Projet de Traitement du Signal Segmentation d’images SAR

20
Projet de Traitement du Signal Segmentation d’images SAR Introduction En analyse d’images, la segmentation est une ´ etape essentielle, pr´ eliminaire ` a des traitements de haut niveau tels que la classification, la d´ etection ou l’extraction d’ob- jets. Elle consiste ` ad´ ecomposer une image en r´ egions homog` enes. Les deux principales approches sont l’approche r´ egion et l’approche contour. L’approche r´ egion cherche ` a regrouper les pixels pr´ esentant des propri´ et´ es communes alors que l’approche contour vise ` a d´ etecter les transitions entre r´ egions. Des d´ etecteurs efficaces ont ´ et´ e d´ evelopp´ es dans le cadre de l’imagerie optique, mais s’av` erent inadapt´ es aux images radar de par la pr´ esence d’un bruit multiplicatif appel´ e speckle. L’objectif de ce projet est d’effec- tuer la segmentation d’une image radar ` a synth` ese d’ouverture (Image RSO ou Image SAR pour Synthetic Aperture Radar) ` a l’aide d’une m´ ethode originale de d´ etection de ruptures appliqu´ ee successivement sur les lignes et colonnes de l’image. La m´ ethode est issue d’une publication intitul´ ee “An Optimal Multiedge Detector for SAR Image Segmentation” publi´ ee en mai 1998 dans la revue IEEE Transactions on Geoscience and Remote Sensing [1]. Ce projet s’articule en 4 parties. 1) G´ en´ eration d’une ligne image Cette partie consiste ` a g´ en´ erer des lignes d’image radar conform´ ement au mod` ele pro- pos´ e par l’article. La m´ ethode de segmentation choisie sera d’abord test´ ee sur ces lignes avant d’ˆ etre appliqu´ ee ` a des images. 2) Analyse spectrale Dans cette partie, le signal synth´ etique est ´ etudi´ e` a l’aide des outils classiques d’ana- lyse spectrale (corr´ elogramme, p´ eriodogramme). Les courbes obtenues peuvent ˆ etre compar´ ees aux r´ esultats th´ eoriques ´ enonc´ es dans la publication. 3) D´ etection des contours Le d´ etecteur ROEWA est appliqu´ e au signal simul´ e. Il est bas´ e sur des contrastes locaux de niveau radiom´ etrique moyen. 4) Application ` a des images radar La segmentation d’une image est r´ ealis´ ee en plusieurs ´ etapes. Les ruptures sont d´ etect´ es successivement en ligne et en colonne de fac ¸on ` a cr´ eer une carte des contours d´ elimitant les r´ egions de radiom´ etrie diff´ erente. 1 ` ere Partie : G´ en´ eration d’une ligne d’image SAR 1) Ligne d’image non bruit´ ee R(x) Une ligne d’image apparaˆ ıt comme une juxtaposition de segments de r´ eflectivit´ e constante. Elle est correctement mod´ elis´ ee comme un processus constant par morceaux dont les 1

Transcript of Projet de Traitement du Signal Segmentation d’images SAR

Page 1: Projet de Traitement du Signal Segmentation d’images SAR

Projet de Traitement du SignalSegmentation d’images SAR

IntroductionEn analyse d’images, la segmentation est une etape essentielle, preliminaire a des

traitements de haut niveau tels que la classification, la detection ou l’extraction d’ob-jets. Elle consiste a decomposer une image en regions homogenes. Les deux principalesapproches sont l’approche region et l’approche contour. L’approche region cherche aregrouper les pixels presentant des proprietes communes alors que l’approche contourvise a detecter les transitions entre regions. Des detecteurs efficaces ont ete developpesdans le cadre de l’imagerie optique, mais s’averent inadaptes aux images radar de parla presence d’un bruit multiplicatif appele speckle. L’objectif de ce projet est d’effec-tuer la segmentation d’une image radar a synthese d’ouverture (Image RSO ou ImageSAR pour Synthetic Aperture Radar) a l’aide d’une methode originale de detection deruptures appliquee successivement sur les lignes et colonnes de l’image. La methodeest issue d’une publication intitulee “An Optimal Multiedge Detector for SAR ImageSegmentation” publiee en mai 1998 dans la revue IEEE Transactions on Geoscienceand Remote Sensing [1].Ce projet s’articule en 4 parties.

1) Generation d’une ligne imageCette partie consiste a generer des lignes d’image radar conformement au modele pro-pose par l’article. La methode de segmentation choisie sera d’abord testee sur ces lignesavant d’etre appliquee a des images.

2) Analyse spectraleDans cette partie, le signal synthetique est etudie a l’aide des outils classiques d’ana-lyse spectrale (correlogramme, periodogramme). Les courbes obtenues peuvent etrecomparees aux resultats theoriques enonces dans la publication.

3) Detection des contoursLe detecteur ROEWA est applique au signal simule. Il est base sur des contrastes locauxde niveau radiometrique moyen.

4) Application a des images radarLa segmentation d’une image est realisee en plusieurs etapes. Les ruptures sont detectessuccessivement en ligne et en colonne de facon a creer une carte des contours delimitantles regions de radiometrie differente.

1erePartie : Generation d’une ligne d’image SAR1) Ligne d’image non bruitee R(x)

Une ligne d’image apparaıt comme une juxtaposition de segments de reflectivite constante.Elle est correctement modelisee comme un processus constant par morceaux dont les

1

Page 2: Projet de Traitement du Signal Segmentation d’images SAR

sauts d’intensite obeissent a un processus de Poisson de parametre λ. On rappelle que lalargeur des segments obeit alors a une loi exponentielle de parametre λ, 1

λ representantle nombre moyen de pixels separant deux sauts d’intensite. (Remarque : c’est le nombrede transitions par intervalle de temps qui suit une loi de Poisson de parametre λ). Poursimplifier l’analyse, generer un signal binaire a valeurs dans {1, 2} construit sur unprocessus de Poisson de parametre λ. Verifier que le processus ainsi construit est sta-tionnaire et ergodique a l’ordre un (on determinera la moyenne arithmetique (spatiale)de chaque realisation et la moyenne statistique pour chaque pixel xi). On admettra lastationnarite et l’ergodicite a l’ordre 2. Observer et commenter l’influence du parametreλ sur les signaux generes.Remarque : la fonction exprnd sous Matlab genere des echantillons suivant la loi expo-nentielle de parametre 1/λ.

Conformement a l’article [1], generer alors un processus discret a valeurs dans{0, ..., 255} construit sur un processus de Poisson de parametre λ.

0 200 400 600 800 10001

1.5

2

2.5

3

3.5

4

4.5

5

pixels

Ref

lect

ivité

FIG. 1 – Ligne d’image non bruitee

2) Bruit Multiplicatif n(x) (Speckle)Generer une suite de variables aleatoires independantes suivant une loi Gamma (fonc-tion gamrnd) de moyenne µn = 1 et de variance σ2

n = 1/L, ou L correspond aunombre de vues moyennees. Comparer l’histogramme de ces variables aleatoires a ladensite de la loi Gamma correspondante (fonction gampdf).Remarque : Matlab considere que la densite de la loi Gamma est :

f(x|α, β) = 1βαΓ(α)x

α−1e−xβ .

3) Ligne d’image bruitee I(x)Construire l’intensite d’une ligne d’image Radar a l’aide de I(x) = R(x)n(x). Ob-server l’effet de L sur l’intensite I(x) (en considerant par exemple L = 1, L = 4 etL = 10).

2

Page 3: Projet de Traitement du Signal Segmentation d’images SAR

0 200 400 600 800 10000

2

4

6

8

10

12

pixels

Ref

lect

ivité

FIG. 2 – Ligne d’image perturbee par un bruit multiplicatif (speckle).

