FACULTE UNIVERSITG QUEBEC

166
MATHIEU NGOUAJIO DÉVELOPPEMENT D'UN MODÈLE DE PRÉDICTION DES PERTES DUES AUX MAUVAISES HERBES BASÉ SUR L'ANALYSE D'IMAGES NUMÉRIQUES Thèse présentée à la Faculté des études supérieures de I'Universit6 Laval pour l'obtention du grade de Philosophiae Doctor (Ph.D.) Département de phytologie FACULTE DES SCIENCES DE L'AGRICULTURE ET DE L'ALIMENTATION UNIVERSITG LAVAL QUEBEC AVRIL 1999 O Mathieu Ngouajio, 1999

Transcript of FACULTE UNIVERSITG QUEBEC

Page 1: FACULTE UNIVERSITG QUEBEC

MATHIEU NGOUAJIO

DÉVELOPPEMENT D'UN MODÈLE DE PRÉDICTION DES PERTES DUES AUX

MAUVAISES HERBES BASÉ SUR L'ANALYSE D'IMAGES NUMÉRIQUES

Thèse

présentée

à la Faculté des études supérieures

de I'Universit6 Laval

pour l'obtention

du grade de Philosophiae Doctor (Ph.D.)

Département de phytologie

FACULTE DES SCIENCES DE L'AGRICULTURE ET DE L'ALIMENTATION

UNIVERSITG LAVAL

QUEBEC

AVRIL 1999

O Mathieu Ngouajio, 1999

Page 2: FACULTE UNIVERSITG QUEBEC

National Library (*m of Canada Bibliothèque nationale du Canada

Acquisitions and Acquisitions et Bibliogaphic Services services bibliographiques

395 Wellington Street 395, rue Wellington Ottawa ON KI A ON4 OttawaON KIAON4 Canada Canada

Youi hlo Voire relerence

Our ri& Noirs retdrence

The author has granted a non- exclusive licence ailowing the National Library of Canada to reproduce, loan, distribute or se11 copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/filrn, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent êîre imprimés ou autrement reproduits sans son autorisation.

Canada

Page 3: FACULTE UNIVERSITG QUEBEC

Du fond du cœur, je dédie cette thése à :

- mon 6pouse : Ndongrno Babette Rita

En temoignage de mon amour ;

- mes enfants : Ngouajio Erica

Ngouajio Tankeu Boris Duvalier

Ngouajio Sokeng Amanda Laurette

Ngouajio Téguiafa Lynne Lionnelle

En reconnaissance de leur excellente tenue et comme exemple A dépasser ;

- mes parents : Sokeng David

TsaguéJeanne

Pour tout ce qu'ils ont fait pour mon éducation ;

- mon feu oncle : Tankeu Pierre Loti

Qui a guidé mes premiers pas vers l'école.

Page 4: FACULTE UNIVERSITG QUEBEC
Page 5: FACULTE UNIVERSITG QUEBEC

RÉSUMÉ LONG

Au cours de la demiére decennie, l'apparition des mauvaises herbes

résistantes aux herbicides, la nécessité d'optimiser les coûts de production et les

préoccupations de protection de l'environnement ont mis des pressions importantes

sur les producteurs pour réduire l'utilisation des herbicides de synthèse en ne traitant

que lorsque c'est nécessaire, avec la dose requise et sans sacrifier les rendements.

Ceci nécessite entre autres, le développement d'une technologie intégrant d'une part

un outil fiable de dépistage et de quantification des mauvaises herbes en début de

cycle de la culture, et d'autre part un modéle précis et versatile de prédiction des

pertes permettant de décider si oui ou non il faut intervenir. La surface foliaire des

mauvaises herbes s'est avérée comme étant un indice fiable pour prédire les pertes

de rendement des cultures. Cependant, la mesure de cette variable requiert

beaucoup de temps et de manipulations. La couverture foliaire (projection verticale

des plantes sur le sol) a été proposee comme une alternative à la surface foliaire et

son acquisition pourrait se faire rapidement par analyse d'images. Plusieurs modèles

empiriques ont été développés pour relier la présence des mauvaises herbes au

rendement des cultures. Ceux utilisant la surface foliaire des plantes ont été les plus

efficaces, mais peu pratiques a cause des difficultés d'acquisition de la variable.

Nos travaux ont été entrepris dans le but de contribuer au développement d'un

outil d'aide à la prise de décision permettant de prédire les pertes de rendement dues

aux mauvaises herbes a partir des images obtenues tôt en début du cycle de

croissance, afin de mieux cibler les interventions de désherbage. Les objectifs

spécifiques étaient : i) d'exploiter la technique d'analyse d'images pour estimer la

couverture foliaire des plantes et établir la relation entre ces données et les mesures

destructives de surface foliaire, ii) d'étudier et de comparer la performance des

estimés de couverture foliaire et celle des mesures de surface foliaire dans les

Page 6: FACULTE UNIVERSITG QUEBEC

modèles prévisionnels, iii) de développer et de valider un modéle prévisionnel

performant et mieux adapt6 aux estimés de couverture foliaire et iv) d'étudier les

effets de la hauteur de prise de vue des images et du stade de croissance de la

culture sur la qualité des prédictions.

La capacité du système d'analyse d'images développé à estimer la couverture

foliaire a été testée par simulation et au champ. En simulation, le système présentait

à la fois une grande exactitude et une forte précision. La validation sur le terrain a

confirmé cette observation. La relation entre les estimés de couverture foliaire et les

mesures de surface foliaire variait en fonction de l'architecture des plantes et de leur

stade de développement. Les corrélations Btaient plus étroites aux stades précoces

de développement des plantes.

Une expérience au champ a été menée pour ktudier la performance des

estimés de couverture foliaire (obtenus par analyse d'images) et de surface foliaire

(mesurés au planimètre) sur les modèles prévisionnels. Cet essai a confirmé la

valeur prédictive de la surface foliaire relative des mauvaises herbes (rapport de la

surface foliaire des mauvaises herbes sur la surface foliaire totale des plantes). La

substitution de cette variable par la couverture foliaire relative des mauvaises herbes

a procuré un ajustement adéquat des modéles. Les valeurs de ? étaient du même

ordre de grandeur justifiant, dans les tests ult&ieurs, l'usage de la couverture foliaire

relative plus facile à mesurer.

Un nouveau modèle adapté à cette variable a été dérivé et validé. Ce modèle

sigmoïde à quatre paramètres intégrait les sous-modèles linéaire, hyperbolique,

sigmoïde symétrique et logistique asymétrique. Pendant la validation, le nouveau

modèle a supplanté tous les sous-modèles, A l'exception du type hyperbolique dont

les performances étaient comparables. La grande flexibilité du modèle et sa capacité

à détecter des cas particuliers, ont valu sa recommandation comme support à la prise

de décision.

Page 7: FACULTE UNIVERSITG QUEBEC
Page 8: FACULTE UNIVERSITG QUEBEC

AVANT-PROPOS

Cette thèse est constituée de quatre articles scientifiques formant chacun un

chapitre. Le style des chapitres correspond à celui exigé pour la soumission

d'articles dans les journaux Weed technology, Weed Science, Weed Research et

Crop Protection. Le premier article a été publié dans Weed technology (Volume

12:446-453). Le deuxiéme article est sous presse dans Weed Science (Volume

47:OOO-000). Le troisième article a été accepté pour publication dans Weed

Research. Le dernier a kt6 soumis pour publication dans Crop Protection.

Page 9: FACULTE UNIVERSITG QUEBEC

REMERCIEMENTS

La réalisation de ce travail a At6 reridue possible grâce à la contribution de plusieurs

personnes morales et physiques que je ne pourrais entiérement citer ici. J'aimerais

cependant remercier particulièrement :

Mon épouse Ndongrno Babette Rita qui m'a incité à revenir aux études aprés

cinq années d'arrêt ; elle a accepte de passer toutes ces annees dans la solitude et

les canditions les plus difficiles tout en prenant bien soin de nos enfants et en gardant

un esprit de fer ;

Le gouvernement du Canada qui à travers la bourse de la francophonie m'a

permis de continuer mes études ;

L'Université de Dschang au Cameroun pour avoir bien voulu me libérer de mes

charges d'enseignement suite B l'obtention de ma bourse ;

Mes enfants Ngouajio Erica, Ngouajio Tankeu Boris Duvalier, Ngouajio Sokeng

Amanda Laurette, Ngouajio Téguiafa Lynne Lionnelle pour leurs encouragements a

travers les interminables coups de Méphone et toutes leurs performances ;

Le Dr Gilles Leroux, directeur de thèse, pour sa disponibilité, ses

encouragements et ses conseils ; au dela des activités académiques, son support

personnel m'a permis d'honorer beaucoup d'engagements sociaux trés importants ;

Le Dr Claudel Lemieux, codirecteur de thèse, pour avoir bien voulu

m'accepter au sein de son équipe de recherche, pour toute l'attention qu'il m'a

accorde, sa rigueur scientifique et son soutien total et multiforme ;

Page 10: FACULTE UNIVERSITG QUEBEC

Le Centre de recherche et de développement sur les sols et les grandes

cultures d'Agriculture et Agroalirnentaire Canada et le Departernent de Phytologie de

l'université Laval pour toute la logistique mise à ma disposition ;

Le Dr Jean-Jacques Fortier et M. Denis Careau pour la mise en place et

l'optimisation du logiciel d'analyse d'images ;

Les Drs Daniel Dostaler (Directeur du programme de Biologie Végétale)

François Chalifour, Jean Collin et Guy Allard (membres de mon comité de pilotage)

pour les recommandations faites à mon projet et leurs conseils pendant mes 6tudes ;

M. Jocelyn Larnarre et Mme Michéle Martel pour leur assistance technique ;

les nombreux étudiants d'et6 pour leur aide ; mon collègue de tous les jours

Mohamed Ali Baghestani avec qui j'ai partagé de longues heures de laboratoire, de

compilation et de rédaction ;

Le Dr Guy Allard, pour la rigueur et les détails avec lesquels il a effectué la

prklecture de cette thèse ; le Dr Régis Baziramakenga qui a bien voulu apporter des

critiques aux manuscrits ;

Les familles Tchakounté, Defo et Djona ainsi que Mme Berthe Mouafo pour

leur amitié et leurs encouragements ;

Mme Isabelle Royer et Martin Brown pour leur précieuse amitié ;

Mes parents, mes frères, mes sœurs et tous mes amis pour leur soutien.

Page 11: FACULTE UNIVERSITG QUEBEC

TABLE DES MATIÈRES

........................................................................................................ RÉSUMÉ COURT I

RÉSUMÉ LONG ......................................................................................................... Il AVANT-PROPOS ....................................................................................................... V

REMERCIEMENTS ................................................................................................... VI

TABLE DES MATIÈRES .......................................................................................... VI Il

........................................................................................... LISTE DES TABLEAUX XIV

LISTE DES FIGURES ............................................................................................. XVI

CHAPITRE 1

INTRODUCTION GÉNÉRALE PRÉDICTION DES PERTES DUES AUX

.......................... MAUVAISES HERBES ET ANALYSE D'IMAGES NUMÉRIQUES 1

.......................................... 1.2. Dépistage et quantification des mauvaises herbes 3

............................... 1.3. Estimation de la couverture foliaire par analyse d'images 5

1.4. Prédiction des pertes dues aux mauvaises herbes .......................................... 6

............................................................ Hypothèses et objectifs de recherche 1 1

............................................................................................... 1.5.1 . Hypothèses 12 ................................................................................................... 1.5.2. Objectifs. 1 3

..................................................................................................... 1 -6. Références 14

Page 12: FACULTE UNIVERSITG QUEBEC

CHAPITRE 2

VALIDATION D'UN MODULE SEMI-AUTOMATISE D'ESTIMATION DE LA

COUVERTURE FOLIAIRE D'UNE CULTURE ET DES MAUVAISES

HERBES PAR ANALYSE D'IMAGES NUMÉRIQUES .............................................. 19

.................................................................................... 2.1. Résumé du chapitre 2 20

2.2. Validation of an Operator-Assisted Module to Measure Weed and Crop Leaf

........................................................................... Cover by Digital Image Analysis 22

...................................................................................... 2.2.2. INTRODUCTION 23

.................................................................. 2.2.3. MATERIALS AND METHODS 26 .......................................... 2.2.3.1 . l mage Acquisition. Storage. and Analysis 26

2.2.3.2. La boratory Experiment ....................................................................... 27 2.2.3.3. Field Experîrnents .............................................................................. 29

.................................................................................... 2.2.3.4. Data Analyses 30

2.2.4. RESULTS AND DISCUSSION ................................................................. 31 2.2.4.1 . Laboratory Experiment ....................................................................... 31 2.2.4.1 . Field Experiments .............................................................................. 31

................................................................................ 2.2.6. LITERATURE CfTED 36

Page 13: FACULTE UNIVERSITG QUEBEC

CHAPITRE 3

PRÉDICTION DES PERTES DE RENDEMENT DU MA'& A PARTIR

D'OBSERVATIONS PRÉCOCES DE LA SURFACE FOLIAIRE RELATIVE

ET DE LA COUVERTURE FOLIAIRE RELATIVE DES MAUVAISES

HERBES ................................................................................................................... 45

3.1 . Résumé du chapitre 3 .................................................................................. 46

3.2. Prediction of corn (Zea mays) yield loss from early observations of the

..... ................................... relative leaf area and the relative leaf cover of weeds .. 48

3.2.1 . Abstract ............................................................................................... 4 8

3.2.2. Introduction ............................................................................................... 50

3.2.3. Materials and Methods .......................................................................... 52 3.2.3.1 . Experimental Sits ............................................................................... 52 3.2.3.2. Experimental Procedures ................................................................... 52 3.2.3.3. Data Analyses .................................................................................... 54

3.2.4. Results and Discussion .......................................................................... 5 5

3.2.5. Literature Cited ...................................................................................... 6 1

Page 14: FACULTE UNIVERSITG QUEBEC

CHAPITRE 4

MODÈLE SIGMOTDE FLEXIBLE RELIANT LA COUVERTURE FOLIAIRE

RELATIVE DES MAUVAISES HERBES AU RENDEMENT DE LA CULTURE

................................................. ET COMPARAISON AVEC D'AUTRES MODELES 73

4.1. Résumé du chapitre 4 .................................................................................. 74

4.2. A flexible sigrnoidal model relating crop yield to weed relative leaf cover and

....................................................................... its cornparison with nested models 76

.................................................................................................. Summary 76

Introduction ............................................................................................... 77

............................................................................. Materials and methodç 79 ................................................................................. 4.2.3.1 . Model derivation 79

................................................................................. 4.2.3.2. Nested models 8 1 ...................................................... 4.2.3.3. Model Validation and cornparison 83

.............................................................................. 4.2.3.4.Statistical analyses 84

............................................................................. 4.2.4. Results and discussion 84 4.2.4.1. The performance of the model (unrestricted) ..................................... 84

.............................................................................. 4.2.4.2. Model cornparison 86

............................................................................................... 4.2.5. References 91

Page 15: FACULTE UNIVERSITG QUEBEC

XII

CHAPITRE 5

EFFETS DE LA HAUTEUR DE PRISE DE VUE DES IMAGES ET DU

STADE DE CROISSANCE DE LA CULTURE SUR LES ESTIMES DE

COUVERTURE FOLIAIRE ET LEUR PERFORMANCE DANS LES

MODÈLES PRÉVISIONNELS ................................................................................ 101

5.1 . Résume du chapitre 5 .................................................................................. 102

5.2. Influence of images recording height and crop growth stage on leaf cover

estimates and their performance in yield prediction models ................................ 104

5.2.1. Abstract .................................................................................................. 104

.............................................................................................. 5.2.2 1 ntroduction 105

........................................................................... 5.2.3. Materials and Methods 107 ........................................ 5.2.3.1 . ExperÎmental site and growing conditions 107

................................................................. 5.2.3.2. Experimental procedures 108 .................................................................................. 5.2.3.3. Data analyses 110

5.2.4. Results and discussion ......................................................................... 111 ....................................................................... 5.2.4.1 . Leaf cover estimation 111

................................................................................ 5.2.4.2. Yield prediction 112

.............................................................................................. 5.2.5 References 117

Page 16: FACULTE UNIVERSITG QUEBEC

CHAPITRE 6

CONCLUSION GÉNÉRALE (SYNTHÈSE) ............... ... .......................... ...... ...... .... . 129

REFERENCES BIBLIOGRAPHIQUES .... ...... ........ ... ... ......... ... ....... ....... ...... ..... . .... . 137

Page 17: FACULTE UNIVERSITG QUEBEC

XIV

LISTE DES TABLEAUX

Chapitre 2

1. Total ar9a and range of size of cardboard pieces used in the laboratory

experiment conducted to test the effectiveness of the operator-assisted

module. The simulated conditions assumed no overiapping in the canopy.

They accounted for a crop at six different growth stages and a weed at

.............................................................................. different levels of infestation. 39

2. Corn and weed growth stages at the time of leaf area measurements in

field experiments conducted at Saint-Augustin (Quebec) in 1996. ..................... 40

Chapitre 3

1. Total monthly rainfall and mean temperature during the 1996 and 1997

growing seasons, and long term average (30 y e a r ~ ) ~ ........................................ 65

2. Chronology of events (sowing, emergence, sampling, and harvest) for

the 1996 and 1997 growing seasons .................................................................. 66

................................................... 3. Corn and weed growth stage at sampling time 67

4. Observed maximum corn grain yield loss, and parameter estimates for the

prediction model (equation 1) using the relative leaf area and the relative

Ieaf cover of weedsa .......................................................................................... 6 8

5. Cornparison of the residual mean squares (RMS) for corn grain yield and

corn total biornass, obtained from model fitting using the relative leaf area

and the relative leaf cover of weeds .................................................................. 6 9

Page 18: FACULTE UNIVERSITG QUEBEC

Chapitre 4

1. Regression parameters obtained in maize yield prediction using the flexible

sigrnoïdal model (unrestricted model, equation 8) and nested models,

(restricted models, equations 9, 10 and 1 1). The data were recorded in

1996 and 1997, at the four- and at the eight-leaf stages (fully expanded

leaves) of maize. ................................................................................................ 96

2. The likelihood ratio (LR) and the Wald (W) test statistics for compatison of

the performances of the restricted models to the unrestricted model used

for maize yield prediction. .................................................................................. -97

Chapitre 5

1. Total monthly rainfall and mean temperature during the 1996 and 1997

growing seasons, and long term average (30 yearsIa ...................................... 122

2. Weed growth stage at the four-, six-, and eight-leaf stage of maize growth ..... 123

3. The effect of camera shooting height on the area covered by the picture,

...................... the spatial resolution of images and maize leaf wver estimates 124

4. The effect of the camera shooting height on maize average leaf cover

estimates (% ground cover) at different growth stages ..................................... 125

5. Regression parameters calculated from maize yield prediction using the

relative leaf cover of weeds and the sigmoidal model (equation 1).

Data were recorded at the six-leaf stage (fully expanded leaves) of maize

with the camera at 3.3 m above plant canopy. ................................................. 126

Page 19: FACULTE UNIVERSITG QUEBEC

XVI

LISTE DES FIGURES

Chapitre 2

Relationship between !eaf cover estimated by the operator-assisted

module and leaf area measured with an optical area meter: data from

the laboratory experiment in which crop and weed populations were

...................................................................... simu lated with cardboard pieces. 4 1

Relationship between corn leaf cover estimated by the operator-assisted

module and leaf area measured with an optical area meter at two growth

stages of corn: corn was grown in cornpetition with common larnbsquarters,

barnyardgrass, or a mixture of both species (controlled weed populations),

or in cornpetition with naturally occurring weed species (natural weed

populations). ....................................................................................................... 42

Relationship between weed leaf cover estimated by the operator-assisted

module and weed leaf area measured with an optical area meter at two

growth stages of corn: corn was grown in competition with common

lambsquarters, barnyardgrass, or a mixture of both species. ............................. 43

Relationship between weed leaf cover estimated by the operator-assisted

module and weed leaf area measured with an optical area meter at two

growth stages of corn: data from a field experiment in which corn was

grown in cornpetition with a natural weed infestation .......................................... 44

Page 20: FACULTE UNIVERSITG QUEBEC

XVI 1

Chapitre 3

Corn grain yield loss as a function of weed relative leaf area (-a-) and

relative leaf cover ( - - 0 - - ) determined at the four-leaf stage of corn growth

in 1996 and 1997 using a two-parameter empirical model

(YL= qLw/[l+(q/.-7)Lwn. Corn was infested with one or two weed

species, at different densities. ............................................................................ 70

Corn grain yield loss as a function of weed relative leaf area (-a-) and

relative leaf cover ( - - 0 - * ) determined at the eight-leaf stage of corn growth

in 1996 and 1997 using a ho-parameter empirical modei

(YL= qLw/[l+(q/m-7)Lw). Corn was infested with one or two weed

species, at different densities. ............................................................................ 71

Corn grain yield loss as a function of weed relative leaf area (--) and

relative leaf cover ( = - O - . ) detemined at the four- and at the eight-leaf

stages of corn growth in 1996 and 1997 using a Wo-parameter empincai

model (YL= qLw/[l +(q/m-7)Lw). Corn was infested with different densities

of a natural weed population ............................................................................... 72

Chapitre 4

1. The functional forms of the flexible sigmoidal model (unrestricted model) as

affected by the values of the parameters: with 6 = 1, the curve is either a

concave hyperbola (y' < 1), a straight line (y' = l), or a convex hyperboia

(y' > 1 ); the curve is either a symmetric (y' = 1 ) or an asymmetric (y' # 1 )

sigmoid, the upper portion being concave (6 > 1) or convex (6 < 1) to the

origin. For the purpose of this demonstration, crop yield is expressed in

................... t ha", and a and Y. are arbitrary set at 1 and 9 t ha-', respectively. 98

Page 21: FACULTE UNIVERSITG QUEBEC

XVI II

2. Maize yield as a function of weed relative leaf cover recorded at the

four- and at the eight-leaf stages of maize growth in 1996. The non-linear

regression models are: the unrestricted model (-a-), the restricted

model 1 (- - l - -), the restricted model 2 (- -), and the restricted

mode1 3 (..... @..... ) ................................................................................................. 99

3. Maize yield as a function of weed relative leaf cover recorded at the

four- and at the eight-leaf stages of maize growth in 1997. The non-linear

regression models are : the unrestricted model (-e-), the restricted

model 1 (- - - -), the restricted mode12 (- -), and the restricted

mode1 3 (.. ...@ ..... ). .............................................................................................. 1 O0

Chapitre 5

1. Residual mean squares (RMS) obtained by fitting the yield prediction

model with maize yield and weed relative leaf cover. Leaf cover estimates

were obtained from images recorded at different heights and crop growth

stages, using a digital image analysis technique. The regression rnodel

used was: Y = [ Y ~ + ~ ( L J(I -LC)y)T1 [l + a ( ~ d ( l -~,)y)']. ........................................... 1 27

2. Maize yield as a function of weed relative leaf cover estirnated from

images taken 3.3 rn above the ground at the six-leaf stage of maize

development in 1996 and 1997. The rnodel used was the following :

Y=[Y~+U(L~(I - L& )~ I [1 +a(Ld(l -~&)q. ............................................................ 1 28

Page 22: FACULTE UNIVERSITG QUEBEC

CHAPITRE 1

INTRODUCTION GÉNÉRALE

PRÉDICTION DES PERTES DUES AUX MAUVAISES HERBES

ET

ANALYSE D'IMAGES NUMÉRIQUES

Page 23: FACULTE UNIVERSITG QUEBEC

1 .i Problématique

L'introduction à la ferme d'herbicides de synthése au lendemain de la

deuxième guerre mondiale a constitué un virage tres impoeant dans les systkmes de

production agricole. Les désherbages manuel et mécanique ont été progressivement

remplacés par la lutte chimique, avec pour avantage immédiat, une capacité accrue à

désherber de grandes superficies (Duke, 1996). La lutte chimique contre les

mauvaises herbes a connu une expansion tellement importante au cours des 50

dernières années, qu'aujourd'hui les herbicides représentent environ 60 à 70% du

volume total des pesticides utilisés en agriculture (Leroux et al., 1990; Duke, 1996).

En 1987, sur un total de 708 millions de dollars depenses par les agriculteurs

canadiens pour l'achat des pesticides, les herbicides ont compté pour S I 1 millions

(Anonyme 1, 1989). Face à t'importance des degâts causés par les mauvaises

herbes, les herbicides de synthèse grâce A leur grande efficacité, se sont imposés

comme outils de désherbage par excellence (Kropff et Lotz, 1992a; Swanton et al.,

1993; Lotz et al., 1995). Avec l'intensification de l'agriculture, les herbicides sont

rapidement devenus une partie intégrante du système de production chez la plupart

des fermiers. Ces derniers utilisent des applications prophylactiques de type «police

d'assurance » en prélevée de la culture pour se prémunir contre les effets néfastes

des infestations éventuelles (Lemieux et al., 1995). Cette pratique conduit

inévitablement a des traitements qui ne sont pas toujours justifiés, et avec comme

conséquence non seulement une augmentation des coûts de production, mais aussi

des effets potentiellement préjudiciables à I'environnement. Au cours de la dernière

décennie, l'apparition des mauvaises herbes resistantes aux herbicides, la nécessité

d'optimiser les coûts de production et les préoccupations de protection de

I'environnement ont mis des pressions importantes sur les producteurs pour réduire

l'utilisation des herbicides de synthèse (Swanton et Weise, 1991; Kropff et Lotz,

1992a, 1992b; Maxwell et Mortimer. 1994; Duke, 1996; Shaner, 1997;). Ceci a

conduit au développement du concept de lutte intégrée contre les mauvaises herbes,

concept qui vise entre autres la rationalisation de l'utilisation des herbicides, en ne

Page 24: FACULTE UNIVERSITG QUEBEC

traitant que lorsque c'est nécessaire, avec la dose requise et sans sacrifier les

rendements (Swanton et Weise, 1991 ; Hall et al., 1992; Kropff et Lotz, 1992a, 1992b;

Dieleman et al., 1995; Lemieux et al., 1995; Lotz el al., 1995). Une réduction de la

fréquence et des doses d'utilisation des herbicides peut contribuer à coup sûr non

seulement à réduire les coûts d'opération de la ferme, mais aussi à améliorer la

qualité de l'environnement (Dieleman et al., 1995; Lemieux et al., 1995; Lotz et al.,

1995). Mais il incombe de s'assurer que ces modifications n'entraîneront pas des

pertes de rendement. On pourra sans doute y arriver en mettant a la disposition des

producteurs une technologie de prédiction des pertes et de prise de décision

suffisamment efficace pour convaincre ces derniers qu'il est possible d'abandonner

les traitements préventifs systématiques au profit des applications justifiées, faites en

postlevée. Cette technologie doit comporter d'une part, (1 ) un outil puissant, rapide,

peu coûteux et fiable de dépistage et de quantification des mauvaises herbes en

debut de cycle de la culture, et d'autre part, (2) un modèle précis et versatile de

prédiction des pertes dues aux mauvaises herbes permettant de décider si oui ou non

il faut intervenir.

1.2. Dépistage et quantification des mauvaises herbes

Bien que répondre a la question de savoir si oui ou non il y a des mauvaises

herbes dans une parcelle semble facile, il est cependant très difficile de déterminer le

taux d'infestation, c'est-à-dire de quantifier leur présence. Les variables les plus

couramment mesurées sont : la densité, la biomasse, la surface foliaire et la

couverture foliaire.

La détermination de la densité est une des méthodes classiques d'estimation

du taux d'infestation des mauvaises herbes. Ceci est géneralement fait en comptant

le nombre de plants dans des quadrats sélectionnés au hasard. Cependant, les

mauvaises herbes ont une distribution en grappe, et leur germination s'échelonne

généralement sur une période plus ou moins longue, ce qui empêche une estimation

Page 25: FACULTE UNIVERSITG QUEBEC

précise et rapide de leur nombre (Brain et Cousens, 1990; Kropff et Spitters, 1991 ;

Kropff et al., 1992; Lemieux et al., 1992; Wiles et al., 1993; Knezevic et al., 1 995). La

densité représente donc un indicateur trks pauvre du taux d'infestation car elle ne

tient pas compte des espéces, de la période d'émergence, de la taille, de la

distribution spatiale et du stade de développement des mauvaises herbes (Kropff,

1988; Brain et Cousens, 1990; Kropff et Spitters, 1991; Kropff et al., 1992; Kropff et

Lotz, l992b; Morin et al., 1993; Wiles et al., 1993; Lotz et al., 1994; Knezevic et al.,

1995; Lemieux et al., 1 995).

