Lec #13_Spinal Motor

download Lec #13_Spinal Motor

of 35

Transcript of Lec #13_Spinal Motor

  • 8/13/2019 Lec #13_Spinal Motor

    1/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Neuroscience: Exploring the

    Brain, 3e

    Chapter 13: Spinal Control of Movement

  • 8/13/2019 Lec #13_Spinal Motor

    2/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Introduction

    Motor Programs

    Motor system: Muscles and neurons that controlmuscles

    Role: Generation of coordinated movements

    Parts of motor control

    Spinal cordcoordinated muscle contraction

    Brainactivate motor programs in spinal cord

  • 8/13/2019 Lec #13_Spinal Motor

    3/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    The Somatic Motor System

    Types of Muscles

    Smooth: digestive

    tract, arteries, relatedstructures

    Striated: Cardiac(heart) and skeletal(bulk of body muscle

    mass)

  • 8/13/2019 Lec #13_Spinal Motor

    4/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Lower Motor Neurons

    Lower motor neuron: inventral horn of spinal

    cord

  • 8/13/2019 Lec #13_Spinal Motor

    5/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Lower Motor Neurons

    Distribution of lower motorneurons in the ventralhorn

    Motor neuronscontrolling flexors liedorsal to extensors

    Motor neurons

    controlling axialmuscles lie medial tothose controlling distalmuscles

  • 8/13/2019 Lec #13_Spinal Motor

    6/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Lower Motor Neurons

    Alpha Motor Neurons

    Motor unit: Motor

    neuron and all themuscle fibers itinnervates

    Motor neuron pool: Allthe motor neurons that

    innervate a singlemuscle

  • 8/13/2019 Lec #13_Spinal Motor

    7/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Graded Control of Muscle Contraction by Alpha Motor Neurons

    Varying firing rate of motor neurons

    Recruit additional synergistic motor units

    Lower Motor Neurons

  • 8/13/2019 Lec #13_Spinal Motor

    8/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Inputs to Alpha Motor NeuronsLower Motor Neurons

  • 8/13/2019 Lec #13_Spinal Motor

    9/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Types of Motor Units

    Red muscle fibers: Large number of mitochondria and

    enzymes, slow to contract, can sustain contraction

    White muscle fibers: Few mitochondria, anaerobicmetabolism, contract and fatigue rapidly

    Fast motor units: Rapidly fatiguing white fibers

    Slow motor units: Slowly fatiguing red fibers

    Lower Motor Neurons

  • 8/13/2019 Lec #13_Spinal Motor

    10/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Neuromuscular Matchmaking

    Crossed Innervation Experiment: John Eccles

    Switch nerve input - switch in muscle phenotype(physical characteristics)

    Lower Motor Neurons

  • 8/13/2019 Lec #13_Spinal Motor

    11/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Muscle Contraction

    Alpha motor neuronsrelease ACh

    ACh produces largeEPSP in muscle fiber

    EPSP evokes muscleaction potential

    Action potential triggersCa2+release

    Fiber contracts

    Ca2+reuptake

    Fiber relaxes

    Excitation-Contraction Coupling

  • 8/13/2019 Lec #13_Spinal Motor

    12/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Sensory feedback from muscle spindles - stretch receptor

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    13/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    The Myotatic Reflex

    Stretch reflex: Muscle pulledtendency to pull back

    Feedback loop

    Discharge rate of sensory axons: Related to musclelength

    Monosynaptic

    e.g., Knee-jerk reflex

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    14/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    The Myotatic Reflex (Contd)Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    15/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units

    Two Types of Muscle Fiber

    Extrafusal fibers:Innervated by alpha motorneurons

    Intrafusal fibers:Innervated by gamma

    motor neurons

  • 8/13/2019 Lec #13_Spinal Motor

    16/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units Gamma Loop

    Keeps spindle on air

    Changes set point of the myotatic feedback loop Additional control of alpha motor neurons and

    muscle contraction

  • 8/13/2019 Lec #13_Spinal Motor

    17/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units Golgi Tendon Organs

