et Torres, C. (2006).

Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int.

J.Food Microbiol. 111: 234-240.

Russell, A.D. (2002). Antibiotic and biocide resistance in bacteria: Introduction. J. Appl. Microbiol. 92:

1S–3S.

Sambrook, J. et Russel, D.W.(2001). Molecular cloning : a Laboratory Manual. CSHL PRESS, vol 1.

Savard, P. Y. (2008). Caractérisation structurale et dynamique de la bétalactamase TEM-1 de la bactérie

Escherichia coli par RMN liquide. Thèse de Doctorat, Université de Laval, Québec.

Schleifer, K. H. et Ludwig. W. (1995). Phylogeny of the genus Lactobacillus and related genera. System.

Appl. Microbial. 18: 461- 467.

Schmitz, F. J., Sadurski, R., Kray, A., Boos, M., Geisel, R., Kohrer, K., Verhoef, J. et Fluit, A. C.

(2000). Prevalence of macrolide resistance genes in Staphylococcus aureus and Enterococcus faecium

isolates from 24 European University hospitals. J. Antimicrob. Chemother. 45: 891-894.

Schnellmann, C., Gerber, V., Rossano, A., Jaquier, V., Panchaud, Y., Doherr, M. G., Thomann, A.,

Straub, R. et Perreten, V. (2006). Presence of new mecA and mph(C) variants conferring antibiotic

Page 95: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

87

resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J.

Clin. Microbiol. 44: 4444-4454.

Schwarz, F. V., Perreten, V. et Teuber, M. (2001). Sequence of the 50-kb conjugative multiresistance

plasmid pRE25 from Enterococcus faecalis RE25. Plasmid. 46: 170–187.

Scott, K. P. (2002). The role of conjugative transposons in spreading antibiotic resistance between bacteria

that inhabit the gastrointestinal tract. Cell. Mol. Life. Sci. 59: 2071–2082.

Serror, P., Sasaki, T., Elilich, D. et Magin, E. (2002). Electrotransformation of Lactobacillus delbrueckii

subsp bulgaricus and Lactobacillus delbrueckii subsp lactis with various plasmids. Appl. Environ.

Microbiol. 68 (1): 46-52.

Shaw, K. J., Rather P. N., Hare R. S. et Miller G. H. (1993). Molecular genetics of aminoglycoside

résistance genes and familial relationships of the aminoglycoside-modifying enzymes.

Microbiol. Rev. 57: 138-63.

Simpson, W. J., Hammond, J. R. M. et Miller, R. B. (1988). Avoparcin and vancomycin - useful

antibiotics for the isolation of brewery lactic acid bacteria. J. Appl. Bact. 64: 299-309.

Slover, C. M., Danziger, L. (2008). Lactobacillus: a Review. Clin. Microbiol. Newslett. 30 (4): 23-27.

Smith, M. C. et Murray, B. E. (1992). Comparison of enterococcal and staphylococcal betalactamase

encoding fragments. Antimicrob. Agents Chemother. 36: 273-276.

Stiles, M. E., Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. Int. J.

Food Microbiol. 36: 1-29.

Sundin, D. R. (2009). Hidden Betalactamases in the Enterobacteriaceae: dropping the Extra Disks for

Detection, part II. Clin. Microbiol. Newslett. 31 (7): xxx-xxx.

Swenson, J. M., Facklam, R. R. et Thornsberry, C. (1990). Antimicrobial susceptibility of vancomycin-

resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrob. Agents Chemother. 34:

543-549.

Tarzaali, D., Dechicha, A., Gharbi, S., Bouaissa, M. K., Yamnaine, N. et Guetarni, D. (2008).

Recherche des résidus des tétracyclines et des bétalactamines dans le lait cru par le MRL Test (ROSA

TEST). 6ème journées des Sciences Vétérinaires, Ecole Nationale Vétérinaire d’El-Harrach, Alger, 19-

20 avril 2008.

