Lignes de propagation - ENSEA

32
Lignes de propagation F. Pépin 1. Introduction page 2 2. Modélisation des lignes page 4 3. Étude des lignes sans pertes page 5 3.1. Équation différentielle page 6 3.2. Régime sinusoïdal permanent page 7 3.3. Résistance caractéristique d'une ligne de propagation page 9 3.4. Régime quelconque page 11 4. Étude des lignes avec pertes page 21 5. Étude des lignes en régime sinusoïdal page 24 6. Méthode de Bergeron page 29 7. Quelques applications page 33

Transcript of Lignes de propagation - ENSEA

Page 1: Lignes de propagation - ENSEA

Lignes de propagation

F. Pépin

1. Introduction page 2

2. Modélisation des lignes page 4

3. Étude des lignes sans pertes page 5

3.1. Équation différentielle page 6

3.2. Régime sinusoïdal permanent page 7

3.3. Résistance caractéristique d'une ligne de propagation page 9

3.4. Régime quelconque page 11

4. Étude des lignes avec pertes page 21

5. Étude des lignes en régime sinusoïdal page 24

6. Méthode de Bergeron page 29

7. Quelques applications page 33

Page 2: Lignes de propagation - ENSEA

2

Lignes de propagation

1. Introduction

L'objectif d'un câble est de transporter un signal d'un point à un autre. Un tel câble comprend toujours

deux fils (figure 1), la voie de retour étant généralement la masse sauf dans le cas d'une transmission en

mode différentiel.

Figure 1 : générateur relié à une charge par un liaison bifilaire

Pour ne pas avoir à prendre en compte les phénomènes de propagation, il faut que la longueur du

câble soit beaucoup plus petite que la longueur d'onde du signal mis en jeu. En prenant par exemple une

vitesse de propagation de 2.108 m/s et une fréquence de 1 MHz, la longueur d'onde du signal est de 200

m.

La figure 2 donne les câbles de liaison couramment utilisés (fils parallèles, paires torsadées blindées

ou non, câble coaxial et ligne sur circuit imprimé, aussi appelée ligne micro-ruban).

Figure 2 : exemples de câbles

Les charges électriques circulant dans les conducteurs sont à l'origine d'un champ électrique et d'un

champ magnétique. Lorsque le courant suit le conducteur, l'onde électromagnétique est guidée

physiquement par la ligne de propagation formée par les conducteurs (figure 3).

Figure 3 : propagation des champs électrique et magnétique

Page 3: Lignes de propagation - ENSEA

3

L'étude de la propagation peut donc être faite par l'intermédiaire des équations de Maxwell :

(1) 0Bdiv

(2) 0

ε

ρEdiv (car pas de charges libres)

(3) t

BErot

(4) t

DjHrot

auxquelles il faut rajouter les trois relations suivantes :

(5)

Eε.D

Hμ.B

Eσ.j

En partant de la relation :

EΔEΔEdivgradErotrot

et en utilisant les relations précédentes :

Hrott

μ.Brottt

Brot

2

2

t

Eμ.ε

t

Eμ.σ

t

Dj

tμ.

on peut établir la relation suivante :

0t

Eμ.ε

t

Eμ.σEΔ

2

2

Sachant que la conductivité est nulle dans un isolant, on trouve l'équation suivante :

(6) 0t

Eμ.εEΔ

2

2

Et, en projetant cette relation sur les trois axes d'un repère x, y et z :

0t

Eμ.εΔE

2x

2

x

0t

Eyμ.εΔE

2

2

y

0t

Ezμ.εΔEz

2

2

En résolvant ces équations et à l'aide de conditions aux limites, on peut étudier la propagation dans

différentes situations, comme par exemple dans les guides d'onde utilisés en hautes fréquences.

Page 4: Lignes de propagation - ENSEA

4

On peut cependant réaliser une mise en équation électrique en utilisant un modèle de la ligne à

constantes de temps réparties.

2. Modélisation des lignes

Le câble coaxial, largement utilisé en électronique, sera utilisé comme support pour la modélisation,

la mise en équation et l'étude de la propagation. Cette étude est cependant valable quelle que soit la

ligne, comme le montrera le dernier chapitre.

Le câble coaxial est composé d'un conducteur central, d'un isolant et d'une tresse de blindage (figure

4).

Figure 4 : constitution du câble coaxial

L'objectif de ce paragraphe est d'établir un modèle électrique du câble coaxial. En mesurant le type

d'impédance de ce câble par l'intermédiaire d'un impédancemètre vectoriel en fonction de la charge à

l'autre extrémité (figure 5), on s'aperçoit que l'on trouve une inductance dans le cas d'un court-circuit et

un condensateur dans le cas d'un circuit ouvert. De plus, la valeur de ces deux composants dépend

directement de la longueur du câble testé.

Figure 5 : mesure du type d'impédance du câble coaxial

en fonction de la charge

De plus, en prenant un morceau de câble de longueur infiniment petite, on peut, par l'intermédiaire

des théorèmes de Gauss et d'Ampère, calculer le condensateur en parallèle et l'inductance en série. Cela

nous amène à considérer le schéma de la figure 6 qui correspond à un modèle de la ligne à constantes

de temps réparties.

Figure 6 : modèle d'une ligne de propagation

Page 5: Lignes de propagation - ENSEA

5

L et C sont respectivement la self et la capacité par unité de longueur.