2emePartie : Analyse Spectrale d’une ligne d’image SARPour simplifier l’analyse, on commence tout d’abord par etudier le signal binaire a

valeurs dans {1, 2} construit sur un processus de Poisson de parametre λ. On rappelleque la fonction d’autocovariance d’un tel processus s’ecrit :

CRR(τ) = E [(R(x)−mR) (R(x− τ)−mR)] = σ2re−λ|τ |,

ou mR = E [R(x)] est la moyenne de la ligne d’image. La densite spectrale depuissance est definie comme la transformee de Fourier de la fonction d’autocovariance

SRR(f) =2λσ2

r

λ2 + 4π2f2.

1) PeriodogrammeCalculer le periodogramme d’une realisation en utilisant une fenetre rectangulaire et deHanning. Comparer le resultat obtenu avec la densite spectrale de puissance associeeau processus e tudie.

2) Periodogramme cumuleDeterminer la moyenne des periodogrammes de differentes realisations du signal ap-pelee periodogramme cumule. Commenter le resultat obtenu.

3) CorrelogrammeDeterminer les estimations biaisees et non-biaisees de la fonction d’autocorrelation duprocessus etudie a l’aide d’une realisation de ce processus. En deduire une estimationpar correlogramme de la densite spectrale de puissance du processus.

3

Page 4: Projet de Traitement du Signal Segmentation d’images SAR

0 0.05 0.1 0.15 0.2 0.250

5

10

15

20

25

fréquence

perio

dogr

amm

e

fenetre rectangulairefenetre de Hanning

FIG. 3 – Periodogramme

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

6

7

8

9

10

fréquence

DS

P

DSP theoriquePériodogramme cumulé

FIG. 4 – Periodogramme cumule

Annexes

Periodogramme/CorrelogrammeLa densite spectrale de puissance (DSP) d’un signal a energie finie est definie par

S(f) = TF [Kx(τ)] = |X(f)|2

ou X(f) est la transformee de Fourier x(t) et Kx(τ) sa fonction d’autocorrelation.Il en decoule deux methodes d’estimation de la DSP appelees periodogramme etcorrelogramme.

– Periodogramme

4

Page 5: Projet de Traitement du Signal Segmentation d’images SAR

Lorsqu’on estime la transformee de Fourier avec l’algorithme de FFT rapide deMatlab, on montre qu’un estimateur satisfaisant de la DSP du signal x(t) appeleperiodogramme est defini par :

1N|TFD[x(n)]|2

ou x(n) est obtenu par echantillonnage de x(t).– Correlogramme

L’estimation de la DSP par correlogramme comporte deux etapes :1) Estimation de la fonction d’autocorrelation (xcorr.m) qui produit Kx(n)2) Transformee de Fourier discrete de Kx(n)f(n), ou f(n) est une fenetre deponderation et Kx(n) est l’estimation biaisee ou non biaisee de la fonction d’au-tocorrelation.

Remarque 1 : il est important de noter que lorsque Kx(n) est l’estimateur biaise dela fonction d’autocorrelation de x(t), le correlogramme coıncide exactement avec leperiodogramme comme le montre la figure suivante (obtenue avec une frequence nor-malisee fe = 0.1 :

0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

10−3

10−2

10−1

100

101

102

−− Corrélogramme biaisé * * Périodogramme(fen. rectangulaire)

FIG. 5 – Fig. 5. Correlogramme biaise et Periodogramme

Remarque 2 : Implantation numeriqueSi le signal numerique x(n) possede Nspoints, la fonction xcorr calcule la fonctiond’autocorrelation Kx(n) pour n = −(Ns − 1), ...,−1, 0, 1, ..., (Ns − 1) (on a donc2Ns − 1 points). On peut “padder” cette autocorrelation par des zeros afin d’avoir unerepresentation plus precise de la DSP. L’algorithme de transformee de Fourier discretede Matlab necessite une symetrisation de la fonction d’autocorrelation de la facon sui-vante :

– Points d’autocorrelation Kx(0), Kx(1), ..., Kx(Ns − 1)– Nz zeros– zero central– Nz zeros

5

Page 6: Projet de Traitement du Signal Segmentation d’images SAR

– Points d’autocorrelation Kx(Ns − 1), ..., Kx(1)Cette procedure de symetrisation est illustree sur la figure suivante pour Ns = 4 et

Nz = 4 :

FIG. 6 – Symetrisation de la fonction d’autocorrelation

3emePartie : Detection de Ruptures sur une ligne d’imageSAR

La detection s’effectue au moyen d’une fenetre d’analyse glissante. Une forte differencede reflectivite moyenne de part et d’autre d’un pixel permet de reperer un contour. Cettemethode, bien adaptee aux images optiques, est mise en defaut pour l’imagerie radar.La presence d’un bruit multiplicatif augmente en effet le taux de fausses detectionsdans les regions de forte reflectivite. Pour pallier cette limitation, l’article proposeun detecteur base non plus sur des differences, mais sur des rapports de reflectivitemoyenne. En outre, les moyennes arithmetiques sont remplacees par des moyennesponderees exponentiellement pour traiter les cas de contours multiples (presence deplusieurs contours dans la fenetre d’analyse). Les plus proches voisins du pixel cen-tral sont ainsi favorises aux depens de pixels plus eloignes pouvant correspondre a unnouveau contour.

Conformement a l’article [1], on desire realiser un filtre appele filtre ISEF de reponse

6

Page 7: Projet de Traitement du Signal Segmentation d’images SAR

impulsionnellef(x) =

α

2e−α|x|

ou α depend de L, λ, de la moyenne µR et de l’ecart type σR de la reflectivite. Pourcalculer µR et σR pour un processus a valeurs discretes {1, ..., nr}, on pourra utiliserles formules de sommation :

nr∑

k=0

k =nr(nr + 1)

2nr∑

k=0

k2 =nr(nr + 1)(2nr + 1)

6.

Le resultat du filtrage avec le filtre ISEF est le meilleur estimateur lineaire de la reflectiviteau sens de la moyenne quadratique.

On commence tout d’abord par etudier le signal binaire a valeurs dans {1, 2} construitsur un processus de Poisson de parametre λ bruite par le bruit de scintillement (spe-ckle).

1) Synthetiser le filtre ISEF au moyen d’un filtre RIF. Montrer que le filtrage de I(x)par ce filtre realise un debruitage de la ligne de l’image SAR. Commenter ce resultata l’aide de l’article [1]. Quelques resultats typiques sont representes sur les figuresci-dessous :

0 200 400 600 800 10001

1.5

2

2.5

3

3.5

4

4.5

5

5.5

pixels

réfle

ctiv

ité

FIG. 7 – ligne non bruitee

2) Conformement a l’article [1], determiner le rapport des moyennes ponderees ex-ponentiellement note rmax (operateur ROEWA) et montrer qu’il permet d’estimer laposition des ruptures.3) Que se passe-t-il lorsque le signal d’analyse est un processus discret a valeurs dans{0, ..., 255} construit sur un processus de Poisson de parametre λ et bruite par du spe-ckle ?

7

Page 8: Projet de Traitement du Signal Segmentation d’images SAR

0 200 400 600 800 10000

1

2

3

4

5

6

7

pixels

réfle

ctiv

ité

FIG. 8 – ligne bruitee

0 200 400 600 800 10000

1

2

3

4

5

6

pixels

réfle

ctiv

ité

FIG. 9 – ligne debruitee

4emePartie : Detection de Ruptures sur une image TESTLa detection de contours sur une image est realisee en deux temps. Le detecteur

ROEWA est d’abord applique successivement a chaque ligne de l’image, prealablementlissee dans la direction opposee, pour obtenir la carte horizontale des contours rX (x, y) .En operant de facon similaire dans la direction verticale, la carte verticale des contoursest construite. Ces deux composantes peuvent alors etre combinees pour former la cartedes contours en deux dimensions :

r2D (x, y) =√

r2X + r2

Y .