Temmerman, R., Pot, B., Huys, G. et Swings, J. (2002). Identification and antibiotic susceptibility of

bacterial isolates from probiotic products. Int. J. Food Microbiol. 81: 1-10.

Tenover, F. C. (2006). Mechanisms of Antimicrobial Resistance in Bacteria. Amerian J. Med. 119 (6A):

S3-S10.

Teuber, M., Meile, L. et Schwarz, F. (1999). Acquired antibiotic resistance in lactic acid bacteria from

food. Ant. van Leew. 76: 115-137.

Teuber, M. (2001). Veterinary use and antibiotic resistance. Curr. Op. Microbiol. 4: 493-499.

Page 96: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

88

Toomey, N., Bolton, D. et Fanning, S. (2010). Characterisation and transferability of antibiotic resistance

genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res. Microbiol. 161: 127-

135.

Tremblay, S. (2007). Etude moléculaire du recrutement des gènes de résistance aux antibiotiques.

Mémoire de maître es sciences (M.Se.), Université de Laval, Québec.

Tsuda, H. et Yamashita, Y. (2002). Genes involved in bacitracin resistance in Streptococcus mutans.

Antimicrob. Agents Chemother. 46 (12): 3756-64.

Valenzuela, A. S., ben Omar, N., Abriouel, H., López, R. L., Veljovic, K., Cañamero, M. M.,

Topisirovic, M. K. L. et Gálvez, A. (2009). Virulence factors, antibiotic resistance, and bacteriocins

in enterococci from artisan foods of animal origin. Food Contr. 20: 381-385.

van Veen, H. W., Putman, M., Margolles, A., Sakamoto, K. et Konings, W. N. (1999). Structure-

function analysis of multidrug transporters in Lactococcus lactis. Biochim. Biophys. Acta. 1461: 201-

206.

Vescovo, M., Morelli, L. et Bottazzi, V. (1982). Drug resistance plasmids in Lactobacillus acidophilus

and Lactobacillus reuteri. Appl. Environ. Microbiol. 43: 50-56.

Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature. 406 (6797):

775-81.

Walsh, C. (2003). Natural and produced immunity versus acquired resistance. In Antibiotics: actions,

origins, resistance. pp. 91-106. ed. ASM Press, Washington.

Walther, C. et Perreten, V. (2007). Methicillin-resistant Staphylococcus epidermidis in organic milk

production. J. Dairy Sci. 90: 5351.

Walther, C., Rossano, A., Thomann, A. et Perreten, V. (2008). Antibiotic resistance in Lactococcus

species from bovine milk: Presence of a mutated multidrug transporter mdt(A) gene in susceptible

Lactococcus garvieae strains. Vet. Microbiol. 131: 348-357.

Walther-Rasmussen, J. et Hoiby, N. (2002). Plasmid-born AmpC betalactamases. Can. J. Microbiol. 48:

479-493.

Wegener, H.C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin.

Microbiol. 6: 439-445.

Wessels, S., Axelsson, L., Bech Hansen, E., De Vuyst, L., Laulund, S., Lahteenmaki, L., Lindgren,

S., Mollet, B., Salminen, S. et Wright, A. (2004). The lactic acid bacteria, the food chain, and their

regulation. Trends Food Sci. Technol. 15: 498-505.

Witte, W. (1997). Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in

humans. In Antibiotic resistance: origins, evolution, selection and spread. pp. 61-75. ed. Chadwick, D.

J. et Goode, J., Ciba Foundation Symposium, vol 207, Wiley, Chichester.

Witte, W. (2000). Ecological impact of antibiotic use in animals on different complex microflora :

environment. Int. J. Antimicrob. Agents. 14: 321-325.

Woese, C. R. (1987). Bacterial evolution. Microbiol. Rev. 51: 221-271.

Page 97: Université d’ORAN Faculté des Sciences Département de ...

RRééfféérreenncceess bbiibbll iiooggrraapphhiiqquueess

89

Wright, G. D. (2003). Mechanisms of resistance to antibiotics. Cur. Op. Chem. Biol. 7: 563-569.

