Jenis-jenis Turbin Air

12
TURBIN PELTON Turbin Pelton. Turbin Pelton adalah turbin reaksi di mana satu atau lebih pancaran air menumbuk roda yang terdapat sejumlah mangkok. Masing-Masing pancaran keluar melalui nozzle dengan valve untuk mengatur aliran. Turbin pelton hanya digunakan untuk head tinggi. Nozzel turbin berada searah dengan piringan runner. Pada penelitian ini dilakukan perhitungan untuk mendapatkan dimensi mangkok runner turbin pelton. Mangkok runner ini dirancang agar dapat menerima energi kinetik dan mengambil energi tersebut menjadi torsi pada poros generator. Turbin Pelton merupakan turbin untuk tinggi terjun yang tinggi, yaitu di atas 300 meter. Teknik mengkonversikan energi potensial air menjadi energi mekanik pada roda air turbin dilakukan melalui proses impuls sehingga turbin Pelton disebut juga turbin impuls.

description

jenis-jenis dari turbin air

Transcript of Jenis-jenis Turbin Air

TURBIN PELTON

Turbin Pelton. Turbin Pelton adalah turbin reaksi di mana satu atau lebih pancaran air menumbuk roda yang terdapat sejumlah mangkok. Masing-Masing pancaran keluar melalui nozzle dengan valve untuk mengatur aliran. Turbin pelton hanya digunakan untuk head tinggi. Nozzel turbin berada searah dengan piringan runner. Pada penelitian ini dilakukan perhitungan untuk mendapatkan dimensi mangkok runner turbin pelton. Mangkok runner ini dirancang agar dapat menerima energi kinetik dan mengambil energi tersebut menjadi torsi pada poros generator.Turbin Pelton merupakan turbin untuk tinggi terjun yang tinggi, yaitu di atas 300 meter. Teknik mengkonversikan energi potensial air menjadi energi mekanik pada roda air turbin dilakukan melalui proses impuls sehingga turbin Pelton disebut juga turbin impuls.

Turbin Pelton disebut juga turbin impuls atau turbin tekanan rata atau turbin pancaran bebas karena tekanan air keluar nosel sama dengan tekanan atmosfer. Dalam instalasi turbin ini semua energi ( geodetic dan tekanan ) diubah menjadi kecepatan keluar nosel. Konstruksi nosel ada pada gambar di atas. Tidak semua sudu menerima hempasan air, tetapi secara bergantian tergantung posisi sudu tersebut. Jumlah tergantung besarnya kapasitas air, dapat bervariasi satu sampai enam. Turbin pelton dipakai untuk tinggi jatuh air yang besar, dengan kecepatan spesifik 1 sampai 15. Instalasi dan begian utama turbin pelton. Turbin pelton biasanya berukuran besar. Hal ini dapat dimaklumi karena dioperasikan pada tekananyang tinggi danperubahan momentum yang diterima sudu-sudu sangat besar, dengan sendiri struktur turbin harus kuat.Pada turbin pelton semua energi tinggi tempet dan tekanan ketika masuk kesudu jalan turbin telah telah diubah menjadi energi kecepatan Seperti terlihat pada gambar dibawah ini:

Turbin pelton terdiri dari dua bagian utama yaitu : Nosel Roda JalanNosel mempunyai beberapa fungsi yaitu:1. Mengarahkan pancaran air ke sudu turbin.1. Mengubah tekanan menjadi energi kinetik.1. Mengatur kapasitas air yang masuk turbin.Jarum yang berada pada nosel bertujuan untuk mengatur kapasitas dan mengkonsentrasikan air yang terpancar di mulut nosel. Panjang jarum sangat menentukan tingkat konsentrasi air, makin panjang jarum air makin terkonsentrasi.Untuk turbin pelton dengan daya kecil, debit bisa diatur dengan hanya menggeser kedudukan jarum sudu. Untuk instalasi yang lebih besar harus menggunakan dua buah sistem pengaturan atau lebih,Tujuan pengaturan ini adalah untuk menghindari terjadinya tekanan tumbukan yang besar dalam pipa pesat yang timbul akibat penumpukkan nosel secara tiba-tiba ketika beban turbin berkurang dengan tiba-tiba.Untuk mengurangi putaran turbin pada kondisi atas, pembelokkan pancaran akan berayaun kedepan jarum nosel terlebihdahulu sehingga pancaran air dari nosel berbelok sebagian.Jumlah nosel tergantung pada bilangan-bilangan spesifik nq trubin pelton. Dimana nq dirumuskan :