La biomasse des mauvaises herbes permet de quantifier de maniére adkquate

leur taux d'infestation et leur impact sur les cultures (Wilson et al. 1995; Tanji et al.

1997). Cependant, a cause de sa nature destmctive et de l'ampleur des

manipulations requises, cette méthode est plus utilisée pour l'analyse de la

croissance des plantes que pour les prédictions de rendement.

La surface foliaire des mauvaises herbes s'est montrée comme étant un indice

très reprhsentatif de leur taux d'infestation (Lotz et al., 1994; Dieleman et al., 1995;

Knezevic et al., 1995). Cette variable se mesure généralement avec un planimètre,

après des prblèvements destructifs. L'obtention des données par cette méthode est

d'une application pratique tres limitée à cause des exigences en temps, de l'ampleur

des manipulations et de la nécessité de procéder a une coupe destructive de la

végétation.

Une méthode alternative à la surface foliaire est la determination de la

couverture foliaire des mauvaises herbes comme indice de prédiction (Kropff, 1988;

Lotz et al., 1995, 1994). La couverture foliaire est la surface obtenue par projection

verticale des feuilles sur le sol. La couverture foliaire des plantes, si elle était

mesurée, serait probablement tres proche de la surface foliaire aux stades précoces

de croissance (Kropff, 1988). Plusieurs techniques sont utilisées pour estimer la

couverture foliaire des mauvaises herbes, parmi lesquelles la plus simple est

l'estimation visuelle. Cette technique subjective fournit des données qui varient

Page 26: FACULTE UNIVERSITG QUEBEC

beaucoup d'un observateur B l'autre (Kropff, 1988; Lotz et al., 1994). Certains

chercheurs ont détemin6 la couverture foliaire en plaçant un cadre quadrillé

directement sur la parcelle concernée et en comptant les carreaux couverts par

chaque espèce (Lotz et al., 1994, 1995). ou en faisant la même chose, mais plutôt

sur une photographie de la parcelle (Lutman, 1992). Ces techniques, bien que

fournissant des données de qualit&, restent cependant très exigeantes en temps et

en main d'œuvre et donc inappropriées pour une utilisation pratique. L'utilisation de

la réflectance spectrale comme méthode d'estimation de la couverture foliaire pourrait

être une technique très simple et très rapide, mais son efficacité est limitée par son

incapacité a distinguer la culture des mauvaises herbes (Lotz et al., 1994).

Du fait de toutes ces limitations, il devient primordial de trouver de nouvelles

méthodes pour évaluer l'importance des populations de mauvaises herbes. Ces

méthodes devront être rapides et objectives afin de pouvoir s'intégrer facilement A un

outil de prise de décision qui puisse être utilisé au champ.

1.3. Estimation de la couverture foliaire par analyse d'images

Aux vues des progrès dans les domaines de l'informatique et de l'imagerie,

Lemieux et ai. (1995) ont proposé d'utiliser l'analyse d'images numériques pour

déterminer la couverture foliaire des mauvaises herbes et de la culture au début du

cycle de croissance de la culture. La démarche proposée consiste à exploiter les

caractéristiques des images numériques. Ces demiéres sont composées d'un

ensemble de pixels dont chacun véhicule deux types d'informations : une information

spectrale (longueur d'onde) et une information spatiale (provenance de la longueur

d'onde) (Lemieux et al. 1995). La signature spatiale de l'image permet de

reconnaître la forme des objets, alors que la signature spectrale permet de distinguer

ces objets, en fonction de la longueur d'onde de la lumière réfléchie. Ces deux types

d'information peuvent être mis a profit pour différencier les plantes du sol et la culture

des mauvaises herbes.

Page 27: FACULTE UNIVERSITG QUEBEC

Une des premières tentatives d'estimation de la couverture foliaire des plantes

A partir des images prises dans des parcelles a 6té r6alisée par Lutman (1992). Pour

le faire, ce dernier plaçait une grille avec 200 pointes sur une carte photo de la

parcelle et comptait le nombre de pointes correspondant A la culture, aux mauvaises

herbes et au sol. Depuis lors, la technique a évolué sensiblement et d'autres travaux

de recherche sur l'utilisation de l'analyse d'images pour determiner la couverture

foliaire des plantes ont été publiés (Carson et a/., 1995; Andreasen et al., 1997;

Andrieu et al., 1997). Carson et al. (1995) ont utilisé l'analyse d'image numérique

multispectrale de haute résolution pour détecter les populations de Hieracium

pratense. L'analyse d'images provenant d'une camera fixée sur un avion volant a 2,7

km d'altitude leur a permis de détecter les mauvaises herbes grâce au contraste de

couleur causé par leurs fleurs jaunes. Cette méthode reste cependant peu

appropriée comme technique de prédiction. En effet, pour être intégrée à un outil de

prise de décision, la détection doit se faire à l'échelle de la ferme et à des stades de

développement suffisamment précoces pour qu'il soit possible de mettre en place les

moyens de lutte les plus appropriés.

Andrieu et ai. (1997) de leur côté ont utilisé des photos prises sur des plus

petites parcelles pour estimer le recouvrement du sol par les plantes. Lemieux et al.

(1995) ont quant à eux proposé d'utiliser la signature spectrale des plantes afin

d'évaluer la proportion du sol occupée par les mauvaises herbes et par la culture.

Bien que les techniques proposées par les uns et les autres soient très prometteuses,

elles restent encore au stade de développement, et les travaux de validation en

conditions réelles n'ont pas encore été réalisbs. Par ailleurs, le d6veloppement d'un

outil d'aide a la décision n'est pas simplement dépendant de la disponibilité d'un

instrument de dépistage et d'évaluation des populations de mauvaises herbes, mais

aussi de la disponibilité d'un modèle de prédiction des pertes dues a ces dernières.

Page 28: FACULTE UNIVERSITG QUEBEC

1.4. Prédiction des pertes dues aux mauvaises herbes

Plusieurs modèles empiriques ont ét6 développés pour relier la présence des

mauvaises herbes aux pertes de rendement (Dew, 1972; Zimdahl, 1980; Cousens et

al., 1984; Tisdell, 1984; Cousens, 1985a, 198513; Cousens et ai., 1987; Kropfi, 1988;

Spitters et al., 1989; Kropff et Spitters, 1991 ; Kropff et Lotz, l992a. 1992b; Lotz et al.,

1994, 1995; Swinton et Lyford, 1996). Ces modèles utilisent des variables comme la

densité des mauvaises herbes, leur pérÏode de lev6e, leur surface foliaire relative, ou

leur couverture foliaire relative.

Le modèle de prédiction le plus simple est celui proposé par Dew (1 972). 11 est

représent6 par l'équation suivante :

00 Y est le rendement de la culture, br l'indice de compétition et D la densité des

mauvaises herbes. L'indice de compétition est un paramètre déterminé

expérimentalement. Ce modèle est très peu réaliste car en plus d'être trop simpliste,

la courbe ne passe pas par l'origine, ce qui implique des pertes de rendement même

en l'absence de mauvaises herbes. La pente initiale de la courbe ainsi que son

asymptote sont infinies, ce qui rend le modèle inapproprié à la fois aux faibles et aux

fortes densités de mauvaises herbes. Par la suite, les travaux de Cousens et al.

(1984,1985a) ont mené à la proposition d'un modèle Ci deux paramètres, plus

élaboré, représenté par une équation hyperbolique reliant la densité des mauvaises

herbes au rendement de la culture :

Page 29: FACULTE UNIVERSITG QUEBEC

avec YL le pourcentage de perte de rendement, D la densité des mauvaises herbes, i

le pourcentage de perte de rendement par plant de mauvaise herbe et par unité de

surface à mesure que D s'approche de zéro et a le pourcentage de perte de

rendement B mesure que D approche l'infini. Une autre version de cette équation a

été développée par Cousens (1985b) pour tenir compte de la densité de la culture :

avec c qui représente la densite de la culture, et p et q qui sont des paramètres.

Toutes ces équations (1, 2 et 3) se sont revélées trés peu efficaces comme

modèles de prédiction (Cousens et al., 1987; Brain et Cousens, 1990; Kropff et al.,

1992; Kropff et Lotz, 1992a; Morin et al., 1993; Wiles et al., 1993; Lot, et al.. 1994,

1995; Knezevic et d, 1995). 11 s'agit donc d'une autre démonstration à l'effet que la

densité n'est pas un bon indice de prédiction des dégâts causés par les mauvaises

herbes. Ce manque de précision est principalement dû au manque d'uniformité dans

la distribution spatiale et temporelle des mauvaises herbes dans les terres arables

(Brain et Cousens, 1990; Kropff et Spitters, 1991 ; Kropff et al., 1992; Wiles et al.,

1993; Knezevic et al.. 1995), jumelé avec la très grande plasticité phénotypique qui

caractérise les mauvaises herbes. Ainsi, plusieurs chercheurs considèrent que la

période relative de levée des mauvaises herbes et de la culture est un facteur

déterminant dans les phénomènes de compétition entre la culture et les mauvaises

herbes (Dew, 1 972; Cousens et al., 1 987; Brain et Cousens, 1990; Kropff et Spitters,

1991 ; Kropff et al., 1992).

Cousens et al. (1987) ont donc proposé une autre version de l'équation (2),

laquelle tient compte de la période relative de levée des mauvaises herbes par

rapport à la culture :

Page 30: FACULTE UNIVERSITG QUEBEC

où YL est le pourcentage de perte de rendement, D la densite de mauvaises herbes,

T la durée de la période entre la levée des mauvaises herbes et celle de la culture et

enfin, a, b et c des coefficients de régression non linéaire. Cette nouvelle équation a

permis d'obtenir des résultats plus précis que ceux de l'équation initiale (Cousens et

al., 1987; Dieleman et al., 1995). Bien que ce modéle s'ajuste trés bien avec les

données de rendement obtenues expérimentalement, il requiert non seulement un

suivi quotidien de la culture mais aussi la détermination des densités, ce qui

nécessite beaucoup de temps et de travail (Kropff et al., 1992).

Dans une étude assez récente, Swinton et Lyford (1996) ont suggéré que les

modèles sigmoïdaux décrivent mieux la relation entre la densité des mauvaises

herbes et les rendements de la culture que les modèles hyperboliques. Ils ont

proposé l'utilisation de la densité des mauvaises herbes dans le modele de Morgan-

Mercer-Flodin ou modèle MMF (Morgan et al., 1975) pour prédire les rendements. Le

modèle prend la forme suivante :

où Y est le rendement de la culture. D est la densité des mauvaises herbes, a est le

rendement minimum ou l'asymptote inférieure lorsque la densité approche l'infini, P est le rendement maximum (en l'absence de mauvaises herbes), y est une mesure de

la courbature qui détermine le taux avec lequel le rendement atteint son asymptote

inférieure (a), et 6 est une mesure de la courbature qui détermine le point a partir

duquel le rendement commence à diminuer à un rythme croissant. Les études de

simulation ont montré que la validation d'un tel modèle nécessite une large gamme

de densités, soit environ 50 (Swinton et Lyford, 1996).

Page 31: FACULTE UNIVERSITG QUEBEC

Par ailleurs, Kropff (1988) a démontré, à partir des donn6es provenant d'une

expérience de simulation, qu'il existe une relation étroite entre la surface foliaire

relative des mauvaises herbes et les rendements de la culture. Kropff et Spitters

(1991) ont développé un modèle simple de pr6diction des pertes bas6 sur une

évaluation precoce de la surface foliaire relative des mauvaises herbes. Ce modèle

est représenté par l'équation suivante :

où YL est le pourcentage de perte de rendement. Lw la surface foliaire relative des

mauvaises herbes et q la compétitivité des mauvaises herbes par rapport A la culture.

Ce modèle est utilisable en présence de plusieurs espèces de mauvaises herbes

(Kropff et Spitters, 1991). Les travaux de validation ont montré que ce modèle de

prédiction tient compte la fois de la densité des mauvaises herbes et de leur

période de germination par rapport A la culture (Kropff et Spitters, 1991; Kropff et al.,

1992b; Kropff et Lotz, 1992a; Lotz et al., 1994, 1995; Dieleman et al., 1995; Knezevic

et aL, 1995).

Une autre version de l'équation (5) a été récemment mise au point (Kropff et

Lotz, l992b; Lotz et al., 1992; Kropff et al., 1995). La grande nouveauté vient du fait

que ces auteurs ont tenu compte du fait qu'il existe une limite de perte de rendement

pour chaque situation. La nouvelle équation est la suivante :

ou m est la perte maximale relative de rendement.

second paramètre a permis d'améliorer la précision

L'incorporation a l'équation de ce

des ajustements des données de

Page 32: FACULTE UNIVERSITG QUEBEC

rendement par rapport à l'équation (5) (Kropff et Lotz, l9Wb; Knezevic et al., 1995;

Lotz et al., 1995).

Les modèles de prédiction des pertes basés sur I'haluation de la surface

foliaire des mauvaises herbes prbsentent un potentiel réel pour une application

pratique. Malheureusement, le manque de technique rapide, précise et non

destructive d'estimation de la surface foliaire demeure une contrainte majeure à

l'utilisation de ces modèles (Lotz et al., 1994; Knezevic et al., 1995). Pour contourner

cette contrainte, Kropff et Lotz (1992a), Lotz et al. (1994, 1995) proposent la

substitution de la surface foliaire relative des mauvaises herbes par leur couverture

foliaire relative. Ainsi, les travaux réalisés par Lotz et al. (1994) ont prouvé qu'il

existe une étroite corrélation linéaire entre la surface foliaire des mauvaises herbes et

leur couverture foliaire, aux stades précoces de la culture. Ces constats suggèrent

donc la possibilité d'utiliser la couverture foliaire relative dans les modèles de

prédiction.

En exploitant les avantages de la technique d'analyse d'images et en

developpant des modèles appropriés, il et donc possible de mettre à la disposition

des producteurs un outil puissant leur permettant de prédire les pertes de rendement

en début de saison afin de décider si oui ou non des mesures d'intervention sont

nécessaires. Une telle technologie réduira la dépendance des producteurs aux

herbicides, et les retombées se feront sentir sur toute la cornmunaut&

1.5. Hypothèses et objectifs de recherche

Le dépistage et la détermination du taux d'infestation des mauvaises herbes

ainsi que le développement de modèles prévisionnels fiables adaptés à cette variable

restent donc des défis majeurs à relever pour notre agriculture. La mise à la

disposition des producteurs, d'un outil de prise de décision s'intégrant parfaitement

dans un programme de lutte intégrée, et permettant une meilleure rationalisation de

Page 33: FACULTE UNIVERSITG QUEBEC

l'utilisation des herbicides de synthèse s'impose avec acuité. La couverture foliaire

des mauvaises herbes est un indice fiable de l'importance de ces plantes nuisibles,

mais son utilisation pratique reste cependant limitée par notre incapacit6 mesurer

cette variable de manière rapide et précise. De même, la plupart des modbles

prévisionnels utilisant la densite des mauvaises herbes sont peu pr6cis. et ceux

utilisant la surface foliaire sont limités par la difficulté d'acquisition de cette variable.

L'hypothèse générale de notre recherche était qu'il est possible de prédire les

pertes de rendement à partir d'images prises très tôt en début du cycle de croissance

de la culture.

Les hypothèses spécifiques étaient :

(1) La technique d'analyse d'images numériques permet d'estimer de manière

précise la couverture foliaire des plantes, et la relation entre ces estimés et

les mesures de surface foliaire est linéaire.

(2) La performance des estimés de couverture foliaire est comparable à celle

des mesures de surface foliaire dans les modales prévisionnels

(3) La qualité des prédictions peut être améliorée par le développement de

madèles plus appropriés aux estimbs de couverture foliaire

(4) La hauteur de prise de vue des images et le stade de croissance de la

culture ont des effets sur la qualité des prédictions.

De ces hypothèses ont découlé les objectifs de recherche.

Page 34: FACULTE UNIVERSITG QUEBEC

1.5.2. Objectifs

L'objectif général de nos travaux était de contribuer au développement d'un

outil d'aide a la prise de decision permettant de prédire le rendement des cultures à

partir des images prises tôt en début de cycle de croissance afin de mieux cibler les

interventions de désherbage.

Les objectifs spécifiques étaient :

(1 ) Exploiter la technique d'analyse d'images pour estimer la couverture foliaire

des plantes et établir la relation entre ces données et les mesures

destructives de surface foliaire

(2) Etudier et comparer la performance des estimés de couverture foliaire et

celle des mesures de surface foliaire dans les modèles pr6visionnels

(3) Developper et valider un modèle prévisionnel performant et mieux adapté

aux estimés de couverture foliaire

(4) Étudier les effets de la hauteur de prise de vue des images et du stade de

croissance de la culture sur la qualit6 des prkdictions afin d'optimiser les

prédictions.

Page 35: FACULTE UNIVERSITG QUEBEC

Andreasen, C., Rudemo, M. et Sevestre, S. (1997) Assessrnent of weed density at an

early stage by use of image processing. Weed Hes. 37, 5-1 8

Andrieu, B., Allirand. J. M. et Jaggard, K. (1997) Ground cover and leaf area index of

maize and sugar beet crops. Agron. 17, 31 5-321

Anonyme 1, (1989) Pesticides : la bonne dose. Ministère des approvisionnements et

services Canada. Québec, Le Groupe Média Science p l 1

Brain, P. et Cousens R. (1990) The effect of weed distribution on predictions of yield

IOSS. J. Appl. ECO/. 27, 735-742

Carson, H. W., Lass, L. W. et Callihan, R. H. (1995) Detection of yellow hawkweed

(Hieracium pratense) with high resolution multispectral digital irnagery. Weed

Technol. 9,477-483

Cousens, R. (1985a) A simple model relating yield loss to weed density. Ann. Appl.

Biol. lO7,239-252

Cousens, R. (1985b) An empirical model relating crop yield to weed and crop density

and a statistical cornpanson with other rnodels. J. Agric. Sci 105, 51 3-521

Cousens, R., Brain, P., O'Donovan, J. T. et O'Sullivan P.A. (1987) The use of

biologically realistic equations to describe the effects of weed density and relative

time of emergence on crop yield. Weed Sci 35,720-725

Page 36: FACULTE UNIVERSITG QUEBEC

Cousens, R., Peters, N. C. B. et Marshall, C. J. (1984) Models of yield loss-weed

density relationships. Proceedings of the 7th International Symposium on Weed

Biology, Ecology and Systematics. Paris: Columa-EWRS. pp 367-374

Dew, D. A. (1972) An index of competition for estimating crop loss due to weeds.

Can. J. Plant Sci. 52.921 -927

Dieleman, A., Hamill A. S., Weise, S. F. et Swanton C. J. (1995) Empirical models of

pigweea (Amaranthus spp. ) interference in soybean (Glycine max). Weed Sci. 43,

61 2-61 8

Du ke, S .O. (1 996) Herbicide resistant crops : background and perspectives. ln S .O.

Duke ed. Herbicide-resistant Crops: Agnculturai, Environmental, Economic,

Regulafory, and Technical Aspects. Boca, Raton, Florida: CRC Press. p 1-3

Hall, M. R., Swanton, C. J. et Anderson. G. N. (1 992) The critical period of weed

control in grain corn (Zea mays L.). Weed Sci. 40,441-447

Knezevic, S. Z., Weise, S. F. et Swanton, C. J. (1995) Comparison of empirical

models depicting density of Amaranthus retrofiexus L. and relative leaf area as

predictors of yield loss in maize (Zea mays L.). Weed Res. 35. 207-214

Kropff, M. J. (1988) Modelling the effects of weeds on crop production. Weed Res.

28,465-471

Kropff. M. J. et Lotz, L. A. P. (1992a) Optimization of weed management systems: the

role of ecological models of interplant competition. Weed Technol. 6, 462-70

Kropff, M. J. et Lotz, L. A. P. (1992b) Systems approach to quantify crop-weed

interactions and their application to weed management. Ag* Syst. 40, 265-282

Page 37: FACULTE UNIVERSITG QUEBEC

Kropff, M. J. et Spitters, C. J. T. (1 991) A simple model of crop loss by weed

competition from early obsewations of relative leaf area of the weeds. Weed Res. 31,

97-1 O5

Kropff, M. J., Lotz, L. A. P., Weaver, S. E., Bos, H. J., Wallinga, J. et Migo, T. (1995)

A two-parameter model for prediction of crop loss by weed competition from early

observations of relative leaf area of weeds. Ann. Appl. Biol. 126,329-46

Kropff, M. J., Weaver, S. E. et Smits, M. A. (1992) Use of ewphysiological models for

crop-weed interference: Relations amongst weed density, relative time of weed

emergence relative leaf area, and yield loss. Weed Sci. 40, 296-301

Lemieux, C., Cloutier, D. C. et Leroux, G. D. (1992) Sampling quackgrass (Elytngia

repens) populations. Weed Sci. 40, 534-541

Lemieux, C., Panneton, B. et Benoit, D. (1995) L'analyse d'image en malherbologie.

Actes Colloque international sur la prévision et le dépistage des ennemis des

cultures, Québec, Octobre1 0-1 2, pp.201-208

Leroux, G. D., Laganière. M. et Vanasse, A. (1990) Méthodes alternatives de

répression des mauvaises herbes dans les cultures fourragéres, céréalières, le maïs

et le soya. Rapport de recherches, ministère de l'Agriculture des Pêcheries et de

l'Alimentation du Québec, Québec, G1 R 4x6, 135 p

Lotz, L. A. P., Kropff, M. J., Bos, B. et Wallinga, J. (1992) Prediction of yield loss

based on relative leaf cover of weed. Proceedings First lntemational Weed Control

Congress Melbourne, February 17-22, 2:290-293

Lotz, L. A. P., Kropff, M. J., Wallinga, J., Bos, H. J. et Groeneveld, R. M. W. (1994)

Techniques to estirnate relative leaf area and cover of weeds in crops for yield

prediction. Weed Res. 34, 167-1 75

Page 38: FACULTE UNIVERSITG QUEBEC

Lotz, L. A. P., Wallinga, J. et Kropff, M. J. (1995) Crop-weed interaction: quantification

and prediction. In D. M. Glen, M. P. Greaves and H. M. Anderson eds. Ecology and

lntegrated Farming Systems. London, pp 3147

Lutman, P. J. W. (1992) Prediction of the cornpetitive ability of weeds on the yield of

several spring-sown arable crops. Actes IXeme colloque international sur la biologie

des mauvaises herbes, Dijon, Paris, France. pp 337-345

Maxwell, B. D. et Mortimer, A. M. (1994) Selection for herbicide resistance. In Powles,

S. B., and J. A. M. Holtum eds Herbicide resistance in plants : biology and

biochemistry. Lewis Publishers, London, p. 1-25

Morgan, P. H., Mercer, L. P. et Flodin, N. W. (1975) General model for nutritional

responses of higher organisrns. Roc. Nat. Ac. Sci 72,4327-4331

Morin, C., Blanc. O. et Darmency, H. (1993) Limits of a simple model to predict yield

losses in maize. Weed Res. 33, 261-268

Shaner, D. L. (1 997) Herbicide resistance in North America : history, circumstances of

developrnent and current situation. ln DePrado, R., J . Jorrin, and L. Garcia-Torres

eds Weed and crop resistance to herbicides, Kluwer Acadernic Publishers London

p29-38

Spitters, C. J. T.. Kropff, M. J. et De Groot, W. (1989) Cornpetition between maize an

Echinochloa crus-galli analysed by a hyperbolic regression model. Ann. Appl. Biol.

115, 541-551

Swanton, C. J. et Weise, S. F. (1991) lntegrated weed management : the rationale

and approach. Weed Technol. 5,657-663

Page 39: FACULTE UNIVERSITG QUEBEC

Swanton, C. J.. Harper, K. N. et Anderson, R. L. (1993) Crop losses due to weeds in

Canada. Weed Technol. 7, 537-542

Swinton, S. M. et Lyford, C. P. (1996) A test for choice between hyperbolic and

sigrnoidal models of crop yield response to weed density. J. Agn. Bol. Environ. Stat.

1, 97-106

Tanji, A., Zimdahl, R. L. et Westra, P. (1997) The cornpetitive ability of wheat

( Tnticum aestkum) cornpared to rig id ryeg rass (Loliom rigidum) and cowcockle

(Vaccaria hispanica). Weed Sci 45,481-487

Tisdell, C. A. (1 984) Crop loss elasticity in relation to weed density and control. Agn.

Syst. 13, 161-166

Wiles, L. J. et Wilkerson, G. G. (1991) Modelling competition for light between

soybean and broadleaf weeds. Agi. Syst. 35,3741

Wiles, L. J., Gold, H. J. et Wilkerson, G. G. (1 993) Modelling the uncertainty of weed

density estimates to improve post-emergence herbicide control decisions. Weed

Res. 33,241-252

Wilson, B. J., Wright, K. J., Brain, P.. Clernent, M. et Stephen. E. (1995) Predicting

the competjtive effects of weed and crop density on weed biomass, weed production

and crop yield in wheat. Weed Res. 35, 265-278

Zimdahl, R. L. (1980) Weed - crop competition : a review. lntemational Plant

Protection Center, USA. 1 96pp

Page 40: FACULTE UNIVERSITG QUEBEC

CHAPITRE 2

VALIDATION D'UN MODULE SEMI-AUTOMATISE D'ESTIMATION DE

LA COUVERTURE FOLIAIRE D'UNE CULTURE ET DES MAUVAISES

HERBES PAR ANALYSE D'IMAGES NUMÉRIQUES

Ce chapitre a été publie dans Weed Technoiogy Vol. 72, pp.446-453, 1998 sous le

titre de 'Validation of an Operator-Assisted Module to Measure Weed and Crop Leaf

Cover by Digital Image Analysis.*

Page 41: FACULTE UNIVERSITG QUEBEC

2.1. R6sum6 du chapitre 2

L'utilisation de la surface foliaire relative des maubaises herbes dans les

modèles mathématiques est un moyen efficace de prédiction de l'impact de ces

plantes sur le rendement des récoltes. Ceci peut contribuer à rationaliser l'utilisation

des herbicides et des autres moyens de lutte contre les mauvaises herbes.

Cependant, cet outil n'a pas reçu une reconnaissance pratique chez les producteurs,

à cause du manque de moyen rapide et précis pour estimer la surface foliaire des

plantes. La couverture foliaire (projection verticale des plantes sur le sol) a été

proposée comme méthode alternative pour estimer la surface foliaire des plantes aux

stades précoces de croissance. Un système automatisé de mesure de la couverture

foliaire base sur la technique d'analyse d'images numériques a été mis au point. Le

système comprend entre autre un module assisté par l'opérateur (OAM) dont le rôle

principal est de calibrer et valider les fonctions automatis8es. Le but de ce travail

était de démontrer la précision du module OAM sous différentes conditions

d'infestation des mauvaises herbes.

Un essai en laboratoire avec des cultures et des mauvaises herbes simulées a

été réalisé. De plus, deux expériences ont été mises en place sur le terrain, avec une

culture de maïs en compétition avec : (1) le pied de coq [Echinochloa crus-galli (L.)

Beauv], le chénopode blanc (Chenopodium album L.), et un mélange des deux

espèces, et (2) une population naturelle de mauvaises herbes.