Yala M., Mered, A. S., Mohamdi, D. et Ouar Korich, M. N. (2001). Classification et modes d’action des

antibiotiques. Méd. Maghreb. 91: 13-14.

Yong, D., Park, R., Yum, J. H., Lee, K., Choi, E. C. et Chong, Y. (2002). Further modification of the

Hodge test to screen AmpC betalactamase (CMY-1)-producing strains of Escherichia coli and

Klebsiella pneumonia. J.Microbiol. Methods. 51: 407-410.

Zarazaga, M., Sáenz, Y., Portillo, A., Tenorio, C., Ruiz-Larrea, F., Del Campo, R., Baquero, F. et

Torres, C. (1999). In vitro activities of ketolide HMR3647, macrolides, and other antibiotics against

Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicrob. Agents Chemother. 43: 3039-3041.

Zeghilet, N. (2009). Optimisation des paramètres de détection et de quantification des résidus

d’antibiotiques dans la viande blanche par chromatographie liquide haute performance (HPLC).

Mémoire de magister, Université de Constantine, Algérie.

Ziane, M. (2008). Antibiorésistance et transferts horizontaux de plasmides chez les bactéries lactiques

indigènes. Mémoire de magister, Université d’Oran, Algérie.

Zomahoun, C.I.N.P. (2005). Evaluation de la sensibilité aux antibiotiques des bactéries isolées des

infections urinaires au laboratoire de bactériologie du centre national hospitalier universitaire-Hubert

Koutoukou Maga (C.N.H.U.H.K.M.). Thèse de doctorat d’état, Université du Mali.

Page 98: Université d’ORAN Faculté des Sciences Département de ...
Page 99: Université d’ORAN Faculté des Sciences Département de ...

AAnnnneexxee

91

Annexe : Principales classes d’antibiotiques et leurs spectres d’activité (Zomahoun, 2005 ;

Euzéby, 2007)

Familles ou molécules non classées

(Modes d'action)

Principaux groupes ou molécules Spectre

Acide fusidique

(Inhibition de la synthèse

des protéines)

Acide fusidique

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Aminosides ou

aminoglycosides

(Inhibition de la synthèse

des protéines)

Amikacine, Apramycine,

Gentamicine, Kanamycine,

Néomycine, Streptomycine,

Tobramycine

Large (sauf bactéries

anaérobies).

Bétalactamines (Inhibition de la synthèse du peptidoglycane)

Groupe de la pénicilline G :

Pénicilline G, Pénicilline V

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Pénicillines antistaphylococciques :

Oxacilline, Cloxacilline,

Dicloxacilline, Méticilline

Étroit (identique à celui de

la pénicilline G).

Aminopénicillines : Amoxicilline,

Ampicilline, Epicilline Large

Carboxypénicillines :

Carbénicilline, Carfécilline,

Ticarcilline

Large

Uréido-pénicillines : Azlocilline,

Mezlocilline, Pipéracilline Large

Carbapenems : Imipéneme Large

Oxapenams : Acide clavulanique (associé à l’amoxicilline ou à la ticarcilline), Tazobactam (associé à la pipéracilline), Sulbactam ( associé à l’ampicilline).

Inhibiteurs de

bétalactamases utilisés en

association avec une autre

bétalactamine).

Page 100: Université d’ORAN Faculté des Sciences Département de ...

AAnnnneexxee

92

Annexe (suite 1) : Principales classes d’antibiotiques et leurs spectres d’activité (Zomahoun,

2005 ; Euzéby, 2007)

Familles ou molécules non classées

(Modes d'action)

Principaux groupes ou molécules Spectre

Bétalactamines (Inhibition de la synthèse du peptidoglycane)

Monobactams : Aztréonam Étroit (bacilles à Gram

négatif)

Céphalosporines de 1ère

génération : Céfazoline, Céfalexine,

Céfaloridine, Céfalotine

Large

Céphalosporines de 2ème

génération : Céfoxitine,

Céfamandole, Céfotétan, Céfuroxime

Large

Céphalosporines de 3ème

génération : Céfotaxime,

Ceftazidime, Ceftizoxime,

Ceftriaxone

Large

Autres céphalosporines : Céfixime,

Céfalonium, Céfopérazone,

Cefsulodine, Cefquinome

Large

Diaminopyrimidines

(Blocage de la synthèse de

l'acide folique)