Retrouver les resultats obtenus sur les images de la figure 5 de l’article [1]. Appli-

8

Page 9: Projet de Traitement du Signal Segmentation d’images SAR

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

pixels

réfle

ctiv

ité

FIG. 10 – Detection de transitions sur une ligne image non bruitee.

quer enfin la methode a des images non simulees telles que l’image satellitaire dela ville de Bourges (prendre L = 4). Pour afficher une image, utiliser ”imagesc”.Comme on peut le voir, les resultats de segmentation peuvent etre decevants dans lecas d’images bruitees. Observer l’effet de la segmentation sur des images synthetiquesde Matlab (par exemple, charger l’image eight avec ”load imdemos eight”, transformerles pixels de cette image en reels avec ”y=double(eight)”) et montrer que les resultatss’ameliorent sensiblement.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FIG. 11 – Image ideale / lignes verticales

9

Page 10: Projet de Traitement du Signal Segmentation d’images SAR

50 100 150 200 250

50

100

150

200

250

FIG. 12 – Image satellite de Bourges

References[1] R. Fjφrtoft, A. Lopes, P. Marthon and E. Cubero-Castan, “An Optimal Multiedge

Detector for SAR Image Segmentation,” IEEE Trans. Geosci. and Remote Sensing,vol. 36, n◦ 3, pp. 793-802, May 1988.

10

Page 11: Projet de Traitement du Signal Segmentation d’images SAR

An Optimal Multiedge Detectorfor SAR Image Segmentation

Roger Fj�rtoft, Armand Lop�es, Philippe Marthon, Associate Member, IEEE , and Eliane Cubero-Castan

Abstract|Edge detection is a fundamental issue in imageanalysis. Due to the presence of speckle, which can bemodeled as a strong, multiplicative noise, edge detectionin synthetic aperture radar (SAR) images is extremelydi�cult, and edge detectors developed for optical imagesare ine�cient. Several robust operators have been devel-oped for the detection of isolated step edges in speckledimages. We here propose a new step edge detector for SARimages, which is optimal in the minimummean square error(MSSE) sense under a stochastic multiedge model. It com-putes a normalized ratio of exponentially weighted averages(ROEWA) on opposite sides of the central pixel. This isdone in the horizontal and vertical direction, and the mag-nitude of the two components yields an edge strength map.Thresholding of the edge strength map by a modi�ed versionof the watershed algorithm and region merging to eliminatefalse edges complete an e�cient segmentation scheme. Ex-perimental results obtained from simulated SAR images aswell as ERS-1 data are presented.

Index Terms| Edge detection, multiedge model, regionmerging, segmentation, speckle, synthetic aperture radar(SAR), watershed algorithm.

I. Introduction

SEGMENTATION is the decomposition of an image inregions, i.e., spatially connected, nonoverlapping sets

of pixels sharing a certain property. A region may forexample be characterized by constant re ectivity or tex-ture. Region-based segmentation schemes, such as his-togram thresholding and split-and-merge algorithms, tryto de�ne regions directly by their content, whereas edge-based methods try to identify the transitions between dif-ferent regions.In images with no texture, an edge can be de�ned as an

abrupt change in re ectivity. In the case of optical images,

Manuscript received December 30, 1996; revised August 13, 1997.This work was supported by the French Space Agency (CNES) underContract 833/CNES/94/1022/00.R. Fj�rtoft and A. Lop�es are with the Centre d'Etudes Spa-

tiales de la Biosph�ere (CESBIO), UMR 5639 CNES/CNRS/UPS,31401 Toulouse, France (e-mail: [email protected];[email protected]).P. Marthon is with the Laboratoire d'Informatique et de

Math�ematiques Appliqu�ees (LIMA), Ecole Nationale Sup�erieured'Electrotechnique, d'Electronique, d'Informatique et d'Hydrauliquede Toulouse (ENSEEIHT), Institut de Recherche en Informatiquede Toulouse (IRIT), UMR 5505 UPS/INP/CNRS, 31071 Toulouse,France (e-mail: [email protected]).E. Cubero-Castan is with the French Space Agency (CNES),

DGA/T/SH/QTIS, 31401 Toulouse, France (e-mail: [email protected]).Publisher Item Identi�er S 0196-2892(98)01195-4.c 1998 IEEE. Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or pro-motional purposes or for creating new collective works for resale orredistribution to servers or lists, or to reuse any copyrighted compo-nent of this work in other works must be obtained from the IEEE.

an edge is usually de�ned as a local maximum of the gra-dient magnitude in the gradient direction, or equivalently,as a zero-crossing of the second derivative in the directionof the gradient. Smoothing is necessary prior to deriva-tion, as di�erential operators are sensitive to noise. Thesmoothing and di�erentiation operations are merged andimplemented by two-dimensional (2-D) �lters. Gradient-based edge detection basically consists in calculating thedi�erence of the local radiometric means on opposite sidesof the central pixel. This is done for every pixel position inthe vertical and horizontal direction, and the magnitude ofthe components is computed. Finally, local maxima of thegradient magnitude image are extracted.

Owing to the multiplicative nature of speckle, edge de-tectors based on the di�erence of average pixel values detectmore false edges in areas of high re ectivity than in areas oflow re ectivity in synthetic aperture radar (SAR) images[1]. Certainly, other measures than the di�erence can beused to identify abrupt transitions. Several edge detectorswith constant false alarm rates (CFAR's) have been devel-oped speci�cally for SAR images, e.g., based on a ratio ofaverages [1], [2] or a likelihood ratio [3], [4]. However, theseoperators use the arithmetic mean for the estimation of lo-cal mean values, which is optimal only in the monoedgecase. Segmentation schemes based on region growing [5],[6], histogram thresholding [7], and simulated annealing [8]have also been proposed for SAR images.

In this article we concentrate on the spatial aspect ofedge detection, based on a multiedge model. We incorpo-rate the speci�c properties of SAR images and develop alinear minimum mean square error (MMSE) �lter for theestimation of local mean values. In this way we obtaina new edge detector with improved noise suppression andedge detection properties. Section II explains the prin-ciple of monoedge detection in SAR imagery. In sectionIII we develop an optimal multiedge detector and pro-pose a thresholding method which extracts closed, skele-ton boundaries. The use of region merging to eliminatefalse edges is also described. Experimental results obtainedfrom simulated SAR images and ERS-1 data are presentedin section IV. We discuss theoretical aspects and experi-mental results in section V, and end with some concludingremarks in section VI.

