SICODYN : benchmark pour l’évaluation du calcul … : benchmark pour l’évaluation du calcul...

22
SICODYN : benchmark pour l’évaluation du calcul dynamique et du recalage sur une structure industrielle Sylvie AUDEBERT, Charles BODEL EDF R&D Acoustics and Mechanical Analyses Department

Transcript of SICODYN : benchmark pour l’évaluation du calcul … : benchmark pour l’évaluation du calcul...

SICODYN : benchmark pour l’évaluation du calcul dynamique et du recalage sur une structure

industrielle

Sylvie AUDEBERT, Charles BODEL

EDF R&D

Acoustics and Mechanical AnalysesDepartment

2 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

Outline

1. SICODYN benchmark definitionObjectivesWhat type of demonstrator ?Methodology

2. Total variability of numerical predictions in blind conditionsModal characteristics on pump components

3. Parametrical study on boundary conditions4. Measurement uncertainty

2 identical modal analyses on a pump componentModal analyses on the pump assembly with different boundary conditions

5. Numerical-experimental correlationModal characteristics on a pump componentModal characteristics on pump assemblyExample of updating results

6. Conclusion – Further works

3 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

Benchmark objectives

Quantify the credibility of numerical predictions in structure dynamics

Observe the total variability of numerical predictions in blind conditionsMeasure the robustness to variability, uncertainty and lack of knowledge

Quantify the measurement uncertainty

Measure the fidelity of numerical predictions to test dataMeasure the improvement of numerical models using experimental data

Duration: years 2008 to 2010

4 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

What sort of demonstrator ?

Academical test � NONo experimental measurements, but a validation environment represented by the variation of input parameters

Ex: The Validation Challenge Workshop, 22-23 May 2006, Albuquerque, New Mexico

Organised by Sandia National Laboratories

Laboratory device � NOSimplification of an industrial structure regarding the geometry, the physical and the environmental complexity

Ex: SMART CEA-EDF benchmark

Industrial structure with fixed common parameters � NOCommon material characteristics, boundary conditions,…

Industrial structure in real simulation contextA typical industrial study with some unknown input data

Basic asumption: linear behaviour

5 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

Target structure

Characteristics

Industrial (or quasi) complex structureAssembly of several sub-structures (bolted, riveted…)Considered in its environmentExcitation possibly unknown

Constraints

Availibility of plans or computer-aided designed, autorisation to disclose them to participantsPossibility to measure in stationary or in operating conditionsPossibility to partially dismount and reassembly the structureLimited time to elaborate the finite element model

6 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

The chosen demonstrator

The SULZER one-stage horizontal Booster pump

The CAD model pump assembly

7 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

EDF’s interest

Until now: EDF demanded pump manufacturers to ensure that shaft critical speeds are not near the nominal rotating speed �simulations only relative to the shaft dynamic behaviourNew item in EDF technical specifications for pumps:For certain types of pumps, statoric part resonances too must not be near the rotating frequency � simulations not usualConsequence: EDF and manufacturers must get confident pump models

8 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

List of partners (16)

INSA Lyon

FEMTO Besançon

CETIM Senlis

PHIMECA Engineering

SAMTECH

VIBRATEC

EDF R&D

(SULZER Pumps France)

ILM Technology

Ecole Polytechnique de Lausanne (Switzerland)

Bristol University (United Kingdom)

Politecnico di Milano (Italy)

Gologanu (Roumania)

MSO Industrial (Colombia)

PIKITAN (Spain)

CAEnable (USA)

Delft University (The Netherlands)

9 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

1. SICODYN benchmark definition

Hierarchical process

Geometrical / Physical complexity

Environ-mental com-plexity

Free-free separate component

Free-free pair of components

Free-free assembled pump

Non-connected pump fixed in concrete

Pump fixed and connected to pipes and other pump

Modal and response analyses

Pump in operating conditions

10 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

The 8 main pump components

1-shaft

3-bearing support2-bearing casing 4-cooling flange

frame5-pump casing

7-elbow

6-Suction flange

11 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

2. Total variability of numerical predictions in bl ind conditions

Variability of separate pump component eigenfrequencies

1 3 5 7 9

0

5

10

15

Mean frequency

gap (%)

Mode number

Steel pump components

suction flangepump casingelbowshaftframe

1 3 5 7 9

0

5

10

15

Mean frequency

gap (%)

Mode number

Cast iron pump components

bearing supportbearing casingcooling flange

Steel pump components

2% variability on Young’s modulus

5% mean variability on eigenfrequency values

Cast iron pump components

20% variability on Young’s modulus

11% mean variability oneigenfrequency values

12 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

3. Parametrical study on boundary conditions

Parametrical analysis on the clamped boundary condition

Configuration 1: frame completly fixed in concrete

Configuration 2: frame partially fixed in concrete

deux rangés de nœuds où les condd’encastrement ont été appliquées

13 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

Representation of connections between pump components

Bolted assembly: rigid connections via rigid relationships, elements or sticked surfaces

Ball and hydrodynamic bearings: estimated radial and axial stiffnesses

14 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

4. Measurement uncertainty

Focus on: variability between two measurementsExample : pump casing

One modal analysis in 2009, the other one in 2010 at Sulzer Service in Velaux (Marseille)

