Les résines thermodurcissables

8
Les résines thermodurcissables Formées par polyaddition (monomères vinyliques) ou polycondensation (au moins deux fonctions réactives non vinyliques) Seule la polycondensation est traitée ici. La polycondensation concerne les résines de type époxy et polyuréthane (haut de gamme). La polyaddition concernera les résines de type vinyle ester (bas de gamme). Par polycondensation, on peut synthétiser des réseaux tridimensionnels capitaux pour réaliser des matériaux composites avec de bonnes propriétés mécaniques. Par polycondensation, il est nécessaire, par définition, de faire intervenir AU MOINS deux monomères différents qui vont pouvoir réagir ensemble pour s’additionner. Ces monomères

description

Les résines thermodurcissables Formées par polyaddition (monomères vinyliques) ou polycondensation (au moins deux fonctions réactives non vinyliques) - PowerPoint PPT Presentation

Transcript of Les résines thermodurcissables

Page 1: Les résines thermodurcissables

Les résines thermodurcissables

Formées par polyaddition (monomères vinyliques) ou polycondensation (au moins deux fonctions réactives non vinyliques)

Seule la polycondensation est traitée ici. La polycondensation concerne les résines de type époxy et polyuréthane (haut de gamme). La polyaddition concernera les résines de type vinyle ester (bas de gamme).

Par polycondensation, on peut synthétiser des réseaux tridimensionnels capitaux pour réaliser des matériaux composites avec de bonnes propriétés mécaniques.

Par polycondensation, il est nécessaire, par définition, de faire intervenir AU MOINS deux monomères différents qui vont pouvoir réagir ensemble pour s’additionner. Ces monomères devront portés des fonctions chimiques A et B qui vont réagir ensemble :.

A peut être une fonction époxy et B une fonction amine ou alcool.

Page 2: Les résines thermodurcissables

Les système époxy/amine sont plus courants pour la réalisation de composites à base d’époxy qui serviront à la réalisation de planches de windsurf ou de surf.

Plusieurs possibilités :

Du dimère A-A et du dimère B-B (deux molécules présentant soit deux fonction A, soit deux fonctions B)

La fonction A pouvant régir avec B :

A-A + B-B A-AB-BA-AB-BA-AB-BA-AB-B A-AB-BA-AB-B

Des chaînes vont ainsi pouvoir se former mais seront linéaires et seront thermoplastiques. Pour obtenir un réseau tridimensionnel par polycondensation, il faut que l’un des deux monomères soit trifonctionnel ou plus (ici A est trifonctionnel = trimère) :

A A A

B-B A

A A

B-BB-B A

A A

B-BB-B

A A A

A A A

B-BB-B

B-BB-B

A A A

Page 3: Les résines thermodurcissables

Relation entre degré d’avancement (ou conversion) de la réaction x et degré de polymérisation :

x =

x =

Fonctionnalité moyenne f de tout le mélange réactionnel :

f =

Soit N0 le nombre de molécules initial (A3)0 + (B2)0 (A trifonctionnelle et B bifonctionnelle)

Le produit fxN0 est donc le nombre de fonction total au départ

Nt est le nombre de molécules de monomère au temps t de réaction

Nombre de fonctions ayant disparues à l’instant t de réaction

Nombre de fonctions initiales à tO

A0-At = B0-Bt

A0 B0

Nombre total de molécules de base

Nombre total de fonctions réactives

Page 4: Les résines thermodurcissables

Soit DPn le de degré de polymérisation moyen au temps t de réaction (nombre d’unité monomère moyen par chaîne polymérisée / polycondensée)

Plus de DPn est grand, plus les chaînes polymérisées sont grandes/longues et donc plus la résine polymérisée aura de bonnes propriétés.

Relation entre x et DPn :

On peut alors définir le nombre de fonctions disparues : 2(N0-Nt) au temps t.

et x = 2(N0-Nt)

fxN0

Nombre de molécules de baseNombre de molécules au temps tDPn = =

N0

Nt

DPnfx

11

2

Page 5: Les résines thermodurcissables

Si on prend f = 2 (pour simplifier, cas d’une polycondensation de chaînes linéaires (= pas de réseau tridimensionnel))

On obtient : avec x compris entre 0 et 1

Si on trace l’évolution du DPn en fonction de x, on obtient :

xDPn

11

0

100

200

300

400

500

600

700

800

900

1000

0 0,2 0,4 0,6 0,8 1

Conversion x

DP

Page 6: Les résines thermodurcissables

Une résine polycondensée (époxy) aura de meilleures propriétés, qu’elle aura un degré de polymérisation moyen ou conversion élevé.

Le graphe précédent montre que pour avoir des DPn élevés, il est nécessaire d’avoir des taux de conversion élevés, autrement dit, TOUTES les fonctions réactives doivent réagir (toutes les fonctions A doivent avoir réagi avec des fonctions B et réciproquement).

Conversion (%) DPn

95 20

96 25

97 33,3

98 50

99 100

99,5 200

99,9 1000

99,99 10000

99,999 100000

D’un point de vu mise en oeuvre, celui signifie qu’il est nécessaire de respecter au plus juste les conditions de temps et de température préconisés par les fournisseurs de résine, sans quoi de faibles DP seront obtenus et donc les propriétés mécaniques attendues ne seront JAMAIS atteintes !!!

Comme le montre le tableau, pour avoir des DPn de plusieurs milliers nécessaires pour l’obtention de bonnes propriétés mécaniques, il faut viser des taux de conversion supérieurs à 99,99% !!!

Page 7: Les résines thermodurcissables

En restant dans le cas simple d’un dimère A difonctionnel et un B également difonctionnel f = 2 (fonctionnalité moyenne)

Si on introduit le rapport r = [AA] 0/[BB] 0 avec 0<r<1

Si r<1, alors on a aura un excès de fonction B par rapport à A

Ce rapport sera égal à 1 si on a mis autant de dimère AA que de BB.

Une relation entre le DPn et xA, le taux de conversion en unité AA, peut être établi :

Axrr

rDPn

21

1 r = [AA][BB] DPn

0,99 199

0,991 221

0,992 249

0,993 285

99,4 332

0,995 399

0,996 499

0,997 666

0,998 999

0,999 1999

0,9999 19999

0,99999 199999

0,999999 1999999

Comme le montre le tableau, pour avoir des DPn de plusieurs milliers nécessaires pour l’obtention de bonnes propriétés mécaniques, il faut viser des valeurs de r supérieures à 0,9999% !!!

Si on prend xA = 1 (conversion totale de A), alors on peut calculer de manière simple, le DP en fonction de r:

Page 8: Les résines thermodurcissables

En résumé, pour obtenir les meilleures performances d’une résine polymérisée par polycondensation comme c’est le cas des époxy (AA = époxy et BB = amine), il est nécessaire :

- de respecter les cycles thermiques et de temps préconisés sur les fiches techniques

- de respecter les rapports massiques ou volumiques préconisés avec la plus grande précision possible.

Ceci justifie l’emploi de balances de précisions sans quoi les propriétés finales obtenues peuvent être très pauvres par rapport à celles attendues

D’un point de vu mise en oeuvre, celui signifie qu’il est nécessaire de respecter au plus juste les rapports massique ou volumique préconisés par les fournisseurs de résine, sans quoi de faibles DP seront obtenus et donc les propriétés mécaniques attendues ne seront JAMAIS atteintes !!!