II. Monoedge detection in SAR images

Speckle is a deterministic e�ect common to all imagingsystems relying on coherent illumination. It is due to theconstructive and destructive interference of the responsesof the di�erent elementary scatterers of a resolution cell.In the measured intensity image I , speckle is well modeledas a multiplicative random noise n, which is independent

Page 12: Projet de Traitement du Signal Segmentation d’images SAR

Fig. 1. One-dimensional monoedge model.

of the radar re ectivity R [9]

I(x) = R(x) � n(x): (1)

The transfer function of the SAR system is designed tovary as little as possible over the bandwidth of interest. Itis known to have negligible in uence on the spectrum of theideal image, but to limit the bandwidth of the noise spec-trum. This e�ect is here incorporated in the term n. Fullydeveloped speckle is Gamma distributed with mean value�n = 1 and variance �2n = 1=L, where L is the equivalentnumber of independent looks (ENIL) of the image [9].Several CFAR edge detectors have been developed for

SAR images based on the monoedge model, which sup-poses that only one step edge is present in the analyzingwindow (Fig. 1). For example, Touzi et al. showed thatedge detectors based on the Ratio Of Averages (ROA) haveCFAR, because the standard deviation �I is proportionalto the mean intensity �I [1]. The ratio is normalized to liebetween zero and one

rmin = min

��1�2

;�2�1

�(2)

where �1 and �2 are the arithmetic mean intensities of thetwo halves of a window of �xed size. The normalized ratiois calculated in four (or more) directions, by splitting theanalyzing window along the horizontal, vertical and diag-onal axes. The minimum of the four values thus obtainedis �nally compared to an edge detection threshold, whichis set according to the accepted probability of false alarm(PFA), i.e., the probability of detecting an edge in a zoneof constant re ectivity.The principle of the likelihood ratio (LR) detector is to

estimate the ratio of the probability that the analyzingwindow covers two regions separated by a given axis to theprobability that the entire window belongs to one singleregion. Transforming the LR for edge detection in SARimages into a log-likelihood di�erence yields [4]

`edge = � (�N1 log �1 �N2 log �2 +N0 log �0) (3)

where � is the order parameter of the Gamma distributionof the SAR image, N1, N2, �1, and �2 are the numberof pixels and the arithmetic mean values of the two halfwindows, and N0 and �0 are the corresponding parametersfor the entire window. Oliver et al. recently showed thatthe ROA operator coincides with the LR operator if onlythe averages are estimated on equally sized halves of thesliding window [4].

Fig. 2. One-dimensional multiedge model.

The unbiased maximum likelihood (ML) estimator ofthe mean value of a Gamma distributed stationary pro-cess, is the arithmetic mean [4]. The ROA and LR op-erators both use this estimator. It is optimal under themonoedge model, i.e., as long as the width of each halfwindow does not exceed the minimum distance betweensigni�cant edges. In SAR images the signal to noise ratiois very low, typically 0 dB for single-look images. To suf-�ciently reduce the in uence of the speckle, an importantnumber of pixels must be averaged in each half window.So there is a con ict between strong speckle reduction andhigh spatial resolution, and the chosen window size consti-tutes a compromise between these two requirements. Thisillustrates the limitations of the monoedge model.

III. Multiedge detection in SAR images

For most scene types, the large windows that we use todetect edges in SAR images are likely to contain severaledges simultaneously. In fact, we need to estimate the lo-cal mean values f�rig of a signal which undergoes abrupttransitions with random intervals. The monoedge hypoth-esis is generally not veri�ed, and the arithmetic mean isno longer optimal. Estimators with nonuniform weightingshould therefore be considered. The �lter coe�cients de-cide the weighting of the pixels as a function of the distanceto the central pixel. For our application, they should op-timize the tradeo� between noise suppression and spatialresolution, based on a priori knowledge of image and noisestatistics.

A. Multiedge model

We restrict ourselves to a separable image model. In thehorizontal as well as in the vertical direction we supposethat the re ectivity image (ideal image) R is a stationaryrandom process composed by piecewise constant segmentsof re ectivity frig, with mean value �r and standard devi-ation �r . The localization of the re ectivity jumps fxig fol-lows a Poisson distribution with parameter � correspondingto the mean jump frequency, i.e., the probability of k jumpsin the interval �x is given by

pk(�x) =(��x)k

k!e���x:

The re ectivities frig and the jump localizations fxig aresupposed to be independent. Hence �R = �r and �2R =�2r . Fig. 2 illustrates the multiedge model in the one-dimensional (1-D) case. Although it is idealized, this model

Page 13: Projet de Traitement du Signal Segmentation d’images SAR

is a good approximation for important scene types, such asagricultural �elds.It can easily be shown that the autocovariance function

of the re ectivity is [10]:

CRR(�x) = �2re��j�xj:

The ideal image is thus a separable �rst-order Markov pro-cess with parameter �. The power spectral density, whichwe here de�ne as the Fourier transform of the autocovari-ance function, is then

SRR(!) =2��2r

�2 + !2: (4)

B. Linear MMSE �lter

Let us now develop the linear MSSE �lter for the esti-mation of the local mean under the stochastic multiedgemodel and the multiplicative noise model. It should not beconfused with an adaptive speckle �lter [11], which restoresthe re ectivity of a pixel based on the local statistics. TheMMSE �lter will be split along the vertical and horizontalaxes, and the weighted means estimated in the di�erenthalf windows will be used for edge detection. To facilitatethe implementation, we suppose the �lter to have separableimpulse response f2-D(x; y) = f(x)f(y) and �rst considerthe one-dimensional case. The best unbiased linear estima-tor of the re ectivity is of the form [12]

R(x) = �R + f(x) � (I(x)� �I): (5)

Minimizing the mean square error EhjR(x)� R(x)j2

iyields the transfer function [12]

F (!) =�nSRR(!)

SRR(!) � Snn(!) + �2RSnn(!) + �2nSRR(!): (6)

The autocovariance function of the speckle decreases veryrapidly [9]. As an approximation, n will be considered aswhite noise here

Cnn(�x) = �2n�(�x)

Snn(!) = �2n = 1=L

By substituting the power spectral densities and mean val-ues into (6) and taking the inverse Fourier transform weobtain the optimal impulse response

f(x) = Ce��jxj

where

�2 =2L�

1 + (�R=�R)2+ �2 (7)

and C is a normalizing constant. From the multiplicativenoise model (1) we have �R = �I and

�2R =L�2I � �2IL+ 1

which can be estimated from the speckled image. The av-erage region width 1=� can be evaluated visually, or we can

Fig. 3. Impulse response of the in�nite symmetric exponential �lter(ISEF).

estimate � from the spectrum of a speckle-reduced image(4) obtained by adaptive �ltering [11].We normalize f with respect to the mean value, i.e.,

C = �=2, to obtain an unbiased estimator. With this nor-malization f(x) � �I = �I and (5) simpli�es to

R(x) = f(x) � I(x):

We can thus apply the �lter directly to the measured in-tensity image I .The impulse response of f(x) is shown in Fig. 3. As

we see, the �lter is of in�nite extent, which for the two-dimensional �lter f2-D(x; y) = f(x)f(y) means that theanalyzing window centered on the pixel to be �ltered coversthe entire image. The weight of the surrounding pixelsdecreases exponentially with distance. The further a pixelis from the center, the more likely it is to belong to anotherregion, and the less in uence it has on the estimated localmean. We note that f2-D is not strictly isotropic.The �lter f is known as the in�nite symmetric exponen-

tial �lter (ISEF). The ISEF is the basis of the edge detec-tor of Shen and Castan [13], which computes the di�erenceof the exponentially weighted means in each half window.This is an optimal multiedge detector for images degradedby additive white noise. It is claimed to have better edgelocalization precision than other edge detectors proposedfor optical images [13]. We have now shown that the sametype of smoothing �lter is optimal in the case of multi-plicative noise. However, as explained in section I, edgedetectors based on the di�erence of averages are not suitedfor SAR images.We also note the analogy between the ISEF and the Frost

speckle �lter [11]. Frost et al. assumed the local variations,within stationary regions of the image, to be a �rst or-der Markov process and developed an adaptive restoration�lter where local statistics control the slope of the expo-nential weighting function. We use the �rst order Markovprocess as a global image model for the optimization of anonadaptive �lter.In the discrete case, f can be implemented very e�-

ciently by a pair of recursive �lters [13], [14]. We de�netwo discrete �lters, f1(n) and f2(n), realizing the normal-ized causal and anti-causal part of f(n), respectively

f1(n) = a � bnu(n); (8)

f2(n) = a � b�nu(�n); (9)

where 0 < b = e�� < 1, a = 1� b, and u(n) is the discreteHeaviside function. The smoothing function can now berewritten as

f(n) = c � bjnj �1

1 + bf1(n) +

b

1 + bf2(n� 1)