Baquiloprim, Triméthoprime Large

Fosfomycine

(Inhibition de la synthèse

du peptidoglycane)

Fosfomycine Large

Glycopeptides

(Inhibition de la synthèse

du peptidoglycane)

Teicoplanine, Vancomycine Étroit (bactéries à Gram

positif)

Page 101: Université d’ORAN Faculté des Sciences Département de ...

AAnnnneexxee

93

Annexe (suite 2) : Principales classes d’antibiotiques et leurs spectres d’activité (Zomahoun,

2005 ; Euzéby, 2007)

Familles ou molécules non classées

(Modes d'action)

Principaux groupes ou molécules Spectre

Polypeptides

(Action sur la membrane

externe et/ou sur la

membrane cytoplasmique

des bactéries)

Polymyxine B, Colistine

Étroit (bacilles à Gram

négatif)

Bacitracine, Gramicidine, Tyrocidine Étroit (bactéries à Gram

positif)

Quinolones et

Fluoroquinolones

(Inhibition de la synthèse

de l'ADN)

Quinolones de première

génération : Acide nalidixique,

Acide oxolinique, Acide

pipémidique, Fluméquine

Étroit (bacilles à Gram

négatif)

Fluoroquinolones : Norfloxacine,

Ofloxacine, Ciprofloxacine,

Énoxacine, Difloxacine,

Enrofloxacine,

Large

Sulfamides

(Blocage de la synthèse de

l'acide folique)

Sulfadiazine, Sulfadimérazine,

Sulfadiméthoxine, Sulfadoxine,

Sulfaméthoxazole

Large

Streptogramines ou

synergistines

(Inhibition de la synthèse

des protéines)

Pristinamycine, Virginiamycine,

Synercid

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Tétracyclines

(Inhibition de la synthèse

des protéines)

Tétracycline, Chlortétracycline,

Oxytétracycline, Doxycycline,

Lymécycline, Minocycline

Large

Rifamycines (Ansamycines) (Blocage de la synthèse des ARN-messagers)

Rifamycine SV, Rifaximine Étroit

Rifampicine Large

Page 102: Université d’ORAN Faculté des Sciences Département de ...

AAnnnneexxee

94

Annexe (suite 3) : Principales classes d’antibiotiques et leurs spectres d’activité (Zomahoun,

2005 ; Euzéby, 2007)

Familles ou molécules non classées

(Modes d'action)

Principaux groupes ou molécules Spectre

Imidazolés

(Coupure des brins d'ADN

et déroulement de l'ADN)

Métronidazole, Ornidazole Étroit (bactéries anaérobies

strictes)

Lincosamides

(Inhibition de la synthèse

des protéines)

Clindamycine, Lincomycine

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Macrolides

(Inhibition de la synthèse

des protéines)

Érythromycine, Spiramycine,

Azithromycine, Clarithromycine,

Josamycine, Midécamycine,

Roxithromycine, Tylosine

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Nitrofuranes

(Inhibition de la synthèse

de l'ADN)

Nitrofurantoïne, Nitrofurazone,

Furazolidone, Nifuroxazide Large

Novobiocine

(Inhibition de la

réplication de l'ADN)

Novobiocine

Étroit (coques et bacilles à

Gram positif, coques à Gram

négatif)

Oxazolidinones

(Inhibition de la

synthèse des protéines)

Linezolid Large

Phénicolés

(Inhibition de la synthèse

des protéines)

Chloramphénicol, Florfénicol,

Thiamphénicol Large

Page 103: Université d’ORAN Faculté des Sciences Département de ...