    Additional proprioceptive input - acts like straingauge - monitors muscle tension

  • 8/13/2019 Lec #13_Spinal Motor

    18/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units Golgi Tendon Organs

    Spindles in parallel with fibers; Golgi tendonorgans in series with fibers

  • 8/13/2019 Lec #13_Spinal Motor

    19/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units Golgi Tendon Organs

    Reverse myotatic reflex function: Regulate muscletension within optimal range

  • 8/13/2019 Lec #13_Spinal Motor

    20/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Proprioception from the joints

    Proprioceptive axons in joint tissues

    Respond to angle, direction and velocity ofmovement in a joint

    Information from joint receptors: Combined withmuscle spindle, Golgi tendon organs, skin receptors

    Most receptors are rapidly adapting, bringinformation about a moving joint

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    21/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Interneurons

    Synaptic inputs to spinal interneurons:

    Primary sensory axons

    Descending axons from brain

    Collaterals of lower motor neuron axons

    Other interneurons

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    22/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Inhibitory Input

    Reciprocal inhibition: Contraction of one muscle setaccompanied by relaxation of antagonist muscle

    Example: Myotatic reflex

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    23/35Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Excitatory Input

    Flexor reflex:Complex reflex arcused to withdraw limbfrom aversivestimulus

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    24/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Excitatory Input

    Crossed-extensor reflex:

    Activation of extensormuscles and inhibition offlexors on opposite side

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    25/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Generating Spinal Motor Programs for Walking

    Circuitry for walking resides in spinal cord

    Requires central pattern generators

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    26/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Spinal Control of Motor Units Rhythmic Activity in a Spinal Interneuron via NMDA

    Receptors

  • 8/13/2019 Lec #13_Spinal Motor

    27/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Possible Circuit for Rhythmic Alternating Activity

    Spinal Control of Motor Units

  • 8/13/2019 Lec #13_Spinal Motor

    28/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Central Pattern Generators: Pyloric Rhythm & Endogenousburster (Pacemaker) Neurons

  • 8/13/2019 Lec #13_Spinal Motor

    29/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Dogfish Swimming: Reafferent modulation of CPG Rhythm.

    Tail

    movement

  • 8/13/2019 Lec #13_Spinal Motor

    30/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Concluding Remarks

    Spinal control of movement

    Different levels of analysis

    Sensation and movement linked

    Direct feedback

    Intricate network of circuits

  • 8/13/2019 Lec #13_Spinal Motor

    31/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    End of Presentation

  • 8/13/2019 Lec #13_Spinal Motor

    32/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Lower Motor Neurons

    Somatic Musculature anddistribution of lower motorneurons in spinal cord

    Axial muscles: Trunkmovement

    Proximal muscles:Shoulder, elbow,

    pelvis, knee movement Distal muscles: Hands,

    feet, digits (fingers andtoes) movement

  • 8/13/2019 Lec #13_Spinal Motor

    33/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    The Molecular Basis of Muscle Contraction

    Z lines: Division of myofibril into segments bydisks

    Sarcomere: Two Z lines and myofibril Thin filaments: Series of bristles

    Thick filaments: Between and among thinfilaments

    Sliding-filament model:

    Binding of Ca2+to troponin causes myosin tobind to action

    Myosin heads pivot, cause filaments to slide

    Excitation-Contraction Coupling

  • 8/13/2019 Lec #13_Spinal Motor

    34/35

    Copyright 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Excitation-Contraction Coupling

    Sliding-filament Model of Muscle Contraction

  • 8/13/2019 Lec #13_Spinal Motor

    35/35

    Excitation-Contraction Coupling Steps in Excitation-Contraction Coupling

    Ca+ binding to troponin allows myosin headsto bind to actin. Then myosin heads pivot,causing filaments to slide