En considérant les pertes joules (résistance R) et les pertes dans le diélectrique (conductance G), le

schéma devient celui de la figure 7.

Figure 7 : modèle complet

L'unité des quatre composants apparaissant dans ce schéma est :

C : pF/m

L: nH/m

R : /m

G : S/m

3. Étude des lignes sans pertes

Le modèle d'un morceau de câble coaxial sans pertes de longueur dx est celui donné dans la figure

8.

Figure 8 : modèle du câble coaxial sans pertes

L'objectif est d'abord d'établir l'équation permettant le calcul de la tension v(x,t) et du courant i(x,t)

en tous points de la ligne (figure 9).

Figure 9 : tension et courant en tous points de la ligne

3.1. Équation différentielle

En reportant la tension et le courant sur le modèle au point x et x+dx (figure 10) :

Page 6: Lignes de propagation - ENSEA

6

Figure 10 : tensions et courants sur le schéma correspondant

au modèle de la ligne

Les lois de la maille et du nœud donnent les deux relations suivantes :

(7)

t

tx,iL.dx.tdx,xvtx,v

(8)

t

tdx,xvC.dx.t)dx,xitx,i

En approchant la variation de la tension et du courant au premier ordre, on a :

(9)

.dxx

tx,vtx,vtdx,xv

(10)

.dxx

tx,itx,itdx,xi

A l'aide des relations (7) et (9), on obtient :

0t

tx,iL.dx..dx

x

tx,v

Ce qui donne :

0t

tx,iL.

x

tx,v

Cette relation sera utilisée en autres pour calculer la résistance caractéristique de la ligne de

propagation.

En utilisant les relations (8) et (10), cela donne :

0t

tdx,xvC.dx..dx

x

tx,i

Ou encore :

0t

tdx,xvC.

x

tx,i

Le deuxième terme de cette équation peut être simplifié de la façon suivante :

t

tx,v.dx

t

tx,vtx,v

ttdx,xv

tt

tdx,xv

Ce qui donne :

0t

tx,vC.

x

tx,i

Soient donc les deux relations suivantes :

(11)

0t

tx,iL.

x

tx,v

(12)

0t

tx,vC.

x

tx,i

Page 7: Lignes de propagation - ENSEA

7

En dérivant par x la première et par t la deuxième :

:(11)x

0

tx

tx,iL.

x

tx,v 2

2

2

:(12)t

0

t

tx,vC.

xt

tx,i

2

22

cela permet d'éliminer i(x,t) et de trouver une équation différentielle de la tension v(x,t) :

(13)

0t

tx,vLC.

x

tx,v

2

2

2

2

Cette équation de propagation est appelée équation des télégraphistes.

3.2. Régime sinusoïdal permanent.

La tension v(x,t) est de la forme :

xω.t.sinxVtx,v 0

On note que l'amplitude et la phase de ce signal dépendent de l'endroit considéré.

En utilisant un signal complexe :

tjxj.0 .e.exV

on en déduit l'amplitude complexe :

xj.0

_

.exVxV

L'équation de propagation de l'amplitude complexe est :

(14)

0xV.LC.ωdx

xVd _2

2

_2

La résolution de cette équation différentielle permettra de déterminer la forme de la tension en tous

points de la ligne.

L'équation caractéristique de cette équation différentielle est :

0LC.ωr 22

Et ses deux solutions :

LCjωr

La solution générale de l'équation différentielle est donc :

.xLCjω.xLCjω_

B.eA.exV

Et en multipliant par tje . :

.xLCtjω.xLC-tjω B.eA.e

Page 8: Lignes de propagation - ENSEA

8

On en déduit alors la tension v(x,t) :

.xLCω.ω.tB.cos.xLCω.ω.tA.costx,v

En notant LC. , on obtient :

(15) β.xω.tB.cosβ.xω.tA.costx,v

On remarque la tension en tous points de la ligne est la somme de deux termes. Soit le premier :

β.xω.tA.cos

et plus précisément l'argument du cosinus :

.x

ω

β-tω.β.xω.t

La valeur de ce terme en t0 et x0 est :

00 .x

ω

β-tω.

Ce signal étant périodique, cherchons la distance parcourue par ce terme au bout d'une période :

0000 .x

ω

β-tω.x.

ω

β.x

ω

β-Ttω.

On obtient :

β

ω.TΔx

Ce qui met en évidence une vitesse de propagation :

v.TΔx LC

1

β

ωv

Autrement dit, le premier terme β.xω.tA.cos correspond à un terme de propagation dans le sens

des x positifs.

On peut démontrer de la même façon que β.xω.tB.cos correspond à un terme de propagation

dans le sens des x négatifs.

En résumé, la relation (15) montre que la tension en tous points de la ligne (figure 11) est la somme

de deux termes, l'un est un terme de propagation dans le sens des x croissants, alors que l'autre est un

terme de propagation dans le sens des x décroissants.

Figure 11 : les deux propagations en sens opposé

Cette remarque est aussi vraie pour les deux extrémités de la ligne, c'est-à-dire en x égale à 0 et en x

égale à l.

