Grenoble 2011 galtier

35
Transcriptomique haut-débit pour l'évolution moléculaire et la génétique des populations CBGP, mars 2011 Nicolas Galtier UMR 5554 - Institut des Sciences de l'Evolution - Montpellier [email protected]

description

 

Transcript of Grenoble 2011 galtier

Page 1: Grenoble 2011 galtier

Transcriptomique haut-débit pour l'évolution moléculaire et la génétique des populations

CBGP, mars 2011

Nicolas Galtier

UMR 5554 - Institut des Sciences de l'Evolution - Montpellier

[email protected]

Page 2: Grenoble 2011 galtier

Molecular evolution in the 21st century

- an enormous amount of data (genomics)

- a robust theoretical framework (population genetics)

⇒ we should understand molecular variation patterns

We have:

Yet we do not really know:

- why some species evolve (much) faster than other, proteome-wise

- why GC-content varies between and across genomes

- by how much population size determines genetic diversity

- etc…

Page 3: Grenoble 2011 galtier

Molecular evolution in the 21st century

Why so many unsolved, basic questions?

- lacking theory

- biased sampling

species

genes

Page 4: Grenoble 2011 galtier

PopPhyl goals

Injecting species biology/ecology into comparative genomics

Exploring the molecular diversity of nonmodel taxa

Testing predictions of the population genetic theory genome-wide

life history traits population genetic parameters

genomic variation data

body mass generation time abundance mating system

mutation rate population size selection recombination

within-species between species

Page 5: Grenoble 2011 galtier

PopPhyl goals

Injecting species biology/ecology into comparative genomics

Exploring the molecular diversity of nonmodel taxa

Testing predictions of the population genetic theory genome-wide

Some specific questions we want to address:

- Why are fast-evolving taxa fast? (mutation, selection) - Are abundant species more polymorphic than scarce ones? - Is selection less efficient in selfers than outcrossers? - How does longevity influence mito vs nuclear DNA evolution? - Who optimizes codon usage, who does gBGC, and why? - Is the rate of selective sweeps higher in large populations?

Page 6: Grenoble 2011 galtier

How?

- Target = transcriptome coding sequences

expression data

- Sampling scheme:

focal species (10 individuals)

outgroups (1 or 2 individuals)

X 30

- Next-Generation Sequencing technology

For each taxon: 5.105 400 bp reads (454, pooled individuals) 5.107 100 bp reads (illumina, tagged individuals)

Page 7: Grenoble 2011 galtier

Species sampling

Demosponges Eponges

Cnidaires Cténophores Rotifères Acanthocéphales Entoproctes

Plathelminthes Némertes

Annélides Mollusques Ectoproctes Brachiopodes Chaetognathes Tardigrades Onychophores Arthropodes Loricifères Kinorhynches Priapulides Nématodes Hémichordés Echinodermes Céphalochordés Urochordés Vertébrés

Page 8: Grenoble 2011 galtier

Why are tunicates fast-evolving, proteome-wise?

T

V

- higher mutation rate? - more prevalent adaptive evolution ? - relaxed selective constraint on housekeeping genes ?

E

C

Page 9: Grenoble 2011 galtier

Data analysis pipeline

454

Solexa

reference transcriptome assembling

transcriptome reads

mapping

SNPs and genotypes

SNP calling

πN, πS, dN, dS

allele frequencies

coding annot.

Page 10: Grenoble 2011 galtier

Assembling transcriptomes from NGS data: a benchmark in Ciona

454

Solexa

reference transcriptome assembling

Page 11: Grenoble 2011 galtier

D

454 reads

A c s

Celera

454 reads

B c s

Mira

454 reads

C c s

Cap3

Illumina reads

Abyss

c

s

Cap3 Cap3

c+s c+s

Page 12: Grenoble 2011 galtier

F E

C

454 reads Illumina reads

Abyss

Cap3

Cap3

merge reads

454 reads Illumina reads

Abyss

Cap3

Cap3

Cap3

merge contigs

F' - refine

c s

c+s

c+s

c+s

c+s c

c s

s

Page 13: Grenoble 2011 galtier

de novo transcriptome assembly: quantitative assessment

data set method contigs mean lg median lg N50 assembly

lg (Mb) touched

genes

A Ciona_454 Celera 25,669 491 438 491 12.6 7616

B Ciona_454 Mira 33,196 635 526 650 21.1 7951

C Ciona_454 Cap3 24,515 671 540 713 16.5 7945

D Ciona_illu Abyss+Cap3 27,426 574 380 769 15.8 7704

E Ciona_mix merge reads 29,097 571 399 721 16.6 7982

F Ciona_mix merge contigs 27,956 726 529 891 20.3 8207

Page 14: Grenoble 2011 galtier

0  

500  

1000  

1500  

2000  

2500  

200  

230  

260  

290  

320  

350  

380  

410  

440  

470  

500  

530  

560  

590  

620  

650  

680  

710  

740  

770  

800  

830  

860  

890  

920  

950  

980  

1010  

1040  

1070  

1100  

1130  

1160  

1190  

1220  

1250  

1280  

454_Con0gs  

Illumina_con0gs  

Mix_con0gs  

Illumina contigs

454 contigs

Mix contigs

Page 15: Grenoble 2011 galtier

Illumina_contigs

454_contigs

Mix_contigs

0

20

40

60

80

100

120

140 120

80

40

1000 2000 1500

Page 16: Grenoble 2011 galtier

Assembling transcriptomes from NGS data: a benchmark using Ciona intestinalis

no hit

1→1

m→1

1→n

m→n

predicted contigs

reference transcriptome

BLAST

Page 17: Grenoble 2011 galtier

1→1 : full

partial m→1 :

fragments

alleles

1→n : chimera

multi m→n :

full or partial

multi

no hit 1→1

m→1

1→n

m→n

Page 18: Grenoble 2011 galtier

de novo transcriptome assembly: qualitative assessment

Page 19: Grenoble 2011 galtier

Average contig length varies between categories

Page 20: Grenoble 2011 galtier

4000 8000 12000

60%

80%

Improving assemblies by filtering according to length + coverage

number of contigs

correct

Page 21: Grenoble 2011 galtier

de novo transcriptome assembly from NGS data: conclusions

- illumina > 454 (454 useful yet)