En laboratoire, une étroite corrélation a été observée entre la couverture

foliaire estimée avec le module OAM et la surface foliaire mesurée avec un

planimètre optique (?>0,98). Dans les conditions de champ, la régression entre la

couverture foliaire du maïs (Zea mays) estimée avec le module OAM et la surface

foliaire du maïs mesurée au planimétre n'a pas donné des résultats aussi fiables

(?<0,55). Cette moindre performance du module OAM sur les données du maïs était

Page 42: FACULTE UNIVERSITG QUEBEC
Page 43: FACULTE UNIVERSITG QUEBEC

2.2. Validation of an Operator-Assisted Module to Measure Weed and Crop Leaf

Cover by Digital Image ~nalysis'

MATHIEU NGOUAJIO, CLAUDEL LEMIEUX, JEAN-JACQUES FORTIER,

DENIS CAREAU, and GILLES O. LEROUX*

2.2.1. Abstract

The practical application of yield loss prediction models using relative leaf area of

weeds is limited due to the lack of a quick and accurate method of leaf area

estimation. Leaf cover (the vertical projection of plant canopy on the ground) can be

used to approximate leaf area at early stages of plant development. An automated

digital image analysis system for measuring leaf cover has been developed. The

system has an operator-assisted module aimed at validating the autornated functions.

The objective of this research was to demonstrate the accuracy of the operator-

assisted module under different weed-crop conditions. A laboratory experiment was

conducted using simulated weed-crop populations. Two additional field experiments

were conducted using corn in cornpetition with: (1) common lambsquarters,

barnyardgrass, or a mixture of both species, and (2) a natural weed community. In

the laboratory experiment, a narrow linear relation was observed between leaf cover

estimated with the operator-assisted module, and leaf area measured with an optical

area meter (? > 0.98). In field experiments, the regression between corn leaf cover

estimated by the operator-assisted module and corn leaf area measured with the

'~eceived for publication August 4, 1997, and in revised f o m March 24, 1998. Contribution 574 of Soils and Crops Research and Developrnent Centre.

*~raduate Research Assistant, Department of Phytology, Laval University, Quebec, QC, Canada G1 K 7P4; Research Scientist, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Sainte-Foy, QC, Canada G1V 2J3; SociBté de Mathématiques Appliquées Inc., 59 d'Auteuil Street, Québec, QC, Canada G1 R 4C2; and Professor, Department of Phytology, Laval University, Quebec, QC, Canada G1K 7P4.

Page 44: FACULTE UNIVERSITG QUEBEC

optical area meter was not as good (? < 0.55). The poor performance of the module

was probably due to the overlapping and the architecture of corn leaves (especially

unexpanded leaves). Nevertheless, the system showed high precision in estimating

leaf area of both grassy weeds and broadleaf weeds (+ > 0.89). Generally, the

accuracy of the estimates decreased as the growth stage became more advanced.

Apart from its initial purpose as a calibration tool for the automated system, the

operator-assisted module can have several potential research applications. It can be

used: (1) as an alternative to destructive leaf area measurement at early stages of

plant development, (2) as a tool in the study of plant cornpetitive ability, and (3) as an

objective and quantitative support to visual observations.

Nomenclature: Common lambsquarters, Chenopodium album L. #3 CHEAL;

barnyardgrass, Echinochloa cms-galli (L.) Beauv. # ECHCG; corn, Zea mays L.

Additional index words. Machine vision, pixel classification, leaf area, leaf cuver,

CHEAL, ECHCG.

2.2.2. INTRODUCTION

Crop yield loss prediction is a major component of rational weed control decision

making. Ta decide whether or not a weed should be controlled, it is necessary to

quantify its interference (Cousens 1 985a, 1985b; Kropff and Spitters 1991 ). This task

is usually achieved through the development of empirical models (Cousens 1985a,

1985b; Dew 1972; Kropff and Spitters 1991; Kropff et al. 1995; Lotz et al. 1992,

1995). However, lheir predictive values are highly dependent on the ability to quantifi

weed interference with adequate precision.

3~etters following this symbol are a WSSA-approved cornputer code from Composite List of Weeds. Revised 1989. Available from WSSA, 81 0 East 10th Street, Lawrence, KS 66044-8897.

Page 45: FACULTE UNIVERSITG QUEBEC

Several variables including plant density and leaf area have been used to evaluate

weed interference. Weed density was the variable used in the early models of weed-

crop cornpetition (Cousens 1985a; Cousens et al. 1984; Dew 1972). However,

density does not take into account differences in weed species, size, distribution, and

time of emergence relative to the crop. Not only is accurate density estimation

difficult due to the patchy distribution of weeds in fields (Brain and Cousens 1990;

Wiles et al. 1993) but. also. weeds usually emerge in successive flushes, making

density difficult to use.

Relative leaf area of the weed was used to develop yield loss prediction models.

These models showed some limitations, but they accounted for variations of both

density and relative time of weed emergence (Dieleman et a1.1995; Knezevic et al.

1995; Kropff and Lotz 1 W2a, 1992b; Lotz et al. 1994, 1995). Despite their predictive

capacity, the potential of using these models in weed management programs is

limited due to the lack of accurate, quick, and non-destructive methods to estimate

leaf area (Knezevic et al. 1995; Lotz et al. 1994).

So far, precise leaf area measurement required destructive sampling and laborious

manipulations to process foliage through an area rneter. As an alternative to leaf

area, one can use leaf cover, the vertical projection of the canopy of individual

species on the ground surface. Previous studies have shown that there is a close

relationship between leaf area and leaf cover (Kropff 1988; Lotz et al. 1994).

However, there are limitations associated with the measurement of this variable as

well. The visual estimation of leaf cover is quick but the method is subjective (Kropff

1988; Lotz et al. 1994). Some objective methods of rneasurement include the use of

a frame with cross wires on experimental plots (Lotz et al. 1994) and the use of a grid

on photographs of experimental plots (Lutman 1992). Nevertheless, these methods

are as labodous as conventional leaf area rneasurements (Lotz et al. 1994). Viewing

the recent progress in the area of irnagery, Lemieux et al. (1995) had investigated the

possibility of using digital image analysis to detemine leaf cover of weeds and crop at

an early stage of plant development.

Page 46: FACULTE UNIVERSITG QUEBEC

Digital images are made up of a certain number of pixels, each carrying various

types of information. Among them are the spatial and the spectral signatures. The

analysis of the spatial information is ach ieved by stud ying the geometric

characteristics of individual groups of pixels associated with a given object. The

analysis of the spectrai information is achieved by studying the characteristics of

individual pixels, i.e., the nature of the radiation wming from the objects (Lemieux et

al. 1995). With that in mind, we initiated a study for developing an automated image

analysis system for the purpose described above. As part of this study, we needed a

tool to determine the exact proportion of weed cover and crop cover in the images.

The exact proportions are needed as a control to test and validate the automated

system. Thus, we designed a module that requires input from a qualified operator to

manually classify individual pixels in the image. The method can be defined as an

ope rat or-assisted classification me thod, and the image analysis module is referred to

as the operator-assisted module.

The objective of this work was to determine the accuracy of the operator-assisted

module, i.e., to determine whether or not the operator-assisted module could be used

as a validation tool for the autornated system.

Page 47: FACULTE UNIVERSITG QUEBEC

2.2.3. MATERIALS AND METHODS

2.2.3.1. Image Acquisition, Storage, and Analysis

Image acquisition was performed using a high resolution color digital camera4

equipped with a 28-mm ultrafast auto focus lens. The camera uses a charged

coupled device with 1,012 rows and 7,524 columns, corresponding to a theoretical

resolution of about 1.54 rnegapixels. Each sensor records data in one of the three

following wave bands: red, green, or blue. The images are stored on a high-capacity

rernovable PCMCIA hard disk card, which is used for downloading to a cornputer.

A camera-supporting device was designed and built to meet a series of

requirements. The device allowed us to (1) take frames at three different heights (1.5,

1 -9, and 3.3 m); (2) maintain the camera parallel to the ground surface, irrespective of

the ground slope; and (3) mark with precision the ground area included in individual

images.

The operator-assisted module was developed on the basis of the law of large

numbers, in which the error of estimation of the proportion of different classes (soil,

crop, or weed) is given by the formula:

where E is the error in estirnating a class, p is the proportion of the variable being

estimated in the class, q is the proportion of the same variable in the remaining

classes (1 - p), and n is the sample size. According to the formula, the maximum

4 ~ o d a k professional DCS420c digital camera. Kodak Canada Inc., Toronto, Ontario, Canada, M6M 1V3.

Page 48: FACULTE UNIVERSITG QUEBEC

error is obtained when p = q = 0.5. With the operator-assisted module set to select

1,000 pixels a i random, the maximum error at 95% confidence intewal is thus 3.2%.

Although an increase in the number of pixels reduces the error term, according to

preliminary tests (data not shown), 1,000 pixels was the best compromise in terms of

precision and length of time required to process an image. Besides the intrinsic error

described above, an additional source of error is due to the operator wrongly

classifying weed, crop, and soil pixels. This operator error has been estimated (data

not shown) to be an additional 1.8%, which means that the overall error of estimation

is around 5%.

The operator-assisted module also included a computer interface that allowed the

operator to proceed to pixel classification. The operator had to manually classify

each of the randomly selected pixels in one of the classes retained for analysis. In

this case, each pixel was classified as soil, crop, or weed. The output of the operator-

assisted module is the number of pixels in each of the classes.

These proportions were then converted to coverage. With the camera secured at a

height of 1.9 ml the area covered by each image was 5,400 cm2 (60 by 90 cm). By

using 1,000 pixels to estimate an area of 5,400 cm2, each pixel represents 5.4 cm2.

To convert the output of the operator-assisted module to coverage data, the number

of pixels in each class was multiplied by this factor (5.4).

2.2.3.2. Laboratory Experiment

Initial tests were conducted in the laboratory to evaluate the efficiency of the

operator-assisted module. The experiment consisted of simulating plant canopy a t

different growth stages using cardboard pieces of different sizes. Cardboard pieces

of different calors, blue for the crop and red for the weed, were used to simulate the

presence of both groups of plants.

Page 49: FACULTE UNIVERSITG QUEBEC

In a preliminary experiment conducted by our group (unpublished), we observed

that corn leaf area varied from 50 to 200 cm2 at the four-leaf stage, and from 1,000 to

3,000 cm2 at the eight-leaf stage. In latter work, weed leaf area varied from 5 to 200

cm2 at the four-leaf stage of corn, and from 200 to 2,000 cm2 at the eight-leaf stage of

corn. These values were used as general guidelines to prepare 30 simulated

treatments: six simulated growth stages of the crop, and for each growth stage, five

weed infestation levels (Table 1). Actual simulated leaf area of the crop ranged from

50 cm2 at growth stage 1, the eariiest simulated growth stage, to 1,500 cm2 at growth

stage 6, the latest simulated growth stage, while that of the weed ranged from 10 to

1,700 cm2. Furthermore, to account for the variation of individual leaf size that may

be observed under natural conditions, we used cardboard pieces of different sizes as

well. Thus, within each treatment, the size of individual cardboard pieces contributing

to total crop and weed simulated area also varied. For example, at growth stage 1,

cardboard pieces simulating the crop ranged from 1 to 20 cm2. At the same growth

stage, for a simulated weed infestation level of 80%. cardboard pieces simulating the

weed ranged from 0.5 to 5 cm2. The range of sizes of individual cardboard pieces

simulating the weed and the crop within the 30 treatments is presented with more

detail in Table 1.

For each treatment, cardboard pieces were hand cut with scissors and measured

using an optical leaf area meter.' They were then rnixed and arranged randomly on a

60- by 90-cm flat sheet, avoiding overlapping. A digital image of each arrangement

was then recorded from a height of 1.9 m. The images were processed through the

operator-assisted module to obtain estimated coverage data of each component:

sirnulated crop and simulated weed.

-

'LI-COR Inc., P.O. Box 4425, Lincoln, NE 68504.

Page 50: FACULTE UNIVERSITG QUEBEC

2.2.3.3. Field Experiments

Two field experiments were conducted at the Agronomy Station of Laval University

located at Saint-Augustin (Quebec). The soi1 at this site was a sandy loam. Corn

hybrid 'Pioneer 3967' was grown according to the provincial recornmendations

(Anonymous 1984). Corn was seeded May 8, 1996, at a density of 66,000 plantslha,

in rows 75 cm apart.

The first experiment included 15 levels of weed infestation. Total weed densities

retained were: 0, 5, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, and 300

plantslm2. Treatments also included three types of weed infestation, i.e., common

lambsquarters, barnyardgrass, or both species at equal densities, for a total of 45

treatments. Weed seeds were broadcast at the time of crop planting. The final weed

densities were achieved by successive hand weeding of the plots. Initial thinning was

conducted between 1 and 2 wk after emergence.

The second experiment also included various levels of weed infestation. Total

weed densities retained were: 0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80,

90, 100, 125, 150, 200, 250, 300, and 400 plants/m2. In this experiment, the type of

weed infestation was not controlled and weed species naturally occumng on the site

were used. Final densities were achieved by successive hand weeding. The major

weed species present on the site included: common lambsquarters. barnyardgrass,

wild mustard [Brassica kaber (DC.) L. C. Wheeler], false charnomile (Matricana

mantirna L.), cornmon chickweed [Steilana media (L.) Cyrille], redroot pigweed

(Amaranthus retroflexus L.), ladysthumb (Polygonum persicana L.), and pale

smarhveed (Polygonum scabrum Moench) (Table 2).

In both experiments, treatments were assigned to 3- by 8-rn plots (four corn rows),

arranged in a completely randomized design. Digital image acquisition was done at

two different sampling dates: the four-leaf stage and the eight-leaf stage (fully

expanded leaves) of corn (Table 2). Images were taken as previously described,

Page 51: FACULTE UNIVERSITG QUEBEC

each wvering an area of 60- by 90-cm. In each case, the camera-supporting device

waç positioned to include the right-hand side rniddle row of each plot. lmmediately

following image acquisition, the area covered by the image was marked, al! plants

(weeds and crop) were clipped at ground levei, and leaf area was measured using an

optical leaf area meter?

2.2.3.4. Data Analyses

The ability of the operator-assisted module to estimate leaf areas in both field and

laboratory conditions was tested by fitting simple linear regressions relating measured

Ieaf area to estimated leaf cover. The F-test and t test were used to determine the

significance of the reg ressions and regression parameters, respective1 y. Whenever

appropriate, the hornogeneity of slopes was tested by cornparhg a model with a

common slope (y j = ai + PX, + ei ) to models with individual slopes

(Y, = ai + p& + E,) (Snedecor and Cochran 1980). All calculations and statistical

analyses were performed using SAS^^ (SAS 1989).

Page 52: FACULTE UNIVERSITG QUEBEC

2.2.4. RESULTS AND DISCUSSION

2.2.4.1. Laboratory Experiment

For both components of the simulated populations, the crop and the weed, there

was a strong relationship between leaf area measured with an optical area meter and

leaf cover estimated by the operator-assisted module (Figure 1). The linear

regressions between the two variables were highly significant (P < 0.0001) and

characterized by coefficients of determination (3) of 0.99. In both cases, the slopes

differed from zero (P < 0.0001) and were very close to one. Even though these

relations are narrow, they are not perfect, and one can note that the area of both

components seems to be overestimated slightly; the intercepts were 11.5 and 17.9

cm2 for the simulated crop and weed, respectively. However, the t test on the

intercepts were not significant, P = 0.15 and P = 0.16 for the simulated crop and

weed, respectively, indicating that the apparent overestimation reported above is not

a problem.

In this laboratory experiment, parameters have been set so that cover was

equivalent to area. The data reported above demonstrate clearly that under these

conditions, the cover estimates supplied by the operator-assisted module correlate

perfectly with the exact area of the different components of the images. This means

that the operator-assisted module is performing as expected and is capable of

estimating cover with high precision.

2.2.4.1. Field Experiments

In field experiments, overlapping is the rule, and comparing leaf cover

measurernents with leaf area measurements will allow one to determine how different

these two measurements are. With respect to corn, cover values supplied by the

image analysis system did not correlate well with leaf area measurements obtained

Page 53: FACULTE UNIVERSITG QUEBEC

with a planirneter, regardless of the type of weed infestation and regardless of the

crop growth stage (Figure 2). The variation explained by the linear regression models

was less than 55% in al1 cases. This is possibly due to overiapping leaves and plant

architecture. In the case of overlapping, one could expect to obtain better estimates

at the four-leaf stage than at the eight-leaf stage. However, this was not the case,

suggesting that leaf overiapping may not be the major cause of the observed

discrepancy. The most probable explanation resides in foliar architecture of corn and

is related to the way corn leaves expand. As each new corn leaf expands, it also

rernains rolled up for a while. As a consequence, corn leaf wver is not a good

estimate of corn leaf area, even at early stages of plant development. However, one

must note that our final goal is to predict yield losses. In this context, it is not certain

that additionai information concerning hidden leaf area, especially that from rolled up

leaves, would be of any interest. But additional work is needed to demonstrate that

point.

With respect to weed populations, the poor correlation discussed above was not

observed, and weed cover measurements obtained with the operator-assisted

module can be used to estimate weed leaf area (Figures 3 and 4). In all cases, the

linear regressions between the two variables were highly significant (P < 0.0001) and

characterized by coefficients of determination (P) of 0.90 or higher. According to the t

tests, the slopes of these regressions were always different from zero (P < 0.0001).

while the intercepts were not at the 0.05 level of significance.

When species and densities were controlled, as was the case for the first field

experiment, the test for homogeneity of slopes revealed a differential response of the

operator-assisted module, Le., the slopes differed significantly for different growth

stages (P = 0.0516) or weed populations (P c 0.0001) (Figure 3). At the four-leaf

stage of corn, the operator-assisted module underestimated the leaf area of common

lambsquarters populations (slope = 0.90) and overestimated the leaf area of

barnyardgrass (slope = 1.31) and mixed weed population (slope = 1.23). This means

that bamyardgrass leaf area measured with the optical area meter was lower than

Page 54: FACULTE UNIVERSITG QUEBEC

leaf cover estimates obtained with the operator-assisted module. This was probably

due to the rolling of leaves after they were cut, a situation not observed with cornmon

lambsquarters. At the eight-leaf stage of the crop, the leaf area of the weeds was

underestirnated, regardless of the type of weed infestation present in the plot. The

slope of the regression lines ranged from 0.52 to 0.66. This trend was expected,

since we anticipated more and more overlapping of the leaves as the growing season

went on.

When natural multispecific weed communities were present and only total weed

densities were controlled, as was the case in the second field experiment, the

proportions of the variance explained by the regression models were very high: 99%

at the four-leaf stage and 96% at the eight-leaf stage (Figure 4). Results from this

experiment were quite similar to those observed with the mono- or bispecific weed

populations. The test for homogeneity of slopes revealed a significant difference

(P < 0.0001) between growth stages. At the four-leaf stage, the operator-assisted

module overestimated weed leaf area with a slope of 1.31, as was the case for the

barnyardgrass and mixed weed populations in the first experiment. Again, the rolling

of young grass leaves after cutting could explain this trend. At the eight-leaf stage,

leaf cover data provided by the operator-assisted module were lower than the

measured leaf area, as indicated by the low slope of the regression line (0.60).

These observations agree with those found in the first experiment. They reflect a

situation that has been anticipated, since an increase of leaf overlapping is expected

as plant canopy expands.

The results of the laboratory experiment dernonstrate clearly that the operator-

assisted module can provide precise and accurate estimates of leaf cover. The

operator-assisted module can thus be used as a validation tool for the automated

system that is under development. The results of the field experiments showed that

weed leaf cover data are reliable estimates of weed leaf area, but the estimates so

obtained are biased, as they overestimate some components and underestimate

others. Similar results have been reported by Lotz et al. (1994), who suggested the

Page 55: FACULTE UNIVERSITG QUEBEC

use of a correction factor to account for weed architecture when leaf cover is used.

For the purpose of crop loss prediction, these findings are very positive as they

confirm, at least in the case of weeds, that objective measurernents of plant cover can

potentially be substituted for leaf area measurements in model development.

However, our results also demonstrated that the correlation between corn leaf cover

and corn leaf area was not as good as the one observed with weeds. The

implications of such discrepancies for the purpose of crop loss prediction will have to

be addressed in subsequent work. It is noticeable that most of the problems

observed with the operator-assisted module will be encountered with the final

automated image analysis system. Thus, the latter constraint will have to be ruled out

first.

Considering the data presented herein, we are suggesting that the operator-

assisted module, apart from its original purpose, can find other research applications:

it can be a valuable alternative to destructive leaf area measurement at eariy stages

of plant development; it can serve as a tool in the study of plant cornpetitive ability;

and it can be used as an objective and quantitative support to visual observations.

Page 56: FACULTE UNIVERSITG QUEBEC

ACKNOWLEDGMENTS

Funding for this research was provided in part by the Matching Investment Initiative

of Agriculture and Agri-Food Canada. The senior author is a recipient of a

scholars hip from the "Programme Canadien des Bourses d'Excellence de la

Francophonie." We thank Mr. Jocelyn Lamarre and Ms. Michèle Martel for technical

and professional assistance and summer students for field plot work, especially hand

weeding and vegetation sampling.

Page 57: FACULTE UNIVERSITG QUEBEC

Anonymous. 1984. Maïs, Culture. Agdex 1 1 1120. Québec, Canada: Conseil des

Productions Végetales du Québec. 21 p.

Brain, P. and R. Cousens. 1990. The effect of weed distribution on predictions of

yield loss. J. Appl. Ecol. 2717350742.

Cousens, R. 1985a. A simple model relating yield loss to weed density. Ann. Appl.

Biol. 107:239-252.

Cousens, R. 1985b. An empirical model relating crop yield to weed and crop density

and a statistical cornparison with other rnodels. J. Agric. Sci. 105:513-521.

Cousens, R., N.C.B. Peters, and C. J. Marshall. 1984. Models of yield loss-weed

density relationships. In proceedings of the 7th International Symposium on Weed

Biology, Ecology and Systematics. Paris: Columa-EWRS. pp. 367-374.

Dew, D. A. 1972. An index of cornpetition for estimating crop loss due to weeds.

Can. J. Plant Sci. 52:921-927.

Dieleman, A., A. S. Hamill, S. F. Weise, and C. J. Swanton. 1995. Empirical models

of pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed Sci.

43:612-618.

Knezevic, S. Z., S. F. Weise, and C. J. Swanton. 1995. Cornparison of ernpirical

models depicting density of Amaranthus retroflexus L. and relative leaf area as

predictors of yield loss in maize (Zea mays L.). Weed Res. 35207-214.

Page 58: FACULTE UNIVERSITG QUEBEC

Kropff, M. J. and L.A.P. Lotz. 1992a. Optimization of weed management systems: the

role of ecological models of interplant cornpetition. Weed Technof. 6:462-470.

Kropff, M. J. and L.A.P. Lotz. 1992b. Systems approach to quantify crop-weed

interactions and their application to weed management. Agric. Syst. 40:265-282.

Kropff, M. J., L.A.P. Lotz, S. E. Weaver, H. J. Bos, J. Wallinga, and T. Migo. 1995. A

two-parameter model for prediction of crop loss by weed cornpetition from eariy

observations of relative leaf area of weeds. Ann. Appl. Biol. 126:329-346.

Kropff, M. J. and C.J.T. Spitters. 1991. A simple model of crop loss by weed

competition from early observations of relative leaf area of the weeds. Weed Res.

31 197-1 05.

Kropff, M. J. 1988. Modeling the effects of weeds on crop production. Weed Res.

28:465-471.

Lemieux, C., B. Panneton, and D. Benoit. 1995. L'analyse d'image en malherbologie.

ln actes Colloque international sur la prévision et le dépistage des ennemis des

cultures, Quebec, October 10-1 2. pp.201-208.

Lotz, L.A.P., M. J. Kropff, B. Bos, and J. Wallinga. 1992. Prediction of yield loss

based on relative leaf cover of weed. Proc. First Int. Weed Control Congr.,

Melbourne, February 17-22. 2:290-293.

Lotz, L.A.P., M. J. Kropff, J. Wallinga, H. J. Bos, and R.M.W. Groeneveld. 1994.

Techniques to estimate relative leaf area and cover of weeds in crops for yield

prediction. Weed Res. 34: 1 67-1 75.

Page 59: FACULTE UNIVERSITG QUEBEC

Lotz, L.A.P., J. Wallinga, and M. J. Kropff. 1995. Crop-weed interaction:

quantification and prediction. In O. M. Glen, M. P. Greaves and H. M. Anderson

eds. Ecology and lntegrated Farming Systems. London: J. Wiley. pp. 3147.

Lutman, P.J.W. 1992. Prediction of the cornpetitive ability of weeds on the yield of

several spring-sown arable crops. ln actes lXBme colloque international sur la

biologie des mauvaises herbes, Dijon, Paris, France. pp. 337-345

[SAS] Statistical Analysis Systems. 1989. SASISTAT User's Guide, Version 6, 4th

ed. Volume 2. Cary, NC: Statistical Analysis Systems Institute. 846 p.

Snedecor, G. W. and W. G. Cochran. 1980. Statistical Methods. 7th ed. Ames,

Iowa State University Press. 507 p.

Wiles, L. J., H. J. Gold, and G. G. Wiikerson. 1993. Modeling the uncertainty of weed

density estimates to improve post-ernergence herbicide control decisions. Weed

Res. 33:241-252.

Page 60: FACULTE UNIVERSITG QUEBEC

Table 1. Total area and range of size of cardboard pieces used in the laboratory

experhent conducted to test the effectiveness of the operator-assisted module. The

simulated conditions assumed no overlapping in the canopy. They accounted for a

crop at six different growth stages and a weed at different levels of infestation.

Range of size of Weed Total areaC cardboard pieces

Growth infestation Treatment stagea levelb Crop Weed C ro p Weed

- -

a Arbitrary growth stages ranging from 1 (earliest) to 6 (latest). Arbitrary infestation level (proportion of weed leaf area to crop leaf area). Area measured with an optical leaf area meter.

Page 61: FACULTE UNIVERSITG QUEBEC

Table 2. Corn and weed growth stages at the time of leaf area measurements in field

experiments conducted at Saint-Augustin (Quebec) in 1996.

S pecies 6 June, 1996 19 June, 1996

c o n

common larnbsquarters

barnyardgrass

wild mustard

common chickweed

redroot pigweed

ladysthumb

pale srnartweed

Number of fully expanded

4

2to 10

2 to 6

2 to 5

5t0 12

2 to 8

5 to 20

4 to 8

leaves

8

14 to40

i t o 14

7to II

15 to 30

5 to 12

20 to 40

7 to 15

Page 62: FACULTE UNIVERSITG QUEBEC

Simulated crop

Simulated weed

O 400 800 1 200 1680 20'00 Leaf area (cm2)

Figure 7. Relationship between leaf cover estimated by the operator-assisted module

and leaf area measured with an optical area meter: data from the laboratory

experiment in which crop and weed populations were simulated with cardboard

pieces.

Page 63: FACULTE UNIVERSITG QUEBEC

& Controlled weed populations Y=32.4+0.67X; r2=0.47

*q m. Natural weed populations Y=18.1 : 377x3 r2=0.53 O

Four-leaf stage of corn

U *.= ... - Controlled weed populations

3 Y=598.0+0. 1 7X; r2=0.50 . . G a

Natural weed populations Y=218.0+0.31X; r2=0.51

0 1000 20'00 3000 4000 50'00 Corn leaf area (cma)

Figure 2. Relationship between corn leaf cover estimated by the operator-assisted

module and leaf area measured with an optical area rneter at WO growth stages of

corn: corn was grown in competition with cornmon larnbsquarters, barnyardgrass, or a

mixture of both species (controlled weed populations), or in competition with naturally

occurring weed species (natural weed populations).

Page 64: FACULTE UNIVERSITG QUEBEC

Four-leaf stage of corn Eight-leaf stage of corn

E. cnrs-galli populations 15. cnrsqelli populations Y r 7.13 + 1.31X Y = 97.0 + 0.52X

O 1 r f = 0.94

O.

Mixed weed populations Y = -4.47 + 1.23X ? = 0.90

Mixed weed poputairans Y = 33.5 + 0.66X ? = 0.97

l f

O 50 100 150 200 250 300 O 500 1000 1500 2000 2500 3000

Weed leaf area (cm2) Weed leaf area (crn2)

Figure 3. Relationship between weed leaf cover estimated by the operator-assisted

module and weed leaf area measured with an optical area meter at two growth stages

of corn: corn was grown in cornpetition with common lambsquarters, bamyardgrass,

or a mixture of both species.