Page 14: Projet de Traitement du Signal Segmentation d’images SAR

where c = (1� b)(1 + b).By taking the z-transform of (8) and (9) we obtain

F1(z) =a

1� bz�1

F2(z) =a

1� bz

In terms of the spatial index n, convolution with f1(n) andf2(n) corresponds to the following simple recursions

s1(n) = a e1(n)

+ b s1(n� 1) n = 1; : : : ; N (10)

s2(n) = a e2(n)

+ b s2(n+ 1) n = N; : : : ; 1: (11)

Here e1(n) and e2(n) are the inputs, and s1(n) and s2(n)are the outputs of f1 and f2, respectively. To minimize thenumber of multiplications, we may rewrite (10) and (11) as

s1(n) = a (e1(n)� s1(n� 1))

+ s1(n� 1) n = 1; : : : ; N

s2(n) = a (e2(n)� s2(n+ 1))

+ s2(n+ 1) n = N; : : : ; 1:

The computational cost for f1 and for f2 is thus one mul-tiplication per pixel. Due to the normalizing factors, fnecessitates four multiplications per pixel.

C. The ROEWA operator

Based on the linear MMSE �lters described above, wepropose a new ratio-based edge detector: the ratio of expo-nentially weighted averages (ROEWA) operator. The ex-ponentially weighted averages �1 and �2 are normalizedto be unbiased, and we show in the Appendix that theirvariance is proportional to the variance of the raw image.The standard deviation remains proportional to the meanvalue, so the ROEWA operator has CFAR [1]. As opposedto Touzi et al., (2), we normalize the ratio to be superiorto one

rmax = max

��1�2

;�2�1

�: (12)

The two approaches are of course equivalent. Our choice ismotivated by the particular algorithm that we use in theedge extraction step.To compute the horizontal edge strength component, the

image I(x; y) is �rst smoothed column by column using theone-dimensional smoothing �lter f . Next, the causal andanti-causal �lters f1 and f2 are employed line by line onthe result of the smoothing operation to obtain �1(x) and�2(x)

�X1(x; y) = f1(x) � (f(y) ? I(x; y))

�X2(x; y) = f2(x) � (f(y) ? I(x; y)):

Here � denotes convolution in the horizontal direction and ?denotes convolution in the vertical direction. The normal-ized ratio rXmax(x; y) is found by substituting �X1(x�1; y)and �X2(x + 1; y) into (12). The vertical edge strength

component is obtained in the same manner, except thatthe directions are interchanged

�Y 1(x; y) = f1(y) ? (f(x) � I(x; y))

�Y 2(x; y) = f2(y) ? (f(x) � I(x; y)):

Finally, with analogy to gradient based edge detectors foroptical images, we take the magnitude of the two compo-nents

jr2-Dmax(x; y)j =qr2Xmax(x; y) + r2Y max(x; y):

In the edge strength map thus obtained, a high pixel valueindicates the presence of an edge. For each pixel this im-plies a total of 14 multiplications, an average of 3 divisions,and 1 square root operation.

D. Edge extraction

By thresholding the edge strength map we obtain pixelswhich, with a certain PFA, belong to edges. If the thresholdis set too high, we miss important edges, and if it is settoo low, we detect a lot of false edges. Plain thresholdingwill in general produce several pixel wide, isolated edgesegments. The edges can be thinned to unity width e.g.,using morphological closing [1]. The problem of formingclosed boundaries from spatially separated edge segmentsis quite complicated. If the edges are not closed, they donot de�ne a segmentation of the image.The watershed algorithm [15] is a simple and e�cient

edge detection method which gives closed, skeleton bound-aries. The edge strength map is considered as a surface andthe algorithm detects local maxima by immersion simula-tion. In its original form, the watershed algorithm retainsall of the local maxima of the edge strength map, whichseparate di�erent basins. It unfortunately tends to pro-duce massively over-segmented images. We have chosen tointroduce an edge detection threshold in the algorithm [16].Only edge strength magnitudes over the chosen thresholdare considered. Local maxima with lower magnitudes aresupposed to be due to noise. With this modi�cation, thealgorithm detects, thins and closes signi�cant edges in oneoperation. The modi�ed watershed algorithm is illustratedin Fig. 4.We do not have any analytical expression for the dis-

tribution of the exponentially weighted means. When theslope of the exponential function is moderate, however, wemay suppose a Gaussian distribution according to the cen-tral limit theorem. The variance of the distribution as afunction of the variance of the raw image, the speckle cor-relation and the �lter parameter b is given in the Appendix.The relation between detection threshold and PFA can beestablished theoretically for the ROEWA operator basedon the Gaussian hypothesis. In fact, as the Gamma distri-bution �ts a Gaussian distribution very closely when theENIL is a few tenths or higher, the PFA computed for theROA operator [1] can also be used for the ROEWA for typ-ical values of b. The ENIL of the exponentially weightedmean is equal to the ENIL of the raw image multipliedby the equivalent number of independent pixels in the halfwindow, which is given in the Appendix. The PFA appliesto the vertical or horizontal edge strength component, butonly as an approximation to their magnitude. Moreover,

Page 15: Projet de Traitement du Signal Segmentation d’images SAR

(a)

(b)

Fig. 4. (a) Initial state of the modi�ed watershed algorithm shown ona cross-section of an edge strength map. (b) Skeleton boundariesdetected after complete immersion.

watershed thresholding reduces the PFA compared to plainthresholding, as also false edges are thinned to unity width.The e�ect of this nonlinear operation is di�cult to quan-tify. With our approach, the theoretical PFA for a giventhreshold can therefore only serve as a rough indication.A particularity of watershed thresholding is that the

whole edge is eroded if the edge strength magnitude ofone single edge pixel is below the detection threshold. Thethreshold must consequently be set relatively low for thealgorithm to form meaningful boundaries, but then we arebound to detect numerous false edges as well.

E. Post-processing

Spurious edges can be eliminated by merging adjacentregions whose re ectivities are not signi�cantly di�erent.Several merging criteria have been proposed, including theStudent's t-test [6] and the unequal variance Student's t-test [14]. The LR of Oliver et al. [4] can also be used todecide whether or not two regions should be merged, andagain constitutes an optimal criterion. In fact, `merge =�`edge (3)

`merge = � (N1 log �1 +N2 log �2 �N0 log �0) : (13)

Thus `merge � 0, and a value close to zero suggests thatthe two regions together form a Gamma-homogeneous re-gion. It should be noted, however, that we in many ap-plications seek a thematic segmentation, so that weak tex-tures within the regions can be accepted. In practice, nega-tive thresholds are used. The more irregularities we accept

within the regions, the further the threshold can be fromzero. Again, the threshold can be related to the PFA [4].Geometrical considerations, such as region size [14] and

edge regularity [6], may also be taken into account in themerging process, based on a priori knowledge about thesize and shape of the regions. The order in which the re-gions are merged has a strong in uence on the �nal re-sult. Finding the globally optimal merging order requiresmuch time-consuming sorting. The iterative pairwise mu-tually best merge criterion [17] is a locally optimal approachwhich is much quicker. First all regions are compared withtheir neighbors in terms of the merging criterion, and theresults are stored in a dynamic array. The array is thentraversed sequentially, and a region A is merged with anadjacent region B if and only if B is the closest neighborof A according to the merging criterion, and if A is alsothe closest neighbor of B. When two regions are merged,the local statistics of the resulting region must be updatedand the comparison with all its neighbors must be redonebefore continuing. The array is traversed repeatedly untilno adjacent regions satisfy the merging criterion.

