ICEM, un outil pour la modélisation CEM des Circuits ... · ICEM, un outil pour la modélisation...

40
® ICEM, un outil pour la modélisation CEM des Circuits Intégrés ® Jean-luc LEVANT Expert CEM composants Membre de l’UTE, groupe de normalisation CEM des composants. * ATMEL Nantes ( [email protected] )

Transcript of ICEM, un outil pour la modélisation CEM des Circuits ... · ICEM, un outil pour la modélisation...

®

ICEM, un outil pour la modélisation CEM des Circuits Intégrés

®

Jean-luc LEVANT

Expert CEM composantsMembre de l’UTE, groupe de normalisation CEM des

composants.

* ATMEL Nantes ( [email protected])

_ Jluc LEVANT / Atmel

® Content

IntroductionICEM DescriptionICEM Applications

Electronic systemPDN OptimizationPDN Optimization and correlation

I.CI.C EMC standardsAuto-compatibility analysisPDN Optimization

ICEM Modeling ProcessConclusions

_ Jluc LEVANT / Atmel

®

Introduction

_ Jluc LEVANT / Atmel

® Introduction

ICEM : Integrated Circuit Emission Model

IEC standard proposal, IEC62014-3

Working group within the UTE organization composed of french experts:

Leader MAROT Christian SIEMENS VDO AutomotiveProject Leader Levant Jean-Luc Atmel Nantes

Members LOCHOT Christophe FreeScale Semi-ConductorsPERRIN Jean Claude TEXAS INSTRUMENTSHUET Claude EADSMAURICE Olivier EADS CCRLAFON frédéric VALEOGIRARDEAU Ludovic ST MICRO ELECTRONIQUEDUPRE Philippe ST MICRO ELECTRONIQUE

University RAMDANI Mohamed ESEOSICARD Etienne/Sonia Bendhia INSA Toulouse

_ Jluc LEVANT / Atmel

® Introduction

ICEM describes the conducted and radiated emissions of a I.CICEM Predicts:

Auto-compatibility of the chip itself,Conducted and radiated emissions at the chip and PCB levelPower Distribution Network optimization of Ics and electronic Systems

ICEM can be used either for analogue and digital Ics.Validated up to 2.5GHz

In te rn a la c tiv it ie s

n o is e

C O N D U C T E DE M IS S IO N S

R A D IA T E DE M IS S IO N S

C O U P L IN G B YP O W E R L IN E S

A L IM E N T A T IO N S

C O U P L IN G B YIN P U T /O U T P U T

A L IM E N T A T IO N S

_ Jluc LEVANT / Atmel

®

ICEM Model description

_ Jluc LEVANT / Atmel

® ICEM Model DescriptionICEM Model is built around two sub-models:

Passive Distribution Network sub-model (PDN),Internal activity sub-model (IA).

PDNSub-Model

IASub-Model

EP[n..0] IP[m..0]

Basic ICEM Model

External Port Acess Internal Port AcessIAInternal ground

Power-SupplyIOsRadiated

_ Jluc LEVANT / Atmel

® ICEM Model DescriptionAn ICEM architecture is built with a set of basic ICEM models:

Several power-supply pins, example:Three ICEM models: Digital, analog and IosThree separated power-supply pins

RIsol

Analog PD NM odel

IO s IC EMM odel

D igital PD NM odel

IO s PD NM odel

D igital IA

M odel

A n a lo g IA

M odel

IO sIA

M odel

EP0 EP1 EP2 EP3

EP4 EP5

IP1

IP2

IP3

IP4

IP5

IP6

IP7

IP8

IP9

_ Jluc LEVANT / Atmel

® ICEM Model DescriptionAn ICEM architecture is built with a set of basic ICEM models:

Ios ICEM architectureThree blocs to define an IO ICEM architecture

Electrical activity description

Connection to the power Connection to Input/Output

VccB[0]

