Membrane Sep h

26
8/13/2019 Membrane Sep h http://slidepdf.com/reader/full/membrane-sep-h 1/26 1 Movie of CO 2 and H 2 Permeation QuickTime™ and a Sorenson Video 3 decompressor are needed to see this picture. Movie courtesy of Josh Chamot, NSF: http://www.nsf.gov/news/news_summ.jsp?cntn_id=105797&org=NSF

Transcript of Membrane Sep h

Page 1: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 1/26

1

Movie of CO 2 and H 2 Permeation

QuickTime™ and aSorenson Video 3 decompressor are needed to s ee this picture.

Movie courtesy of Josh Chamot, NSF:http://www.nsf.gov/news/news_summ.jsp?cntn_id=105797&org=NSF

Page 2: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 2/26

2

Membrane Hydrogen Purification: Classic

• H2 /hydrocarbon separation

• H2 /CO ratio adjustment

• NH 3 purge gas recovery

H y d r o t r e a t e r

TreatedOil

H y d r o t r e a t e r

H2

Oil

(1) InertsPurge

(3) FuelGasMembrane

Oil/GasSeparator

(2) Recovered H 2

Photo from Air Liquide

Page 3: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 3/26

3

• Steam reforming of hydrocarbons

accounts for 95% of the hydrogenproduced in the U.S. (DOE 2003):

• U.S. H 2 production was 810 million kg/yr in 2003. (DOE) –

Growth due to:• Low grade crude in refineries• Power source for fuel cells

DOE = http://www.eere.energy.gov/hydrogenandfuelcells/

Fuel Cell Facility (PLUG)

PLUG = http://www.plugpower.com/technology/overview.cfm

• Membranes may be useful for purifying H 2: - Low capital costs- Compact size- Ease of operation

Interest in Hydrogen

CH 4 2 H

2O CO

2 4 H 2

Page 4: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 4/26

Page 5: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 5/26

5

Page 6: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 6/26

Page 7: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 7/26

7

Page 8: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 8/26

8

Fuel Cell OperationFrom Jim McGrath, Virginia Tech

Source: H Power

Page 9: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 9/26

9

Just what the environmentneeds from a car. Water .

Hydrogen powered Fuel

Cell vehiclesonly emitwater.

From Jim McGrath, Virginia Tech

Page 10: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 10/26

Page 11: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 11/26

11

Cost Estimates for H 2 Production

http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf

Page 12: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 12/26

12

FutureGen

"Today I am pleased to announce that the UnitedStates will sponsor a $1 billion, 10-yeardemonstration project to create the world's first

coal-based, zero-emissions electricity andhydrogen power plant..."President George W. Bush

February 27, 2003

Page 13: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 13/26

13

FutureGen Concept

Page 14: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 14/26

Page 15: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 15/26

15

• High flux (high permeability, thin)• High selectivity

• Tolerance to all feed components• Mechanical stability• Ability to be packaged in high surface area modules• Excellent manufacturing reproducibility, low cost

Ideal Membrane Characteristics

Page 16: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 16/26

16D. Wang, et al., ACS Symp. Ser., v. 744, p. 107, 1999.

~5,000 m 2 /m 3

Contaminated Natural Gas(High Pressure) CO 2- rich permeate(Low pressure)

Upgraded Natural gas(High Pressure)

Hollow Fiber Module

Page 17: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 17/26

17

Component Specification

CO 2 <2%

H2O <120 ppm

H2S <4 ppm

C 3+ hydrocarbons 950-1050Btu/ft 3(STP)

Dew Point -20C

Inerts (N 2, CO 2, He, etc.) <4%

Amine Scrubber

Membrane Unit

U.S. Pipeline Specifications 1:

Potential membrane applications:• Acid gas removal• N2 removal• Higher hydrocarbon removal• Dehydration1R.W. Baker, I.&E.C. Res., 41, 1393 (2002).

Natural Gas Purification

Page 18: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 18/26

18J. Membr. Sci., 107, 1-21 (1995)

Gas Transport in Polymers:Solution-Diffusion Model

Page 19: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 19/26

19

10 -13

10 -12

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

50 100 150 200 250 300 P e r m e a

b i l i t y [ c m

3 ( S T P )

c m

/ ( c

m 2

s c m

H g

) ]

Vc [cm 3 /mole]

PDMS, 35°C

PSF, 23°C

H2

O 2N2

CO 2

CH 4

C 2H6C 3H8

H2

He

O 2

NH 3

N2

CH4

CO 2

SF 6

CCl2F

2 C 2Cl 2F4

PDMS: n

Si O

CH 3

CH3

SO2

O C

CH3

CH3

O

n

PSF:

Characteristic Polymer Permeation Properties

Page 20: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 20/26

20

10 -12

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 100 1000

D i f f u s

i o n

C o e

f f i c

i e n

t [ c m

2 / s ]

Vc [cm 3 /mole]

PDMS

PSF

H2O 2

N2

CO 2

CH 4

CF 4

C 2H6C 3H8

C 2F 6 C 3F8

He

O 2

N2

CO 2

CH 4

C 4H10

10 -4

10 -3

10 -2

10 -1

100

0 100 200 300 400 500

S o l u b i l i t y [ c m

3 ( S T P ) / ( c m

3

c m

H g

) ]

T c [K]

PSF

PDMS

H2 N2 O 2CH 4 CO 2 C3 H8n-C 4 H10

C2

H6

B.D. Freeman and I. Pinnau, "Polymeric Materials for Gas Separations," in Polymeric Membranes forGas and Vapor Separations: Chemistry and Materials Science, Edited by B.D. Freeman and I. Pinnau,ACS Symp. Ser. 733, pp. 1-27 (1999).

Solubility and Diffusivity Characteristics

Page 21: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 21/26

21

• Traditional membrane materials• Glassy polymers• Designed to be strongly size-sieving

• Low permeability

• High selectivity due to high diffusion selectivity

• Upon plasticization, selectivity decreases, sometimes strongly• H2 selective in H 2 /CO 2 separations

• Our approach• Rubbery polymers

• Designed to be strongly solubility-selective• High permeability• Selectivity derives primarily from high solubility selectivity

• Upon plasticization, separation properties can increase insome cases (CO 2 /H 2)

Materials Design Approach P

A S

A D

A A / B

S A

S B

D A

D B

Page 22: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 22/26

O

H3C C N

THF

ACN

Effect of Polar Groups in Liquid Solvents onCO 2 Solubility and CO 2 /N 2 Solubility Selectivity

Lin and Freeman, J. Molecular Structure , 739(1-3), 57-74 (2005).

1

10

100

1

10

100

10 15 20 25 30 35 C O

2 S o

l u b i l i t y [ c m

3 ( S

T P ) / ( c m

3 a

t m ) ]

C O

2 / N

2 S o

l u b i l i t y S e

l e c

t i v i t yTHF

AN

ACN

DMFC6 MeOHDMS

MAc

TCM

PC

Solvent Solubility Parameter [MPa 0.5 ]

THF ACN

25 o C

Page 23: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 23/26

R =CH 3; poly(ethylene glycol) methylether acrylate (PEGMEA); n=8

R =H; poly(ethylene glycol) acrylate(PEGA); n=7

Poly(ethylene oxide) diacrylate (PEGDA: Crosslinker)

UV

n

14] [ O CH 2 CH 2 O

O

C CH CH 2 C

O

CH CH 2

C

C

O O

C C

C C

C C

PEO O

PEO

C

C O

PEO

OR

C

C

PEO

OR

O

O

C

O

C PEO

O

O O

O

C C C C C C

CH 2 CH C O

O CH 2 CH 2 OR [ ]

Crosslinked Poly(ethylene oxide) [XLPEGDA]

Page 24: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 24/26

Mixed Gas Separation

10 -1

10 0

10 1

102

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4

C O

2 / H

2

CO2 Permeability [Barrer]

Upper Bound35 oC

10 oC

-20 oC

Lin, Haiqing, E. van Wagner, B.D. Freeman, L.G. Toy, and R.P. Gupta, “Plasticization -Enhanced H 2 Purification Using Polymeric Membranes,” Science, 311(5761) , 639-642 (2006).

Page 25: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 25/26

Mixed Gas CO 2 /CH 4 Separation

PEGDA (crosslinker; 30wt %)

CH 2 CH C

O

O CH 2 CH 2 OCH 3[ ]8

PEGMEA (monomer: 70 wt%)

]13[ O CH 2 CH 2 O

O

C CH CH 2 C

O

CH CH 2

0

10

20

30

40

50

0 5 10 15 20

C O

2 / C H

4

CO 2 Partial Pressure [atm]

35 oC

PEGDA/PEGMEA-30

mixed

6FDA- m PD

Pure

10 0

101

10 2

10 0 10 1 10 2 10 3 10 4 10 5

CO 2 Permeability [Barrer]

C O

2 / C H

4

CA

-20 oC

10 oC

35 oC

upper bound

Lin, Haiqing, E. van Wagner, B.D. Freeman, and I. Roman, “High Performance PolymerMembranes for Natural Gas Sweetening,” Advanced Materials, 18 , 39-44 (2006).

Page 26: Membrane Sep h

8/13/2019 Membrane Sep h

http://slidepdf.com/reader/full/membrane-sep-h 26/26

26

THANK YOU!