rcc-lec-01

download rcc-lec-01

of 59

Transcript of rcc-lec-01

  • 7/27/2019 rcc-lec-01

    1/59

    1

  • 7/27/2019 rcc-lec-01

    2/59

    By

    Dr. Attaullah Shah

    Swedish College of Engineering and TechnologyWah Cantt.

    CE-401

    Reinforced Concrete Design-II

  • 7/27/2019 rcc-lec-01

    3/59

    Course Outline:

    Analysis & design of axially loaded columns, Eccentrically

    loaded columns by USD

    Analysis & design of strip footing for wall, spread footings

    for columns and combined footings by USD.

    Design of retaining wall. Introduction to limit states.

    Detailing of reinforcement.

    Introduction to design of staircases and water tanks.

  • 7/27/2019 rcc-lec-01

    4/59

    Columns subjected to eccentric loadings

  • 7/27/2019 rcc-lec-01

    5/59

  • 7/27/2019 rcc-lec-01

    6/59

    Eccentric Compression

  • 7/27/2019 rcc-lec-01

    7/59

  • 7/27/2019 rcc-lec-01

    8/59

  • 7/27/2019 rcc-lec-01

    9/59

    Interaction diagrams of combined bending and compression

  • 7/27/2019 rcc-lec-01

    10/59

  • 7/27/2019 rcc-lec-01

    11/59

  • 7/27/2019 rcc-lec-01

    12/59

    Behavior under Combined Bending

    and Axial Loads

    Interaction Diagram Between Axial Load and Moment

    ( Failure Envelope )

    Concrete crushes

    before steel yields

    Steel yields before concrete

    crushes

    Any combination of P and M outside the envelope will cause failure.

    Note:

  • 7/27/2019 rcc-lec-01

    13/59

    Behavior under Combined Bending and

    Axial Loads

    Axial Load and Moment Interaction DiagramGeneral

  • 7/27/2019 rcc-lec-01

    14/59

    Behavior under Combined

    Bend ing and Axial LoadsResultant Forces action at Centroid

    ( h/2 in this case )

    s2

    positiveisncompressiocs1n

    TCCP

    Moment about geometric center

    2*

    22*

    2* 2s2c1s1n

    hdT

    ahCd

    hCM

  • 7/27/2019 rcc-lec-01

    15/59

    Columns in Pure Tens ion

    Section is completely cracked (no concrete

    axial capacity)

    Uniform Strainy

    N

    1ii

    sytensionn AfP

  • 7/27/2019 rcc-lec-01

    16/59

    Columns

    Strength Reduction Factor, f (ACI Code 9.3.2)

    Axial tension, and axial tension with flexure.

    f = 0.9

    Axial compression and axial compression with

    flexure.

    Members with spiral reinforcement confirmingto 10.9.3 f 0.70

    Other reinforced members f 0.65

    (a)

    (b)

  • 7/27/2019 rcc-lec-01

    17/59

    Columns

    Except for low values of axial compression, f may be

    increased as follows:

    when and reinforcement is symmetric

    and

    ds = distance from extreme tension fiber to centroid of

    tension reinforcement.

    Then f may be increased linearly to 0.9 as fPn

    decreases from 0.10fc Ag to zero.

    psi000,60y f

    70.0

    s

    h

    ddh

  • 7/27/2019 rcc-lec-01

    18/59

    Column

  • 7/27/2019 rcc-lec-01

    19/59

    Columns

    Commentary:

    Other sections:

    f may be increased linearly to 0.9 as thestrain s increase in the tension steel. fPb

    D i f C bi d B d i d

  • 7/27/2019 rcc-lec-01

    20/59

    Design fo r Combined Bend ing and

    Axial Load (Sho rt Column)

    Design - select cross-section and reinforcement

    to resist axial load and moment.