EP_VccD EP_VssD

IOs PDNof the

Power-Supply Structure

VccB[2]

VccB[1]

VssB[2]

VssB[1]

VssB[0]

IA[2]

IA[1]

EP_o[2]

EP_o[1]

EP_o[0]

IOs PDN AccessEP_i[0]

EP_i[2]

EP_i[1]

(IOPDNPS)

(IOPDNA)IA[0]

IOInternal Activity

Sub-Model

(IOIA)

_ Jluc LEVANT / Atmel

® ICEM Model DescriptionExample of ICEM models

The structure of the PDN is not standardized it could be distributed or lumped models, S parameters, …

T1 T2Ric1 Ric2

Ric3 Ric4

Cic1

T4T3 0 0

00

0

0

0

0

Vss1

Vcc1

Vss2

Vcc2

Cur-Cur+

Passive Distribution Network Sub-Model

Internal Activity Sub-Model

Passive Network Distribution

CurA+ CurA-

ZPack

ZDie

Internal Activity Sub-Model

Internal Activity Sub-Model

Kic2122 = 0.49LicVcc21 = 3.98nHLiCVss22 = 3.98nH

Kic5253 = 0.49LicVcc52 = 3.98nHLicVss53 = 3.98nH

KicAVccGNd = 0.41LicAVcc = 3.98nHLicGnd = 3.98nH

RicVcc211.43

RicVcc520.79

RicVss220.85

RicVss530.62

RicGnd0.47

RicAVcc1.66

CicVcc3.15nF

CicAVcc388pF

Gnd63

Vcc52

GndAvcc

Gnd22

Vcc21

CurD-CurD+

_ Jluc LEVANT / Atmel

® ICEM Model Description

VccIOPDN VccCorePDN

VssCorePDNVssIOPDN

IoIA + CoreIA +

Risol1 10IO_IA - CoreIA -

LicB1 3.56n

Cicb1 851pfCic1 6.2n

Ricb1 1.7

SIA_IOs

SIA_Core

Lic1 5.66n

Ric1 1.7

IO PDNIO IA Core PDN Core IA

Example of ICEM modelsIos and Digital ICEM models have their own power-supply pins.

_ Jluc LEVANT / Atmel

® ICEM Model DescriptionModeling methods are used in two different situations:

During the design phase,By measurements when the silicon already exists.

MeasurementPower-Supply Network

Design phase

Package : R, L, CBond wires: R, L, CDie layout : R, L, C

_ Network analyser_ Time domain reflectometer +Z profile extractor tool.

Die lay-out Parasitic extractor tools

Lumped models,Transmission line models,S parameters,…..

Current activityADVance-MS (VHDL-AMS)Proprietary Tools….

FFT Method, convolution, ..

I(t)I(t)

_ Jluc LEVANT / Atmel

®

ICEM Applications

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

Power Distribution Network OptimizationExample: Embedded application

+VDD

VSS

AlimentationRégulée

+VDD

+V

DD

VS

S

VSS Tan

talu

mA

lum

iniu

m E

lect

roly

tic10

0µF

-10µ

F

µCTRLCer

amic

II

100n

F -

1nF

Tan

talu

mA

lum

iniu

m E

lect

roly

tic

10µ

F-1

µF

PC

B1n

F -

100

pF

Câbles

LF UHFVHFHF

CHF1 CVHF2 CUHF1

Régulateurde

tension Tan

talu

mA

lum

iniu

m E

lect

roly

tic10

0µF

-10µ

F

CLF2

LF

Cer

amic

II

100n

F -

1nF

CVHF1CLF1

VHF

_ Jluc LEVANT / Atmel

® ICEM Applications

0.5 1 1.5 2 2.5 3 3.5 4

x 10-6

4

6

8

10

12

14

x 10-3 Courant me s uré à trave rs le s broche s VDDC/VS S C

time - s

I - A

mp

ere

TP rog = 2.2µs

Electronic System ApplicationsPDN Optimization

ICEM description of a 8-bit RISC controller, Fosc 16MHz

RIc1 LIc1

CIc1

0.6 3.7nH

6.9nF

ZICEM

PDN

IA

I0

tT

F C 1 = 0 .3 5 / T r

T

I 0 .