Page 65: FACULTE UNIVERSITG QUEBEC

stage of corn /

Eig ht-leaf stage of corn

Weed leaf area (cm2)

Figure 4. Relationship between weed leaf cover estimated by the operator-assisted

module and weed leaf area measured with an optical area meter at two growth stages

of corn: data from a field experiment in which corn was grown in cornpetition with a

natural weed infestation.

Page 66: FACULTE UNIVERSITG QUEBEC

CHAPITRE 3

PRÉDICTION DES PERTES DE RENDEMENT DU MAIS À PARTIR

D'OBSERVATIONS PRÉCOCES DE LA SURFACE FOLIAIRE

RELATIVE ET DE LA COUVERTURE FOLIAIRE RELATIVE

DES MAUVAISES HERBES

Ce chapitre est sous presse dans Weed Science Vol. 47, No 00, pp.000-000, 1999

sous le titre de "Prediction of corn (Zea mays) yield loss from early observations of

the relative leaf area and the relative leaf cover of weeds."

Page 67: FACULTE UNIVERSITG QUEBEC

3.1. Résume du chapitre 3

La surface foliaire relative des mauvaises herbes (rapport de la surface foliaire

des mauvaises herbes sur la surface foliaire de la culture et des mauvaises herbes)

est un indice fiable de mesure des effets de la compétition entre les mauvaises

herbes et les cultures. Cet indicateur n'est toutefois pas utilisé comme outil de prise

de décision dans les programmes de lutte integr&e, à cause du manque de moyen

rapide de mesure de la surface foliaire des plantes. Un systéme rapide et précis

permettant de mesurer la couverture foliaire a partir d'images numériques a été mis

au point et validé. Les données fournies par le systéme ont permis de démontrer qu'il

existe une étroite corrélation entre la surface foliaire et la couverture foliaire des

plantes à leurs stades précoces de croissance. Cela suggère la substitution de la

surface foliaire relative des mauvaises herbes par leur couverture foliaire relative

dans les modèles prévisionnels. Une telle opération ne peut cependant être justifiée

que par des tests de validation dans des conditions variées d'infestation et

d'environnement. C'est dans cette optique que cette recherche a été menée pour

tester et comparer l'efficacité de la surface foliaire relative et de la couverture foliaire

relative des mauvaises herbes pour prédire les pertes de rendement du maïs (Zea

mays).

Des expériences en champ ont été réalisées en 1996 et 1997 avec des

densités variables de chénopode blanc (Chenopodium album L.), de pied de coq

[Echinochloa cnisgalli (L.) Beauv], d'un mélange des deux espèces, et d'une

population naturelle de mauvaises herbes. La surface foliaire et la couverture foliaire

des plantes étaient échantillonnées aux stades quatre et huit feuilles entièrement

étalées du maïs. La surface foliaire était mesurée avec un planimètre optique. alors

que la couverture foliaire était estimbe par la technique d'analyse d'images

numériques. Un modèle prévisionnel hyperbolique à deux paramètres a été utilisé

pour ajuster les données de rendement du maïs et de surface/couverture foliaire

relative des mauvaises herbes.

Page 68: FACULTE UNIVERSITG QUEBEC

Le rendement en grain du maïs ainsi que la biomasse des parties aériennes

variaient avec l'année et le type d'infestation des mauvaises herbes. Les valeurs du

paramètre q (coefficient de dégâts relatif des mauvaises herbes) étaient plus petites

en 1997 qu'en 1996. Pour les deux années, l'efficacité de la surface foliaire relative

des mauvaises herbes à prédire les rendements a été cunfirmée (? de 0,61 à 0,92).

La précision des prédictions était indépendante de la période d'6chantillonnage de la

surface foliaire (stade quatre- ou huit-feuilles entièrement étalées du maïs). La

substitution de la surface foliaire relative des mauvaises herbes par leur couverture

foliaire relative s'est soldée par une baisse de la valeur des paramètres q et m (perte

de rendement maximale) du modèle. En dépit de cette obsenration, le pourcentage

de variation expliqué par le modéle (de 0,67 a 0,90) était du même ordre de grandeur

que les valeurs obtenues avec la surface foliaire relative. Sur la base de la somme

des carrés des résidus, aucune variable ne pouvait être d6clarée supérieure à l'autre

en prédiction des pertes de rendement. Cela suggere la possibilité de remplacer la

surface foliaire relative des mauvaises herbes par leur couverture foliaire relative

(plus facile à mesurer) dans les modèles prévisionneis.

L'utilisation de la couverture foliaire relative des mauvaises herbes dans les

modèles prévisionnels comme outil de prise de décision pourrait encore nécessiter

des améliorations majeures avant que ce dernier ne trouve une niche dans les

programmes de répression des mauvaises herbes. De telles am6liorations incluent

entre autres des meilleures techniques d'échantillonnage et d'analyse d'image, le

développement et la validation de modèles empiriques appropriés à chaque situation,

et un meilleur ciblage du stade de croissance de la culture auquel l'estimation de la

couverture foliaire des plantes doit être faite. Ces travaux supplémentaires devront

tenir compte de la logistique de chaque unité de production, de la résolution et de la

précision du système d'analyse d'images utilisé, et des limitations imposées par

l'usage des herbicides de postlevée et des méthodes alternatives de lutte.

Page 69: FACULTE UNIVERSITG QUEBEC

3.2. Prediction of corn (Zea mays) yield loss from early observations of the

relative leaf area and the relative leaf cover of weeds

Mathieu Ngouajio, Claudel Lemieux and Gilles D. Leroux

3.2.1, Abstract

The relative leaf area of weeds is a good predictor of the outcome of weed-crop

cornpetition. However, this variable has not been used in decision making tools for

integrated weed management because leaf area can not be measured quickly. A

quick and accurate image analysis system for measuring leaf cover (the vertical

projection of plant canopy on the ground) has been developed and validated. This

research was conducted to compare the efficiency of weed relative leaf area and its

relative leaf cover in predicting corn yield loss. Field studies were conducted in 1996

and 1997, using varying densities of common lambsquarters, barnyardgrass,

common lambsquarters plus barnyardgrass, and a natural weed community. Corn

grain yield and biomass loss varied with the weed infestation type and the year.

Values of the relative damage coefficient of weeds (q) were smaller in 1997

compared to 1996. For both years, the relative leaf area of weeds was a good

predictor of corn yield loss (? varied from 0.61 to 0.92). The precision of the

predictions was not influenced by the leaf area sampling period (four- or eight-leaf

stages of corn). In general, smaller values of q and rn (predicted maximum yield loss)

were obtained as a consequence of using the relative leaf cover of weeds in model

fitting. However, percentages of variation explained by the model (from 0.67 to 0.90)

were similar to values obtained with the relative leaf area. On the basis of the

residual mean squares, none of the variables wuld be declared superior to the other

in yield loss prediction. The development of weed control decision making tools using

the relative leaf cover of weeds may still require additional improvements prior to

being used in weed management systems. Such improvements would include

appropriate sampling and image processing techniques. development and validation

Page 70: FACULTE UNIVERSITG QUEBEC

of empirical rnodels specific to individual situations, and proper identification of the

crop growth stage at which leaf cover assessrnent has to be done.

Nomenclature: Corn, Zea mays L. 'Pioneer 3967'; common lambsquarters,

Chenopodium album L. CH EAL; barnyardgrass, Echinochloa cnrsgalli (L.) Beauv.

ECHCG.

Key words: lntegrated weed management; weed wntrol decision making; yield loss

prediction; empirical models; biomass reduction; CHEAL; ECHCG.

Page 71: FACULTE UNIVERSITG QUEBEC

3.2.2. Introduction

Reducing herbicide inputs for weed control is one of the major concerns in

modern agriculture. For decades, the extensive use of these chemicals has led to the

creation of resistant weed biotypes and has contributed to the contamination of the

environment (Duke 1996; Maxwell and Mortimer 1994). As a general practice, most

herbicides used in many field crops in developed countries are applied

preemergence, regardless of the type of weed present, and regardless of the

potential outcome of their competition on the crop (Kropff and Lotz 1992a; Lemieux et

al. 1995).

The development of weed control programs with minimum herbicide inputs

requires the adoption of both an integrated weed management systern and a well

designed decision making tool based on postemergence observations of weed

infestation (Knezevic et al. 1997; Kropff and Lotz 1992a; Lemieux et al. 1995). The

forecasting system should be accurate and quick, and should predict the outcome of

weed-crop competition earîy enough to allow adequate time for control measures to

be taken (Knezevic et al. 1997).

Several empirîcal models relating crop yield losses to the presence of weeds

have been proposed (Dew 1972; Cousens 1985a, 1985b; Cousens et al. 1984, 1987;

Kropff and Spitters 1991 ; Kropff et al. 1995; Lotz et al. 1992, 1995). These models

use weed density (Dew 1972; Cousens 1985a; Cousens et al. 1984), weed and crop

densities (Cousens 1985b), weed density and relative time of emergenca compared

to the crop (Cousens et al. 1987), and relative leaf area of weeds (Kropff and Spitters

1991; Lotz et al. 1992) as predictors of crop yield loss. With field validation data,

models using the relative leaf area of weeds have gained growing attention due to

their high predictive capacity (Dieleman et al. 1995; Knezevic et al. 1995; Kropff and

Lotz 1992a, 1992b; Lotz et al. 1995, 1996). However, practical use of these models

has been limited due to the lack of a quick and accurate method of leaf area

estimation (Knezevic et al. 1995; Lotz et al. 1994). So far, precise leaf area

Page 72: FACULTE UNIVERSITG QUEBEC

measurement has relied mainly on destructive sampling, followed by laborious

manipulations to process foliage through an area meter. As an alternative to leaf

area, one can use leaf cover. the vertical projection of individual species on the

ground (Kropff 1988). However, the measurement of leaf cover is as laborious as

conventional leaf area measurements (Lotz et al. 1994; Lutman 1992).

Possibilities of using spatial and spectral information of digital images for leaf

cover measurements have been suggested (Lemieux et al. 1995). This technique

has the advantage of being both quick and non destructive. Recent progress in this

area has led to the development of an image analysis system. Laboratory and field

validation experiments of the systern showed high precision in estimating leaf cover,

and high linear correlation between weed leaf area and leaf cover at early stages of

plant development (Ngouajio et al. 1998). In field experiments, leaf cover values

were shown to be generally smaller than leaf area, yet a high correlation was

obsewed between the two variables.

The narrow linear relationship between weed leaf area and leaf cover suggests

that relative leaf cover could be substituted for relative leaf area in yield loss

prediction models. This could facilitate crop monitoring in integrated weed

management programs for on time decision making, thereby contributing to a more

rational use of herbicides. However, such substitution can only be supported by

extensive field validations under different weed infestations and environrnental

conditions. This study was therefore conducted to test and compare the efficiency of

weed relative leaf area and weed relative leaf cuver in predicting corn yield losses

under different weed infestation conditions.

Page 73: FACULTE UNIVERSITG QUEBEC

3.2.3. Materials and Methods

3.2.3.1. Experimental Site

Two field experiments were conducted in 1996 and 1997 at the Agronomy

Station of Laval University located at Saint-Augustin (Quebec). The soi1 at this site

was a sandy loam with 3.9% organic matter and a pH of 6.3. The major weed species

present on the site included: common lambsquarters, barnyardgrass, wild mustard

[Brassica kaber (DC.) LC. Wheeler], false charnomile (Matricaria maritirna L.),

common chickweed [Stellaria media (L. ) Cyrille], redroot pigweed (Amaranthus

retroflexus L.), ladysthumb (Polygonum persicaria L.) and pale smartweed

(Polygonum scabrum Moench).

Except for the month of May 1997, the temperatures over the two growing

seasons were similar to the long-term average. Rainfail varied in total amount and

pattern (Table 1). In 1997, snow accumulation was exceptionally high (data not

shown). The average temperature of May was below normal (Table 1), and caused a

delay in the sowing date and in weed emergence date (Table 2). The late weed

emergence (1 997) was followed by 15 days of hot and dry weather (June 01 to 15).

These conditions caused crust formation at the soi1 surface, which affected plant

growth. As a consequence of these growing conditions, at equivalent growth stages,

corn and weeds were smaller in 1997 ihan in 1996. This difference in plant size was

visible throughout the first month of the growing period. and faded out afterwards.

3.2.3.2. Experimental Procedures

The site was fall moldboard plowed and cultivated, and corn hybrid 'Pioneer

3967' was grown according to the provincial recommendations (Anonymous 1984).

Corn was seeded May 8, 1996 and May 15, 1997 (Table 2), at a density of 66,000

plants ha", in rows 75 cm apart.

Page 74: FACULTE UNIVERSITG QUEBEC

The first experiment included fifteen levels of weed infestation. Total weed

densities retained were: 0, 5, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, and

300 plants ma'. Treatments also included three types of weed infestation, i.e.

cornmon lambsquarters, barnyardgrass, or both species at equal densities, for a total

of 45 treatments. Weed seeds were broadcast at tirne of corn planting.

The second experiment also included various levels of weed infestation. Total

weed densities retained were: 0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80,

90, 100, 125, 150, 200, 250, 300, and 400 plants ma2. In this experiment, the type of

weed infestation was not controlled and weed species naturally occurring on the site

were used (Table 3). We tried to attain equal proportions of the species, especially at

higher densities.

In both experirnents, the final weed densities were achieved by successive

hand weeding of the plots. Initial thinning was conducted between 1 and 2 wk after

weed emergence. Weeds emerged three days pnor to the crop in 1996 and one day

after the crop in 1997 (Table 2). Emergence dates were based on visual estimates of

50% emerged plants. In both experiments, the treatments were assigned to 3- by 8-m

plots (four corn rows), arranged in a completely randomized design.

Leaf Area and Leaf Cover Sampling

Leaf area and leaf cover were sarnpled at the four-leaf stage and at the eight-

leaf stage of corn development (Tables 2 and 3). These records fall within the critical

period of weed control in corn (Hall et al. 1992) and within some of the

postemergence corn herbicides application windows. Only fully expanded leaves

were included in the count when recording the crop growth stage. At each sampling,

a digital image covering an area of 60- by 90-cm and including the right-hand side

middle corn row of each plot was taken. A portion of 60 cm of the corn row was

included in the images. lmmediately following image acquisition, the area covered by

Page 75: FACULTE UNIVERSITG QUEBEC

the image was marked and al1 plants (weeds and crop) were clipped at the soi1

surface. Leaf area was measured using an optical leaf area meter' and leaf wver

estimated using an image analysis system2. Details of the image acquisition and

analysis procedures have been provided in a previous study (Ngouajio et al. 1998).

Final Harvest

Corn was hawested by hand from the middle two rows of each plot on October

12, 1996 and October 1, 1997. Shoots were clipped at ground level for biomass

determination. Grains and shoots were dried at 50°C for 10 days and grain and total

above ground dry weight determined.

3.2.3.3. Data Analyses

Data were analysed separately for each year and weed infestation type, using

the non-linear regression mode1 proposed by Kropff and Spitters (1991), and Lotz et

al. (1 992):

where Y 2 is the yield loss by weed cornpetition, Lw is either the relative leaf area (L,)

or the relative leaf cover (L,) of weeds, q is the relative damage coefficient of weeds.

and m is the maximum relative yield loss of the crop. Parameters L, and L, were

computed using equations 2 and 3:

Page 76: FACULTE UNIVERSITG QUEBEC

where LAI is the leaf area index and LCi the leaf cover index. YL was derived from

yield data using equation 4:

where Y. is crop yield or biomass in the weed-free plots and Y, the observed yield or

biomass in weed-infested plots.

The F test and t test were used to determine the significance of the

regressions and regression parameters, respectively. Performances of the leaf area

and leaf cover variables in mode! fitting were compared with a sign test, using the

residual mean squares (Lotz et al. 1996). All statistical analyses were performed

using the non-linear regression procedure of SASTM (SAS lnstitute Inc. 1989).

3.2.4. Results and Discussion

The sarnpled area (quadrat) was 60- by 90-cm, and included a 60 cm portion

of a corn row. With a quadrat of that size, the number of corn plants per sampled

area was variable, and ranged from 1 to 7 plants. This affected individual values of

the corn leaf area and leaf cover, and consequently the relative leaf area and the

relative leaf cover of the weeds. As a result, the quality of the predictions was very

poor when individual values of corn leaf area and leaf cover were used (data not

shown), probably due to the size of the sampled area. The large variability of leaf

area and leaf cover data was however not observed with weed populations. To solve

the problem, corn leaf area and leaf cover averaged over al1 plots were used in lieu of

individual plot values in the computation of the relative leaf area and the relative leaf

cover of weeds. That improved the quality of the predictions. Kershaw (1973), and

Lernieux et al. (1992) showed that the sample size has a considerable effect on the

mean and the variance of data obtained when the distribution of individuals within a

Page 77: FACULTE UNIVERSITG QUEBEC

population is not random. This was the case in Our experiment where corn population

was not randomly distributed in the plots. The high variance of corn data (stand, leaf

area and leaf cover) suggested that the size of the quadrats used (60- by 90-cm) was

far from being optimum, and that a larger size quadrat should be used. This concem

will be addressed in future work.

The variable response of corn to weed populations between the two

experirnental years as well as the great differences of regression parameters for

different weed populations did not justify pooling the data for the different years and

weed populations. From a statistical point of view, equation 1 fitted well the data.

And since corn grain yield and biomass data responded in a similar way, only crop

grain yield data are reported in details herein (Table 4; Figures 1-3).

Common lambsquarters infestations were not well described by the model.

The observed values of ? ranged from 0.61 to 0.77 for the relative leaf area and the

relative leaf cover of the weed during both growing seasons (Table 4). This low

performance of the model was probably due to the high heterogeneity (size and

fitness) of weeds at the experimental site. With the exception of data recorded at the

four-leaf stage of corn in 1997, the use of relative leaf cover of common

lambsquarters in lieu of its relative leaf area improved the precision in predicting corn yield loss (Table 5). Corn response to wmmon lambsquarters infestations varied

between growing seasons, as indicated by the overall shape of the regression lines

(Figures 1 and 2). The curves were convex in 1996 and concave in 1997.

The effect of barnyardgrass on corn was well described by the yield prediction

model. The percentage of variation explained by the model ranged from 0.67 to 0.92

(Table 4). Although years did not affect the functional forms of the curves, the 1996

growing season provided better predictions than the 1997 growing season (Figures 1

and 2, Table 4). The use of relative leaf cover of weeds as model variable performed

as well as relative leaf area in yield prediction (Table 5).

Page 78: FACULTE UNIVERSITG QUEBEC

In plots infested with both common lambsquarters and bamyardgrass,

coefficients of determination obtained from the regression varied between 0.67 and

0.86. The weed variable used (relative leaf area or relative leaf cover) did not affect

the precision of the regressions. However, effects of the growing season were

observable on the functional form of the curves as indicated earlier for the common

lambsquarters infestation (Figures 1 and 2). The curves were concave to the origin in

1996 and convex in 1997.

With the natural weed population, ? values varied from 0.65 to 0.88. With the

exception of data collected at the four-leaf stage of corn in 1996, using the relative

leaf cover of weeds improved the predictions (Table 5). Again, the effect of the

growing season resulted in concave and convex regression lines for the 1996 and

1997 data, respectively (Figure 3).

The results reported above confirmed the high predictive capacity of the model,

and its potential practical use for yield loss prediction in an integrated weed

management system (Dieleman et al. 1995; Knezevic et al. 1995; Kropff and Lotz

1992a, 1992b; Lotz et al. 1995, 1996). Generally, the percentage of variation

explained by the model (?) ranged from 0.61 to 0.92 for grain yield (Table 4). The

adjustment of the model with the 1997 data (except for data of plots infested with

barnyardgrass alone) resulted in concave shaped curves. This was usually found

when q values were lower than one. As a consequence of that, values of the

predicted maximum yield loss (m) were very high and unrealistic.

According to Kropff and Spitters (1991), concave curves associated with low

values of relative damage coefficients of weeds (q) indicate situations where the crop

is a stronger cornpetitor than weeds. With respect to Our work, the one day delay

between corn and weed ernergence in 1997 (Table 2), coupled with the long, dry, and

hot weather (15 days) following weed emergence could have favored the crop over

the weeds during that growing season. The observed maximum grain yield loss and

biomass reduction was lower in 1997 with al1 weed populations, confiming the

Page 79: FACULTE UNIVERSITG QUEBEC

hypothesis of corn being more competitive in 1997 compared to 1996 (Table 4). The

differential response of corn to weed competition during the two experimental years is

a serious handicap to practical application of the yield loss prediction model.

Performance of the model has been shown to Vary with environmental

conditions, and weed and crop species (Lotz et al. 1996). In 1996, data from plots

infested with bamyardgrass provided the best fit for the model, with ? values of 0.89

and 0.92 at the four-leaf stage and eight-leaf stage of corn, respectively. In 1997,

however, data fitting was better in plots infested with the mixture of common

lambsquarters and barnyardgrass. The i! was 0.86 at both sampling dates. In

general, precision of the predictions using the relative leaf area of weeds was not

influenced by the sarnpling date. Fitting of the data with the model was equally good

at both stages of corn developrnent.

With the exception of plots infested with comrnon lambsquarters in 1996 (four

leaf-stage of corn), values of the regression parameters (q and m) were smaller when

the relative leaf cover of weeds was used for model fitting compared to using relative

leaf area of weeds (Table 4). The observation was consistent over both years, with

al1 weed populations, and it applied to grain yield as well as to the total plant biomass.

Regardless of that fact, the precision obtained with the relative leaf cover of weeds

was not affected, the values of ? being in the same range as those obtained with the

relative leaf area (Table 4). As observed with the leaf area, precision of the

predictions using the relative leaf cover of weeds was not influenced by growth stage

at which the leaf cover was recorded. Normally, one would expect to obtain better

predictions with leaf cover data collected at the four-leaf stage of corn growth, since

there was little leaf overlapping at that stage compared to the eight-leaf stage.

However, this was not the case. The results of this study suggest that the hidden leaf

area caused by increasing leaf overlapping as growth stage progresses may not

contribute to the competitive ability of plant species. This might be particularly true

when a single weed cohort is considered as was the case in the present study.

Page 80: FACULTE UNIVERSITG QUEBEC

The performance of relative leaf cover in model fitting was compared to that of

relative leaf area using a sign test based on the residual mean squares (Table 5).

Differences between the residual mean squares obtained with the two variables, were

very small in general. Out of 16 comparkons, the relative leaf cover performed better

than the relative leaf area eight times. and the Mo variables had equal performances

once, when grain yield was used in model fitting. Using corn biomass, the precision

of the relative leaf cover was higher seven times and equal to that of the relative leaf

area once (Table 5). This observation, coupled with the small differences between

the residual mean squares obtained with the two variables indicate with little doubt

that the relative leaf cover of weeds is as good as relative leaf area in ftting yield loss

prediction models.

Leaf cover estimation by digital image analysis has lifted some of the major

constraints imposed by the use of relative leaf area of weeds in yield loss prediction

models. This work has revealed that leaf cover estimates may perform as well as leaf

area. These facts may constitute an opened avenue for the practical use of yield loss

prediction models in integrated weed management systems, with the objective of

reducing herbicide inputs. However, the implementation of such technology may still

require some ground work including: the development and validation of empirical

models specific to individual situations e-g. crop. weed, environment etc.; the

appropriate choice of both the quadrat (image) size and the sample size when

collecting images; the proper identification of the crop growth stage at which leaf

cover assessrnent has to be done. Additional work should take into acwunt the

logistics of individual production units, the resolution of images. the precision of the

image analysis system, and the limitations imposed by the use of postemergence

herbicides and other weed wntrol options.

Page 81: FACULTE UNIVERSITG QUEBEC

Sources of Materials

' LI-COR Inc., P.O. Box 4425, Lincoln, NE 68504.

~urfaces~ro@, Sociéte de Mathématiques Appliquees Inc., 59 d'Auteuil Street,

Quebec, QC, Canada G1 R 4C2.

Acknowledgements

Funding for this research was provided in part by the Matching lnvestment Initiative

of Agriculture and Agri-Food Canada. The senior author is a recipient of a

scholarship from the Programme Canadien des Bourses d'Excellence de la

Francophonie D. We thank Mr. Jocelyn Lamarre and Ms. Michéle Martel for technical

and professional assistance and summer students for field plot work, especially hand

weeding and vegetation sampling. The weather data were supplied by Dr. Philippe

Rcchette.

Page 82: FACULTE UNIVERSITG QUEBEC

3.2.5. Literature Cited

Anonymous. 1984. Maïs, Culture. Agdex 1 1 1-20. Québec, Canada: Conseil

des Productions Végétales du Québec. 21 p.

Cousens, R. l985a. A simple rnodel relating yield loss to weed density. Ann.

Appl. Biol. 107:239-252.

Cousens, R. 1985b. An empirical model relating crop yield to weed and crop

density and a statistical comparison with other models. J. Agric. Sci. IO5:513-521.

Cousens, R., N.C.B. Peters, and C. J. Marshall. 1984. Models of yield

loss-weed density relationships. ln Proceedings of the 7th International Symposium

on Weed Biology, Ecology and Systematics. Paris: Columa-EWRS. pp. 367-374.

Cousens, R., P. Brain, J.T. O'Donovan, and P.A. OrSuIlivan. 1987. The use of

biologically realistic equations to describe the effects of weed density and relative

time of emergence on crop yield. Weed Sci. 35:720-725.

Dew, D. A. 1972. An index of cornpetition for estimating crop loss due to

weeds. Can. J. Plant Sci. 52:921-927.

Dieleman, A., A. S. Hamill, S. F. Weise, and C. J. Swanton. 1995. Empirical

models of pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed

Sci. 43:612-618.

Duke, S.O. 1996. Herbicide resistant crops : background and perspectives. in

S.O. Du ke ed. Herbicide-resistant Crops: Agricultural, Environmental, Economic,

Regulatory, and Technical Aspects. Boca, Raton, Florida: CRC Press. p 1-3.

Page 83: FACULTE UNIVERSITG QUEBEC

Hall, M.R., C.J. Swanton, and G.N. Anderson. 1992. The critical period of weed

control in grain corn (Zea mays L.). Weed Sci. 40:441-447.

Kershaw, K.A. 1973. Quantitative and dynamic plant ecology, 2nd ed. New

York: Elsevier Publishing Company, Inc., 308 p.

Knezevic, S.Z., M.J. Horak, and R.L. Vanderlip. 1997. Relative time of redroot

pigweed (Amaranthus retrofiexus L.) emergence is critical in pigweed-sorghum

[Sorghum bicolor (L.) Moench] competition. Weed Sci. 45502-508.

Knezevic, S. Z., S. F. Weise, and C. J. Swanton. 1995. Cornparison of

empirical models depicting density of Amamthus retrofiexus L. and relative leaf area

as predictors of yield loss in rnaize (Zea mays L.). Weed Res. 35:207-214.

Kropff. M. J. and L.A.P. Lotz. 1992a. Optimization of weed management

systerns: the role of ecological models of interplant competition. Weed Technol.

61462-70.

Kropff, M. J. and L.A.P. Lotz. 1992b. Systerns approach to quantify crop-weed

interactions and their application to weed management. Agri. Syst. 40:265-282.

Kropff, M. J., L.A.P. Lotz, S. E. Weaver, H. J. Bos, J. Wallinga, and T. Migo.

1995. A two-parameter model for prediction of crop loss by weed competition from

eariy observations of relative leaf area of weeds. Ann. Appl. Biol. 126:329-46.

Kropff, M. J. and C.J.T. Spitters. 1991. A simple model of crop loss by weed

competition from early observations of relative leaf area of the weeds. Weed Res.

31 :97-105.

Kropff, M. J. 1988. Modelling the effects of weeds on crop production. Weed

Res. 28:465-471.

Page 84: FACULTE UNIVERSITG QUEBEC

Lemieux, C., D. C. Cloutier, and G. D. Leroux. 1992. Sampling quackgrass

(EIytrigia repens) populations. Weed Sci. 40:534-541.

Lemieux, C., B. Panneton, and D. Benoit. 1995. L'analyse d'image en

malherbologie. In Actes Colloque international sur la prévision et le dépistage des

ennemis des cultures, Québec, Octobre 1 0-1 2. pp.201-208.