ملخص ينتمون لسبعة مضاد حيوي 25لة ضد س* 83تم تجريب لمضادات الحيوية،اللبن لظاھرة مقاومة بكتيريا من أجل دراسة

، تم بعد ذلك . من ھذه الس*Bت 16عند من ھذه الجزيئات لأربعة ) CMI(ة مثبطالتركيزات ا:دنى ثم تم قياس العائ*ت مختلفة وذلك عند tétracyclineجينات مقاومة تكون حاملة لقد التی ات وجود الب*زميدعن و betalactamase نشاطالبحث عن ال

.، على التوالي tétracyclineلو bétalactaminesللكثير من متھا مقاوأظھرت س*Bت التي بعض الالتي س لأجناأساسا حسب اكانت متنوعة وذلك أنماط مقاومة ھذه الس*Bت للمضادات الحيوية المحصل عليھا بينت بأن النتائج

. betalactamasesمنتجة ل أيضا ھي متعددة ؛ بعض ھذه الس*Bت مات مقاوا منھا أظھرت كثيرو بأن ، لھاتنتمي إليھا وأصو bétalactamines )pénicilline G بالنسبة Vثنين من ml\µg200إلى 0،5في نطاق CMI، قدرت قيم باVضافة إلى ذلكamoxicilline, ( إلى أكثر من 8وحوالي ml\µg200 لérythromycine و tétracycline . ت المقاومة منB*بين الس

.tétracyclineجينات مقاومة تكون حاملة لب*زميدات قد تملك للمضاد الحيوي ا:خير، ث*ثة ، ب*زميدات ، CMI ،betalactamases، ، مضادات حيويةاللبنلمضادات الحيوية، بكتيريا امقاومة : الكلمات المفاتيح

tetracyclin.

Résumé

Dans le but d’étudier le phénomène d’antibiorésistance chez des bactéries lactiques autochtones, 83 souches ont été affrontées à 25 antibiotiques de 7 familles différentes puis les concentrations minimales inhibitrices (CMI) de 4 de ces molécules ont été mesurées chez 16 de ces souches. L’activité bétalactamase et la présence de plasmides susceptibles de porter des gènes de résistance à la tétracycline ont été recherchées chez les souches résistantes à un grand nombre de bétalactamines et à la tétracycline, respectivement. Les résultats obtenus ont montré que ces souches ont des profils d’antibiorésistance variés qui dépendent principalement des genres auxquels elles appartiennent et de leurs origines, et qu’un grand nombre d’entres elles présentent des multirésistances ; certaines de ces souches sont également productrices de bétalactamases. Par ailleurs, les valeurs de CMI estimées étaient de l'ordre de 0,5 à plus de 200µg/ml pour deux bétalactamines (pénicilline G, amoxicilline) et d’à peu près 8 à plus de 200µg/ml pour l'érythromycine et la tétracycline. Parmi les souches résistantes à ce dernier antibiotique, trois hébergent également des plasmides susceptibles d’être porteurs de gènes de résistance à cette molécule. Mots clés : antibiorésistance, bactéries lactiques, antibiotiques, CMI, bétalactamases, plasmides, tétracycline.

Abstract

In order to study the phenomenon of antibiotic resistance in indigenous lactic acid bacteria, 83 strains were tested against 25 antibiotics of 7 different antibiotic families’, then minimal inhibitory concentrations (MIC) of 4 of these molecules were measured for 16 of these strains. The betalactamase activity and the presence of plasmids carrying tetracycline resistance genes were investigated in some strains that were resistant to many betalactams and to tetracycline, respectively. The results showed that these strains had different antibiotic resistance profiles relaying primarily on genus to which they belong and on their origins, and that many of them exhibit multidrug resistance ; some of these strains are also producers of betalactamases. In addition, estimated MIC values were in the range of 0.5 to 200µg/ml for two betalactams (penicillin G, amoxicillin) and about 8 to more than 200µg/ml for erythromycin and tetracycline. Among strains resistant to the last antibiotic, three host also plasmids that may carry tetracycline resistance genes. Key words : antibiotic resistance, lactic acid bacteria, antibiotics, MIC, betalactamases, plasmids, tetracycline.