-40dB/ Dec

F

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN Optimization Voltage Regulator model

-

+

+

-

Z P1 0 o h ms

Mo d u la to r

1 0 0 K

1 0 0 K

V D D

V S S

ZP s

V re f

A 06 0 d B

6 0 d B

A (f)

-2 0 d B /d e c a d e

+

-

LPsRPs1

RPs2

VDD

VSS

0.1

10

16µH

ZPs

_ Jluc LEVANT / Atmel

®ICEM Applications

Electronic System ApplicationsPDN Optimization

Low Frequency decoupling: CLF2

+

-

LPsRPs1

+VDD

VSS

0.1 16µH

CLF2

RDE

Eg

+

mF61LPs1FC286

12CLF 2 .).(

System Bandwidth 0 to 400MHZ

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN Optimization Low Frequency decoupling: CLF2CLF2 = 160µF

+

-

LPsRPs1

+VDD

VSS

0.1 16µH

CLF2

RDE

Eg

+ZPseq

160µF10

RPs2

LPSeqRPSeq0.1 2.87nH

RDI

+VDD

Model above 100KHz

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN Optimization of electronic systemsA 1cm PCB trace is added between ZPSeq and ZICEM80mV peak to peak Noise level across ZICEM

LPSeqRPSeq

+VDD0.1 2.87nH

RDI

LTrRTr0.1 15nH

RIc1 RIc1

CIc1

0.6 3.7nH

6.9nF

ZICEMZTrace

+V

ZV

Target less than 20mV of noise!!

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN Optimization High Frequency decoupling: CHF1Maximum peak level at 16MHz -> first frequency to filter

nH3MHz122861

LCHF1F28611CHF 22 ).().(

=33nF

Note : 3nH = 1.5nH + 1.5nH (Vias)

3 3 n F 0 .1 1 .5 n H

dB2610221020Att )..(log

At 16MHz:Zpseq=2.2ohms, RCHF1=0.1

Parasitic Resonance 2.2ohms Without CHF1

26dB less at 16MHz!!

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN Optimization CHF1 shall be located closest to Vdd/Vss pins

LPSeq

RPSeq

+VDD0.1 2.87nH

RDI

LTrRTr0.1 15nH

RIc1 RIc1

CIc1

0.6 3.7nH

6.9nF

ZICEMZTrace

+V

CHF1 CHF1

At 1cm CHF1 has no effect and is no longer usefull!!Emissions are identical than without CHF1.

_ Jluc LEVANT / Atmel

® ICEM Applications

Electronic System ApplicationsPDN Optimization

The connection length to connect CHF1 to the Vdd/Vss pins shall be as shorter is possible.In this example 3nH are added to connect CHF1 reducing the

decoupling efficient down to 6dB.

_ Jluc LEVANT / Atmel

®ICEM Applications

Electronic System ApplicationsPDN Optimization

Very High Frequency decoupling: CVHF2The 32MHz frequency is the second frequency to optimize.

1CHFFILT2FILT2CVHF

2

)(

nF28nF33MHz162MHz162CVHF

2

.)(

12dB less at 32MHz!!6dB above!!

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN OptimizationUltra High Frequency decoupling: CUHF1The level of emission has to be reduced down to 10dB at 900MHz

No activity at 400MHz

F286XL1LUHF

. MHz400286421LUHF

..At 400MHz, XL=2.4 LUHF1 = 1nH

hSrpF858

1CUHF.pF158

1LUHFMHz4002861CUHF 2).(

².

cm60rpF858h1CUHFS

².

cm60rpF858h1CUHFS

-10dB at 900MHz but +27dB at 900MHz!!