Roda jalan berbentuk pelek (rim) dengan sejumlah sudu di sekelilinnya. Pelek ini dihubungkan dengan poros dan seterusnya menggerakkan generator. Sudu turbin pelton berbentuk elipsoida yang dibuat dengan bucket (sudu) dan di tengahnya mempunyai splitter (pemisah air). Bentuk sudu sedemikian dimaksudkan supaya bisa membalikkan putaran air dengan baik dan membebaskan sudu dari gaya samping.

TURBIN FRANCISTurbin francis bekerja dengan memakai proses tekanan lebih. Pada waktu air masuk ke roda jalan, sebagian dari enrgi tinggi jatuh telah bekerja di dalam suddu pengarah diubah sebagai kecepatan air masuk. Sisa energi tinggi jatuh dimamfaatkan dalam sudu jalan, dengan adanya pipa isap memungkinkan energi tinggi jatuh bekerja di sudu jalan dengan semaksimum mungkin.

Turbin yang dikelilingi dengan sudu pengarah semuanya terbenam dalm air. Air yang masuk kedalam turbin dialirkan melalui pengisian air dari atas turbin (schact) atau melalui sebuah rumah yang berbentuk spiral (rumah keong). Semua roda jalan selalu bekerja. Daya yang dihasilkan turbin diatur dengan cara mengubah posisi pembukaan sudu pengarah. Pembukaan sudu pengarah dapat dilakuakan dengan tangan atau dengan pengatur dari oli tekan(gobernor tekanan oli), dengan demikian kapasitas air yang masuk ke dalam roda turbin bisa diperbesar atau diperkecil.Pada sisi sebelah luar roda jalan terdapat tekanan kerendahan (kurang dari 1 atmosfir) dan kecepatan aliran yang tinggi. Di dalam pipa isap kecepatan alirannya akan berkurang dan tekanannya akan kembali naik sehingga air bisa dialirkan keluar lewat saluran air di bawah dengan tekanan seperti keadaan sekitarnya. Pipa isap pada turbin ini mempunyai fungsi mengubah energi kecepatan menjadi energi tekan.Daerah kerja turbin francis. Jenis konstruksi turbin ini pertama kali dilaksanakan sekitar tahun 1950. Sekarang turbin francis adalah yang paling banyak dipakai, karena tinggi air jatuh dan kapasitasnya yang paling sering terdapat/ sesuai dengan kebutuhannya. Dari hasil penggunaan dan penelitian yang terus-menerus untuk pengembangan selanjutnya, turbin francis sekarang sudah bisa digunakan untuk tinggi air jatuh sampai 700m dengan kapasitas air dan kecepatan air dan kecepatan putar yang sesuai memenuhi harapan. Gambar berikut adalah daerah penggunaan dari beberapa jenis konstruksi turbin yang berbeda :

Pokok utama pada gambar adalah adanya daerah penggunaan tipe turbin. Untuk diketahui pada gambar diatas di dalam daerah yang dibatasi dengan garis terdapat banyak jenis turbin yang dibuat, jadi sebetulnya garis tersebut sudah bukan merupakan garis batas lagi. Karena ada turbin yang titik muatan beban penuhnya terletak di bawah atau di atas daerah yang diberi tanda. Titik beban penuh turbin dapat juga terletak di bawah daerah tersebut, bila dari kondisi tempat membutuhkan pemasangan turbin dengan tinggi khusus dan berdasarkan alasan untuk menghindari kavitasi, sehingga dengan demikian harus dipilih kecepatan spesifik yang kecil.Turbin francis yang kecil sering terletak di bawah daerah tersebut, karena harus menggerakkan generator yang mempunyai kecepatan putar yang tinggi dsan dihubungkna langsung dengan roda gigi transmisi. Didalam daerah batas antara turbin francis dengan turbin kaplan, Turbin kaplan lebih menguntungkan yaitu pada keadaan beban tidak penuh randemennya lebih tinggi, karena sudu-suda turbin kaplan bisa diatur sesuai dengan beban yang ada.