Same methods and means of measurementsTwo operators and two different structures

Outstanding conclusionsAbility to pair modes from each experiment

Frequency shift: max 3%

BUT: maximum MAC between pairs is lower than 60%

Ecart frequentiel relatif

0

0,5

1

1,5

2

2,5

3

3,5

452 508 728 787 912 961

Fréquences des modes (2009)

Eca

rt fré

quen

tiel (

%)

15 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

4. Measurement uncertainty

Focus on: pump connected to pipesModal analysis is more difficult to do

Modal sum:

Correlation is OK for first mode

But more difficult on other shapes

-1,00E-03

1,00E-03

3,00E-03

5,00E-03

7,00E-03

9,00E-03

0,00 50,00 100,00 150,00 200,00 250,00 300,00

Pompe couplée

Pompe non couplée

64,526 Hz

72,980 Hz

126,168 Hz

133,672 Hz

142,417 Hz

192,093 Hz

239,533 Hz

243,886 Hz

268,834 Hz

76,8

09 H

z

134,3

59 H

z

197

,521

Hz

161,9

64 H

z

211,8

91 H

z

233,4

05 H

z

25

1,1

90 H

z

0

10

20

30

40

50

60

70

80

90

100

MAC modes couplés / modes non couplés

16 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

5. Numerical-experimental correlation

Experimental-numerical comparison of separate compo nent modal analyses:

the pump casing example

1 3 5 7 9

-0,3

-0,2

-0,1

0

0,1

0,2

Frequency error

Mode number

Partner 1Partner 2Partner 3Partner 4Partner 5Partner 6Partner 7Partner 8

0200400600800

1000120014001600

1 2 3 4 5 6 7 8 9 10

Mode number

Min

., M

ax.,

Exp

. F

requ

ency

(H

z)

00,10,20,30,40,50,60,70,8

1 2 3 4

Mode number

MA

C

17 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

5. Numerical-experimental correlation

Bearing support

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Mode number

Min

., M

ax.,

Exp

. F

requ

ency

(H

z)

1 3 5 7 9 11S1

S6-0,3

-0,2

-0,1

0

0,1

0,2

Frequency error

Mode number

Participant

3rd experimental mode missing

Experimental values between min-max numerical values

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Mode number

Fre

quen

cy (

Hz)

Série1Série2Série3Série4Série5Série6Série7Série8

18 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

5. Numerical-experimental correlation

Pump assembly: numerical-experimental correlation

Torsion around x axis

162 Hz194 Hz208 Hz62 Hz170 Hz

Flexion along x transversal axis

134 Hz178 Hz146 Hz92 Hz

Flexion along z longitudinalaxis

77 Hz103 Hz111 Hz45 Hz90 Hz

Flexion of the pump casing

Non identified

mode

91 Hz109 Hz

19 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

5. Numerical-experimental correlation

Example of updating results for the pump casing component

0200400600800

100012001400

1 2 3 4 5 6 7

Mode number

Fre

quen

cy (

Hz)

initialupdatedexperiment

4.01.57

1.4-1.16

2.50.05

1.9-0.64

-9.1-11.33

-0.3-2.82

0.4-2.01

updatedinitialMode

Frequency error (%)

1 2 3 4 5 6 7 8S1

S50

0,1

0,2

0,3

0,4

0,5

0,6

MAC number

Numerical mode number

Experimental mode number

Young’s modulus: 2.0E+11 � 2.1E+11

Density: 7800 kg/m3 unchanged

Poisson’s coefficient: 0.3 unchanged

20 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

Purpose for a comparative and updating process

Compare numerical results Compare experimental results

Participant 1 Participant 2 Participant n

Numerical variability

•Conceptual modeling

•Mathematical modeling

•Model parameters, input data

•Discretisation

•Software, numerical methods

Measurement 1 Measurement 2

Experimental variability

•Measurement system

•Identification process

•Realisation (identicalstructures, systems modified after a partial dismount/reassembly)

Compare numerical-experimental results

Fidelity to test data

21 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

6. Conclusion

Conclusion on reliability on modal models of sub-structures

Numerical aspectsNarrow numerical variability on eigenmodes

Numerical-experimental correlationBlind simulations

– Experimental eigenfrequency values are within the min.-max. numerical eigenfrequencyvalue interval

– Modeshape correlation not quite satisfactory (based on MAC criterion)

Updated simulationsImprovement of the eigenfrequency values, but MAC inchanged

Ability of numerical models to accuratly predict the global modal behaviour of a complex structureIs the updating of the sub-structure model parameters necessary to increase the reliability of the built-up structure ?

22 - congrès NAFEMS France, 12-13 octobre 2010, Paris -

6. Conclusion

Questions to be pointed out

Can a purely blind numerical model accuratly represent the dynamical behaviour of a built-up structure in its environment ?

What are the relative parts of the modeling error and the parametrical error ?Can a parameter updating compensate the modeling error ?

What parameter variations are acceptable, in order to obtain an admissible numerical model (i.e. which intercepts the experimental set of output data) ?

What are the minimal adequate experimental measurements necessary to obtain a confident model ?

What necessary measurements, function of the final use of the numerical model ?

What modelisation points to first improve (connectionrepresentations, boundary conditions, sub-structure models)?