_ Jluc LEVANT / Atmel

® ICEM ApplicationsElectronic System Applications

PDN OptimizationTrick to analyze and measure the power-supply resonance if no

network analyzer or TDR are available.

LPSeqRPSeq0.1 2.87nH

RDI

LTrRTr0.1 15nH

ZTrace

+V+VDD

VSS

µCTRL

XTAL

~

GénérateurHF

50ohms

Oscilloscope

_ Jluc LEVANT / Atmel

® ICEM Applications• Electronic System Applications

PDN optimization and correlation:Optimization in the 20MHz bandGood corrélation between prediction and measurement

ICEM Model

ZSystem (f)=ICEM+PCB+Pow er-Supply

ZSystem +ZCdec1_Meas

ZSystem +ZCdec1_Model

_ Jluc LEVANT / Atmel

® ICEM Applications• Electronic System Applications

PDN optimization and correlation:Example of a bad decoupling, a 330pF decoupling capacitor is added to the previous example in order to improve the reduction of emissions in the 300MHz frequency range,Unfortunately a new resonance increases emissions in the 150MHz frequency band.

ZSystem+ZCdec2_Model

ZSystem+ZCdec2_Meas

_ Jluc LEVANT / Atmel

® ICEM Applications• Electronic System Applications

PDN optimization and correlation:Optimization of the VCC and VSS planesICEM helps to predict the size of the decoupling capacitor due to the PCB and therefore the optimal size of the VCC plane.

_ Jluc LEVANT / Atmel

® ICEM Applications• Electronic System Applications

PDN optimization and correlationConducted emission predictionICEM allows to know the current flowing on the PCBConducted emissions on the power distribution network at the PCB levelcan be predicted

Vddc(t)M ode lM e as ure m e nt

_ Jluc LEVANT / Atmel

®ICEM Applications

I.Cs ApplicationsEMC standards

Conducted emissions (IEC61967-4),Prediction, analysis, comparison.

_ Jluc LEVANT / Atmel

® ICEM ApplicationsI.Cs Applications

EMC standardsRadiated emissions (IEC61967-2),Conducted emissions (IEC61967-4),Prediction, analysis, comparison.

TEM-Cell

ICEM Model

_ Jluc LEVANT / Atmel

® ICEM Applications• I.C Applications

Power distribution network optimization:

Define the package characteristics: number of VDD/SS pair of pins,

The value of the decoupling capacitor,

In the following example, The optimal value of Cdie has been evaluated to guarantee a good operation of the PLL.

R3 2.2kC1 0.33n

PARAMETERS:

Lpackeq = 0.25nH

Rpackeq = 0.00775

Rbondeq = 0.055

Lbondeq = 80pH

Cdie = 50nF

Cpack = 816pF

Cdec1pf

L11nh

1

2

R10.01

C5 15pF

Npackpin=8Lpackeq = 0.5nh Rpackeq = 0.015

LpackVss=LapckVdd=4nhRpackVss=RpackVdd=0.12

R20.1

U29

ATMPLL500MHZ

CLKOUT0

CLKREFOUT1

RCFILT2

VS

SP

LL

13

0

CURMod1ZPNCore

DiePackage

RPLL

0.2

LPLL2.7nH

1

2

RPFilt

0.2

LPFilt2.7nH

1

2

R12

1GR131G

LPVcc{Lpackeq}

1 2

LPVss{Lpackeq}

1 2

LDVcc{Lbondeq}

1

2

LDVss{Lbondeq}

1

2

RPVcc{Rpackeq}

RPVss{Rpackeq}

RDVcc{Rbondeq}

RDVss{Rbondeq}

CDie{Cdie}

CPack{Cpack}

0

PLL

Ra

6.2

0

0

Npackpin=16Lpackeq = 0.25nh Rpackeq = 0.00775

Lbond=2nhRbond=RpackVdd=0.17

Npackpin=32Lpackeq = 0.125nh Rpackeq = 0.0019

Nbond = 80Lbondeq = 0.08nh Rbondeq = 0.055

Nbond = 160Lbondeq = 0.04nh Rbondeq = 0.028

C21pf

L21nH

1

2

R40.03

SI1

Implementation = DFCRB1_58KRHA

V

_ Jluc LEVANT / Atmel

® ICEM Applications

Jitter2.2ns

• I.C ApplicationsAuto-compatibility analysis

Jitter Analysis of a PLL embedded in 480KgatesASIC,

Corrective solution analysis.