Lotz, L.A.P., M. J. Kropff, B. Bos, and J. Wallinga. 1992. Prediction of yield

loss based on relative leaf cover of weed. Proc. First Int. Weed Control Congr.

Melbourne, February 17-22. 2:290-293.

Lotz, L.A.P., M. J. Kropff, J. Wallinga, H. J. Bos, and R.M.W. Groeneveld.

1994. Techniques to estimate relative leaf area and cover of weeds in crops for yield

prediction . Weed Res. 34: 1 67-1 75.

Lotz, L.A.P., J. Wallinga, and M. J. Kropff. 1995. Crop-weed interaction:

quantification and prediction. In D. M. Glen, M. P. Greaves and H. M. Anderson eds.

Ecology and lntegrated Farming Systems. London: John Wiley and Sons Ltd. pp.

3147.

Lotz, L.A.P., S. Christensen, D. Cloutier, C. F. Quintanilla, A. Légère, C.

Lemieux, P.J.W. Lutman, A. P. Iglesiaç, J. Salonen, M. Sattin, 1. Stigliani, and F. Tei.

1996. Prediction of the cornpetitive effects of weeds on crop yields based on the

relative Ieaf area of weeds. Weed Res. 36:93-101.

Lutman. P.J. W. 1992. Prediction of the wmpetitive ability of weeds on the

yield of several spring-sown arable crops. In Actes IXéme colloque international sur la

biologie des mauvaises herbes. Dijon, Paris, France. pp. 337-345.

Page 85: FACULTE UNIVERSITG QUEBEC

Maxwell, 8.D . and A.M. Mortimer. 1994. Selection for herbicide resistance. In

S.B. Powles, and J.A.M. Holturn eds. Herbicide Resistance in Plants : Biologie and

Biochemistry. Boca Raton, Ann Arbor, London, Tokyo: CRC Press, Inc., Lewis

Publishers. ppl-25.

Ngouajio, M., C. Lemieux, J.J. Fortier, D. Careau, and G.D. Leroux. 1998.

Validation of an operator-assisted module to rneasure weed and crop leaf cover by

digital image analysis. Weed Technol. 12:446-453.

[SAS] Statistical analysis Systems. 1989. SAS/STATm User's Guide, Version

6, 4th ed. Volume 2. Cary, NC: Statistical Analysis Systems lnstitute 846 p.

Page 86: FACULTE UNIVERSITG QUEBEC

Table 1. Total monthly rainfall and mean temperature during the 1996 and 1997

growing seasons, and long term average (30 y e a r ~ ) ~

Rainfall (mm) Temperature ( O C )

Month

Long Long

1996 1997 te rrn 1996 1997 te rrn

May 73.1 96.0 108.2 10.7 8.8 10.8

June 142.5 62.0 111.3 17.8 17.1 16.4

July 235.8 69.0 125.4 19.3 19.3 19.2

August 76.0 166.0 11 6.3 19.1 17.8 17.9

September 108.0 68.0 11 8.3 14.3 13.3 12.5

October 86.0 48.0 98.1 6.3 6.7 6.4

a Data recorded at the Quebec City airport about 10 km from the experimental plots.

Page 87: FACULTE UNIVERSITG QUEBEC

Table 2. Chronology of events (sowing, emergence, sampling, and harvest) for the

1996 and 1997 growing seasons

Year

- -

Emergence date Sampling date

Sowing Hawest

date Corn Weeds First Second date

1996 08 May 23 May 20 May 06June 18June 12 October

1997 15 May 31 May 01 June 11 June 23 June 01 October

Page 88: FACULTE UNIVERSITG QUEBEC

Table 3. Corn and weed growth stage at sarnpling time

First samplingb Second sampling

Experimenta Species

1 Corn

Common lam bsquarters

Barn yardgrass

2 Corn

Common lambsquarters

Barnyardgrass

Wild mustard

Common chickweed

Redroot pigweed

Ladysthumb

Pale smartweed

- Number of fully expanded leaves - 4 4 8 8

2 to 10 2 to 6 14to40 8to18

2 to 6 2 to 4 7 to 14 6to10

4 4 8 8

2to 10 2 to 6 14to40 8to18

2 to 6 2 to 4 7t0 14 6 to 10

2 to 5 3 to 5 7 to11 8to12

5 to 12 4 to 8 15to30 l o to20

2 to 8 1 to4 5to 12 2 to lO

5 to 20 3to10 20to40 12to20

4 to 8 2 to 4 7 to15 5to10

aExperiment 1 included 15 plots common lambsquarters, 15 plots of barnyardgrass

and 15 plots of a mixture of both species grown at equal densities, while experiment 2

had a natural weed infestation.

b ~ h e first sampling was conducted on June 06 (1996) and June 11 (1 997) and the

second sarnpling on June 18 (1996) and June 23 (1997).

Page 89: FACULTE UNIVERSITG QUEBEC

PPPP P P P P

P P P P

PPPP P P P P

P P P P P P P P

Page 90: FACULTE UNIVERSITG QUEBEC

Table 5. Cornparison of the residual mean squares (RMS) for corn grain yield and

corn total biornass, obtained from model fitting using the relative leaf area and the

relative leaf cover of weeds

Type of weed infestation

RMS for yield RMS for biomass

Leaf Leaf na Leaf Leaf a area cover (+ or -) area cover (+ or -)

1996, four-leaf stage of corn Common lambsquarters Barnyardgrass Common larnbsquarters + barnyardgrass Natural population

1997, four-leaf stage of corn Common lambsquarters Barnyardgrass Common lambsquarters + barnyardgrass Natural population

1996, eight-leaf stage of corn Common lambsquarters Barnyardgrass Common lambsquarters + barnyardgrass Natural population

1997, eight-leaf stage of corn Common lambsquarters Barnyardgrass Common lambsquarters + barnyardgrass Natural population

a a is the difference behiveen the RMS (x 100) calculated with the relative leaf area and the RMS calculated with the relative leaf cover of weeds. The sign + indicates that the leaf cover provided a better fit of the model, - indicates that the leaf area was better, and O means that the two variables performed equally.

Page 91: FACULTE UNIVERSITG QUEBEC

Comrnon lambsquarters populations

Barn yardgrass populations

1 { " Common lambsquarters + 10

O barnyardgrass

O 1 / , I

populations

0.0 0.2 0.4 0.6 0.8

Comrnon lam bsquarters populations

Common larnbsquarters + barn yard grass populations

40 - Barnyardgrass

Relative leaf arealleaf cover of weeds

30

Figure 1. Corn grain yield loss as a function of weed relative leaf area (-a-) and

relative leaf cover (-a.--) determined at the four-leaf stage of corn growth in 1996 and

1997 using a two-parameter empirical mode1 (YL= qLw/[7+(q/m-l)Lwn. Corn was

infested with one or two weed species, at different densities.

populations

Page 92: FACULTE UNIVERSITG QUEBEC

Common Iambsquarters populations

Barnyardgrass populations

Common lam bsquarters

- 1;. 0 Common lambsquarters +

barn yardgrass O , populations

i

Barnyardgrass populations

Common lambsquarters +

barnyardgrass populations . a;

Relative leaf arealleaf cover of weeds

Figure 2. Corn grain yield loss as a function of weed relative leaf area (-a-) and

relative leaf cover ( -O.- - ) determined at the eight-leaf stage of corn growth in 1996

and 1997 using a two-parameter empirical model (YL= qLw/[l+(q/m-l)Lw). Corn was

infested with one or two weed species, at different densities.

Page 93: FACULTE UNIVERSITG QUEBEC

Four-Ieaf stage of corn Natural weed populations

50 .

40 . 30

20

Four-leaf stage of corn 10 - Natural weed populations

1 4

Eig h t-leaf stage of corn 10

Natural weed populations O v

Eight-leaf stage of corn Natural weed populations

Relative leaf area/leaf cover of weeds

Figure 3. Corn grain yield loss as a function of weed relative leaf area (-a-) and

relative leaf cover (- - -O- ) determined at the four- and at the eight-leaf stages of corn

growth in 1996 and 1997 using a two-parameter empirical model (YL= qL,/[l+(q/m-

7 ) ) Corn was infested with different densities of a natural weed population.

Page 94: FACULTE UNIVERSITG QUEBEC

CHAPITRE 4

MODÈLE SIGMO~DE FLEXIBLE RELIANT LA COUVERTURE

FOLIAIRE RELATIVE DES MAUVAISES HERBES AU RENDEMENT

DE LA CULTURE ET COMPARAISON AVEC

D'AUTRES MODÈLES

Ce chapitre a été accepté pour publication à la revue Weed Research Vol. 39, No 00,

pp.000-000, 1999 sous le titre de "A flexible sigmoidal mode1 relating crop yield to

weed relative leaf cover and its cornparison with nested models."

Page 95: FACULTE UNIVERSITG QUEBEC

4.1. Résume du chapitre 4

Plusieurs modèles empiriques reliant la présence des mauvaises herbes au

rendement des cultures sont proposés dans la littérature. La plupart de ces modèles

sont soit des équations Maires simples, soit des équations non linéaires

hyperboliques ou logistiques. En dehors de la capacité intrinsèque de ces modèles à

prédire les rendements, la forme fonctionnelle de leur courbe peut jouer un rôle

décisif si ceux-ci sont associés à des outils de prise de décision. Les modèles

linéaires simples sont peu efficaces. Les modèles hyperboliques ne permettent pas

une asymptote aux faibles quantites de mauvaises herbes, ce qui surestime très

souvent l'impact de ces plantes sur les rendements en réduisant le seuil de contrôle.

Les modèles logistiques quant à eux sont biologiquement très rationnels, mais

souffrent d'un manque de flexibilité. L'impact de la compétition entre les cultures et

les mauvaises herbes varie avec plusieurs facteurs incluant les espèces végétales en

présence, les techniques cülturales, la localité, la saison et les conditions

environnantes. La complexité des interactions entre ces differents facteurs exclut

l'usage d'un modèle simple ou statique.

L'objectif principal de cette étude était de développer et de valider un modèle

flexible reliant la présence des mauvaises herbes au rendement des cultures. II etait

aussi question de comparer l'efficacité du modèle développé a celle d'autres sous-

modèles qui lui sont intégrés.

Un modèle empirique, flexible et sigmoïdal reliant la couverture foliaire relative

des mauvaises herbes au rendement des cultures a été dérivé. II a été démontré que

ce modèle intègre les modèles non linéaires hyperbolique, sigmoïdal symétrique et

logistique asymétrique, ainsi que le modèle linéaire simple comme cas spéciaux

(sous-modèles). Des données colligées en 1996 et 1997 dans des expériences en

champ ont été utilisées pour valider le modèle. Dans ces essais, le maïs (Zea mays

L.) était cultivé en présence de densités variables (15 à 25) de chénopode blanc

Page 96: FACULTE UNIVERSITG QUEBEC

(Chenopodium album L.), de pied de coq [Echinochloa crus-galli (L.) Beauv], d'un

mélange des deux espèces, et d'une population naturelle de mauvaises herbes. La

couverture foliaire des plantes était échantillonnée aux stades quatre et huit feuilles

entièrement étalées du maïs et la technique d'analyse d'images numériques etait

utilisée pour les estimations.

Le modèle comportait quatre paramétres. Lors des travaux de validation,

l'estimation des paramètres a été réalisée au moyen de la procédure de régression

non linéaire. L'ajustement des données au modéle était bon pour tous les types

d'infestations de mauvaises herbes (les valeurs du P variaient entre 0,68 et 0,90).

Lorsque comparé aux autres modèles emboîtés et restreints (sous-modèles), le

modèle sigmoïde flexible s'est avéré plus performant que les sous-modèles sigmo'idal

symétrique et logistique asymétrique. Par contre, le rejet de l'hypothèse nulle d'une

réponse hyperbolique des rendements n'a été possible qu'une fois sur 16. Cette

observation indique que le modèle sigmoïde flexible et le sous-modèle hyperbolique

ont des valeurs prédictives comparables. La complexité accrue du modèle sigmoïde

flexible (quatre paramètres) placerait ainsi le choix de la plupart des investigateurs

sur le modèle hyperbolique plus simple (trois paramètres). L'échec du modèle

complet à supplanter le sous-modèle hyperbolique Btait surtout dû aux faibles valeurs

du paramètre 6 (responsable de la réponse sigmoïdale) associées à la petite taille

des échantillons utilisés. Toutefois, si le modèle doit être inséré dans un programme

informatique de support a la prise de dkcision, le modèle sigmoïde flexible pourrait

s'avérer plus approprié car une plus grande taille des échantillons est requise dans

un tel cas. La grande flexibilité du modèle pourrait ainsi permettre de détecter les cas

particuliers et réduire au minimum les risques de mauvaises décisions.

Page 97: FACULTE UNIVERSITG QUEBEC

4.2. A flexible sigmoidal model relating crop yield to weed relative leaf cover

and its cornparison with nested rnodels

M. NGOUAJIO, G. D. LEROUX AND C. LEMIEUX

4.2.1. Summary

A flexible sigmoidal model relating crop yield to relative leaf cover of weed was

derived. The model was shown to embody an hyperbolic, a symmetric sigmoidal and

an asyrnmetric logistic model as special cases. Data from field experiments

conducted in 1996 and 1997 on maize (Zea mays L.) in competition with various

weed infestation conditions were used to validate the rnodel. A high accuracy was

observed for yield prediction, and the four parameters of the mode1 were estimated

easily using a non-linear regression procedure. When compared to other (nested and

restricted) models, a better fit of the data was obtained cornpared to the symmetric

sigmoidal and the asymmetric logistic models. Rejection of the nuIl hypothesis of

hyperbolic yield response was observed only in one case out of 16, rneaning that both

the hyperbolic and the flexible sig moidal rnodels have comparable yield pred ictive

capacities. The increased wmplexity due to the extra (fourth) parameter in the

flexible sigmoidal model rnay favour the use of the hyperbolic model by most

investigators. Failure of the unrestricted model to outperform the hyperbolic model

was prirnarily due to the small values of the sigmoidal response parameters (6),

associated with the small sample sizes. However, when the model is to be

embedded in a decision support computer program, the flexible sigmoidal model may

be more appropriate since large sample sizes are required. The high flexibility of the

model may allow to detect special cases, and then reduce the rîsk of a wrong

decision to a minimum.

Page 98: FACULTE UNIVERSITG QUEBEC

4.2.2. Introduction

Several empirical models relating crop yield to the presence of weeds are proposed in

the literature (Dew, 1972; Cousens et al., 1984; Cousens, 1985a, l985b; Cousens et

al., 1987; Kropff & Spitters, 1991 ; KropfF & Lotz, 1992b; Lotz et al., 1992, Kropff et al.,

1995; Lotz et al., 1995). These models are based on the estimates of weed density

(Dew, 1972; Cousens et al., 1984; Cousens, 1985a), weed and crop densities

(Cousens, 1985b), or the relative leaf area of weeds (Kropff & Spitters, 1991 ; Kropff &

Lotz, 1992b; Lotz et al., 1992, 1995). Models using the relative leaf area of weeds

have shown high predictive capacity in field experiments (Kropff & Lotz, 1992a,

l99Zb; Dieleman et al., 1995; Knezevic et a l , 1995; Lotz et a/., 1995, 1996). At low

densities or at early stages of plant development, leaf cover is similar to leaf area

index (Lotz et al., 1994; Andreasen et al., 1997) and both variables have comparable

performances in yield loss prediction models (Ngouajio et al., 1999). Leaf cover

estimation has the advantages of being both non-destructive and easy to measure.

Research efforts in recent years have led to the developrnent of techniques of leaf

cover estimation (Lutman, 1992; Lotz et al., 1994; Carson et al., 1995; Ruget et al.,

1 996; Andrieu et al., 1 997; Ngouajio et al., 1 998).

Most yield prediction models use either simple linear equations (Dew, 1972) or

hyperbolic equations (Cousens et al., 1984; Cousens, 1985a, 1985b; Cousens et al.,

1987; Kropff & Spitters. 1991 ; Kropff & Lotz, 1992b; Lotz et al., 1992; Kropff et al.,

1995; Lotz et al., 1995). Apart from the intrinsic capacity of these models to desctibe

yield, their functional f o m can play a decisive role in weed control recommendations,

especially when the models are embedded in a decision support cornputer program

(Swinton & Lyford, 1996). This is particulariy important since, for the same weed

infestation level, a slight change in the initial dope of a curve (determined by its

functional form) may result in a major change in the predicted threshold level of weed

control. Simple linear models of yield prediction have little rational biological

backbones, and as such, have often resulted in low performances (Cousens et al.,

1984). Hyperbolic yield functions on the other hand have an asymptote at high weed

Page 99: FACULTE UNIVERSITG QUEBEC

infestation levels; however, their initial slope does not allow a yield asymptote at the

low weed infestation end of the curve. This may result in an overestimation of the

impact of weeds thus, reducing the threshold level of control (Swinton & Lyford,

1996).

Major biological phenomena conceming both bacteria and higher plants have

shown logistic types of response (Morgan et al., 1975). Logistic models

accommodate two asymptotes, one at limiting resources and the other at saturating

resources (Morgan et al., 1975; Silvertown, 1982). It might be expected that the

response of crops to weed competition should exhibit similar trends. Direct

application of logistic models is precluded as they allow very srnall Rexibility, and

their curves are forced through the origin of the coordinate axes (Morgan et al., 1975).

In experimental data, curves representing yield response to weed competition rarely

pass through the ongin of the axes.

The outcome of weed competition on crops varies with several factors

including crop and weed species, management techniques, location, year, and

environmental conditions. The highly complex interactions between those factors

preclude the use of a simple or static model. A more appropriate model should be

flexible, and able to accommodate linear, hyperbolic and logistic models as special

cases. In addition, if the model is to be used with the relative leaf cover of weeds, the

independent vanable should Vary between zero and one, with the upper asymptote

(maximum yield) at zero and the lower asymptote (minimum yield) at one (Lotz et al.,

1994). The Morgan-Mercer-Flodin or MMF model (Morgan et al., 1975; Ratkowsky,

1983; Swinton & Lyford, 1996) meets the first set of requirements, but not the second.

In the present paper, a flexible sigmoidal model relating crop yield to the

relative leaf cover of weeds is derived from the MMF rnodel. The model is

demonstrated to embody linear, hyperbolic and logistic models of yield loss based on

the relative leaf cover of weeds. Finally, the model is validated and compared to

other nested rnodels using field data on maize in competition with Chenopodium

Page 100: FACULTE UNIVERSITG QUEBEC

album L., Echinochloa crus-galli L. Beauv., the mixture of C. album and E. cmsqalli,

and a natural multispecies weed cornrnunity.

4.2.3. Materials and methods

4.2.3.1. Model derivation

Swinton & Lyford (1996) proposed the use of weed density in the MMF modei

(Morgan et al., 1975) for yield description. The model takes the fom:

where Y = crop yield, D = weed density, a = minimum yield or lower asymptote as

weed density approaches infinity, P = maximum yield (weed-free yield), y = cur~ature

measure that detemines the rate at which yield reaches its lower asymptote (a ) i.e.,

the lower curvature of the sigmoid, and 6 = cuwature measure that determines the

point at which yield begins to decline at a decreasing rate (Le., the upper curvatura of

the sigmoid). From equation 1, a new equation using the relative leaf cover of the

weed is derived, using a series of assumptions.

(a) Yield is not related only to weed density (D,), but also to crop density (D,)

(Cousens, 1985b), and mainly to the ratio of the two variables. Using that

assumption, equation 1 becomes:

Page 101: FACULTE UNIVERSITG QUEBEC

(b) Plant density is lineariy related to the leaf area index (LAI) and leaf area is a

better yield descriptor than density (Kropff & Spitters, 1991; Kropff & Lotz, 1992a,

l99Zb; Dieleman et al., 1995; Knezevic et al., 1995; Lotz et al., 1995, 1996). After

replacing weed and crop densities in equation 2 with their leaf area indices, the

following equation is obtained:

(c) The share in total leaf area of weed species or the relative leaf area of

weeds (RLA,) may be easier to measure than the leaf area indices (Kropff & Spitters,

1991). The relation between leaf area indices and relative leaf area of weeds is as

follows:

After replacement of the crop leaf area index (LAI,) in equation 3 and rearrangement

using X = RU,, equation 5 is obtained:

Equation 5 is a flexible sigmoid equation, using the relative leaf area of the weed

instead of weed density as was the case for the MMF model. The relative leaf cover

of weeds can be substituted for their relative leaf area, since both variables have

comparable performance at earîy growth stages (Ngouajio et al., 1999).

Page 102: FACULTE UNIVERSITG QUEBEC

4.2.3.2. Nested models

Kropff & Lot- (1992b) suggested an hyperbolic rnodel relating crop yield to the

relative leaf area of weeds. This model which has been shown to exhibit high

predictive capacity takes the following form when expressed in terms of yield:

where Y = crop yield, Y. = maximum yield or yield in weed-free conditions,

X = relative leaf area of weeds, 1 = relative damage coefficient of weeds (a measure

of the cornpetitive ability of weeds), and A = minimum yield (lower yield asymptote) as

the relative leaf area of weeds approaches unity. Equation 6 can be rewritten in the

form of equation 5 (Swinton & Lyford, 1996) as follows:

where a =Yo(l-A), fl =Yo, y =NI, and 6 =l. This indicates that equations 5 and 6 are

nested, equation 6 being a special case of equation 5.

Equation 5 was reparameterized to reduce the non-linearity effects of the

parameters (Ratkowsky, 1983; Swinton & Lyford, 1996). The reparameterized

version, where y is substituted for = y ', takes the following form:

Page 103: FACULTE UNIVERSITG QUEBEC

The parameters have the following biological interpretation: Y = predicted crop yield,

Y. = maximum yield or yield in weed-free conditions (upper asymptote), a = minimum

yield or the lower asymptote as weed relative leaf area approaches unity, i.e., X/(1-X)

approaches infinity, y' = value of (1-X)/X at which half of the yield is lost (the

corresponding value of X is 1/(1+ y')), and 6 = measure of the sigrnoid curvature. 6

rnay also be used as a measure of the cornpetitive ability of the weeds compared to

the crop. Values of 6 lower than unity but higher than zero may represent situations

where weeds are more cornpetitive than the crop, and is illustrated by a concave

upper portion of the sigmoid (Fig. 1). Values of 6 higher than unity may represent

cases where the weed is less cornpetitive than the crop, and the upper portion of the

sigmoid is convex to the origin.

When 6 is equal to unity, the curve is an hyperbola similar to Kropff & Lotz

(1992b) model in equation 6:

For uniformity of the parameters, equation 9 will be used in place of the Kropff & Lotz

(1992a) model in equation 6 for model cornparison.

When y' is equal to unity, the curve is the following symmetrîc sigmoid:

Page 104: FACULTE UNIVERSITG QUEBEC

With a equal to zero, the cuve becomes an asymmetric logistic dose response

Equation 8 is a flexible sigmoid (unrestricted model) that embodies the hyperbolic

model in equation 9 (restricted model 1 ), the symmetric sigmoidal model in equation

10 (restricted model 2). and the asymmetric logistic mode1 in equation 11 (restricted

model 3), as special cases, respectively when 6 is equal to unity, y ' is equal to unity,

and a is equal to zero (Fig. 1). This rnay represent a more versatile predictor of yield

than either individual rnodel. It rnay also have sorne advantages in explaining

biolog ical interactions between weeds and crops.

4.2.3.3. Model Validation and cornparison

The unrestricted model (equation 8) was validated and compared to the restricted

models using data from field experiments conducted in 1996 and 1997. Maize was

grown in cornpetition with C. album, E. crus-galli, a mixture of C. album and E. c m -

gallî, or with a natural multispecies weed community. Fifteen weed densities were

used for the first three weed infestation types, and 25 densities for the natural weed

population. Leaf cover was estirnated at the four- and at the eight-leaf stages of

maize development. Detail of the experimental procedures and data collection has

been described by Ngouajio et a/. (1 998, 1999).

Page 105: FACULTE UNIVERSITG QUEBEC

4.2.3.4. Statistical analyses

Field experiment data were fitted to the rnodels (equations 8, 9, 10, and Il ) using the

non-linear regression procedure of SASTM (SAS lnstitute Inc., 1989). The nested

statistical analyses using the likelihood ratio and the Wald tests (Judge et al., 1988,

Borowiak, 1989; Swinton & Lyford, 1996) were used for model discrimination.

Cornparisons between the hyperbolic model (restricted model 1) and the flexible

sigmoidal model (unrestricted model) were performed by testing the nuIl hypothesis of

6 = 1, in the complete model. An identical test was conducted with the symmetric

sigrnoidal model (restricted model 2) using the nuIl hypothesis of y ' = 1 in the

complete model. Cornparison with the asymrnetric logistic model (restricted model 3)

was made using the nuIl hypothesis of a = O in the complete model. All statistical

tests were conducted at 5 and 1 % levels of probability.

4.2.4. Results and discussion

4.2.4.1. The performance of the model (unrestricted)

The four parameter flexible sigmoidal model was derived from the MMF model

(Morgan et al., 1975; Ratkowsky, 1983; Swinton 8 Lyford, 1996), for use with the

relative leaf cover of weeds. The derivation was made based on some biological

factors governing weed-crop cornpetition. The model can then be regarded as a

semi-empirical model. The importance of using biologically realistic models to

describe the impact of weeds on crop yield has been demonstrated previously

(Cousens et al., 1984; Cousens. 1985a; Cousens et al., 1987; Kropff & Spitters,

1991 ).

The model fitted the experimental data very well (Table 4 , Figs 2 and 3). All

parameters were estimated easily, using a non-linear regression procedure. The

Page 106: FACULTE UNIVERSITG QUEBEC

competitive ability of weeds measured with parameter 6 varied with weed species,

year, and leaf cover assessment period (Table 1). C. album in mixture with E. crus-

galli was generally more aggressive towards maize than either species grown alone

or the natural weed population. In plots infested by a mixture of the two species. the

value of 6 varied from 0.8 to 2.71. Higher values of 6 were recorded in 1997,

indicating lower weed competitive ability. In general, the 1997 growing season was

favourable to rnaize compared to weeds. The low weed competition in 1997 may be

attributed to unfavourable weather conditions during and imrnediately following weed

emergence (Ngouajio et al., 1999). Early leaf cover estimation (four-leaf stage of

maize) resulted in higher weed competitive ability. This may represent a very

important observation, as the value of 6 determines the functional shape of the

regression curve, and ultirnately, the predicted threshold level of weed control. In this

regard, the appropriate timing of leaf cover assessment becomes one of the major

components of good performances of the model, especially when the data are used in

weed control decision making tools. This timing should, as much as possible, be

related to the physiological stages of crop development rather than the weed, or the

number of days after weed or crop emergence.

With the exception of C. album for data wllected at the four-leaf stage of maize

in 1997 (with 4.82), the values of parameter y' (indicator of the value of relative leaf

cover at which half of the yield is lost) are higher for plots infested with the natural

weed population, compared to other weed infestation types (Table 1). The values

range from 3.50 to 6.90. Higher values of y' (more than one) indicate that half of the

reduction in yield is achieved at relatively low weed infestation levels. The

combination of low values of 6 (less than 0.5) and high values of y' (more than one),

represent situations where weed interference is very damaging to the crop. Such a

situation is illustrated by the data on natural weed populations recorded in 1996 at the

four-leaf stage of maize development where 6 is 0.46 and y' is 3.65 (Table 1, Figs 2

and 3).

Page 107: FACULTE UNIVERSITG QUEBEC

The percentage of variation explained by the regression model is variable

(Table 1). The values range from 70 to 78 for C. album, from 68 to 90 for E. crus-

galli, from 75 to 89 for the mixture of C. album and E. crvsgalli, and from 66 to 90 for

the natural weed infestation. This is probably due to the large variation in the

environmental conditions prevailing during the experiments in both years. It may also

be due to the differences in weed species or experirnental and measurement error.