IV. Experimental results

The novelty of our detector is that it relies on weightedmeans rather than on the arithmetic means used by otherCFAR detectors. To study the in uence of the nonuni-form weighting, we compare the ROEWA operator withthe ROA operator. For both detectors the normalized ratiormax is computed vertically and horizontally, and the mag-nitude of the two components constitutes the edge strengthmap. We use the modi�ed watershed algorithm for thresh-olding, because it directly yields skeleton boundaries, lo-calized on local maxima of the edge strength map. Thisproperty facilitates the subsequent tests.A quantitative comparison of edge detectors can only be

e�ectuated on simulated images, as we need to know theexact position of the edges in advance. Let us �rst considera \cartoon image" composed of vertical bands of increas-ing width, from 2 to 18 pixels. The ratio between there ectivities of the bright and the dark lines is 12dB. Thisreference image was multiplied with a simulated single-lookspeckle image. The correlation coe�cients of the speckle is�(1) = 0:42, �(2) = 0:03, and �(m) = 0, m > 2, in azimuthas well as in range. The ideal image and its single-lookspeckled counterpart are shown in amplitude in Fig. 5 (a)and (b), respectively. Edge strength maps were calculatedon the speckled image with both operators. Single-lookimages are extremely noisy, so strong smoothing is neces-sary. The ROEWA operator with b = 0:9 produced a veryregular edge strength map giving rise to few false edges. Toobtain the same reduction of speckle variance with a halfwindow for both operators, and thus the same false alarmrate for a given detection threshold, the window size forthe ROA operator was set to 39� 39 (see the Appendix).A threshold of 1:85 gave the best compromise between thedetection of real edges and the suppression of false ones.The resulting segmentations are shown in Fig. 5 (c) and

(d). The ROEWA operator gives a systematic detectionof edges for bands of width 8 or higher, whereas the ROAoperator detects systematically only from width 13. Somespurious edges are present near the edges in the case of theROA operator. The experiment indicates that the ROEWAoperator has better spatial resolution than the ROA oper-

Page 16: Projet de Traitement du Signal Segmentation d’images SAR

(a) (b)

(c) (d)

Fig. 5. (a) Ideal image consisting of vertical lines of width 2 to 18 pixels. (b) The simulated single-look speckled image. (c) The segmentationobtained with the ROA edge detector and watershed thresholding. (d) The segmentation obtained with the ROEWA edge detector andwatershed thresholding.

ator, for a given speckle reduction capacity. However, wehave chosen a very strong smoothing to place ourselves ina multiedge situation. We could of course use a smallerwindow and detect edges at at �ner scales with the ROAoperator, at the risk of a higher false alarm rate.Let us now examine a more realistic case. We synthe-

sized the cartoon image shown in amplitude in Fig. 6 (a)by a �rst order Markov random �eld with four classes.The re ectivity ratio between subsequent classes is 6dB.This image approximately corresponds to the multiedgemodel presented in section III-A. The mean region width1=� = 13:4 pixels. Fig. 6 (b) shows the same image mul-tiplied with single-look speckle. The correlation propertiesof the speckle are the same as in the previous example.To compare the performance of the edge detectors, we usePratt's �gure of merit [18]:

P =1

max fNDE ;NIDg

NDEXi=1

1

1 + �d2i;

where NID is the number of ideal edge pixels, NDE is thenumber of detected pixels and di is the distance betweenthe ith detected edge pixel and the closest true edge pixel.� is a calibration constant that is usually set to one. How-ever, as the edges are dense in our test image, so that thenearest ideal edge pixel never is far away, we set � = 2 for astronger penalization of misplaced edge pixels. We acceptthe closest pixel on each side of a transition as an idealedge pixel, i.e., di = 0 for every pixel having at least onepixel belonging to another region in its 4-neighborhood.The distance di to an ideal edge for the remaining pixels isobtained as follows: di = 1 is attributed to all remainingpixels having one or more pixels with di = 0 in their 4-

neighborhood. Among the pixels not yet attributed, di = 2is set for every pixel having at least one pixel with di = 1in its 4-neighborhood, and so forth.

Edge strength maps were computed by the ROA oper-ator with window sizes from 3 � 3 to 19 � 19 and by theROEWA operator with the parameter b varying over therange 0:1 to 0:8. For each edge strength map the detec-tion threshold maximizing Pratt's �gure of merit was de-termined. Fig. 7 shows the result. The unit along the hor-izontal axis is the equivalent number of independent pixelsin each half of the analyzing window in terms of the specklereduction obtained by smoothing (see the Appendix). Thisallows us to compare the results obtained with the ROAoperator with di�erent window sizes, with those obtainedby the ROEWA operator using exponential weighting func-tions of varying slope. From Fig. 7 we see that the ROEWAoperator yields a better score than the ROA operator overmost of the parameter range. However, the di�erence is rel-atively small near the maximum of the graphs, and for onewindow size (7�7) the ROA operator performs even betterthan the ROEWA operator. The di�erence in favor of theROEWA operator increases with stronger smoothing. Thisre ects the fact that the multiedge model is more relevantthe larger the analyzing window is. The ROA operator isoptimal in the monoedge case, which is more frequentlyencountered when using small windows. The localizationof the maxima of the graphs should not be taken too lit-erally. Such a weak smoothing generally implies an im-portant number of false edges due to speckle. A strongersmoothing gives more meaningful boundaries. The theoret-ical optimum for the ROEWA operator, according to (7),is b = 0:74, which corresponds to about 30 independentpixels in each half window.

Page 17: Projet de Traitement du Signal Segmentation d’images SAR

(a) (b)

Fig. 6. (a) Ideal image synthesized by a �rst order Markov random �eld. (b) The corresponding single-look speckled image.

0 5 10 15 20 25 30 35 40 45 500.4

0.45

0.5

0.55

0.6

0.65

Equivalent number of independent pixels in each half window

Pra

tt‘s

figur

e of

mer

it

ROEWA

ROA

Fig. 7. Pratt's �gure of merit for the ROA edge detector with varyingwindow size, and for the ROEWA edge detector with varyingslope, applied to the single-look speckled Markov random �eldimage.

Results on real world data are a useful supplement tosimulations, but here only a visual appreciation can begiven. A multitemporal series of three-look ERS-1 imagesof an agricultural scene near Bourges, France, was usedto test edge detectors and post-processing. An extract ofa color composition of 3 dates acquired with monthly in-tervals is shown in Fig. 8. Note the close resemblancebetween this scene and the simulated image in Fig. 6. Theedge strength maps of the di�erent dates were averaged,supposing that no geometrical changes took place betweenthe acquisitions and that the images are perfectly regis-

tered. Our strategy is to allow a strong over-segmentationin the edge detection step, and then rely on subsequentmerging to eliminate false edges. The best results were ob-tained with a 13 � 13 window for the ROA operator andwith b = 0:73 for the ROEWA operator. Given the specklecorrelation, the two detectors have about the same specklereduction capacity with these parameters. Visual inspec-tion of the segmentations revealed only slight di�erences infavor of the ROEWA operator. We shall use this image toillustrate how complementary post-processing can improvethe �nal result. Fig. 9 shows the initial segmentation, ob-tained with the ROEWA operator with parameter b = 0:73and the modi�ed watershed algorithm with threshold 1:53.The threshold was deliberately set very low to make surethat practically all signi�cant edges are detected, resultingin a massively over-segmented image. All the three merg-ing criteria mentioned in section III-E were compared. TheLR measure (13) gave the result which agreed best with ourconception of the regions. The unequal variance Student'st-test gave similar results, whereas the classic Student's t-test performed poorly. In the �nal segmentation shown inFig. 10, the number of regions has been reduced from over5000 to about 600. Adjacent regions for which the log-likelihood `merge > �1:85 for all three dates were merged.The threshold indicates that we accepted some irregular-ities within the regions. In addition, regions containingonly one pixel were supposed to be due to speckle and thuseliminated. The merging order was de�ned by the iterativepairwise mutually best merge criterion. Almost all regionsthat we can distinguish by eye have been detected. Someregions still seem to be split in several parts, the edgesare sometimes irregular due to speckle, and the corners areslightly rounded due to the strong smoothing used by theedge detector. It is, nevertheless, a surprisingly good SARimage segmentation.