    D i f C bi d B d i d

  • 7/27/2019 rcc-lec-01

    21/59

    Design fo r Combined Bend ing and

    Axial Load (Sho rt Column)

    Column Types

    Spiral Column - more efficient for e/h < 0.1,

    but forming and spiral expensive

    Tied Column - Bars in four faces used when

    e/h < 0.2 and for biaxial bending

    1)

    2)

  • 7/27/2019 rcc-lec-01

    22/59

    General Procedure

    The interaction diagram for a column is

    constructed using a series of values for Pn and

    Mn. The plot shows the outside envelope of theproblem.

    G l P d f

  • 7/27/2019 rcc-lec-01

    23/59

    General Procedure fo r

    Cons truct ion of ID

    Compute P0 and determine maximum Pn in compression

    Select a c value (multiple values)

    Calculate the stress in the steel components.

    Calculate the forces in the steel andconcrete,Cc, Cs1 and Ts.

    Determine Pn value.

    Compute the Mn about the center.

    Compute moment arm,e = Mn / Pn.

    G l P d f

  • 7/27/2019 rcc-lec-01

    24/59

    General Procedure fo r

    Construct ion of ID

    Repeat with series of c values (10) to obtain a series of values.

    Obtain the maximum tension value.

    Plot Pn verse Mn.

    Determine fPn and fMn.

    Find the maximum compression level.

    Find the f will vary linearly from 0.65 to 0.9for the strain values

    The tension component will be f = 0.9

  • 7/27/2019 rcc-lec-01

    25/59

    Example: Ax ial Load vs . Moment

    In terac t ion DiagramConsider an square column (20 in x 20 in.) with 8 #10

    (r = 0.0254) and fc = 4 ksi and fy = 60 ksi. Draw the

    interaction diagram.

  • 7/27/2019 rcc-lec-01

    26/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramGiven 8 # 10 (1.27 in2) and fc = 4 ksi and fy = 60 ksi

    2 2st

    2 2

    g

    2

    st

    2

    g

    8 1.27 in 10.16 in

    20 in. 400 in

    10.16 in 0.0254400 in

    A

    A

    AA

    r

  • 7/27/2019 rcc-lec-01

    27/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramGiven 8 # 10 (1.27 in2) and fc = 4 ksi and fy = 60 ksi

    0 c g st y st

    2 2

    2

    0.85

    0.85 4 ksi 400 in 10.16 in

    60 ksi 10.16 in

    1935 k

    P f A A f A

    n 0

    0.8 1935 k 1548 k

    P rP

    [ Point 1 ]

  • 7/27/2019 rcc-lec-01

    28/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramDetermine where the balance point, cb.

  • 7/27/2019 rcc-lec-01

    29/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramDetermine where the balance point, cb. Using similartriangles, where d = 20 in.2.5 in. = 17.5 in., one can

    find cbb

    b

    b

    17.5 in.0.003 0.003 0.00207

    0.00317.5 in.

    0.003 0.0020710.36 in.

    c

    c

    c

  • 7/27/2019 rcc-lec-01

    30/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramDetermine the strain of the steel

    bs1 cu

    b

    bs2 cu

    b

    2.5 in. 10.36 in. 2.5 in.

    0.00310.36 in.

    0.00228

    10 in. 10.36 in. 10 in. 0.00310.36 in.

    0.000104

    c

    c

    cc

  • 7/27/2019 rcc-lec-01

    31/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramDetermine the stress in the steel

    s1 s s1

    s2 s s1

    29000 ksi 0.00228

    66 ksi 60 ksi compression

    29000 ksi 0.000104

    3.02 ksi compression

    f E

    f E

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    32/59

    Example: Axial Load vs . Moment

    In terac t ion DiagramCompute the forces in the column

    c c 1

    s1 s1 s1 c

    2

    2

    s2

    0.85

    0.85 4 ksi 20 in. 0.85 10.36 in.