4.2.4.2. Model comparison

The restricted model 1 (equation 9), the restricted model 2 (equation 10). and the

restricted model 3 (equation 1 l), were derived from the unrestricted model (equation

8) by restricting some of the parameters of the unrestricted (complete) model to fixed

values,

Since the restricted models are nested within the unrestricted model, the

residual surn of squares is not an appropriate criteria on which to judge the goodness

of fit, as the more complex model will generally turn out to be the best. In such

circumstances, the likelihood ratio and the Wald test statistics are more appropriate

for model discrimination (Judge et al., 1988; Borowiak, 1989; Swinton & Lyford,

1996). These test statistics are presented in Table 2. The critical x2 (Chi square)

values are 3.84 and 6.63, respectively, at the 5 and 1% levels of probability.

Fitting of data with the unrestricted model produced the smallest of the residual

sum of squares, irrespective of year, weed infestation type and year. An associated

increase in the percentage of variation explained by the models was observed (Table

1). These results were predicted since the more complex model generally results in a

better fit of data when the models are nested.

The imposition of the restriction 6 = 1 (restricted model 1 ) significantly

increased the residual sum of squares for data recorded in 1996, at the eight-leaf

stage of maize in plots infested with the mixture of C. album and E. crus-galii. This

Page 108: FACULTE UNIVERSITG QUEBEC

results in higher and significant values of the likelihood ratio (5.28) and the Wald

(4.63) test statistics (Table 2). This case indicates that the unrestricted model is

better than the restricted model 1. Apart from this case, the restriction 6 = 1 increases

the residual sum of squares and reduces the percentage of variation explained by the

model (Table 2). However these changes are not large enough to be statistically

significant. In those cases, the two models have statistically equal performances,

putting the choice of the investigator on the less cornplex rnodel (restricted model 1).

With the restricted model 2 (y' = 1). the conclusions of the two statistical tests

are not always concordant in model comparison. The two tests indicate that the

unrestricted model is significantly better than the restricted rnodel 2, for the natural

weed population at the four-leaf stage of maize in 1997, and for the mixture of

C. album and E. crvs-galli at the eight-leaf stage of maize in 1996. The likelihood

ratio and the Wald test statistics were respectively, 27.36 and 10.52 for the natural

weed population, and 6.53 and 148.18 for the mixture of the two weeds. Fitting of the

data collected at the eight-leaf stage of maize in 1997 from plots infested with the

natural weed population, is significantly better for the unrestricted model using the

l i kelihood test statistics (8.76), while the two models are declared comparable using

the Wald test statistics (0.08). A reverse situation is found in 1996 with E. crus-galli,

the mixture of C. album and E. crus-gaili at the four-leaf stage of maize, and C. album

at the eight-leaf stage of maize. In those cases, the likelihood ratio test declares the

two models equal, and the Wald test finds the unrestricted model better.

Cornparisons of the restricted model 3 with the unrestricted model indicate

that, out of 16 cases, both statistical tests declare two cases where the unrestricted

model is significantly better than the restricted rnodel 3, and six cases where the two

models are comparable. In addition, there are eight cases where the unrestricted

model is more appropriate for data fitting according to the Wald test. The lack of

concordance between the two tests in cornparhg the models has also been obsewed

with the restricted model 2.

Page 109: FACULTE UNIVERSITG QUEBEC

Irrespective of the statistical test used. data collected in 1996 at the eight-leaf

stage of maize from plots infested with the mixture of C. album and E. crus-galli are

shown to be better described by the unrestricted model than either of the restricted

models (Table 2). On the other hand, al1 four rnodels provide comparable fitting of the

data for C. album (four-leaf stage of maize in 1996 and 1997), and the natural weed

population (eight-leaf stage of maize in 1996). For the remaining 12 cases, either the

unrestricted model or the restricted rnodel 1 is more adapted to the data.

Aithough it is relatively easy to declare that the unrestricted model is preferable

to the restricted models 2 and 3, it is very difficult to choose between the unrestricted

model and the restricted model 1. The unrestricted model generally reduced the

residual sum of squares and increased the proportion of the variation explained by

the model, but the complexity of the model caused by the estimation of a fourth

parameter may discourage most investigators from using it. Failure of the

unrestricted model to outperfon the restricted model 1 was primarily due to the small

values of the sigmoidal response parameters (6). Swinton & Lyford (1996) have

demonstrated that under conditions of high data variability and weakly sigmoidal yield

response (6 close to one), a sample size of more than 50 may be required to identify

sigmoidal response parameters with 95% confidence. With the data sets used in this

test, the value of 6 is generally close to one (Table 1) and the sarnple sires are 15

and 25 with highly variable weed populations (Ngouajio et al., 1998). If the mode1 has

to be included in a weed control decision making tool, the unrestricted model may be

preferred over the restricted mode1 1 for several reasons: (1) sufficient data points

must be used to reduce the risk of a wrong decision as a result of a poor estimate;

such large sample size should be easy to collect with the recent techniques of leaf

cover estimation by digital image analysis; (2) to reduce the risk of a wrong decision,

a model that can encompass most possible situations is necessary.

This last statement can be observed cleariy with the data sets presented in this

paper. In Figs 2 and 3, the threshold level of weed control would be highly influenced

by the model used in plots infested by the mixture of C. album and E. crvs-galli at the

Page 110: FACULTE UNIVERSITG QUEBEC

eight-leaf stage of maize growth. In Fig. 2, the graph obtained with the mixture of

C. album and E. cmsgalli as well as the different statistical tests show that the yield

response is sigmoidal rather than hyperbolic. Detection of such special cases which

would otherwise lead to wrong decisions, car; only be possible through the use of a

more versatile model.

The flexible sigmoidal model of crop yield prediction presented here is shown

to embody an hyperbolic, a symmetric sigmoidal and an asymrnetric logistic models.

Our validation results indicate that the flexible sigmoidal model provides a better fit of

the data compared to the symmetric sigmoidal and the asymmetric logistic models.

However, the model fitted the data significantly better than the hyperbolic model only

in one out of 16 cases. Failure to reject the nuIl hypothesis of hyperbolic yield

response is rnainly due to the weakly sigmoidal yield response associated with the

high data variability and the srnall sarnple sizes. An appropriate cornparison between

the hyperbolic and the flexible sigmoidal model would require experiments specifically

designed for the purpose. Detection of the sigmoidal yield response requires sample

sizes larger than the usual practice in field experiments for weed competition. Large

samples are required to reduce the risk of a wrong decision when the model is used

for weed control decision making. In such a situation the use of the flexible sigmoidal

model may be preferred over that of the hyperbolic model.

Page 111: FACULTE UNIVERSITG QUEBEC

Acknowledgements

Funding for this research was provided in part by the Matching lnvestment Initiative of

Agriculture and Agri-Food Canada. The senior author is a recipient of a scholarship

from the (( Programme Canadien des Bourses d'Excellence de la Francophonie ».

We thank Mr. Jocelyn Lamarre and Ms. Michéle Martel for technical and professional

assistance and summer students for field plot work. especially hand weeding and

vegetation sarnpling. We than k Dr. Régis Baziramakenga for its critical review of this

manuscript.

Page 112: FACULTE UNIVERSITG QUEBEC

4.2.5. References

ANDREASEN C, RUDEMO M & SEVESTRE S (1997) Assessrnent of weed density at an

early stage by use of image processing. Weed Res. 37, 5-18

ANDRIEU B, ALLIRANO JM & JAGGARD K (1997) Ground cover and leaf area index of

maize and sugar beet crops. Agronomie 17, 31 5-321.

ANONYMOUS (1 984) Maïs, Culture. Conseil des Productions Végétales du Québec,

Agdex 1 1 1/20, Québec, Canada.

BOROWIAK DS (1 989) Mode1 discrimination for nonlinear regression models. Marcel

Dekker, New York USA.

CARSON HW, LASS LW & CALLIHAN RH (1995) Detection of yellow hawkweed

(Hieracium pratense) with high resolution multispectral digital imagery. Weed

Technology 9,477-483.

COUSENS R (1985a) A simple model relating yield loss to weed density. Annals of

Applied Biology 1 07, 239-252.

COUSENS R (1985b) An empincal model relating crop yield to weed and crop density

and a statistical cornparison with other models. Journal of Agricultural

Science, Cambridge 1 05,5 1 3-521.

COUSENS R (1991) Aspects of the design and interpretation of competition

(interference) experiments. Weed Technology 5, 664-673.

COUSENS R, PETERS NCB & MARSHALL CJ (1984) Models of yield loss-weed density

relations hips. In: Proceedings 1984 7th lntemational Symposium on Weed

Biology, Ecology and Systernatics, Paris, 367-374.

Page 113: FACULTE UNIVERSITG QUEBEC

COUSENS R, BRAIN P, O'DONOVAN JT & O'SULLIVAN PA (1987) The use of bioiogically

realistic equations to describe the effects of weed density and relative time of

emergence on crop yield. Weed Science 35, 720-725.

DEW DA (1972) An index of competition for estimating crop loss due to weeds.

Canadian Journal of Plant Science 52, 921 -927.

DIELEMAN A, HAMILL AS, WEISE SF & SWANTON CJ (1995) Empirical models of

pigweed (Amaranthus spp. ) interference in soybean (Glycine max). Weed

Science 43,6 1 2-6 1 8.

HALL MR, SWANTON CJ & ANDERSON GN (1992) The critical period of weed control in

grain corn (Zea mays L.). Weed Science 40,441 -447.

JUDGE GG, HILL RC, GRIFFITHS WE, L~TKEPOHL H & LEE TC (1988) Introduction to

the theory and practice of economeths, 2nd edn. John Wiley & Sons Ltd,

New York.

KNEZEVIC SZ, HORAK MJ & VANDERLIP RL (1997) Relative time of redroot pigweed

(Amaranthus retrofiexus L.) emergence is critical in pigweed-sorghurn

[Sorghum bicoior (L.) Moench] competition. Weed Science 45, 502-508.

KNEZEVIC SZ, WEISE SF & SWANTON CJ (1995) Cornparison of empincal models

depicting density of Amaranthus retrofiexus L. and relative leaf area as

predictors of yield loss iri maize (Zea mays L.). Weed Research 35, 207-214.

KROPFF MJ (1988) Modelling the effects of weeds on crop production. Weed

Research 28, 465-471 .

Page 114: FACULTE UNIVERSITG QUEBEC

KROPFF MJ & LOTZ LAP (1992a) Optimization of weed management systems: the

role of ecological models of interplant competition. Weed Technotogy 6 ,

462-70.

KROPFF MJ & LOTZ LAP (1992b) Systems approach to quantify crop-weed

interactions and their application to weed management. Ag~cultural Systems

40, 265-282.

KROPFF MJ, LOTZ LAP, WEAVER SE, BOS HJ, WALLINGA J & MIGO T (1995) A

two-parameter rnodel for prediction of crop loss by weed competition from earîy

observations of relative leaf area of weeds. Annals of Applied Biology 126,

329-46.

KROPFF MJ & SP~TTERS CJT (1991) A simple model of crop loss by weed competition

from eariy observations of relative leaf area of the weeds. Weed Research 31,

97- 105.

KROPFF MJ, WEAVER SE & SMITS MA (1992) Use of ecophysiological models for

crop-weed interference: Relations amongst weed density, relative time of weed

emergence relative leaf area, and yield loss. Weed Science. 40,296-301

LEMIEUX C, PANNETON B & BENOIT D (1995) L'analyse d'image en malherbologie. In:

Proceedings 7995 Colloque international sur la prévision et le depistage des

ennemis des cultures, Québec, 201 -208.

LOTZ LAP, KROPFF MJ, BOS B & WALLINGA J (1992) Prediction of yield loss based on

relative leaf cover of weed. In: Proceedings 7992 First international Weed

Conirol Congress, Melbourne, 2 , 290-293.

Page 115: FACULTE UNIVERSITG QUEBEC

LOTZ LAP, KROPFF MJ, WALLINGA 3, BOS HJ & GROENEVELD RMW (1994) Techniques

to estirnate relative leaf area and cover of weeds in crops for yield prediction.

Weed Research 34, 167-1 75.

LOTZ LAP, WALLINGA J & KROPFF MJ (1995) Crop-weed interaction: quantification

and prediction. In: Ecology and lntegrated Famhg Systems (eds DM Glen,

MP Greaves & HM Anderson). pp. 31-47. John Wiley & Sons Ltd, London.

LOTZ LAP, C~RISTENSEN S , CLOUTIER D, QUINTANILLA CF, LEGERE A, LEMIEUX C,

LUTMAN PJW, IGLESIAS AP. SALONEN J, SATTIN M, STIGLIANI L & TEI F (1996)

Prediction of the cornpetitive effects of weeds on crop yields based on the

relative leaf area of weeds. Weed Research 36, 93-101.

LUTMAN PJW (1992) Prediction of the cornpetitive ability of weeds on the yield of

several spring-sown arable crops. In: Actes M m e colloque international sur la

biologie des mauvaises herbes, Paris, 337-345.

MORGAN PH, MERCER LP & FLODIN NW (1975) General model for nutritional

responses of hig her organisms. Proceedings of the National Academy of

Science 72,4327-4331 .

NGOUAJIO M, LEMIEUX C, FORTIER JJ, CAREAU D & LEROUX GD (1998) Validation of an

operator-assisted module to measure weed and crop leaf cover by digital

image analysis. Weed Technology 12,446453.

NGOUAJIO M. LEMIEUX C & LEROUX GD (1999) Prediction of corn (Zea mays) yield

loss from eariy observations of the relative leaf area and the relative leaf cover

of the weeds. Weed Science 47, (in press).

RATKOWSKY DA (1983) Nonlinear regression modeling: a unified practical approach.

Marcel Dekker, New York.

Page 116: FACULTE UNIVERSITG QUEBEC

RUGET F, BONHOMME R & CHARTIER M (1996) Estimation simple de la surface foliaire

de plantes de maïs en croissance. Agronomie 16, 553-562.

[SAS] STATISTICAL ANALYSIS SYSTEMS (1989) SAS/STAF User's Guide, Vol. 2

Version 6, 4th edn. Statistical Analysis Systems Institute, Cary, NC.

SILVERTOWN JW (1982) Introduction to plant population ecology. Longman Inc., New

York.

SWINTON SM & LYFORD CP (1996) A test for choice between hyperbolic and

sigmoidal models of crop yield response to weed density. Journal of

Agricultural, Bioiogical, and Environmental Statistics 1 , 97-1 06.

VAN ACKER RC, LUTMAN PJW & FROUD-WILLIAMS RJ (1997) Predicting yield loss due

to interference from two weed species using early observations of relative leaf

area. Weed Research. 37, 287-299.

ZIMDAHL RL (1 980) Weed-crop cornpetition: a review. International Plant Protection

Centre, Corvallis, OR, USA.

Page 117: FACULTE UNIVERSITG QUEBEC

tD ul

Table 1. Regression parameters obtained in maize yield prediction using the flexible sigmoidal model (unrestricted model. equation 8) and nested models, (restricted models, equations 9. 10 and 11). The data were recorded in 1996 and 1997, at the four- and at the eight-leaf stages (fully expanded leaves) of rnaize.

- - - -- - - - -- - - - - -

Regression parameters a*b

Type of Unrestricted Restricted Restricted Restricted

weed Model rnodel 1 mode1 2 mode13 infestation (sigrnoidal) (hyperbolic) (symmetric sigrnoidal) (asymmetric logistic)

a Y. 6 y* r2 a Y. y' r2 a Y. 6 r2 Y. 6 y' r2

1996, four-leaf stage of rnaize C. album E. crus-galli C album + E. crus-galli Natural population

1997, four-leaf stage of maize C. album E. crus-galli C. album + E. crus-galli Natural population

1996, eight-leaf stage of maize C. album E. crusqalli C. album + f. crus-galli Natural population

1997, eight-leaf stage of maize C. album E. crusqalli C. album + E. crusqalli Natural population

a In the restricted model 1, 6 = 1 ; in the restricted model 2, y' = 1 ; and in the restricted model 3, a = 0. b ? values are multiplied by 100.

Page 118: FACULTE UNIVERSITG QUEBEC

Table 2. The likelihood ratio (LR) and the Wald (W) test statistics for cornparison of

the performances of the restricted models to the unrestricted model used for maize

yield prediction.

Test statistics a

Type of Rest ricted Restricted Restricted

weed rnodel 1 mode12 mode13 infestation

LR W LR W LR W

1996, four-leaf stage of maize C. album E. crvsgalli C. album + E. crus-galli Natural population

1997, four-leaf stage of maize C. album E. crus-galli C. album + E. crus-galli Natural population

1996, eight-leaf stage of maize C. album E. crus-galli C. album + E. cmsgalli Natural population

1997, eight-leaf stage of maize C. album E. crus-galli C. album + E. crus-galli Natural population

a In the restricted model 1, 6 = 1; in the restricted model 2, y' = 1 ; and in the restricted model 3, a = O. ' and " indicate that the unrestricted model (equation 8) is significantly better than the restricted model, respectively, at the 5 and 1 % levels of probability. The critical x2 values are 3.84 and 6.63 at the 5 and 1% levels of probability, respectively.

Page 119: FACULTE UNIVERSITG QUEBEC

0.0 0.2 0.4 0.6 0.8 1.0

Weeds relative leaf cover

Figure 1. The functional forms of the flexible sigrnoidal model (unrestricted rnodel) as affected by the values of the parameters: with 6 = 1, the curve is either a concave hyperbola (y' c l ) , a straight line (yJ = i), or a convex hyperbola (y'> 1); the cuwe is either a symmetric (y' = 1) or an asymmetric (y'# 1) sigrnoid. the upper portion being concave (6 > 1 ) or convex (6 < 1) to the origin. For the purpose of this demonstration, crop yield is expressed in t ha", and a and are arbitrary set at 1 and 9 t ha-', respectively .

Page 120: FACULTE UNIVERSITG QUEBEC

Four-leaf stage of maize

6 C. album

Eight-leaf stage of rnaize

C. album and

population ' \\

Weed relative leaf cover

Figure 2. Maize yield as a function of weed relative leaf cover recorded at the four and at the eight leaf stages of maize growth in 1996. The non-Iinear regression models are: the unrestricted model (-a-), the restricted model 1 (- - a - -), the restricted model 2 (- -), and the restricted model 3 (----- ).

Page 121: FACULTE UNIVERSITG QUEBEC

tour-leaf stage of maize

C. album ! C. album

C. album and

Natural weed population

G .

Weed relative leaf cover

77 Natural weed

population \

Figure 3. Maize yield as a function of weed relative leaf cover recorded at the four

and at the eight leaf stages of maize growth in 1997. The non-linear regression

models are : the unrestricted model (-a-), the restrkted model 1 (- - - -), the

restricted model 2 (- = * a - - -), and the restricted model 3 (-=--*--).

Page 122: FACULTE UNIVERSITG QUEBEC

CHAPITRE 5

EFFETS DE LA HAUTEUR DE PRISE DE VUE DES IMAGES ET DU

STADE DE CROISSANCE DE LA CULTURE SUR LES ESTIMÉS DE

COUVERTURE FOLIAIRE ET LEUR PERFORMANCE DANS LES

MODÈLES PRÉVISIONNELS

Ce chapitre a été soumis pour publication à la revue Crop Protection Vol. 00, No 00,

pp.000-000, 1999 sous le titre de "Influence of images recording height and crop

growth stage on leaf cover estimates and their performance in yield prediction

models."

Page 123: FACULTE UNIVERSITG QUEBEC

5.1. Résumé du chapitre 5

Au cours de travaux antérieurs, il a été démontré qu'aux stades précoces de

croissance des plantes, les estimés de couverture foliaire d6temiinés par analyse

d'images fournissaient une bonne estirnatio:: de la surface foliaire. De plus, la

couverture foliaire relative des mauvaises herbes et leur surface foliaire relative ont

montré des performances comparables pour leur utilisation dans les modèles

pr6visionnels. Ces travaux recommandaient l'usage de la couverture foliaire (plus

facile à mesurer) à la place de la surface foliaire dont la mesure est non seulement

destructive mais aussi très laborieuse. L'utilisation des données de couverture

foliaire des plantes dans les outils de prise de décision nécessite cependant

l'acquisition de connaissances additionnelles en rapport avec les effets de plusieurs

facteurs parmi lesquels, la période d'échantillonnage des images et la hauteur de

prise de vue de ces dernières. La période d'échantillonnage doit non seulement être

dictée par la précision des estimés obtenus, mais aussi elle doit tenir compte des

systèmes de production, et être sufTisamment précoce afin de laisser assez de temps

pour la mise en place des interventions. La hauteur de prise de vue affecte la

résolution des images et peut avoir un grand impact à la fois sur les estimés obtenus

et sur leurs valeurs prédictives. Cette recherche avait pour objectifs : (1) d'étudier

I'effet de la période d'échantillonnage de la couverture foliaire et I'effet de la hauteur

de prise de vue des images sur les estimés obtenus, et (2) de tester la performance

de ces estimés sur les modèles prévisionnels.

Des expériences en champ ont été menées en 1996 et 1997 avec le maïs en

compétition avec des densités variables (O à 300 plants/m2) de chénopode blanc

(Chenopodium album L.), de pied de coq [Echinochloa crvsgalli (L.) Beauv] et d'un

mélange des deux espèces. La couverture foliaire de la culture et des mauvaises

herbes était échantillonnée aux stades quatre- six- et huit-feuilles du maïs. A chaque

période d'échantillonnage, des images étaient prises à la hauteur de 1'5; 1'9 et 3'3 m

dans chaque parcelle. La couverture foliaire était deteminée par la technique

d'analyse d'images décrite dans des travaux antérieurs (Ngouajio et al. 1998). Un

Page 124: FACULTE UNIVERSITG QUEBEC

modèle prévisionnel sigmoïde a quatre paramètres, très versatile, a ét6 utilisé pour

ajuster les données de rendement du maïs aux couvertures foliaires relatives des

mauvaises herbes.

Les estimés de la couverture foliaire du mai's étaient très variables, Ils ont été

affectés par la période d'échantillonnage des images et par la hauteur de prise de

vue. Les données provenant des images prises à 3,3 m Btaient plus fiables que

celles obtenues à partir d'images prises plus près du sol (1'5 et 1'9 m).

L'échantillonnage prbcoce (stade quatre-feuilles du maïs) a produit des estimés

moins variables que l'échantillonnage plus tardif. En ce qui concerne les prédictions

des pertes de rendement, la période d'échantillonnage de la couverture foliaire a eu

peu d'effets sur l'ajustement du modéle. Cependant, du point de vue pratique, les

échantillonnages au stade six-feuilles de la culture pourraient être plus appropriés

que des échantillonnages hâtifs ou tardifs. A ce stade, la plupart des herbicides de

postlevée peuvent encore être utilisés. Indépendamment du type de mauvaises

herbes et du stade de croissance du maïs, les images prises à 3,3 rn au-dessus du

sol ont généralement permis d'obtenir de meilleures prédictions que lorsque les

images étaient prises de plus près.

Les résultats des travaux présentés ici démontrent qu'il est possible

d'améliorer les estimés de couverture foliaire des plantes et ultimement leur

performance dans les modèles prévisionnels grâce à un choix judicieux de la période

d'échantillonnage des images et de leur résolution. De telles améliorations,

associées aux techniques d'analyses d'images plus précises et au développement de

modèles de prédiction précis, flexibles et versatiles contribueront Ci la mise sur pied

d'un outil efficace d'aide à la prise de décision. Un tel outil permettra de faire passer

la lutte contre les mauvaises herbes de l'étape de la prévention à celle des

interventions mieux ciblées.

Page 125: FACULTE UNIVERSITG QUEBEC

5.2. Influence of images recording height and crop growth stage on leaf cover

estimates and their performance in yield prediction models

M. Ngouajio, G. D. Leroux, and C. Lemieux

5.2.1. Abstract

Field experiments were conducted in 1996 and 1997 to study the effects of crop

growth stage and images recording height on the estimates of leaf cover obtained

through digital image analysis techniques, and to test the effectiveness of these data

in maize yield prediction. Maize leaf cover estimates were highly variable and the

precision was influenced by both the crop growth stage and the camera recording

height. Images recorded at 3.3 m above the ground produced more reliable

estimates than those taken at lower heights. Early timing of leaf cover assessment

produced estimates with smaller variability than later timings. Maize yield prediction

was slightly affected by the timing of leaf cover sampling. However, sampling at the

six-leaf stage of maize may be more appropriate from a practical stand point than

earlier or later samplings. While being compatible with many control options, this

would allow enough weed seeds to germinate. Increasing the images recording

height improved the accuracy of yield predictions. Data from images taken at 3.3 rn

fitted the mode1 better than those from images recorded at 1.5 and 1.9 m. These

results indicate that appropriate timing of leaf cover assessment and appropriate

selection of image shooting height may help improve the accuracy of crop yield

prediction, and thereby, reduce the risk of making wrong weed control decisions.

Key words: lntegrated weed management; Zea mays; yield prediction

Abbreviated title: Influence of height and crop growth stage on yield prediction

Page 126: FACULTE UNIVERSITG QUEBEC

5.2.2 Introduction

The major cause for crop yield reduction by weeds is competition for growth limiting

resources of light, water and nutrients. For decades, weed control in major

agronomic crops has relied solely on herbicide use (Leroux, Laganiere and Vanasse,

1990; Duke, 1996). In recent years, however, reports of herbicide resistance and

environmental concerns have drawn attention to the development of integrated weed

management programs with a more rational herbicide input (King, Lybecker,

Schweizer and Zimdahl, 1986; Kropff, 1988; Brain and Cousens, 1990; Hall, Swanton

and Anderson, 1992; Kropff and Lotz, 1992a; Kropff, Weaver and Smits, 1992; Wiles,

Gold and Wilkerson, 1993; Lemieux, Panneton and Benoit, 1995; Baziramakenga and

Leroux, 1998). The implementation of such strategies requires the integration of

multiple factors including the prediction of the effects of weed wmpetition on crop

yield. A well designed decision making tool capable of predicting the outwme of

weed competition with adequate precision is a major key to ensure success of

integrated weed management programs (Kropff and Lotz, 1992a; Lemieux et al.,

1995; Knezevic, Horak and Vanderlip, 1997). For this purpose, several models

relating crop yield to the presence of weeds have been developed. These models

use either the estimates of weed density (Dew, 1972; Cousens, Peters and Marshall,

1984; Cousens, 1985a; Cousens, Brain, O'donovan and O'Sullivan, 1987; Swinton

and Lyford, 1996). the estimates of weed and crop densities (Cousens, 1985b), or the

relative leaf area of weeds (Kropff and Spitters, 1991; Kropff and Lotz, 1992b; Lotz,

Kropff, Bos and Wallinga, 1992; Kropff, Lotz, Weaver, Bos, Wallinga and Migo, 1995;

Lotz, Wallinga and Kropff, 1995). lrrespective of the input variables used, the major

constraint to practical applications of yield loss prediction models remains the labour

intensive and tirne consuming acquisition of accurate estirnates (Wiles et al., 1993;

Lotz, Kropff, Wallinga, Bos and Groeneveld, 1994; Knezevic, Weise and Swanton,

1995; Andreasen, Rudemo and Sevestre, 1997). Weed density estimation by field

scouting is inaccurate due to their patchy distribution (Brain and Cousens, 1990;

Wiles et al., 1993), and destructive leaf area measurements is unrealistic due to the

amount of work required to harvest and process individual plants (Lotz et al.. 1994;

Page 127: FACULTE UNIVERSITG QUEBEC

Knezevic et al., 1995). In order to overcome these constraints, leaf cover estimation

by digital image analysis has been suggested (Lemieux et al., 1995). Recent

progress in this area have yielded powerful techniques of leaf cover estimation

(Lutman, 1992; Lotz et al., 1994; Carson, Lass and Callihan, 1995; Andreasen et al.,

1997; Andrieu, Allirand and Jaggard, 1997; Ngouajio, Lemieux, Fortier, Careau and

Leroux, 19963. Although these techniques have been dernonstrated to be quick and

accu rate, several questions need to be addressed to improve performances of the

estimates in yield loss prediction models. The intent of this work was to address two

of these questions.