3.3. Résistance caractéristique d'une ligne de propagation.

La résistance caractéristique est la résistance entre les deux conducteurs en un point quelconque de

la ligne lorsqu'une seule onde se propage dans le sens des x positifs. Il faut pour cela que l'autre terme

soit nul :

Page 9: Lignes de propagation - ENSEA

9

.xLCtjω

B..e

=0

La résistance caractéristique est alors définie par le rapport des amplitudes complexes de la tension

et du courant :

xI

xVR

_

c

L'amplitude complexe de la tension est :

xβA.e ..j_

xV

Soit la relation vue durant le calcul de l'équation de propagation :

0t

tx,iL.

x

tx,v

et en complexe :

dt

xIdL.

dx

xVd__

La dérivée par rapport au temps correspond au produit par j.ω , cela donne :

x_

_

I.jLdx

xVd

En remplaçant xV par son expression :

xIjLωj.A.β._

.xj.- e

et en faisant réapparaître xV :

xIj.Lω.xVj.β.__

cela permet de calculer le rapport des amplitudes complexes de la tension et du courant :

β

L.ω

xI

xV_

Avec LCω.β , on obtient alors l'expression de la résistance caractéristique :

C

LRc

C'est la résistance en tous points de la ligne (figure 12) :

Figure 12 : résistance caractéristique

Page 10: Lignes de propagation - ENSEA

10

mais, attention, ceci n'est vrai que si il n'y a qu'une seule onde se propageant dans les sens des x positifs.

Application au câble coaxial de laboratoire : une coupe en est donnée figure 13.

Figure 13 : coupe du câble coaxial

avec a = 0,65 mm et b = 2,35 mm.

Le calcul de la capacité et de l'inductance sur une longueur l donne :

l.

a

bLog

.ε2.π.πC ro' l.

a

b.Log

2.π

μL o'

On obtient alors l'expression de la vitesse de propagation et de la résistance caractéristique :

εμ

1

LC

1v

2

ro2

oc

a

bLog.

.ε.ε2π

μ

C

LR

Les valeurs numériques sont :

s

m2.10v 8 50ΩRc

Remarque : Rc dépend du rapport b sur a, c'est pourquoi il existe des câbles coaxiaux plus minces

mais toujours de résistance caractéristique 50 .

Les câbles coaxiaux utilisés en télévision ont une résistance caractéristique égale à 75 .

3.4. Régime quelconque

En remplaçant tx,v par px,V , l'équation de propagation

0t

tx,vLC.

x

tx,v

2

2

2

2

devient:

(16)

px,.VLC.pdx

px,Vd 22

2

L'équation caractéristique de cette équation différentielle est :

0LC.pr 22

et ses deux solutions sont :

LCp.r

La solution de l'équation de propagation est alors :

.xLCp..xLCp. .epB.epApx,V

A(p) et B(p) sont les constantes d'intégration vis-à-vis de x, mais on peut noter qu'elles peuvent

dépendre de p.

En faisant apparaître la vitesse de propagation :

Page 11: Lignes de propagation - ENSEA

11

(17) v

xp.

v

xp.

.epB.epApx,V

On retrouve le fait que la tension est la somme de deux termes, le premier étant un terme de

propagation dans le sens des x croissants alors que le deuxième est un terme de propagation dans le sens

des x décroissants.

Par l'intermédiaire d'une relation établie durant le calcul de l'équation de propagation :

0t

tx,iL.

x

tx,v

et en utilisant la transformée de Laplace :

px,Lp.Idx

px,dV

on peut calculer l'expression du courant en tous points de la ligne :

v

xp.

v

xp.

.epB.epAdx

dpx,I

Lp

1

ce qui donne :

(18) v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

En conclusion, les transformées de Laplace de la tension V(x,p) et du courant I(x,p) en tous points

de la ligne (figure 14), caractérisée par une vitesse de propagation v et d'une résistance caractéristique

Rc sont :

v

xp.

v

xp.

.epB.epApx,V

v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

Figure 14 : tension v(x,p) et courant i(x,p) en tous points de la ligne

1er étude : ligne semi infinie (figure 15)

Figure 15 : ligne semi-infinie

Page 12: Lignes de propagation - ENSEA

12

Puisqu'il n'y a aucune raison d'avoir une onde se propageant dans le sens des x négatifs, on peut écrire

:

v

xp.

.epApx,V

La seule condition au limite étant V(0,p) = E(p), on en déduit que A(p) = E(p) :

v

xp.

.epEpx,V

Le calcul de la transformée de Laplace inverse donne :

v

xtetx,v

On obtient le signal du générateur retardé d'un temps correspondant au temps de propagation jusqu'à

la position considérée (figure 16).

Figure 16 : chronogrammes relatives à la ligne semi infinie.

2ième étude : générateur quelconque et charge adaptée (figure 17)

Figure 17 : générateur quelconque et charge adaptée

La tension et le courant sont donnés par la solution de l'équation de propagation :

v

xp.

v

xp.

.epB.epApx,V

v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

Les conditions aux limites, c'est-à-dire les relations imposées par le générateur et la charge en x = 0

et x = l sont :

p0,R.IpEp0,V

p,.IRp,V c ll

En remplaçant les expressions de la tension et du courant dans la relation imposée par la charge :

Page 13: Lignes de propagation - ENSEA

13

vp.

c

vp.

cc

vp.

vp.