Page 18: Projet de Traitement du Signal Segmentation d’images SAR

Fig. 8. Extract of a color composition of three SAR images of anagricultural scene near Bourges, France c ESA { ERS-1 data {1993, Distribution SPOT Image.

V. Discussion

The estimator of local means used by the ROEWA oper-ator is optimized for a stochastic multiedge model. Wehave shown that an exponentially weighted mean witha correctly adjusted slope gives the optimal tradeo� be-tween localization precision and speckle suppression whenthe re ectivity jumps follow a Poisson distribution. Thismultiedge model is primarily adapted to describe scenescomposed of distinct regions of relatively uniform re ec-tivity, but of strongly varying size. Exponential weight-ing is strictly optimal only for scene types which corre-spond exactly to the stochastic image model. Moreover,we supposed uncorrelated speckle. Equivalent estimatorsfor other scene models and for correlated speckle can bedeveloped by substituting the appropriate spectral densityfunctions into (6), but the impulse response will in generalnot be any simple, analytic function like the one that wefound here.The arithmetic mean, used by the ROA operator, is the

ML estimator of the mean value for a stationary process.The ROA operator is hence spatially optimal in a mo-noedge context, i.e., when the distance between edges islarger than the width of a half window. If the regions gen-erally are big, as compared to the window size that is nec-essary to obtain a su�cient speckle suppression, the ROAoperator is bound to perform better than the ROEWA op-erator.To decide whether or not the ROEWA operator can bring

an improvement, as compared to the ROA operator for agiven image, several factors must be considered: the aver-age region size and the variations in region size, the contrastbetween di�erent regions, the ENIL, and the speckle cor-relation. The ROEWA should theoretically perform bet-ter than the ROA operator when the re ectivity approxi-mately corresponds to the multiedge model, the mean re-

Fig. 9. Over-segmented image obtained by the ROEWA operatorand watershed thresholding.

Fig. 10. Segmentation obtained by the ROEWA operator, watershedthresholding and region merging.

gion width is small, and the ENIL is low. With increasingENIL or mean region width, the monoedge model becomesmore appropriate, and the ROA operator can be expectedto perform better.

The experimental results con�rm the theoretical discus-sion above. Edge detection on a single-look image com-posed of vertical bands of gradually increasing width in-dicate that the ROEWA detector permits a strong specklereduction without degrading the spatial resolution as much

Page 19: Projet de Traitement du Signal Segmentation d’images SAR

as the ROA operator. Here we have deliberately placedourselves in a rather extreme multiedge situation.On another simulated single-look image, where the re-

ectivity closely approximates the proposed multiedgemodel, the ROA and ROEWA detectors were comparedover a wide range of window sizes and corresponding slopesof the exponential weighting function, in terms of Pratt's�gure of merit. For the smallest windows, the monoedgehypothesis is generally veri�ed and the superiority of theROA operator is con�rmed, even though the scores are veryclose. With stronger smoothing, corresponding to largerwindows, the multiedge model becomes more relevant, andthe performance di�erence in favor of the ROEWA opera-tor increases steadily. Strong smoothing is here necessaryto avoid numerous false edges due to speckle, due to thelow ENIL and the high speckle correlation.A hybrid segmentation scheme, which combines the pro-

posed edge detection method with LR region merging, wasshown to give excellent results on multitemporal ERS-1images of an agricultural scene. The di�erence between theresults obtained by the ROA and ROEWA operators wassmall. This re ects the fact that typical regions are so largethat the monoedge model is just as appropriate as the mul-tiedge model for the window size used. Such segmentationscan e.g., be used to improve thematic classi�cations [19].It should be stressed that this is a very rapid segmentationmethod. On a Silicon Graphics INDY workstation witha MIPS R4400 200MHz CPU and 64 MB of memory, theROEWA operator, the watershed thresholding, and the LRregion merging needed only 12 s to process three channelsof 512� 512 pixels to produce the result in Fig. 10. Thismakes our method more than an order of magnitude fasterthan another sophisticated SAR segmentation scheme, theRWSEG algorithm [5], which is implemented in the CAE-SAR module of the ERDAS IMAGINE software package.The quality of the results are comparable.

VI. Conclusion

In this article, we propose a new CFAR edge detector forSAR images, which is optimal under a stochastic multiedgemodel. It has been shown to perform better than the ROAoperator for images which closely approximate the multi-edge model, especially when the average region width issmall and the ENIL is low. The ROEWA operator, water-shed thresholding, and LR region merging constitute a verye�cient segmentation scheme. The watershed thresholdingcan be replaced by more advanced edge extraction meth-ods, e.g., based on the powerful concepts of basin dynamics[20] and edge dynamics [21].The ROEWA operator is a simple, nonadaptive edge de-

tector. There are several other approaches to edge detec-tion and segmentation in a multiedge context. Multires-olution ROA operators [22] combine the ratios computedwith di�erent window sizes according to their statisticalsigni�cance. The ideal solution would be a spatially adap-tive LR operator, which varies the window size, the windowform and the way it is split, so that the local arithmeticmeans are estimated on complete, uniform regions. How-ever, these perfectly homogeneous zones are unknown, anddi�cult to identify in the presence of speckle. The prac-tical solution is to try to iterate towards the best segmen-tation. The RWSEG algorithm [5], for example, combinesedge detection and region growing iteratively. Stochastic

methods based on Markov random �elds and simulated an-nealing [8] iterate towards a segmentation which minimizesa global cost function. Such methods may give even betterresults, at the cost of a higher computational complexity.

Appendix

Let us suppose the intensity I to be a wide-sense sta-tionary process. Taking the block-average of N pixels,

�Ib = 1=NPN

k=1 Ik, reduces the variance with a factor Nif the pixels are uncorrelated

�2Ibu =�2IN

If the pixels are correlated

�2Ibc =�2IN2

NXk=1

NXl=1

�(jk � lj) (14)

where �(m), m � 0, are the autocorrelation coe�cients.In SAR images, the speckle correlation typically becomes

insigni�cant for distances superior to 2 or 3 pixels. Moregenerally, we may suppose �(m) = 0,m > M , andM � N ,so that (14) can be rewritten as

�2Ibc =�2IN2

"N + 2

MXk=1

(N � k)�(k)

#: (15)

The factor with which the variance is reduced gives us theequivalent number of independent pixels in the analyzingwindow. Let us now consider the speckle reduction ob-tained by one half window of the ROEWA operator. We�rst employ the ISEF f in one direction

�2Ifc = �2I

1Xk=�1

1Xl=�1

f(k)f(l)�(k � l)

= �2I

�1� b

1 + b

�2 1Xk=�1

MXm=�M

bjkj+jk+mj�(m)

= �2I

�1� b

1 + b

�2 MXm=�M

�jmj+

1 + b2

1� b2

�bjmj�(jmj):

The normalized causal �lter f1 in the perpendicular direc-tion gives

�2If1c = �2Ifc

1Xk=0

1Xl=0

f1(k)f1(l)�(k � l)

= �2Ifc(1� b)2

1� b2

"1 + 2

MXm=1

b3m�(m)

#:

The equivalent number of independent pixels in a half win-dow of the ROEWA operator is thus �2I=�

2If1c

, which canbe compared to the corresponding number for a half win-dow of the ROA operator obtained by employing (15) inthe horizontal and vertical direction.