The first question refers to the timing of leaf cover estimation: what is the

influence of crop growth stage on the estimates of leaf cover and the quality of yield

predictions? Timing of measurements should take into account the critical period of

weed interference (Hall et al., 1992) and should be done eariy enough to allow time

for the implementation of control measures (Knezevic et al., 1997). In fields, weeds

usually ernerge in Rushes (Kropff and Spitters, 1991 ; Kropff et al., 1992; Knezevic et

al., 1995), and too eariy leaf cover estimation may underestimate the importance of

weeds, leading to inadequate control decisions. Use of references such as the

number of days after planting or the nurnber of days after emergence are not

appropriate for timing of leaf cover estimation as they do not provide a reliable

representation of the actual situation in the field and therefore cannot allow

cornparison of data from different experiments.

The second question concems the resolution of images used for leaf cover

estimation: what is the influence of image resolution on estimates of leaf cover and on

quality of yield predictions? On the basis of individual images, accuracy of estimates

is closely linked to the size of the smallest detectable plant part. However, when an

entire field is considered, the area included in each image becomes an important

factor. Apart from the type of cainera and lens used, both the resolution and the area

covered Vary with the height at which images are taken. For weed detection in

pastures and forests, Carson et al. (1995) proposed the use of an airplane Rying at

Page 128: FACULTE UNIVERSITG QUEBEC

2.7 km for a resolution of 1 m2. In Our previous work with maize (Ngouajio et al.,

1998). a height of 1.9 m (1 mm2 resolution) was used. Andrieu et al. (1997) used

photographs taken at 2.5, 5 and 10 m to estimate maize and sugar beet (Beta

vulgaris) leaf cover. At low height, smaller plant parts are readily detectable, due to

the high resolution of images. However, estimates obtained rnay not be

representative of the actual weed infestation in the field, due to patchy weed

distribution (Brain and Cousens, 1990; Wiles et al., 1993), and to smaller area

included in each image (Kershaw, 1973; Lemieux, Cloutier and Leroux, 1992).

Conversely, when height is too important, the area per photograph increases, but

precision may be lost, due to low resolution. The appropriate choice of height at

which images are taken is therefore very important and should take into accounts

both the situation under investigation and the logistics of the farm production unit.

Objectives of the present study were (1) to determine the effect of crop growth

stage and image recording height on estimates of leaf cover obtained by digital image

analysis, and (2) to test the performance of these estimates in a yield prediction

model.

5.2.3. Materials and Methods

5.2.3.1. Experimental site and growing conditions

Field experirnents were conducted in 1996 and 1997 at the Agronorny Station of

Laval University located at Saint-Augustin (Quebec). The soi1 at this site is a sandy

loam with 3.9% organic matter and a pH of 6.3 and was fallowed each of the previous

two years. Except for the month of May 1997, the temperatures over the two growing

seasons were similar to the long-term average. Rainfall varied in total amount and

pattern (Table 1). In 1997, snow accumulation was exceptionally high (data not

shown). The average temperature in May was below normal (Table 1 ) and caused a

delay in the sowing date and in weed emergence. The late weed ernergence (1997)

Page 129: FACULTE UNIVERSITG QUEBEC

was followed by 15 days of hot and dry weather (from June O1 to 15). These

conditions caused a crust formation at the soi1 surface, which affected plant growth,

mainly the newly emerged weeds. At equivalent growth stages, maize and weeds

were smaller in 1997 compared to 1996 during the first month of growth.

5.2.3.2. Experimental procedures

Maize hybrid 'Pioneer 3967' was grown according to the provincial recornmendations.

The crop was seeded May 8, 1996 and May 15, 1997, at a density of 66,000

plantslha, in rows 75 cm apart. The site had been previously fall mouldboard plowed

and cultivated.

The experiments included three types of weed infestation (comrnon

lambsquarters: Chenopodium album L, bamyardgrass: Echinochloa cmsgalli (L.)

Beauv. and both species at equal densities). Fifieen weed densities for each

infestation type were used: 0, 5, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250,

and 300 plants mm*.

The final weed densities were achieved by successive hand weeding of the plots.

Initial thinning was conducted between 1 and 2 wk after emergence. In 1996, weeds

emerged on May 20, three days prior to the crop while in 1997, they emerged on

June 01, one day after the crop. Emergence dates were based on visual estimates of

50% emerged plants. The experiments were additive series, and the treatments were

assigned to 3- by 8-m plots (four maize rows), arranged in a completely randomized

design.

Lea f cover sampling and estimation

Leaf cover was measured at the four-, six- and eight-leaf stage of maize development

(Table 2). These stages fall within the critical period of weed wntrol in maize (Hall et

al., 1992) and within most postemergence maize herbicides application window. Only

Page 130: FACULTE UNIVERSITG QUEBEC

plants with fully expanded leaves were included in the count when recording the crop

growth stage. Images were recorded using a high resolution color digital camera

(Kodak professional DCS420c digital camera, Kodak Canada Inc., Toronto, Ontario,

Canada, M6M 1V3) equipped with a 28-mm ultra-fast lens. The camera uses a

charged couple device with 1,012 rows and 1,524 columns corresponding to a

theoretical resolution of 1.54 megapixels. However, the practical resolution was only

one third (0.514 rnegapixels). The camera supporting device was custom-built and

allow to take horizontal frames at different heights. At each sarnpling date, three

digital images were recorded in each plot at heights of 1.5, 1.9 and 3.3 ml with

corresponding resolutions of 0.6, 1 .O and 3.2 mm2, respectively (Table 3). The

camera was positioned to allow the maize rows to be parallel to the width of the

images. Images taken at 1.5 and 1.9 m included one maize row (the right-hand side

middle row) and those taken at 3.3 m included two maize rows (the middle rows).

The camera was positioned in such a way that the area covered by the images taken

at 1.5 rn was included in the images taken at 1.9 m which was in tum included in the

images taken at 3.3 m. The leaf cover was estimated using a digital image analysis

system (Su rfacesProTM, Société de Mathématiques Appliquées Inc., 59 d'Auteuil

Street, Quebec, QC, Canada G1R 4C2). Detail of the images acquisition and

analysis procedures have been provided in a previous study (Ngouajio et al,, 1998).

For images recorded at different heights, the proportion occupied by an average

maize plant differed, and this proportion also differed from that occupied by the same

rnaize plant in the field. To account for this effect, a correction factor was used (Table

3). This correction was not required for weeds as their stands were uniform on the

plots.

Final hantest

Maize was hand-hawested from the middle two rows of each plot on October 12,

1996 and October 1, 1 997. Grains were dried at 50°C for 1 0 days prior to weig hing.

Page 131: FACULTE UNIVERSITG QUEBEC

5.2.3.3. Data analyses

All maize and weed leaf cover were expressed as percent ground cover to allow

cornparisons at different camera shooting heights. Average maize leaf cover was

computed, and the precision of the estimates evaluated using either the standard

error of the means or the coefficient of variation (CV). For yield prediction,

regressions of weed relative leaf cover (weed leaf cover divided by total plant leaf

cover) on rnaize yield data were performed, using the non-linear regression mode1

proposed by Ngouajio, Leroux and Lemieux (1 999):

where Y is the predicted crop yield, Y. is the maximum yield or yield in weed-free

conditions (upper asymptote), a is the minimum yield or the lower asymptote as weed

relative leaf cover (Lc) approaches unity, i.e. Lcl(1-Lc) approaches infinity, y is the

value of (1-Lc)lLc at which half of the yield is lost (the corresponding va!ue of Lc is

1/(1+ y)), and 6 is a measure of the sigmoid curvature and is used as a measure of

the cornpetitive ability of the weeds compared to the crop.

The F-test and t test were used to determine the significance of the

regressions and reg ression parameters, respectively. The rZ values were calculated

according to the following equation: P = 1 -(residual sum of squares/total corrected

sum of squares) (Chisrn, Birch and Bingham, 1992; Baziramakenga and Leroux,

1998). The performance of the leaf cover variables in the yield prediction model was

compared, using the residual mean squares (Lotz, Christensen, Cloutier, Quintanilla,

Légère, Lemieux, Lutman. Iglesias, Salonen. Sattin, Stigliani and Tei, 1996). All

regression analyses were performed using the nonlinear regression procedure of

SASTM (SAS Institute Inc., 1989).

Page 132: FACULTE UNIVERSITG QUEBEC

5.2.4. Results and discussion

The regression analyses were run separately for individual year, maize growth stage,

camera shooting height and weed infestation type.

5.2.4.1. Leaf cover estimation

One of the objectives of this work was to study the effect of plant growth stage and

the camera shooting height on the precision of leaf cover estimates. The coefficient

of variation (CV) was used for comparison of leaf cover estimates at different crop

growth stages and at different camera shooting heights. Within the same maize

growth stage, the standard error of the means was used to study the effect of the

camera shooting height.

Within crop growth stage, leaf cover estimates from images recorded at 3.3 m

above plant canopy were less variable than estimates from images recorded at 1.5 or

1.9 m (Table 4). At the four-leaf stage of maize, CV of the estirnates was 26.3 for

images recorded at 3.3 rn compared to 31.4 and 34.6 for those recorded at 1.5 and

1.9 m. respectively. The same trend was observed at the six-leaf stage of maize. At

the eight-leaf stage, precision of the estirnates slightly improved with increasing

camera shooting height (Table 4). These observations suggest that by increasing the

camera shooting height. more reliable leaf cover estirnates may be obtained. On the

basis of image resolution (Table 3), it was expected that precision of leaf cover

estimates will decrease with increasing camera shooting height. However, at the

different resolutions used (0.6, 1 .O and 3.2 mm2), the image analysis system was able

to detect maize plant part equally well at al1 camera shooting heights. This could

have been different if there had been very small or germinating plants in the plots. In

a previous study, it was shown that the image analysis system can detect plant parts

Page 133: FACULTE UNIVERSITG QUEBEC

as small as 0.5 cm2 from images recorded at 1.9 rn with high precision (Ngouajio et

al. 1998).

The red uced variability of the estimates with increasing camera shooting height

was more likeiy due to the size of area included in the images. The smaller size of

area included in images recorded at 1.5 or 1.9 m (Table 3) associated to a lack of

uniformity of rnaize stands within individual row resulted in high variability in the

number of maize plants per image. This variability was less important for images

recorded at 3.3 m. The importance of using large sample sizes have been addressed

by Kershaw (1 973) and Lemieux et al. (1 992).

The precision of maize leaf cover estimates was affected by growth stage

(Table 4). The coemcient of variation ranged from 26.3 to 31.4 at the four-leaf stage,

from 40.0 to 49.3 at the six-leaf stage and from 39.8 to 42.7 at the eight-leaf stage of

maize. This indicates that sampling at the earliest growth stage produced more

reliable estimates. This observation is in agreement with results from previous

studies (Ngouajio et al. 1998). It was shown that leaf overlapping resulting from later

plant growth stages reduces the precision of leaf cover estimates. In the same study,

it was shown that plant architecture rnay also have an important effect. In the present

work, CV values are higher than the norm usually accepted for field experiments

(Gornez and Gornez, 1984). These large values may be attributed to maize leaf

architecture (some plants with rolled leaves and others with fully expanded leaves).

The observations reported indicate that leaf cover estimates obtained by digital

image analysis are affected by both the camera shooting height and the timing (crop

growth stage) at which images are recorded. This may have an impact on yield

prediction since those estimates are used as input variable in yield prediction models.

5.2.4.2. Yield prediction

Page 134: FACULTE UNIVERSITG QUEBEC

In general, better yield predictions were obtained in 1997 compared to 1996,

irrespective of weed infestation type (Figure 1) . Values of residual mean squares

calculated from mode1 fitting varied from 92,635 to 626,603 in 1996 and from 39,739

to 227,293 in 1997. Plots infested with C. album or E. cms-galli resulted in maize

yield predictions with a higher degree of precision than plots infested with a mixture of

both weed species (Figure 1).

Effect of crop growth stage

The crop growth stage at which the images were sampled had little effect on yield

prediction (Figure 7). Values of residual mean squares for the different weed species

were in the same order for data collected at the four-, six- or eight-leaf stages of

maize. The exception to this general observation was with plots infested with the

mixture of both C. album and E. cnisgalli, and that was found only in 1996 (Figure 1).

In those plots, data from images recorded at the four-leaf stage of maize were not as

reliable as those from images recorded at later growth stages, especially with a low

camera recording height.

It was expected that since precision of leaf cover estimation was better at the

four-leaf stage of maize, the same observation could apply to yield predictions.

However, this was not the case, and in general al1 crop growth stages produced

comparable predictions. The lost of precision in the estimation of leaf cover caused

by increased leaf overlapping at increasing growth stages seerned to have had little

effect on plant competition. This suggests that the hidden leaf area caused by leaf

overlapping did not contribute much to the cornpetitive ability of the plants.

Aithough our results suggest that for yield prediction purposes leaf cover

sampling can be done at any time, for a practical point of view early evaluations

should be recommended in order to allow time for the implementation of control

measures (Knezevic et al., 1997). For this reason the eight-leaf stage of maize must

be ruled out. Under natural conditions, weeds usually emerge in flushes (Kropff and

Page 135: FACULTE UNIVERSITG QUEBEC

Spitters, 1991 ; Kropff et al., 1992; Knezevic st al., 1995). In our experiments weed

emergence was uniform and as such the effect of late emerging weeds was absent.

However, in field conditions this effect may reduce the quality of prediction when leaf

cover is evaluated too early. For this reason it might be more appropriate to sample

leaf cover at the six-leaf stage of maize rather than at the four-leaf stage. The six-leaf

stage of maize falls within the application window of most postemergence herbicides

and allow the use of other weed control options such as mechanical weed control

methods (Anonymous, 1995). The timing of leaf cover sampling at the six-leaf stage

of maize for control decisions may then be compatible with integrated weed

management programs aiming at reducing the use of herbicides.

Effect of camera shooting height

As indicated earlier, estimates of leaf cover obtained using different camera shooting

heights (Table 3) were affected by this factor (Table 4). This was reflected in the

fitting of the yield prediction model (Figure 7). Generally, the best fitting of the model

within individual year and weed infestation type was obtained with data from images

taken at 3.3 m above plant canopy. With very few exceptions, an increase in the

camera shooting height resulted in an improvement in model fitting. These results

were expected since the increase in the camera shooting height increases the area

included in individual images, and consequently reduces the variability of the leaf

cover estimates. As mentioned earlier, this observation was more likely related to the

sampling technique rather than being in herent to the resolution of images which

would have probably resulted in a reverse situation. The image resolution used in

this work (Table 3) did not affect leaf cover estimates and fitting of the model since

plant detection was good at al! camera shooting heights.

Our results indicate that an image recording height of 3.3 m above the ground

(corresponding to a resolution of about 3.2 mm2) should be preferred to lower heights.

In addition. for a practical stand point, the six-leaf stage of maize may be more

appropriate for leaf cover sampling. The combination of those two factors provided

Page 136: FACULTE UNIVERSITG QUEBEC

adequate fitting of the yield prediction model (Figure 2). Values of the variation

explained by the model (P) varied between 0.73 and 0.91, irrespective of the growing

season and type of weed present in maize plots (Table 5). Although it might be easy

from a practical point of view to agree that the six-leaf stage of maize is an adequate

timing for leaf cover sarnpling, it rernains difficult to Say that a height of 3.3 m was the

most appropriate for images recording. Since 3.3 m was the highest setting used in

this work, one could suspect that increasing further the performance of the yield

prediction mode1 could be done by increasing the image recording height (reducing

the resolution of the images). Andrieu et ai. (1997) obtained good estimates of maize

and sugar beet leaf cover from photographs taken at 10 m above the ground. Carson

et ai. (1995) demonstrated that it was possible to detect heavy infestations of yellow

hawkweed (Hieracium pratense) with high accuracy in pastures and forests using

images taken from a camera attached to an airplane flying at 2.7 km above the

ground. However, the low resolution of the images taken at such a distance

(1 m2/pixel) may not provide reliable detection of weed at early growth stages or at

moderate infestation levels. In addition, the extra cost associated with the operation

of an airplane may not be justified. It is clear that the height at which images are

taken and consequently their resolution, depends mainly on the situation being

investigated and the logistics used. At a small farm scale, a height of up to 10 m

above the ground may be envisaged since a well designed camera supporting device

attached to a tractor rnay allow to reach this height conveniently. Leaf cover

estimates from such images would probably be affected by image resolution and their

performance in yield prediction rnodels will need to be evaluated.

Page 137: FACULTE UNIVERSITG QUEBEC

Acknowledgements

Funding for this research was provided in part by the Matching lnvestment Initiative of

Agriculture and Agri-Food Canada. The senior author is a recipient of a scholarship

frorn the «Programme Canadien des Bourses d'Excellence de la Francophonie)). We

thank Mr. Jocelyn Lamarre and Ms. Michèle Martel for technical and professional

assistance and summer students for field plot work, especially hand weeding and

vegetation sampling. The weather data were supplied by Dr. Philippe Rochette.

Page 138: FACULTE UNIVERSITG QUEBEC

5.2.5 References

Anonyrnous (1 995) Mauvaises herbes: répression. Conseil des Productions

Vegdtales du Québec . Agdex 640. Ministère de l'Agriculture, des Pêcheries et de

l'Alimentation. QuBbec. 206 p

Andreasen, C., Rudemo, M. and Sevestre, S. (1997) Assessrnent of weed density at

an early stage by use of image processing. Weed Res. 37, 5-18

Andrieu, B., Allirand, J. M. and Jaggard, K. (1997) Ground cover and leaf area index

of maize and sugar beet crops. Agronomie . 17, 315-321

Baziramakenga, R. and Leroux, G. D. (1998) Economic and interference threshold

densities of quackgrass (Elytngia repens) in potato (Solarium tuberosum). Weed Sci.

46, 176-180

Brain, P. and Cousens, R. (1 990) The effect of weed distribution on predictions of

yield loss. J. Appl. Eco/. 27, 735-742

Carson, H. W., Lass, L.W., and Callihan. R. H. (1995) Detection of yellow hawkweed

(Hieracium pratense) with high resolution multispectral digital imagery. Weed

Technol. 9,477-483

Chism, W. J., Birch, J. B. and Bingham, S. W. (1992) Nonlinear regressions for

analyzing growth stage and quinclorac interactions. Weed Technoi. 6, 898-903

Cousens, R. (1 985a j A simple model relating yield loss to weed density. Ann. Appl.

Biol. 107. 239-252

Cousens, R. (1985b) An empirical model relating crop yield to weed and crop density

and a statistical cornparison with other models. J. Agnc. Sci 105, 51 3-521

Page 139: FACULTE UNIVERSITG QUEBEC

Cousens, R., Brain, P., O'Donovan, J. T. and O'Sullivan P.A. (1987) The use of

biologically realistic equations to describe the effects of weed density and relative

time of emergence on crop yield. Weed Sci. 35, 720-725

Cousens, R., Peters, N. C. 6. and Marshall, C. J. (1984) Models of yield loss-weed

density relationships. Proceedings of the 7th International Symposium on Weed

Biology, Ecoiogy and Systematics. Paris: Columa-EWRS. pp 367-374

Dew, D. A. (1972) An index of cornpetition for estirnating crop loss due to weeds.

Can. J. Plant Sci 52,921 -927

Duke, S.O. (1 996) Herbicide resistant crops : background and perspectives. /n S.O.

Du ke ed . Herbicide-resistant Crops: Agricultuml, En vironmental, Economic,

Regulatory, and Technical Aspects. Boca, Raton, Florida: CRC Press. p 1-3

Gomez, K. A. and Gomez, A. A. (1984) Statistical procedures for agricultural

research, 2nd ed, John Wiley and Sons, New York 680 pp

Hall, M. R., Swanton, C. J. and Anderson, G. N. (1992). The critical period of weed

control in grain corn (Zea mays L.). Weed Sci. 40,441-447

Kershaw, K. A. (1973) Quantitative and dynamic plant ecology, 2nd ed. New York:

Elsevier Publishing Company, Inc., 308 p

King, R. P., Lybecker, D. W., Schweizer, E. E. and Zirndahl, R. L. (1986) Bioeconornic

modeling to simulate weed control strategies for continuous corn (Zea mays). Weed

Sci. 34,972-979

Page 140: FACULTE UNIVERSITG QUEBEC

Knezevic, S. Z., Horak, M. J., and Vanderlip, R. L. (1997) Relative time of redroot

pigweed (Amaranthus retroflexos L.) emergence is critical in pigweed-sorghum

[Sorghum bicolor (L.) Moench] competition. Weed Sci 45, 502-508

Knezevic, S. Z., Weise, S. F. and Swanton, C. J. (1 995) Cornparison of ernpirical

models depicting density of Amaranthus retrofiexus L. and relative leaf area as

predictors of yield loss in maize (Zea mays L.). Weed Res. 35, 207-214

Kropff, M. J. (1 988) Modelling the effects of weeds on crop production. Weed Res.

28,465471

Kropff, M. J. and Lotz, L. A. P. (1992a) Optirnization of weed management systems:

the role of ecological models of interplant competition. Weed Technol. 6, 462-70

Kropff, M. J. and Lotz, L. A. P. (1992b) Systems approach to quantify crop-weed

interactions and their application to weed management. Agri. Syst. 40, 265-282

Kropff, M. J. and Spitters, C. J. T. (1991 ) A simple model of crop loss by weed

competition from early observations of relative leaf area of the weeds. Weed Res. 31,

97-1 05

Kropff, M. J., Lotz, L. A. P., Weaver, S. E., Bos, H. J., Wallinga, J. and Migo, T.

(1995) A two-parameter model for prediction of crop loss by weed competition from

early observations of relative leaf area of weeds. A m . Appl. Biol. 126, 329-46

Kropff, M. J. , Weaver, S. E. and Smits, M. A. (1992) Use of ewphysiological models

for crop-weed interference: Relations amongst weed density, relative time of weed

emergence relative leaf area, and yield loss. Weed Sci. 40, 296-301

Lemieux, C., Cloutier, D. C. and Leroux, G. D. (1992) Sampling quackgrass (Hytrigia

repens) populations. Weed Sci. 40, 534-541

Page 141: FACULTE UNIVERSITG QUEBEC

Lemieux, C., Panneton, B. and Benoit, D. (1 995) L'analyse d'image en malherbologie.

Actes Colloque international sur la prévision et le dépistage des ennemis des

cultures, Québec, Octobre1 0-1 2, pp.201-208

Leroux, G. D., Laganiére, M. and Vanasse, A. (1990) Méthodes alternatives de

répression des mauvaises herbes dans les cultures fourragéres, cer6alières. le maïs

et le soya. Rapport de recherches, ministére de l'Agriculture des Pêcheries et de

l'Alimentation du Québec, Québec, G1 R 4x6, 135 p

Lotz, L. A. P., Christensen, S., Cloutier, D., Quintanilla, C. F., Légère, A., Lemieux,

C., Lutman, P. J. W., Iglesias, A. P., Salonen, J., Sattin, M., Stigliani, L. and Tei, F.

(1 996) Prediction of the competitive effects of weeds on crop yields based on the

relative leaf area of weeds. Weed Res. 36, 93-101

Lotz, L. A. P., Kropff, M. J., Bos, B. and Wallinga, J. (1992) Prediction of yieid loss

based on relative leaf cover of weed. Proceedings First international Weed Control

Congress Melbourne, Febniary 1 7-22, 2:290-293

Lotz, L. A. P., Kropff, M. J., Wallinga, J., Bos, H. J. and Groeneveld, R. M. W. (1994)

Techniques to estirnate relative leaf area and cover of weeds in crops for yield

prediction. Weed Res. 34, l67-l75

Lotz, L. A. P., Wallinga, J. and Kropff, M. J. (1995) Crop-weed interaction:

quantification and prediction. In D. M. Glen, M. P. Greaves and H. M. Anderson eds.

Ecology and lntegrated Farming Systerns. London, pp 31 -47

Lutman, P. J. W. (1 992) Prediction of the competitive ability of weeds on the yield of

several spring-sown arable crops. Actes IXerne colloque international sur la biologie

des mauvaises herbes, Dijon, Paris, France. pp 337-345

Page 142: FACULTE UNIVERSITG QUEBEC

Ngouajio, M., Lemieux. C., Fortier, J. J., Careau, D. and Leroux, G. D. (1998)

Validation of an operator-assisted module to measure weed and crop leaf cover by

digital image analysis. Weed Technol. 12,446-453

Ngouajio, M., Leroux, G. D. and Lemieux, C. (1999) A flexible sigmoidal model

relating crop yield to weed relative leaf cover and its cornparison with other nested

models. Weed Res. 00,000-000 (accepted)

[SAS] Statistical analysis Systems (1 989) SAWSTATTM Usefs Guide, Version 6, 4th

ed. Volume 2. Cary, NC: Statistical Analysis Systems lnstitute 846 p

Swinton, S. M., and Lyford, C. P. (1996) A test for choice between hyperbolic and

sigmoidal models of crop yield response to weed density. J. Agd. Biol. Environ. Stat.

1, 97-106

Wiles, L. J., Gold, H. J. and Wilkerson, G. G. (1993) Modelling the uncertainty of

weed density estirnates to improve post-ernergence herbicide control decisions,

Weed Res. 33,241 -252

Page 143: FACULTE UNIVERSITG QUEBEC

Table 1. Total monthly rainfall and rnean temperature during the 1996 and 1997

growing seasons, and long term average (30 years)=

Rainfall (mm) Temperature (OC)

Month

1996 1997 Long 1996 1997 Long

term term

May 73.1 96.0 108.2 10.7 8.8 10.8

June 142.5 62.0 111.3 17.8 17.1 16.4

July 235.8 69.0 125.4 19.3 19.3 19.2

August 76.0 166.0 11 6.3 19.1 17.8 17.9

September 108.0 68.0 II 8.3 14.3 13.3 12.5

October 86.0 48.0 98.1 6.3 6.7 6.4

'Data recorded at the Quebec City airport about 10 km from the experimental plots.

Page 144: FACULTE UNIVERSITG QUEBEC

Table 2. Weed growth stage at the four-, six-, and eight-leaf stage of maize growth

Weed

speciesa

Maize growth stageb

Fou r-leaf Six-leaf Eig ht-leaf

Number of fully expanded leaves

1996

Chenopodium album 2to 10 6 to 22 14 to 40

Echinochloa crus-galli 2 to 6 5to 12 7 to 14

1997

Chenopodium album 2 to 6 5to 10 8 to 18

Echinochloa crus-galli 2 to 4 4 to 7 6 to 10

'The experiments included 15 plots of Chenopodium album, 15 plots of Echinochloa

crvs-ga//i and 15 plots of a mixture of both species grown at equal densities.

b ~ a i z e reached the four-leaf stage (June 06 in 1996 and June 11 in 1997), the six-

leaf stage (June 12 in 1996 and June 16 in 1997), and the eight-leaf stage (June 18 in

1996 and June 23 in 1997).

Page 145: FACULTE UNIVERSITG QUEBEC

Table 3. The effect of camera shooting height on the area covered by the picture, the

spatial resolution of images and maize leaf cover estimates

Camera Area per image Image Maize leaf

s hooting spatial cover correction

heig ht Length Width Area resolutiona facto?

(m) (ml (m) (m2) (mm2 pixel-') (?"d

a The image spatial resolution was obtained by dividing the area included in the

image by the number of pixels in the image (514,096).

The correction factor (in percent) at a given height was calculated as the difference

between the area occupied by a maize plant in each image and the area occupied by

a maize plant at the field scale.

Page 146: FACULTE UNIVERSITG QUEBEC

Table 4. The effect of the camera shooting height on maize average leaf cover

estimates (% ground cover) at different growth stages

Maize growth Heighta Mean Standard c.v.~ stage (m) error

Six- leaf

Eig ht-leaf

a Camera shooting height

C.V. coefficient of variation.

Page 147: FACULTE UNIVERSITG QUEBEC

Table 5. Regression parameters calculated from maize yield prediction using the

relative leaf cover of weeds and the sigmoidal model (equation 1). Data were

recorded at the six-leaf stage (fully expanded leaves) of maize with the camera at 3.3

rn above plant canopy.