    598.8 k

    0.85

    3 1.27 in 60 ksi 0.85 4 ksi

    215.6 k

    2 1.27 in 3.02 ksi 0.85 4 ksi

    0.97 k neglect

    C f b c

    C A f f

    C

  • 7/27/2019 rcc-lec-01

    33/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramCompute the forces in the column

    2s s s

    n c s1 s2 s

    3 1.27 in 60 ksi

    228.6 k

    599.8 k 215.6 k 228.6 k 585.8 k

    T A f

    P C C C T

  • 7/27/2019 rcc-lec-01

    34/59

    Example: Ax ial Load vs. Moment

    In terac t ion Diagram

    Compute the moment about the center

    c s1 1 s 32 2 2 2

    0.85 10.85 in.20 in.599.8 k2 2

    20 in.215.6 k 2.5 in.

    220 in.

    228.6 k 17.5 in.2

    6682.2 k-in 556.9 k-ft

    h a h hM C C d T d

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    35/59

    Example: Axial Load vs . Moment

    In terac t ion Diagram

    A single point from interaction diagram,(585.6 k, 556.9 k-ft). The eccentricity of the point is

    defined as

    6682.2 k-in11.41 in.

    585.8 k

    Me

    P

    [ Point 2 ]

  • 7/27/2019 rcc-lec-01

    36/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramNow select a series of additional points by selectingvalues of c. Select c = 17.5 in. Determine the strain

    of the steel. (c is at the location of the tension steel)

    s1 cu

    s1

    s2 cu

    s2

    2.5 in. 17.5 in. 2.5 in.0.003

    17.5 in.

    0.00257 74.5 ksi 60 ksi (compression)

    10 in. 17.5 in. 10 in.0.003

    17.5 in.

    0.00129 37.3 ksi (compression)

    c

    c

    f

    c

    c

    f

  • 7/27/2019 rcc-lec-01

    37/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramCompute the forces in the column

    c c 1

    2

    s1 s1 s1 c

    2

    s2

    0.85 0.85 4 ksi 20 in. 0.85 17.5 in.

    1012 k

    0.85 3 1.27 in 60 ksi 0.85 4 ksi

    216 k

    2 1.27 in 37.3 ksi 0.85 4 ksi

    86 k

    C f b c

    C A f f

    C

  • 7/27/2019 rcc-lec-01

    38/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramCompute the forces in the column

    2

    s s s

    n

    3 1.27 in 0 ksi

    0 k

    1012 k 216 k 86 k

    1314 k

    T A f

    P

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    39/59

    Example: Axial Load vs . Moment

    In terac t ion Diagram

    Compute the moment about the center

    c s1 12 2 2

    0.85 17.5 in.20 in.1012 k

    2 2

    20 in.

    216 k 2.5 in.2

    4213 k-in 351.1 k-ft

    h a hM C C d

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    40/59

    Example: Axial Load vs . Moment

    In terac t ion Diagram

    A single point from interaction diagram,

    (1314 k, 351.1 k-ft). The eccentricity of the point is

    defined as

    4213 k-in3.2 in.

    1314 k

    Me

    P

    [ Point 3 ]

    Example: Ax ial Load vs Moment

  • 7/27/2019 rcc-lec-01

    41/59

    Example: Ax ial Load vs. Moment

    In terac t ion Diagram

    Select c = 6 in. Determine the strain of the steel, c =6 in.

    s1 cu

    s1

    s2 cu

    s2

    s3 cu

    2.5 in. 6 in. 2.5 in.0.003

    6 in.

    0.00175 50.75 ksi (compression)

    10 in. 6 in. 10 in.0.003

    6 in.

    0.002 58 ksi (tension)

    17.5 in. 6 in.

    c

    c

    f

    c

    c

    f

    c

    c

    s3

    17.5 in.0.003

    6 in.

    0.00575 60 ksi (tension)f

    Example: Ax ial Load vs Moment

  • 7/27/2019 rcc-lec-01

    42/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramCompute the forces in the column

    c c 1

    s1 s1 s1 c

    2

    2

    s2

    0.85

    0.85 4 ksi 20 in. 0.85 6 in.