TURBIN KAPLANTurbin Kaplan adalah Turbin Air, jenis baling baling, yang memiliki pisau atau sirip, yang dapat disesuaikan. Turbin ini dikembangkan pada tahun 1913 oleh Profesor Austria Viktor Kaplan, yang dikombinasikan bilah baling-baling otomatis yang dapat disesuaikan, dengan gerbang gawang otomatis yang juga dapat disesuaikan, untuk dapat mencapai efisiensi melalui berbagai tingkat aliran dan air.Turbin Kaplan merupakan Evolusi dari Turbin Francis. Penemuan yang memungkinkan produksi listrik yang efisien di negara tertentu, yang memiliki head yang relatif rendah, yang tidak mungkin diterapkan untuk Turbin Francis.

Head Kaplan berkisar 10 - 70 meter dan Output Daya 5-120 MW. Diameter Runner adalah antara 2 dan 8 meter. Kecepatan putar Runner turbin adalah 79-429 rpm. Turbin Kaplan saat ini sudah banyak digunakan di seluruh dunia dalam High Flow, Low Head.Sesuai dengan persamaan euler, maka makin kecil tinggi air jatuh yang tersedia,makin sedikit belokannya aliran air di dalam sudu jalan. Dengan bertambahnya kapasitas air yang masuk ke dalam turbin, maka akan bertambah besar pula luas penampang salauran yang dilalui air, dan selain itu kecepatan putar yang demikian bisa ditentukan lebih tinggi. Kecepatan spesifik bertambah,kelengkungan sudu, jumlah sudu, dan belokan aliran air di dalam sudu berkurang.Pada permulaan sekali disaat pengembang pusat tenaga sungai, turbinnya menggunakan roda baling-baling dengan sudu-sudu tetap yang dituang.Untuk tempat pusat listrik tenaga sungai harus dihitung lebih dahulu besarnya perubahan tinggi air jatuhnya sepanjang tahun. Dan aliran sungai tersebut bisa diatur dengan memakai bendungan. Makin besar kapasitas air yang mengalir pada saat air tinggi, akan makin tinggi air jatuh yang bisa dimamfaatkan, karena tinggi permukaan air atas adalah konstan sedangkan air kelebihan pada permukaan air bawah akan naik.Turbin yang bekerja pada kondisi tinggi air jauh yang berubah-ubah mempunyai kerugian, karena dalam perencanaan sudu turbin telah disesuaikan bahwa perpindahan energi yang baik hanya terjadi pada titik normal yaitu pada kondisi perbandingan kecepatan dan tekanan yang tertentu. Bila terjadi penyimpangan yang besar baik ke atas maupun ke bawah, seperti yang terdapat pada pusat tenaga listrik sungai, randamen roda baling-balingnya turbin cepat atau lambat akan turun.Keuntungan turbin baling-baling dibandingkan dengan turbin francis adalah kecepatan putarnya bisa dipilih lebih tinggi, dengan demikian roda turbin bisa dikopel langsung dengan langsung dengan generator dan ukurannyapun lebih kecil.Roda Jalan Turbin Kaplan : Kontruksi Dan Keadaan Aliran Air. Konstruksinya bisa dibedakan, sampai dengan alat pengarah pada hakekatnya sama dengan turbin francis dan pada leher poros terdapat sekitar 4 sampai 8 buah kipas sudu yang dapat diputar.

Kipas sudu pada gambar Diatas ini sama seperti baling-baling atau sayap pesawat terbang yaitu membawa aliran dengan belokan yang hanya sedikit. Bila untuk pesawat terbang maksudnya adalah supaya dari gaya dorong yang ada bisa didapatkan gaya ke atas, dengan tahanan yang sedikit mungkin. Tetapi pada turbin kaplan maksudnya adalah untuk mendapatkan gaya tangensial yang bisa menghasilkan torsi pada pada poros.

Sumber : http://hydropowerplantsttpln.blogspot.com/2012/02/pelatihan-di-bandung.html http://digilib.informatika.lipi.go.id/informatika/mybox/283-anjar-_PERANCANGAN_TURBIN_PELTON.pdf http://turbin-pelton.blogspot.com/ http://yefrichan.wordpress.com/2010/05/31/klasifikasi-turbin/ http://antopaendeblog.blogspot.com/2012/02/turbin-francis.html http://www.turbinhidro.com/turbin_propeller