- correct cDNA predictions are minoritary in typical assemblies

- existing programs differ substantially in performance (in PopPhyl we retain Cap3 and Abyss)

- contig length + coverage is a reasonable quality criterion

- somewhat variable across species

Page 22: Grenoble 2011 galtier

Data analysis pipeline

454

Solexa

reference transcriptome assembling

transcriptome reads

mapping

SNPs and genotypes

SNP calling

πN, πS, dN, dS

allele frequencies

coding annot.

Page 23: Grenoble 2011 galtier

Calling SNPs and genotypes from transcriptome reads

>contig1 pos ind1 ind2 ind3 1 5/0/9/0 0/0/8/0 10/0/0/0 2 0/4/0/0 0/7/0/0 0/17/0/0 3 1/0/0/17 0/0/0/6 0/0/0/22 … >contig2 pos ind1 ind2 ind3 1 0/0/0/4 0/0/0/8 0/2/0/11 2 34/1/13/0 52/0/45/0 4/0/8/0 …

reads

Page 24: Grenoble 2011 galtier

Calling SNPs and genotypes from transcriptome reads

>contig1 pos ind1 ind2 ind3 1 5/0/9/0 AG 0/0/8/0 GG 6/0/0/0 AA 2 0/4/0/0 CC 0/7/0/0 CC 0/17/0/0 CC 3 1/0/0/17 TT 0/0/0/6 TT 0/0/0/5 TT … >contig2 pos ind1 ind2 ind3 1 0/0/0/1 TT 0/0/0/8 TT 0/2/0/11 CT(90%) 2 14/1/9/0 AG 8/0/15/0 AG 12/0/0/0 AA …

genotypes

Page 25: Grenoble 2011 galtier

Calling SNPs and genotypes from transcriptome reads

Model M1 : sequencing error ε

Page 26: Grenoble 2011 galtier

A:1 C:0 G:6 T:0

reads genotype

[AG]

[GG] 7 ε/3 (1-ε)6

7 (1/2-ε/3)7

Page 27: Grenoble 2011 galtier

Calling SNPs and genotypes from transcriptome reads

Model M2: sequencing error ε and allelic bias α

Page 28: Grenoble 2011 galtier

A:1 C:0 G:6 T:0

reads genotype

[AG]

[GG] 7 ε (1-3ε)6

7 [q' q''6/2 + q'' q'6/2]

A:0 C:3 G:0 T:16

A:4 C:0 G:1 T:0

A:0 C:19 G:2 T:0

A:8 C:0 G:2 T:1

A:0 C:3 G:12 T:0

Page 29: Grenoble 2011 galtier

Population genomics of a fast-evolver

M1 M2

SNPs

error rate

allelic bias

30020

0.021 [0.012-0.038]

0

nb best model 70 (4.6%) 1532 (95.4%)

29544

0.020 [0.011-0.035]

[0.08-0.5]

stop codons 77 (0.26%) 117 (0.39%)

FIT -0.017 -0.054

focal species: Ciona intestinalis B (8 individuals) outgroup: Ciona intestinalis A (reference sequence)

1602 contigs (>10X in >5 individuals), of average length 138 codons

Page 30: Grenoble 2011 galtier

focal species: Ciona intestinalis B (8 individuals) outgroup: Ciona intestinalis A (reference sequence)

Population genomics of a fast-evolver

1602 contigs (>10X in >5 individuals), of average length 138 codons

average πS: 0.057 per site (a highly polymorphic species)

average πN: 0.0026 per site

πN/πS : 0.046 (strong level of purifying selection)

dN/dS : 0.103 (high impact of adaptive evolution)

estimated proportion of adaptive non-synonymous substitutions: 54%

Page 31: Grenoble 2011 galtier

Why are tunicates fast-evolving, proteome-wise?

T

V

- higher mutation rate? YES - more prevalent adaptive evolution ? YES - relaxed selective constraint on housekeeping genes ? NO

E

C

adaptive

neutral

deleterious

→ large Ne, large µ (per year)

Page 32: Grenoble 2011 galtier

Conclusions

- de novo population genomics from NGS transcriptome data is doable

- transcriptome assembly is probably the most tricky step

- major population genomic descriptors are robust to error models

- life history traits apparently impact molecular evolution to some extant

- long-lived, small population-sized species are the best choice for phylogenomics

Page 33: Grenoble 2011 galtier

VERTEBRES INSECTES

MOLLUSQUES

UROCHORDES CNID.

NEM. NEMATODES

ANNELIDES CRUSTACES SPONG.

Page 34: Grenoble 2011 galtier

- selfers vs outcrossers in snails and nematodes

- long-lived vs short-lived in insects

- big vs small in amniotes phylogeny of turtles

- fast proteic evolution in tunicates and nematodes

- extreme longevity

Subprojects we have started

Page 35: Grenoble 2011 galtier

Thanks to:

Philippe Gayral Vincent Cahais Georgia Tsagkogeorga Marion Ballenghien Zef Melo Ferreira Ylenia Chiari Lucy Weinert

Sylvain Glémin Nico Bierne Khalid Belkhir Fred Delsuc Vincent Ranwez

Guillaume Dugas Sébastien Harispe Caroline Benoist

CNRS

ISEM

ERC