.eR

pB.e

R

pA.R.epB.epA

llll

On en déduit que 0pB

La condition imposée par le générateur est :

p0,R.IpEp0,V

ce qui donne :

cR

pAR.pEpA

ou encore :

p.ERR

RpA

c

c

L'expression de la transformée de Laplace de la tension en tous points de la ligne est donc :

v

xp-

c

c .ep.ERR

Rpx,V

et l'expression temporelle :

v

xt.e

RR

Rtx,v

c

c

Cette expression n'est naturellement valable que pour x compris entre 0 et l. On retrouve le fait que

l'onde se propage à une vitesse v. De plus, il n'y a pas d'onde réfléchie, c'est-à-dire d'onde se propageant

dans le sens des x décroissants, ce qui sera expliqué dans la troisième étude.

L'amplitude de l'onde se propageant dans le câble est celle du générateur multipliée par le coefficient

c

c

RR

R

. En effet, en x = 0 et à t = 0+, sachant qu'il ne peut pas y avoir encore d'onde réfléchie, on a Rc

à l'entrée de la ligne (figure 18).

Figure 18 : calcul de la tension v(0,0+)

Le calcul de la tension v(0,0+) est donc effectué par un diviseur potentiométrique :

0.e

RR

R0,0v

c

c

Cette tension se propage alors dans la ligne.

3ième étude : générateur adapté, charge résistive quelconque (figure 19)

Page 14: Lignes de propagation - ENSEA

14

Figure 19 : générateur adapté, charge quelconque

Les relations déduites de l'équation de propagation et les deux conditions aux limites sont :

v

xp.

v

xp.

.epB.epApx,V

v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

p0,.IRpEp0,V c

p,R.Ip,V ll

En notant le temps de parcours de l'onde du générateur à la charge, c'est-à-dire :

v

Le calcul des deux constantes d'intégration donne :

2

pEpA .p2.

c

c .eRR

RR.pApB τ

On peut alors définir un coefficient appelé coefficient de réflexion, la signification de ce terme sera

explicitée plus loin :

c

c

RR

RR

Γ avec 1,1 , R variant de 0 à l'infini

L'expression de la tension V(x,p) devient :

v

xp.

.p2.-v

xp.

.e.e.e.2

pEpx,V

et celle de v(x,t) :

.2.

2

1

v

xte

v

xte.tx,v

On s'intéresse aux tensions aux deux extrémités de la ligne (figure 20).

Figure 20 : tensions v(0,t) et v(l,t)

Page 15: Lignes de propagation - ENSEA

15

L'expression de ces deux tensions est :

.2.2

1 tete.t0,v

te-te.t,v .2

1l

La deuxième peut être mise sous la forme suivante :

-t.et,v2

1 l

1er cas : régime impulsionnel. Le générateur délivre une impulsion d'amplitude E à t égal à 0 (figure

21).

Figure 21 : étude de cette ligne en régime impulsionnel

Les chronogrammes de la tension e(t) et des deux tensions v(0,t) et v(l,t) sont donnés dans la figure

22.

Figure 22 : chronogrammes en régime impulsionnelle

L'interprétation est la suivante. À t = 0, le générateur délivre une impulsion d'amplitude E. Sachant

qu'à cet instant il ne peut pas encore y avoir d'onde réfléchie, on a Rc à l'entrée de la ligne. La résistance

de sortie du générateur étant aussi égale à Rc, l'amplitude de l'impulsion qui se propage dans la ligne est

égale à 2

E. Cette onde arrive en x = l à l'instant . On remarque l'on retrouve en début de ligne à t =2

une impulsion d'amplitude2

E qui correspond au terme .2

2

1 te dans l'expression de la tension

v(0,t). On en déduit qu'il s'agit de l'onde réfléchie par la charge, ce qui explique le nom de coefficient

de réflexion. L'onde réfléchie est donc égale à l'onde qui arrive à la charge, appelée onde incidente,

multipliée par le coefficient de réflexion. Sachant que la tension en tous points de la ligne est la somme

de deux termes se propageant en sens contraire, cela est aussi vrai aux extrémités de la ligne, et dans ce

cas en x = l. la tension v(l,t), à l'instant est donc la somme de l'onde incidente, c'est-à-dire 2

E, et de

Page 16: Lignes de propagation - ENSEA

16

l'onde réfléchie 2

E , ce qui donne

2

1 E . On note qu'il n'y a pas d'onde repartant dans le sens des x

positifs au-delà de 2, ce qui sera expliqué durant la quatrième étude.

2ième cas : régime indiciel. Le générateur délivre un échelon d'amplitude E (figure 23).

Figure 23 : étude de la ligne en régime indiciel

Dans le cas où le coefficient de réflexion est positif, on obtient les chronogrammes de la figure 24.

Figure 24 : chronogrammes en régime indiciel avec > 0

La figure 25 donne les chronogrammes avec un coefficient de réflexion négatif.

Figure 24 : chronogrammes en régime indiciel avec < 0

L'interprétation peut être faite à l'aide de la méthode du tableau. Cette méthode consiste à tracer

graphiquement les allers et retours des ondes, en étiquetant chaque onde par son amplitude et en

déterminant les tensions aux deux extrémités en sommant l'onde incidente et l'onde réfléchie (figure 25).

Page 17: Lignes de propagation - ENSEA

17

Figure 25 : tableau pour un générateur adapté et une charge quelconque

Tout d'abord, et pour une raison déjà énoncée, on a 2

E0,0v .