    346.8 k

    0.85

    3 1.27 in 50.75 ksi 0.85 4 ksi

    180.4 k C2 1.27 in 58 ksi

    147.3 k T

    C f b c

    C A f f

    C

  • 7/27/2019 rcc-lec-01

    43/59

  • 7/27/2019 rcc-lec-01

    44/59

    Example: Axial Load vs. Moment

    In teract ion Diagram

    Compute the moment about the center

    c s1 1 s 32 2 2 2

    0.85 6 in.346.8 k 10 in.

    2

    180.4 k 10 in. 2.5 in.

    228.6 k 17.5 in. 10 in.

    5651 k-in 470.9 k-ft

    h a h hM C C d T d

  • 7/27/2019 rcc-lec-01

    45/59

    Example: Axial Load Vs. Moment

    In teract ion Diagram

    A single point from interaction diagram,

    (151 k, 471 k-ft). The eccentricity of the point is

    defined as

    5651.2 k-in37.35 in.

    151.3 k

    Me

    P

    [ Point 4 ]

  • 7/27/2019 rcc-lec-01

    46/59

    Example: Axial Load vs. Moment

    In terac t ion Diagram

    Select point of straight tension. The maximum tension

    in the column is

    2

    n s y 8 1.27 in 60 ksi

    610 k

    P A f

    [ Point 5 ]

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    47/59

    Example: Axial Load vs . Moment

    In teract ion Diagram

    Point c (in) Pn Mn e

    1 - 1548 k 0 0

    2 20 1515 k 253 k-ft 2 in

    3 17.5 1314 k 351 k-ft 3.2 in

    4 12.5 841 k 500 k-ft 7.13 in

    5 10.36 585 k 556 k-ft 11.42 in

    6 8.0 393 k 531 k-ft 16.20 in

    7 6.0 151 k 471 k-ft 37.35 in

    8 ~4.5 0 k 395 k-ft infinity

    9 0 -610 k 0 k-ft

  • 7/27/2019 rcc-lec-01

    48/59

    Example: Ax ial Load vs . Moment

    In teract ion DiagramColumn Analysis

    -1000

    -500

    0

    500

    1000

    1500

    2000

    0 100 200 300 400 500 600

    M (k-ft)

    P(

    k)

    Use a series of c

    values to obtain the

    Pn verses Mn.

    Example: Axial Load vs Moment

  • 7/27/2019 rcc-lec-01

    49/59

    Example: Axial Load vs. Moment

    In terac t ion Diagram

    Column Analysis

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    1000

    1200

    0 100 200 300 400 500

    fMn (k-ft)

    fPn

    (k)

    Max. compression

    Max. tension

    Cb

    Location of the linearlyvarying f.

  • 7/27/2019 rcc-lec-01

    50/59

  • 7/27/2019 rcc-lec-01

    51/59

  • 7/27/2019 rcc-lec-01

    52/59

  • 7/27/2019 rcc-lec-01

    53/59

  • 7/27/2019 rcc-lec-01

    54/59

    ACI Design Aids for Columns

  • 7/27/2019 rcc-lec-01

    55/59

    g

    Design Example 8.3

  • 7/27/2019 rcc-lec-01

    56/59

    g p

  • 7/27/2019 rcc-lec-01

    57/59

    Bar splicing in Columns

  • 7/27/2019 rcc-lec-01

    58/59

    p g

    Assignment No 1: (Total Marks100 each question carries 50 marks

  • 7/27/2019 rcc-lec-01

    59/59

    Assignment No.1: (Total Marks100 each question carries 50 marks

    Design and Rectangular Column to carry dead load of 250K

    live load of 350K dead load moment 150ft-K and live loadmoment of 350ft-K Assume material properties.

    Determine the main steel required

    Determine the ties spacing

    Draw final neat to the scale sketch on graph paper

    Due Date: Sep,17 2012.