Acknowledgments

The authors acknowledge the valuable contributions ofF. Lebon, N. Mauduit, F. S�ery, J. Cabada, C. Lemarechal,C. Fortier, and T. Rabaute.

Page 20: Projet de Traitement du Signal Segmentation d’images SAR

References

[1] R. Touzi, A. Lop�es, and P. Bousquet, \A statistical and geo-metrical edge detector for SAR images," IEEE Trans. Geosci.Remote Sensing, vol. GE-26, pp. 764-773, Nov. 1988.

[2] A. C. Bovik, \On detecting edges in speckle imagery," IEEETrans. Acoust. Speech Signal Processing, vol. ASSP-36, pp.1618-1627, Oct. 1988.

[3] V. S. Frost, K. S. Shanmugan, and J. C. Holtzman, \Edgedetection for synthetic aperture radar and other noisy images,"in Proc. IGARSS, Munich, Germany, June 1982, sec. FA2, pp.4.1-4.9.

[4] C. J. Oliver, D. Blacknell, and R. G. White, \Optimum edgedetection in SAR," Inst. Elec. Eng. Proc. Radar Sonar Navigat.,vol. 143, Feb. 1996.

[5] R. G. White, \Change detection in SAR imagery," Int. J. Re-mote Sensing, vol. 12, no. 2, pp. 339-360, 1991.

[6] R. Cook and I. McConnell, \MUM (Merge Using Moments)segmentation for SAR images," in Proc. EurOpto SAR DataProcessing for Remote Sensing, Rome, Italy, 1994, vol. SPIE2316, pp. 92-103.

[7] D. M. Smith, \Speckle reduction and segmentation of SyntheticAperture Radar images," Int. J. Remote Sensing, vol. 17, no.11, pp. 2043-2057, 1996.

[8] R. Cook, I. McConnell, D. Stewart, and C. J. Oliver, \Seg-mentation and simulated annealing," in Proc. EurOpto SARImage Analysis and Modelling II, Taormina, Italy, Sept. 1996,vol. SPIE 2958, pp. 30-37.

[9] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave RemoteSensing, vol. 3, Dedham, MA: Artech House, 1986.

[10] J. Stern, J. de Barbeyrac, and R. Poggi, M�ethodes Pratiquesd'Etude des Fonctions Al�eatoires, Paris, France: Dunod, 1967.

[11] V. S. Frost, K. S. Shanmugan, and J. C. Holtzman, \A modelfor radar images and its application to adaptive �ltering of mul-tiplicative noise," IEEE Trans. Pattern Anal. Mach. Intell., vol.4, pp. 165-177, Mar. 1982.

[12] J. W. Woods and J. Biemond, \Comments on \A model for radarimages and its application to adaptive �ltering of multiplicativenoise"," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, pp.658-659, Sept. 1984.

[13] J. Shen and S. Castan, \An optimal linear operator for step edgedetection," CVGIP: Graph. Models Image Processing, vol. 54,pp. 112-133, Mar. 1992.

[14] R. Fj�rtoft, P. Marthon, A. Lop�es, and E. Cubero-Castan, \Edgedetection in radar images using recursive �lters," Proc. ACCV,Singapore, Dec. 1995, vol. 3, pp. 87-91.

[15] L. Vincent and P. Soille, \Watersheds in digital spaces: An e�-cient algorithm based on immersion simulations," IEEE Trans.Pattern Anal. Mach. Intell., vol. 13, pp. 583-598, May 1991.

[16] P. Marthon, B. Paci, and E. Cubero-Castan, \Finding the struc-ture of a satellite image," in Proc. EurOpto Image and SignalProcessing for Remote Sensing, Rome, Italy, 1994, vol. SPIE2315, pp. 669-679.

[17] A. Baraldi and F. Parmiggiani, \Segmentation driven by an iter-ative pairwise mutually best merge criterion," in Proc. IGARSS,Firenze, Italy, July 1995, pp. 89-92.

[18] W. K. Pratt, Digital Image Processing, New York: Wiley, 1978.

[19] Franck Sery, A. Lop�es, D. Ducrot-Gambart, R. Fj�rtoft, E.Cubero-Castan, and P. Marthon, \Multisource classi�cation ofSAR images with the use of segmentation, polarimetry, textureand multitemporal data," in Proc. EurOpto Image and SignalProcessing for Remote Sensing, Taormina, Italy, Sept. 1996, vol.SPIE 2955, pp. 186-197.

[20] M. Grimaud, \A new mesure of contrast: Dynamics," in Proc.Image Algebra and Morphological Processing, San Diego, July1992, vol. SPIE 1769, pp. 292-305.

[21] L. Najman and M. Schmitt, \Geodesic saliency of watershedcontours and hierarchical segmentation," IEEE Trans. PatternAnal. Mach. Intell., vol. 18, pp. 1163-1173, Dec. 1996.

[22] R. Fj�rtoft, A. Lop�es, P. Marthon, and E. Cubero-Castan, \Dif-ferent approaches to multiedge detection in SAR images," Proc.IGARSS, Singapore, Aug. 1997.

Roger Fj�rtoft received the M.Sc. degreefrom the Department of Telecommunications,Norwegian Institute of Technology (NTH),Trondheim, Norway, in 1993. Since 1995 he ispursuing the Ph.D. degree at the Ecole Natio-nale Sup�erieure d'Electrotechnique, d'Electro-nique, d'Informatique et d'Hydraulique deToulouse (ENSEEIHT), Toulouse, France, andat the Centre d'Etudes Spatiales de la Bios-ph�ere (CESBIO), Toulouse, France. His mainresearch interests are in segmentation and mul-

tiresolution analysis of SAR images.

Armand Lop�es received the engineering de-gree from the Ecole Nationale Sup�erieurede l'A�eronautique et de l'Espace (Sup'A�ero),Toulouse, France, and the Ph.D. degree fromthe Universit�e Paul Sabatier (UPS), Toulouse,France, in 1983. He is now Ma�tre de Con-f�erences at UPS, teaching physics. At theCentre d'Etude Spatiale des Rayonnements(CESR) he studied the microwave extinctionand scattering by vegetation, the SAR andscatterometer image processing. Since 1995 he

is at the Centre d'Etudes Spatiales de la Biosph�ere (CESBIO), wherehis main activities concern SAR image post-processing.

Philippe Marthon received the engineeringdegree and the Ph.D. in computer sciencefrom the Ecole Nationale Sup�erieure d'Electro-technique, d'Electronique, d'Informatique etd'Hydraulique de Toulouse (ENSEEIHT),Toulouse, France, in 1975 and 1978, respec-tively, and the Doctorat d'Etat degree from theInstitut National Polytechnique de Toulouse(INPT), in 1987. He is currently Ma�tre deConf�erences at ENSEEIHT and research sci-entist at the Institut de Recherche en Informa-

tique de Toulouse (IRIT). His research interests include image pro-cessing and computer vision.

Eliane Cubero-Castan received the Ph.D.in computer science, software engineering fromthe Universit�e Paul Sabatier (UPS), Toulouse,France, in 1984. She is now with the FrenchSpace Agency (CNES), in the Space ImageQuality and Processing Division, where she hasthe onus of research and development projectmanagement in the �eld of information extrac-tion (classi�cation, segmentation, and networkand urban area extraction) from optical, radarand multisensor remote sensing data.