2

Eest donc l'amplitude qui part à t=0

du générateur et arrive côté charge à t = . L'onde réfléchie est donc 2

E , par définition du coefficient

de réflexion. La tension à x = l est alors la somme des ondes incidente et réfléchie, c'est-à-dire2

1 E .

L'onde réfléchie arrive côté générateur à t = 2, et il n'y a pas d'onde réfléchie car la résistance de sortie

du générateur est égale à la résistance caractéristique de la ligne, comme on le verra dans la prochaine

étude.

Pour t > 2., on a :

cRR

RE

2

1E.t,vt0,v

Γl .

On obtient un diviseur potentiométrique entre la charge et le générateur. En effet, après un régime

transitoire du à la réflexion sur la charge, la ligne est équivalente à un court-circuit.

Pour ne pas avoir de réflexion côté charge à t = , il suffit que le coefficient de réflexion soit nul :

0

c

c

RR

RRΓ

ce qui donne cRR . On dit alors que la charge est adaptée par la présence de cette résistance égale à

la résistance caractéristique de la ligne.

4ième étude : générateur et charge quelconques (figure 26) :

Figure 26 : générateur et charge quelconques

Page 18: Lignes de propagation - ENSEA

18

Les deux équations venant de la résolution de l'équation de propagation sont :

v

xp.

v

xp.

.epB.epApx,V

v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

Les conditions aux limites sont :

p0,.IRpEp0,V g

p,R.Ip,V ll

On peut définir deux coefficients de réflexion, côté charge et g côté générateur :

c

c

RR

RR

Γ

cg

cgg

RR

RR

Γ

Après quelques lignes de calcul, on obtient la transformée de Laplace de la tension en début de ligne

:

.p2..p2.

g

g.e1.

.e1

1.

2

1.pEp0,V τ

τΓ

Γ.Γ

Γ

Le calcul de la transformée de Laplace inverse s'effectue par l'intermédiaire d'une décomposition en

série entière :

k

τ

τΓ.Γ

Γ.Γ

0k

.p2.g.p2.

g

.e.e1

1

L'utilisation de cette expression dans V(0,p) donne :

.p2.pg

g.e1.1.

2

1.pEp0,V τp

g Γe.ΓΓeΓ.ΓΓ

..... ..422..2

En identifiant les termes de retard nul, de retard égal à 2 ( pe .2 ), puis à 4 ( pe .4 ), etc …,

l'expression de la tension v(0,t) est :

....4.1..2.1..2

1,0 2

teΓ.ΓΓteΓΓte

Γtv ggg

g

Le calcul de la tension v(l,t) peut être effectué de la même manière.

L'exploitation de ce résultat ne sera faite que pour le régime indiciel (figure 27).

Figure 27 : étude de cette ligne en régime indiciel

Page 19: Lignes de propagation - ENSEA

19

Le chronogramme de la tension v(0,t) est donné dans les figures 28 et 29, avec un coefficient de

réflexion côté charge positif.

Figure 28 : les premiers échelons de la tension v(0,t)

Figure 29 : tension v(0,t) jusqu'au régime permanent

Le théorème de la valeur finale permet de calculer la tension en régime permanent :

g0pt RR

RE.p0,p.VLimLim

On retrouve le fait que la ligne est un court-circuit en régime permanent.

En appliquant la méthode du tableau, on trouve le résultat donné dans la figure 30.

Figure 30 : méthode du tableau pour la ligne étudiée

Page 20: Lignes de propagation - ENSEA

20

Voici différents points pour construire ce tableau :

la tension v(0,0) est obtenue par diviseur potentiométrique entre la résistance de sortie du

générateur et la résistance caractéristique de la ligne présente à son entrée, aucune réflexion ne

pouvant avoir eu lieu.

L'amplitude de la première onde circulant sur la ligne correspond à la tension v(0,0).

À t = , l'onde arrive côté charge et se réfléchit vers le générateur. L'amplitude de l'onde réfléchie

est égale celle de l'onde incidente multipliée par le coefficient de réflexion .

La tension v(l, ) est égale à la somme de l'amplitude de l'onde incidente et de l'onde réfléchie.

L'onde réfléchie à t = par la charge arrive côté générateur à t = 2.. Elle est réfléchie par le

générateur, avec une amplitude égale à l'amplitude de l'onde incidente (donc celle qui a été

réfléchie à t = par la charge) multipliée par le coefficient de réflexion côté générateur, c'est-à-

dire g.

La contribution de cette réflexion à la tension en début de ligne v(0,2) est la somme de

l'amplitude des ondes incidentes et réfléchie. Il ne faut pas oublier de rajouter la tension v(0,0).

L'onde réfléchie par le générateur à t = 2. arrive côté charge à t = 3.. Elle est alors réfléchie

par la charge (amplitude multipliée par ). La contribution de cette réflexion à la tension v(l,3)

est égale a la somme des amplitudes des ondes incidente et réfléchie, et la tension v(l,3) est

alors égale à la somme de la valeur trouvée avec la tension v(l, ).

On remarque bien que la méthode du tableau consiste à décomposer le régime transitoire sur une

ligne de propagation en une somme de réflexion élémentaire d'ondes incidentes et réfléchies, d'où le fait

d'effectuer une somme d'amplitudes pour trouver la tension à un instant donné et à un endroit particulier.

Pour ne pas avoir de réflexion, il suffit d'avoir R égale à Rc.