R3 2.2kC1 0.33n

PARAMETERS:

Lpackeq = 0.5nH

Rpackeq = 0.013

Rbondeq = 0.055

Lbondeq = 80pHC21p

L11nh

1

2

R10.01

C5 15pF

V

U29

ATMPLL500MHZ

CLKOUT0

CLKREFOUT1

RCFILT2

VS

SP

LL

13

0

VSSa

VCCa

Cur+

Vssaint

CURMod1ZPNCore

DiePackage

LPLL2.7nH

1

2

RPLL

0.2

LPFilt2.7nH

1

2

RPFilt

0.2

R131G

R12

1G

LPVcc{Lpackeq}

1 2

LPVss{Lpackeq}

1 2

LDVcc{Lbondeq}

1

2

LDVss{Lbondeq}

1

2

RPVcc{Rpackeq}

RPVss{Rpackeq}

RDVcc{Rbondeq}

RDVss{Rbondeq}

CDie38.4n

CPack816pF

0

I1

TD = 0n

TF = 6nsPW = 0.01ns

PER = 40ns

I1 = 0I2 = 10

TR = 3ns

VSSPllRa

6.2

PLL

RCFiltp

0

Cur-

0

_ Jluc LEVANT / Atmel

®

ICEM Modeling Process

_ Jluc LEVANT / Atmel

® ICEM Modeling ProcessPDN model

Measurement methodNetwork analyser or Time Domain Reflectometer are used

VCC

VSSSMA

Connector

ASIC Device

_ Jluc LEVANT / Atmel

® ICEM Modeling Process

• PDN modelEDA ToolsParasitic elements of the metal tracks of a silicon can be extracted and contribute to model the PDN model in the design phase.

_ Jluc LEVANT / Atmel

® ICEM Modeling Process

• IA modelMeasurementThe following process using a FFT or TFD to model the IA model. Cautions have to be taken while using TFD:

I_ext(t) has to periodic,the number of samples and the sampling frequency have to be well definedto obtain good frequency resolution, coherent sampling improve the dynamic,Avoid the discontinuities at the record ends.

ExternalCurrentMeasurement

TimetoFrequencyDomainConversion

FrequencytoTimeDomainConversion

PDN(f)

i_int(t)

i_ext(t)

i_ext(f)

i_int(f)

PDN(f)

_ Jluc LEVANT / Atmel

® ICEM Modeling Process

IA ModelEDA Tools

ADMS environment from Mentor Graphics allows to mix high description language with transistor descriptions,This current will give the current source of ICEM

Dynamic current

Program executed bythe microcontroller

_ Jluc LEVANT / Atmel

® ICEM Modeling Process

IA ModelEmpirical and statistical methods

Number of switching gates is estimatedThe total peak current is calculated knowing the peak current of anelementary gate.The peak current can be more realistic if the histogram of the internalpropagation delay is taken into account to rebuild the peak current.

_ Jluc LEVANT / Atmel

® Conclusions

ICEM is an IEC standard proposal IEC62014-3

ICEM models is built around two sub-model : PDN and IA,

ICEM model is opened model allowing to be described with lumped,distributed, S, … parameters,

ICEM is used to model the analog and digital activities,

ICEM will model Ios in the futur and can used others standard models such as IBIS, …

ICEM has been valided in differents applications and up to 2.5GHz