Year Weed

infestation

Regression parameters

1996

C. album

E. crus-galli

C. album + E. crus-galli

C. album

E. crus-galli

C. album + E. crus-galli

Page 148: FACULTE UNIVERSITG QUEBEC

30 l C. album

E. crus- galli

C. album

E. crus- galli

C. album and E. crus- galli

Maize growth stage

Figure 1 . Residual mean squares (RMS) obtained by fitting the yield prediction rnodel

with maize yield and weed relative leaf cover. Leaf cover estimates were obtained

from images recorded at different heights and crop growth stages, using a digital

image analysis technique. The regression mode1 used was:

Y=[Yo+a(L J(l -~~)y) ' ] / [1 +a(L J(I - Q y ) Y .

Page 149: FACULTE UNIVERSITG QUEBEC

] C. album . 5

I I 1 I

C. album ~ l u s

C. album

E. crus-galli

C. album plus E. crus-galli

Weeds relative leaf cover

Figure 2. Maize yield as a function of weed relative leaf cover estimated from images

taken 3.3 m above the ground at the six-leaf stage of maire development in 1996 and

1997. The model used was the following :

Y=[Yo+a(L J(l - L , ) ~ ) ~ I [1 +a(L J( l - ~ , ) ~ ) q .

Page 150: FACULTE UNIVERSITG QUEBEC

CHAPITRE 6

CONCLUSION GÉNÉRALE

(SYNTHÈSE)

Page 151: FACULTE UNIVERSITG QUEBEC

Au cours de la dernière décennie, l'apparition de mauvaises herbes résistantes

aux herbicides, la nécessité d'optimiser les coûts de production et les préoccupations

de protection de l'environnement ont mis des pressions importantes sur les

producteurs pour réduire l'utilisation des herbicides de synthèse (Swanton et Weise,

1991 ; Kropff et Lotz, 1992a, 1992b; Maxwell et Mortimer, 1994; Duke, 1996; Shaner,

1997). Parmi les pistes de solution envisagées pour atteindre ce but, la rationalisation

de I'utilisation des herbicides, qui consiste à ne traiter que lorsque c'est nécessaire,

avec la dose requise et sans sacrifier les rendements, figure en bonne place

(Swanton et Weise, 1991; Kropff et Lotz, 1992a, 1992b; Dieleman et al., 1995;

Lemieux et a1.,1995; Lotz et al., 1995). Toutefois, la seule façon de convaincre les

producteurs de remplacer la pratique géneralisée de traitements préventifs en

prélevée par des traitements curatifs de postlevée est de mettre à leur disposition un

outil efficace et fiable de dépistage et de quantification des mauvaises herbes et un

modèle de prédiction des pertes. Le présent travail a été entrepris dans le but de

contribuer au développement d'une telle technologie.

La surface foliaire des mauvaises herbes a déjà été démontrée comme étant

un indice fiable de leur taux d'infestation (Lotz et ai., 1994; Dieleman et al., 1995;

Knezevic et al., 1995). Cependant, à cause de son caractère destructif et de

l'ampleur des matripulations requises, une variable alternative à savoir la couverture

foliaire a été proposée (Kropff, 1988; Lotz et al., 1994, 1995). La couverture foliaire

est la surface obtenue par projection verticale des feuilles sur le sol. Plusieurs

chercheurs ont développé des méthodes d'estimation de la couverture foliaire des

plantes. Ces méthodes sont soit tout simplement visuelles soit font recours à un

cadre quadrillé que l'on place sur la parcelle (Lotz et al., 1994, 1995 ou sur une

photographie de cette dernière (Lutman, 1992), afin de compter les carreaux couverts

par chaque espèce. Ces techniques restent très exigeantes, et donc, inappropriées

pour une utilisation pratique. Lemieux et al. (1995) ont proposé I'utilisation de

l'analyse d'images numériques pour déterminer la couverture foliaire des plantes.

Page 152: FACULTE UNIVERSITG QUEBEC

Notre première série d'expériences consistait donc a Btudier cette technique.

Entre autres, il était question (1) de savoir si oui ou non les donnbes obtenues par

analyse d'images fournissaient une bonne reprbsentation de la couverture foliaire

réelle et (2) d'étudier la relation qui existe entre la couverture foliaire ainsi obtenue et

la surface foliaire.

Grâce à notre essai de laboratoire avec des cultures et des mauvaises herbes

simulées nous avons démontré de maniére convaincante que le système d'analyse

d'images développé était efficace et fiable. La technique d'analyse d'image a permis

de détecter avec grande précision des parties de plantes aussi petites que 0'5 cm2.

Les régressions linéaires simples entre les données fournies par le système et les

données réelles ont produit des valeurs de ? supérieures B 0'98. Une telle précision

en laboratoire était nécessaire pour statuer définitivement sur la fiabilité du systéme.

Récemment. d'autres travaux de recherche sur I'utilisation de la technique d'analyse

d'images pour déterminer la couverture foliaire des plantes ont été publiés (Carson et

ai., 1995; Andreasen et al., 1997; Andrieu et al., 1997). Ces travaux ne font toutefois

aucune corrélation entre les données obtenues par analyse d'images et les données

réelles. A notre avis, cette démonstration devrait constituer un préalable à l'utilisation

des techniques développées in situ. La validation du systerne d'analyse d'images sur

le terrain nous a démontré de manière indéniable qu'aux stades précoces de

croissance, la couverture foliaire des plantes était fortement corrélée à leur surface

foliaire, et que cette relation pouvait être affectée par l'architecture des plantes

étudiées. Que ce soit en infestation contrôlée ou naturelle, nous avons observe des

valeurs de ? supérieures a 0.89. Toutefois, la prkision de ces estimés diminuait

avec l'avancement du stade de croissance des plantes, et l'écart entre la surface

foliaire et la couverture foliaire devenait de plus en plus grand. Cet écart entre les

deux variables était de toutes les façons prévisible dans la mesure ou la

superposition des feuilles augmente avec l'avancement du stade de croissance des

plantes.

Page 153: FACULTE UNIVERSITG QUEBEC

Les résultats de nos essais sur le terrain nous ont définitivement convaincu de

la qualité du système d'analyse d'images. Ce système pourrait d'ailleurs trouver

d'autres applications potentielles en recherche, notamment (1 ) comme outil dans

l'étude de la compétitivité entre les espéces végétales, et (2) comme support objectif

et quantitatif aux obsewations visuelles de la végétation.

Ainsi, dans le premier volet de nos travaux, nous avons démontr6 de maniére

indéniable que les données de couverture foliaire fournies par le système d'analyse

d'images sont précises d'une part, et d'autre part qu'elles sont fortement corrélées

aux données de surface foliaire. Aussi, la technique d'analyse d'images est à la fois

non destructive et moins laborieuse que la mesure de la surface foliaire. Ces

observations, associées aux propositions d'autres chercheurs (Lotz et al., 1994,

1995; Kropff, 1998) nous ont amené logiquement à envisager de remplacer la surface

foliaire relative des mauvaises herbes par leur couverture foliaire relative dans les

modèles prévisionnels. Une telle opération ne pouvait cependant être justifiée que

par des tests de validation dans des conditions variées d'infestation et

d'environnement. Pour répondre à cette exigence, une série d'essais au champ a été

menée en 1996 et 1997, pour tester et comparer l'efficacité de la surface foliaire

relative et de la couverture foliaire relative des mauvaises herbes en prédiction des

pertes de rendement chez le maïs (Zea mays).

Les résultats de ces travaux ont démontré que la surface foliaire relative des

mauvaises herbes est un bon indice de mesure de l'effet de la compétition entre les

mauvaises herbes et les cultures. Les régressions avec le modèle hyperbolique à

deux paramètres (Kropff et Lotz, 1992b; Lotz et al., 1992; Kropff et al.. 1995;) ont

donné des coefficients de détermination entre 0'61 et 0,92 au cours des deux années

et sous des conditions d'infestation très variables. Cette observation en elle-même

ne constituait pas une nouveauté dans la mesure ou des résultats similaires ont été

précédemment rapportés par d'autres chercheurs (Lotz et al.. 1994; Dieleman et ai.,

1995; Knezevic et al., 1995). Par contre. l'efficacité de la couverture foliaire relative

des mauvaises herbes dans les modèles prévisionnels restait à démontrer. La

Page 154: FACULTE UNIVERSITG QUEBEC

substitution de la surface foliaire relative des mauvaises herbes par leur couverture

foliaire relative s'est soldée par une baisse de la valeur des paramétres q et m

(coefficient de dégâts relatif des mauvaises herbes et perte maximale prédite de

rendement) du modèle. En dépit de cette observation, le pourcentage de variation

expliqué par le modéle (de 0,67 à 0,90) était du même ordre de grandeur que les

valeurs obtenues avec la surface foliaire relative. Sur la base de la somme des

carrés des residus, aucune variable ne pouvait être déclarée supérieure à l'autre en

prédiction des pertes de rendement. Ces r6sultats nous ont permis de demontrer

l'efficacité des données de couverture foliaire en prédiction des pertes de rendement,

justifiant ainsi leur utilisation potentielle dans les modèles prévisionnels.

Si dans le premier volet étudié nous avons démontré qu'il est possible

d'estimer la couverture foliaire des plantes de manière rapide et pr6cise par anelyse

d'images, dans le second nous avons demontré que les données ainsi obtenues

permettent de prédire efficacement les rendements des cultures. Ces deux faits

constituent une importante ouverture pour l'utilisation pratique de la couverture

foliaire des plantes pour prédire les pertes de rendement dans des systèmes de lutte

intégrée qui visent la réduction des intrants en herbicides. Cependant, la mise sur

pied d'une telle technologie nécessiterait des raffinements majeurs parmi lesquels (1)

l'amélioration des techniques d'échantillonnage et d'analyse d'images, (2) le meilleur

choix de la période d'échantillonnage et (3) le developpement et la validation des

modèles empiriques appropriés.

Le troisième volet de notre travail a été initie afin d'apporter une réponse à ce

dernier point. II a porté sur le développement et la validation d'un modèle de

pr&d iction des pertes utilisant la couverture foliaire relative des mauvaises herbes.

A l'issue de cette étape, un modèle semi-empirique, sigmoïdal et flexible a été

dérivé à partir du modèle proposé par Morgan et al. (1975) et repris par Swinton et

Lyford (1996). La construction du modèle s'est faite en tenant compte de plusieurs

facteurs qui gouvernent la compétition entre les espèces végétales. Ceci constitue à

Page 155: FACULTE UNIVERSITG QUEBEC

notre connaissance le premier modèle de prédiction des pertes expressément

développé pour la couverture foliaire relative des mauvaises herbes. Une

démonstration a été faite pour prouver que ce modèle comportait plusieurs sous-

modèles qui lui sont emboîtés, parmi lesquels le modéle linéaire simple, le modèle

hyperbolique, le modèle sigmoïde symétrique et le modéle logistique asymétrique.

Lors de tests de validation avec les données de terrain, les performances du rnodéle

ont supplanté celles de tous les sous-modèles à l'exception du modéle hyperbolique

avec lequel il était difficile de se prononcer sur la base de nos données. Le sous-

modèle hyperbolique (à trois paramètres) se positionnait aussi bien que le modèle

complet (A quatre paramètres). Mais compte tenu du caractère semi-empirique du

nouveau modèle (modèle complet). de sa grande flexibilité et de sa capacité A tenir

compte des cas spéciaux qui échapperaient au modèle hyperbolique. nous avons

recommandé son utilisation comme support à la prise de d8cision. Ceci pourra

amener à réduire au minimum les risques d'une mauvaise décision. En dehors de

l'optimisation du modèle prévisionnel, ces risques seront davantage réduits si le choix

de la période d'échantillonnage des images et leur résolution étaient également

optimis6.

Cette préoccupation Ci fait l'objet du quatrième volet de notre travail. II semblait

évident qu'6chantillonner les plantes trop tard en saison ne servirait ii rien, car il

serait inutile d'intervenir. De même, un échantillonnage trop hâtif nous priverait d'une

partie de l'information utile. II fallait donc trouver un compromis entre ces deux

extrêmes, en tenant compte de l'efficacité des interventions. En ce qui concerne la

résolution des images nous savions qu'avec une grande hauteur de prise de vue, il

est difficile de détecter des plantes individuelles; par contre, la superficie couverte par

chaque image est plus grande. Au fur et a mesure que la hauteur est réduite, il est

de plus en plus facile de détecter les mauvaises herbes de plus petite taille, mais la

surface couverte par chaque image est réduite. Une fois de plus il fallait trouver un

compromis entre ces situations extrêmes, et garder à l'esprit l'aspect pratique de la

chose.

Page 156: FACULTE UNIVERSITG QUEBEC

Les résultats obtenus lors de ce quatriéme et dernier volet de notre travail

nous ont clairement démontre que pour prédire les pertes de rendement du maïs, la

période d'échantillonnage de la couverture foliaire a peu d'effet. Cependant, pour

des raisons pratiques dont I'effkacitb des interventions, le stade six-feuilles de la

culture serait mieux approprié. Ce stade est propice dans la mesure où il se situe

d'une part dans la pkriode critique de nuisibilité des mauvaises herbes sur le maïs

(Hall et ai., 1992), et d'autre part à l'intérieur de la fenêtre d'application d'un grand

nombre d'herbicides de postlevee.

Pour ce qui est de la hauteur de prÎse de vue, les meilleures prédictions ont été

obtenues avec les images prises à 3,3 m du sol. Malheureusement, ceci représentait

la hauteur maximale de prise de vue testée lors de nos essais. II serait interessant

de voir ce qui se passe avec les images prises plus haut. Toutefois, dans le choix de

la hauteur de prise de vue, il faudra toujours avoir présent B l'esprit la logistique

requise et l'aspect pratique de la chose dans une unité moyenne de production.

Nous estimons qu'a 10 m de hauteur et moins, il est possible de concevoir un support

à caméra portable par un tracteur agricole. Au-delà de cette limite, il faudra sûrement

envisager d'autres types de systèmes pour porter la caméra.

La combinaison de la période optimale d'échantillonnage (stade six-feuilles du

maïs), de la meilleure hauteur de prise de vue des images (3'3 m) et l'utilisation du

nouveau modèle prévisionnel ont amélioré de manière satisfaisante les prédictions de

rendement du mals. Les ajustements des donnees au modèle ont permis d'obtenir

des coefficients de détermination de 0'73 0'91, indépendamment du type

d'infestation des mauvaises herbes et de la saison de culture. Ces résultats étaient

très satisfaisants et nous ont permis de démontrer qu'il est tout à fait possible

d'améliorer les prédictions de rendement des cultures en choisissant judicieusement

certains facteurs et en les optimisant.

L'ensemble des résultats présentés dans cette thèse démontre qu'avec la

technique d'analyse d'images il est possible d'estimer rapidement et avec précision la

Page 157: FACULTE UNIVERSITG QUEBEC

couverture foliaire des plantes, d'utiliser les données ainsi obtenues dans des

modéles mathématiques appropriés pour prédire les rendements des cultures tôt au

début de la saison. et d'améliorer la qualité des prédictions grâce Ci un choix judicieux

de la période d'échantillonnage des images et de leur résolution. La mise en

commun de tous ces éléments pourra conduire A la mise au point d'un outil

permettant de décider si oui ou non une intervention est justifide. Ce n'est qu'à ce

moment que l'on pourra entrevoir le passage de la lutte contre les mauvaises herbes

de l'ère des traitements préventifs de prélevée A celle des interventions curatives de

postlevée. Mais avant d'y arriver, la recherche devra relever des défis majeurs. Des

études sérieuses devront être entreprises afin d'automatiser complètement les

analyses d'images. Les analyses d'images devront être intégrées aux modèles

prévisionnels appropriés pour des prises de décision en temps réel. L'outil développé

devra quitter le milieu expérimental pour des tests extensifs de validation a la ferme.

Page 158: FACULTE UNIVERSITG QUEBEC

RÉFÉRENCES BIBLIOGRAPHIQUES

Page 159: FACULTE UNIVERSITG QUEBEC

Andreasen, C., Rudemo, M. et Sevestre, S. ( 1 997) Assessrnent of weed density at an

early stage by use of image processing. Weed Res. 37, 5-1 8

Andrieu, B., Allirand, J. M. et Jaggard, K. (1 997) Ground wver and leaf area index of

maize and sugar beet crops. Agron. 17, 31 5-321

Anonyme 1, (1 989) Pesticides : la bonne dose. Ministère des approvisionnements et

sewices Canada. Québec, Le Groupe Média Science p l 1

Anonyme 2, ( 1 984) Maïs, Culture. Agdex 1 1 1/20. Québec, Canada: Conseil des

Productions Végétales du Québec 21 p

Anonyme 3 ( 1 995) Mauvaises herbes: répression. Conseil des Productions

Végétales du Québec . Agdex 640. Ministère de l'Agriculture, des Pêcheries et de

l'Alimentation. Québec. 206 p

Baziramakenga, R. et Leroux, G. D. (1998) Economic and interference threshold

densities of quackgrass (Elytrigia repens) in potato (Solanum tuberosurn). Weed Sci.

46, 176-180

Borowiak, O. S. ( 1 989) Mode1 discrimination for nonlinear regression models. Marcel

Dekker, New York USA 177 p

Brain, P. et Cousens, R. (1990) The effect of weed distribution on predictions of yield

loss. J. Appl. ECO/. 27, 735-742

Carson, H. W., Lass, L. W. et Callihan. R. H. (1995) Detection of yellow hawkweed

(Hieracium pratense) with hig h resolution multispectral digital imagery . Weed

Technol. 9,477-483

Page 160: FACULTE UNIVERSITG QUEBEC

Chism, W. J., Birch, J. B. et Bingham, S. W. (1992) Nonlinear regressions for

analyzing growth stage and quinclorac interactions. Weed Technol. 6, 898-903

Cousens, R. (1985a) A simple rnodel relating yield loss to weed density. Ann. Appl.

Biol. f 07, 239-252

Cousens, R. (1985b) An empirical model relating crop yield to weed and crop density

and a statistical cornparison with other models. J. Agnc. Sci 105, 51 3-521

Cousens R (1991) Aspects of the design and interpretation of competition

(interference) experiments. Weed Technology 5, 664-673.

Cousens, R., Brain, P., OtDonovan, J. T. et OISullivan P.A. (1987) The use of

biologically realistic equations to describe the effects of weed density and relative

time of emergence on crop yield. Weed Sci 35, 720-725

Cousens, R., Peters, N. C. B. et Marshall, C. J. (1984) Models of yield loss-weed

density relations hips. Proceedings of the 7th International Symposium on Weed

Biology, Ecology and Systematics. Paris: Columa-EWRS. pp 367-374

Dew, D. A. (1972) An index of competition for estimating crop loss due to weeds.

Can. J. Plant Sci. 52,92 1 -927

Dieleman, A., Hamill A. S., Weise, S. F. et Swanton C. J. (1995) Empirical models of

pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed Sci. 43,

6i2-618

Duke, S.O. (1 996) Herbicide resistant crops : background and perspectives. In S.O.

Du ke ed . Herbicide-resistan t Crops: Agticultural, En vironmental, Economic,

Regulatom and Technical Aspects. Boca, Raton, Florida: CRC Press. p 1-3

Page 161: FACULTE UNIVERSITG QUEBEC

Gomez, K. A. et Gomez, A. A. (1 984) Statistical procedures for agk~ l t u ra l research,

2nd ed, John Wiley and Sons, New York 680 pp

Hall, M. R., Swanton, C. J. et Anderson, G. N. (1992) The critical period of weed

control in grain corn (Zea mays L.). Weed Sci. 40 ,44147

Judge, G. G., Hill, R. C., Griffiths, W. E., Lütkepohl, H. et Lee, T. C. (1988)

Introduction to the theory and practice of econometdcs, 2nd ed. John Wiley 8 Sons

Ltd, New York 1024 p

Kershaw, K. A. (1973) Quantitative and dynamic plant ecology, 2nd ed. New York:

Elsevier Publishing Company, Inc., 308 p

King, R. P., Lybecker, D. W., Schweizer, E. E. et Zimdahl, R. L. (1986) Bioeconomic

modeling to simulate weed control strategies for continuous corn (Zea mays). Weed

Sei. 34, 972-979

Knezevic, S. Z., Horak, M. J. et Vanderlip, R. L. (1997) Relative time of redroot

pigweed (Amaranthus retroflexus L.) emergence is critical in pigweed-sorghum

[Sorghum bicolor (L. ) Moench] corn petition. Weed Sci. 45, 502-508

Knezevic, S. Z., Weise, S. F. et Swanton, C. J. (1995) Cornparison of empinkal

models depicting density of Amaranthus retroflexus L. and relative leaf area as

predictors of yield loss in maize (Zea mays L.). Weed Res. 35, 207-214

Kropff, M. J. (1 988) Modelling the effects of weeds on crop production. Weed Res.

28,465-471

Kropff, M. J. et Lotz, L. A. P. (1992a) Optimization of weed management systems: the

role of ecological models of interplant cornpetition. Weed Technol. 6, 462-70

Page 162: FACULTE UNIVERSITG QUEBEC

Kropff, M. J. et Lotz, L. A. P. (1992b) Systems approach to quantify crop-weed

interactions and their application to weed management. Ayn. Syst. 40, 265-282

Kropff, M. J. et Spitters, C. J. T. (1991) A simple model of crop loss by weed

competition from early observations of relative leaf area of the weeds. Weed Res. 31,

97-1 05

Kropff, M. J., Lotz, L. A. P., Weaver, S. E., Bos, H. J.. Wallinga, J. et Migo, T. (1995)

A two-parameter model for prediction of crop loss by weed competition from earîy

observations of relative leaf area of weeds. Ann. Appl. Biol. 126, 329-46

Kropff, M. J., Weaver, S. E. et Smits, M. A. (1992) Use of ecophysiological models for

crop-weed interference: Relations amongst weed density, relative time of weed

emergence relative leaf area, and yield loss. Weed Sci. 40,296-301

Lemieux, C., Cloutier, D. C. et Leroux, G. D. (1992) Sampling quackgrass (Elytngia

repens) populations. Weed Sci. 40, 534-541

Lemieux, C., Panneton, B. et Benoit, D. (1995) L'analyse d'image en malherbologie.

Actes Colloque international sur la prévision et le dépistage des ennemis des

cultures, Québec, Octobre 10-1 2, pp.201-208

Leroux, G. D., Laganière, M. et Vanasse, A. (1990) Méthodes alternatives de

répression des mauvaises herbes dans les cultures fourragères, céréalières, le maïs

et le soya. Rapport de recherches, ministère de l'Agriculture des Pêcheries et de

l'Alimentation du Québec, Québec, G I R 4x6, 135 p

Lotz, L. A. P., Christensen. S., Cloutier, D., Quintanilla, C. F., Légère, A., Lemieux,

C., Lutman, P. J. W., Iglesias, A. P., Salonen, J.. Sattin, M., Stigliani, L. et Tei, F.

(1996) Prediction of the competitive effects of weeds on crop yields based on the

relative leaf area of weeds. Weed Res. 36,934 01

Page 163: FACULTE UNIVERSITG QUEBEC

Lotz, L. A. P., Kropff, M. J., Bos, B. et Wallinga, J. (1992) Prediction of yield loss

based on relative leaf cover of weed. Proceedings Fifst International Weed Control

Congress Melbourne, Febniary 1 7-22, 2:290-293

Lotz, L. A. P., Kropff, M. J., Wallinga, J., Bos, H. J. et Groeneveld, R. M. W. (1994)

Techniques to estimate relative leaf area and cover of weeds in crops for yield

prediction. Weed Res. 34, 167-1 75

Lotz, L. A. P., Wallinga, J. et Kropff, M. J. (1995) Crop-weed interaction: quantification

and prediction. In D. M. Glen, M. P. Greaves and H. M. Anderson eds. Ecology and

lntegrated Fanning Systems. London: John Wiley and Sons Ltd. pp 31-47

Lutman, P. J. W. (1992) Prediction of the cornpetitive ability of weeds on the yield of

several spring-sown arable crops. Actes IXème colloque international sur la biologie

des mauvaises herbes, Dijon, Paris, France. pp 337-345

Maxwell, B. D. et Mortimer, A. M. (1994) Selection for herbicide resistance. ln Powles,

S. B., et J. A. M. Holtum eds, Herbicide resistance in plants : biology and

biochemistry. Lewis Publishers, London, p. 1-25

Morgan. P. H., Mercer, L. P. et Flodin, N. W. (1975) General model for nutritional

responses of higher organisms. Proc. Nat. Ac. Sci. 72, 4327-4331

Morin, C., Blanc. D. et Darmency, H. (1993) Limits of a simple model to predict yield

losses in maize. Weed Res. 33,261 -268

Ngouajio, M., Lemieux, C. et Leroux, G. D. (1999) Prediction of corn (Zea mays)

yield loss from early observations of the relative leaf area and the relative leaf cover

of the weeds. Weed Sci 47, 000-000 (in press)

Page 164: FACULTE UNIVERSITG QUEBEC

Ngouajio, M., Leroux, G. D. et Lemieux, C. (1 999) A flexible sigmoidal model relating

crop yield to weed relative leaf cover and its comparison with other nested models.

Weed Res. 00, 000-000 (accepted)

Ngouajio, M., Lemieux, C., Fortier, J. J., Careau, D. et Leroux, G. D. (1998) Validation

of an operator-assisted module to measure weed and crop leaf cover by digital image

analysis. Weed Technol. 12, 446-453

Ratkowsky, D. A. (1983) Nonlinear regression modeling: a unified practical approach.

Marcel Dekker, New York

Ruget, F., Bonhomme, R. et Chartier, M. (1996) Estimation simple de la surface

foliaire de plantes de maïs en croissance. Agron. 16, 553-562

[SAS] Statistical analysis Systems (1 989) SAS/STAPM User's Guide, Version 6, 4th

ed. Volume 2. Cary, NC: Statistical Analysis Systems lnstitute 846 p

Shaner, D. L. (1 997) Herbicide resistance in North America : history, circumstances of

developrnent and current situation. In DePrado, R., J. Jomn, and L. Garcia-Torres

eds, Weed and crop resistance to herbicides, Kluwer Academic Publishers London

p29-38

Silvertown, J. W. (1982) Introduction to plant population ecology. Longman Inc., New

York

Snedecor. G. W. et Cochran, W. G. (1 980) Statistical Methods. 7th ed. Ames, Iowa

State University Press. 507 p

Spitters, C. J. T.. Kropff, M. J. et De Groot, W. (1 989) Competition between maize an

Echinochloa crus-galii anal ysed by a h yperbolic regression model. Ann. Appl. Bol.

115,541-551

Page 165: FACULTE UNIVERSITG QUEBEC

Swanton, C. J., et Weise, S. F. (1991) lntegrated weed management : the rationale

and approach. Weed Technol. 5,657-663

Swanton, C. J., Harper, K. N. et Anderson, R. L. (1993) Crop losses due to weeds in

Canada. Weed Technol. 7,537-542

Swinton, S. M., et Lyford, C. P. (1996) A test for choice between hyperbolic and

sigrnoidal models of crop yield response to weed density. J. Agri Biol. Environ. Stat.

1, 97-106

Tanji, A., Zimdahl, R. L. et Westra, P. (1997) The cornpetitive ability of wheat

(Tnticurn aestivum) compared to rigid ryegrass (Lolium rigidum) and cowcockle

(Vaccana hispanica). Weed Sci. 45,481-487

Tisdell, C. A. (1984) Crop loss elasticity in relation to weed density and control. Agri.

S p t . 13, 161-166

Wiles, L. J. et Wilkerson, G. G. (1991) Modelling competition for light between

soybean and broadleaf weeds. Agn. Syst. 35,37-51

Wiles, L. J., Gold, H. J. et Wilkerson, G. G. (1993) Modelling the uncertainty of weed

density estimates to improve post-emergence herbicide control decisions. Weed

Res. 33,241-252

Wilson, B. J., Wright, K. J., Brain. P., Clement, M. et Stephen, E. (1995) Predicting

the cornpetitive effects of weed and crop density on weed biomass, weed production

and crop yield in wheat. Weed Res. 35,265-278

Page 166: FACULTE UNIVERSITG QUEBEC

Van Acker RC, Lutman PJW & Froud-Williams RJ (1997) Predicting yield loss due to

interference from two weed species using eariy observations of relative leaf area.

Weed Research. 37.287-299.

Zimdahl, R. L. (1 980) Weed-crop cornpetition: a review. international Plant Protection

Center, USA. 196p