Pour ne pas avoir de réflexion côté générateur à t égal à 2., et donc de retrouver la troisième étude,

il faut que g soit égal à zéro, ce qui est obtenu pour une résistance de sortie du générateur Rg égale à

Rc. On dit alors que le générateur est adapté, ce qui est le cas des générateurs de laboratoire.

4. Étude des lignes avec pertes

On rappelle le modèle de la ligne sur une longueur infiniment petite donné dans la figure 31.

Figure 31 : modèle de la ligne avec pertes

Les tensions et courants sont donnés dans le figure 32.

Figure 32 : tensions et courants sur le modèle de la ligne avec pertes

Page 21: Lignes de propagation - ENSEA

21

Les lois de la maille et du noeud donnent :

t

tx,iL.dx.tx,R.dx.it)dx,xvtx,v

x

tdx,xvC.dx.tdx,xG.dx.vtdx,xitx,i

L'approximation au premier ordre de la variation de la tension et du courant est :

.dxx

tx,vtx,vtdx,xv

.dxx

tx,itx,itdx,xi

On obtient alors deux relations intermédiaires :

0t

tx,iL.t(x,R.i

x

tx,v

0t

tx,vC.tx,G.v

x

tx,i

L'équation de propagation sur une ligne avec pertes est alors :

(19)

0t

tx,vLC.

t

tx,v.LGRCtx,RG.v

x

tx,v

2

2

2

2

Soit le signal sinusoïdal :

xω.t.sinxVtx,v 0

et le signal complexe correspondant :

tj .exV.e.exVtx,v_

tjxj.0

L'amplitude complexe est donc :

xj.0

_

.exVxV

En remplaçant l'expression de v(x,t) dans l'équation de propagation et en simplifiant, on obtient

l'équation différentielle suivante :

xV.LGRC.jLC.ω-RG

dx

xVd _2

2

_2

La recherche de la solution générale passe par l'équation caractéristique :

LGRCjLC.ω-RGr 22

ou écrite différemment :

jCωG.jLωRr2

L'étude décrite dans la suite suppose une ligne non dispersive, c'est-à-dire une ligne dont la vitesse

de propagation ne dépend pas de la fréquence. On a alors les hypothèses suivantes :

1R

Lω et 1

G

Page 22: Lignes de propagation - ENSEA

22

Les deux solutions de l'équation caractéristique sont alors :

jβαr

avec

C

LG

L

CR

2

1α et .ωLCβ

On peut aussi écrire : r

La solution générale de l'équation de propagation est :

.x.x_

B.eA.exV γ

Ce qui donne :

β.xω.t.cosB.eβ.xω.t.cosA.etx,v α.xα.x

On retrouve une expression sous la forme d'une somme de deux termes, l'un représentant une

propagation dans le sens des x positifs, et l'autre une propagation dans le sens des x négatifs. Le

coefficient indique que la vitesse de propagation est toujours :

LC

1v

Par contre, le terme supplémentaire e-.x en facteur du terme de propagation dans le sens des x

croissants indique une atténuation. Par contre, on a e+.x pour l'autre terme puisqu'il s'agit d'une

propagation en sens opposé.

Le calcul numérique de ce facteur d'atténuation passe par la détermination de la résistance R

représentant les pertes joules et de la conductance représentant les pertes dans le diélectrique.

Pour R, il faut prendre en compte l'effet de peau :

μσω

En considérant que le courant ne circule que dans l'épaisseur de peau et en prenant en compte le

chemin de retour par la tresse de blindage (figure 33), l'expression de la résistance R est :

δπδπ .b.2.

1

.a.2.

1

σ

1R

Figure 33 : épaisseur de peau dans les

deux conducteurs du câble coaxial

La notion d'angle de pertes dans un condensateur (figure 34) nous permet d'estimer la valeur de la

conductance.

Page 23: Lignes de propagation - ENSEA

23

Figure 34 : angle de pertes dans un condensateur

En prenant 410tg , l'expression de la conductance G est :

C

Gtg donc .tgCG

L'atténuation pour une longueur de câble l peut être calculée en dB :

l.e10.log α

Un ordre de grandeur de cette atténuation pour différents cas est donné dans le tableau suivant :

De la même façon que pour une ligne sans pertes, on peut définir une impédance (et non une

résistance) caractéristique pour une ligne avec pertes.

A partir de

.xγ.x_

B.eA.exV

et en annulant le terme de propagation dans le sens des x décroissants :

0 .xB.e

la définition de l'impédance caractéristique est :

xI

xVZ

_

c

Le calcul est le suivant :

xV.A.xIj.Lω.xIR.dx

xVd _.x

___

γγ.e γ

γ

jLωR

xI

xVZ

_

c

avec jCωG.jLωR2

Page 24: Lignes de propagation - ENSEA

24

ce qui donne :

jCωG

jLωR

xI

xVZ

_

c

Remarque : on retrouve bien C

Llorsque R et G sont égales à zéro, c'est-à-dire pour une ligne sans

pertes.

5. Étude des lignes en régime sinusoïdale

L'objectif principal de ce paragraphe est de calculer l'impédance ramenée par un câble coaxial en

fonction de la charge.

L'expression de l'amplitude complexe de la tension est :

.x.x_

B.eA.exV γ

Une équation intermédiaire durant le calcul de l'équation de propagation est :

xI.j.LωRdx

xVd __

Le calcul du courant donne :

.x.x.x.x_

B.eA.ejLωRjLωR

.eB..eA.-xI γγ

γγ

.

c

.x.x_

Z

B.eA.exI

γγ

En résumé, les amplitudes complexes de la tension et du courant en tous points de la ligne (figure

35) en régime sinusoïdal permanent sont :

.x.x_

B.eA.exV γ

c

.x.x_

Z

B.eA.exI

γγ

Figure 35 : amplitudes complexe de la tension et du courant

Il est cependant usuel d'inverser l'axe des x dans ce type d'étude (figure 36), afin que la charge soit

placée en x égale à zéro, quelle que soit la longueur de la ligne.

Page 25: Lignes de propagation - ENSEA

25

Figure 36 : inversion de l'axe des x

Les expressions deviennent alors :

.x.x_

B.eA.exV γ

c

.x.x_

Z

B.eA.exI

γγ

La charge impose la relation suivante :

0IZ.0V__

En utilisant les expressions des amplitudes complexes :

Z.Z

BA

BA

0I

0Vc

_

on trouve le rapport des deux constantes d'intégration :

c

c

ZZ

ZZ

A

B

En définissant le coefficient de réflexion à x égale à zéro comme étant le rapport de l'onde incidente

et de l'onde réfléchie (avec x = 0), on retrouve la définition d'un coefficient de réflexion :

c

c

ZZ

ZZ

A

B

réfléchie onde

incidente onde

0

_

c

c

ZZ

ZZ

0

_

Voici quelques valeurs particulières de ce coefficient de réflexion :

00_

pour une charge adaptée (Z = Zc)

10_

pour un court-circuit

10_

pour un circuit ouvert.

De façon générale, on peut définir un coefficient de réflexion en tous points de la ligne :

.x2.-.x

.x-

eA.e

B.e

réfléchie onde

incidente ondex

.0

__

Comme indiqué en début de paragraphe, il s'agit de calculer l'impédance ramenée par le câble coaxial

en fonction de la charge et de la longueur de la ligne, ou plus précisément en fonction de x (figure 37).

Page 26: Lignes de propagation - ENSEA

26

Figure 37 : définition de l'impédance ramenée

Cette impédance est :

c.x.x

.x.x_

ZB.eA.e

B.eA.e

xI

xVxZ .

γ

γ

c

.x

.x_

Z

.eA

B1

.eA

B1

xI

xVxZ .

.2

.2

En utilisant deux résultats précédents :

.x2.-ex .0__

et A

B 0

_

on obtient :

c

_

Zx

x1

xI

xVxZ .

1

_

Cette relation est utilisée en hautes fréquences pour l'abaque de Smith (option électronique RF du

semestre 4).

A l'aide des relations suivantes :

cZ

x

x1xZ .

1

_

.x2.-ex .0__

c

c

ZZ

ZZ

0

_

.x.x

.x.x

ee

ee.xth

γ

γ

on obtient l'expression de l'impédance ramenée :

.x.th0ZZ

.x.thZ0ZZx

c

cc

γ

γZ

.

Dans le cas d'une ligne sans pertes :

0α j.β β.xj.tg.xth γ

l'expression de l'impédance ramenée devient :

(20)

β.x.tg0.ZjR

β.x.tgR0ZRxZ

c

cc

..

j

Page 27: Lignes de propagation - ENSEA

27

1er cas : charge adaptée (figure 38)

Figure 38 : charge adaptée

A partir de la relation (20), on en déduit cRxZ , ce qui est explicable par la définition même de

la résistance caractéristique.

2ième cas : court-circuit en bout de ligne (figure 39)

Figure 39 : court-circuit en bout de ligne

A l'aide de 00Z et de l'expression (20), on obtient :

β.x.tgRjxZ c.

avec :

λ

x.2.x

v

1f.2.xLCωβ.x ππ

Dans le cas où la longueur du câble est faible devant la longueur d'onde du signal :

λx 1β.x β.xβ.xtg

l'expression de l'impédance ramenée devient :

.... L.xj..xLCC

Lj..x.RjxZ c β

Cela correspondant à une inductance de valeur L.l.

3ième cas : circuit ouvert en bout de ligne (figure 40)

Figure 40 : circuit ouvert en bout de ligne

Cela correspond à 0Z . L'impédance ramenée est alors :

β.xtgj

RxZ c

.

Dans le cas où la longueur du câble est faible devant la longueur d'onde du signal :

λx 1β.x β.xβ.xtg

Page 28: Lignes de propagation - ENSEA

28

l'expression de l'impédance ramenée devient :

ωω .C.xj.

1

.xLC.j.

C

L

β.xj

RxZ c

.

Cela correspondant à une inductance de valeur C.l. Ce résultat montre que si on place un câble coaxial

d'un mètre de longueur à un point d'un montage avec l'autre extrémité connectée à un oscilloscope

d'impédance d'entrée très grande, on met un condensateur de 100 pF en parallèle entre le point étudié et

la masse.

4ième cas : on se place à 2

λx (figure 41), c'est-à-dire une longueur de câble égale à la moitié de la

longueur d'onde du signal.

Figure 41 : longueur de câble égale à 2

λ

On obtient :

ππ λ

x.2β.x 0β.xtg

0ZR

0Z.RxZ

cc

On retrouve donc la charge de façon périodique tous les 2

λ

5ième cas : on se place à 4

λx (figure 42), c'est-à-dire une longueur de câble égale au quart de la

longueur d'onde du signal.

Figure 42 : longueur de câble égale à 4

λ

Cela donne : β.xtg

0Zj.

J.R.RxZ c

c

0Z

R

R

xZ c

c

On obtient un inverseur d'impédance.

Page 29: Lignes de propagation - ENSEA

29

6. Méthode de Bergeron

La méthode de Bergeron est une méthode graphique d'étude des tensions aux deux extrémités d'une

ligne de propagation applicable uniquement en régime indiciel, avec comme intérêt de pouvoir prendre

en compte des charges non linéaires.

Soit une ligne de propagation sans pertes de longueur l entre un générateur et une charge caractérisée

par les deux paramètre vitesse de propagation et résistance caractéristique (figure 43).

Figure 43 : ligne de propagation sans pertes entre un générateur et une charge

Les tension et courant en tous points de la ligne sont donnés par les relations suivantes :

v

xp.

v

xp.

.epB.epApx,V

v

xp.

c

v

xp.

c.e

R

pB.e

R

pApx,I

En appelant respectivement a(t) et b(t) les transformées de Laplace inverse des deux constantes

d'intégration A(p) et B(p), on obtient :

v

xtb

v

xtatx,v

v

xtb

v

xta.

Rtx,i

c

1

Il s'agit de calculer la variation de la tension et du courant lorsque l'onde va de x0 pour t = 0 à x0+v.t0

pout t = t0.

En x = x0 et t = 0 :

v

xb

v

xa,0xv oo

o

v

xb

v

xa.

R,0xi oo

co

1

En x0+v.t0 et t = t0 :

v

v.txtb

v

v.txtat,v.txv oo

ooo

oooo

v

v.txtb

v

v.txta.

Rtx,i oo

ooo

oc

1

La variation de tension est définie comme suit :

,0xvt,v.txvΔv oooo

Page 30: Lignes de propagation - ENSEA

30

On obtient :

v

xb

v

x2.tbΔv oo

o

De la même façon, on a :

v

xb

v

x2.tb-.

R

1Δi oo

oc

On en déduit alors le rapport de la variation de la tension sur la variation du courant de l'onde se

propageant dans le sens des x positifs :

(21) cRΔi

Δv

Par un calcul similaire, on peut calculer le rapport de la variation de la tension sur la variation du

courant de l'onde se propageant dans le sens des x négatifs :

(22) cRΔi

Δv

La méthode de Bergeron consiste à travailler dans le plan tension-courant (figure 44). A un instant

donné et pour une position donnée, cela correspond à un point dans ce plan.

Figure 44 : plan tension-courant et point de fonctionnement à t = t0 et x = x0.

Lorsque l'onde se propage dans les sens des x positifs, le point de fonctionnement se déplacera

suivant une droite de pente –Rc (relation 21 et figure 45).

Figure 45 : déplacement du point de fonctionnement pour l'onde se propageant

dans le sens des x positifs

Par contre, pour l'onde se propageant en sens contraire, on obtient un déplacement suivant une pente

égale à Rc (relation 22 et figure 46).

Page 31: Lignes de propagation - ENSEA

31

Figure 46 : déplacement du point de fonctionnement pour l'onde se propageant

dans le sens des x négatifs

Exemple d'utilisation : le générateur est composé d'une tension E en série avec une résistance R

(inférieure à Rc), et la charge est non linéaire (figure 47).

Figure 47 : caractéristiques statiques du générateur et de la charge

Le premier point de fonctionnement, c'est-à-dire la tension v(0,0), est encore une fois déterminé en

disant que la ligne est équivalente à une résistance Rc, aucune onde réfléchie n'étant présente. On trace

alors la droite correspondant à Rc, droite passant naturellement par l'origine. On obtient ainsi le premier

point de fonctionnement par l'intersection de cette droite et de celle correspondant au générateur (figure

48).

Figure 48 : détermination de la tension v(0,0)

On peut en faire une autre interprétation. On considère une onde d'amplitude égale à 0 commençant

à se propager de la charge vers le générateur à t égal à - (figure 49). Le point dans le plan tension-

courant se déplace alors suivant une pente positive égale à Rc (21). Cette onde arrive au générateur à t

égal à 0, donc sur la caractéristique du générateur, ce qui donne alors le même point que dans la figure

48.

Page 32: Lignes de propagation - ENSEA

32

Figure 49 : autre façon de déterminer le premier point de fonctionnement

L'onde définie par ce premier point se propage vers la charge, donc avec une pente négative (figure

50). Cette onde arrive à la charge à t égal à sur la caractéristique de la charge. On peut donc en déduire

la tension v(l,).

Figure 50 : deuxième point de fonctionnement.

A partir de ce deuxième point, on trace une droite de pente +Rc pour trouver la tension v(0,2), et

ainsi de suite (figure 51). Le point de fonctionnement en régime permanent est naturellement le point

d'intersection des caractéristiques du générateur et de la charge.

Figure 51 : illustration du régime transitoire et point de repos en régime permanent

7. Quelques applications

Des applications, comme la modélisation de pistes sur un circuit imprimé pour illustrer le rôle d'un

condensateur de découplage, ou encore l'utilisation de ces notions pour les câbles réseaux seront étudiées

en cours.