Evaluation de la robustesse de circuits intégrés vis-à-vis...

26
*pQpUDOLWpVVXUOHVGpFKDUJHV pOHFWURVWDWLTXHV

Transcript of Evaluation de la robustesse de circuits intégrés vis-à-vis...

Page 1: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

*pQpUDOLWpVVXUOHVGpFKDUJHV

pOHFWURVWDWLTXHV

,QWURGXFWLRQ

0RGqOHV GH GpFKDUJHV

7HVWV HQ TXDOLILFDWLRQ

7HVWV G¶DLGH j OD FRQFHSWLRQ

'LVFXVVLRQ

3KpQRPqQHV SK\VLTXHV HW PRGHV GH GpIDLOODQFHV DVVRFLpV DX[ (6'

(IIHWV SDUDVLWHV GX ERvWLHU

5pSRQVH G¶XQ WUDQVLVWRU 026 j XQH GpFKDUJH pOHFWURVWDWLTXH

0RGHV GH GpIDLOODQFHV HW WHFKQLTXHV G¶DQDO\VHV

3URWHFWLRQ GHV FRPSRVDQWV pOHFWURQLTXHV FRQWUH OHV GpFKDUJHV

pOHFWURVWDWLTXHV

3URWHFWLRQ GHV FLUFXLWV LQWpJUpV

6WUXFWXUHV GH SURWHFWLRQ

3URFpGpV WHFKQRORJLTXHV

&RQFOXVLRQV

Page 2: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

,QWURGXFWLRQ

La première partie du document décrit les modèles de tests ESD indispensables en

phase de qualification des structures de protections et des circuits intégrés com-

plexes. Ces tests sont complétés par deux autres modèles moins industriels mais

respectivement capables de caractériser le fonctionnement de composants élémen-

taires et de rendre compte de l’effet du boîtier en termes de tenue aux décharges

électrostatiques.

La partie suivante énonce les phénomènes physiques associés à l’écoulement des

charges électriques dans les composants. Elle prend comme exemple le fonction-

nement d’un transistor GGNMOS (Grounded Gate NMOS) soumis à une ESD et

commente sa caractéristique courant-tension I=f(V). Elle donne également les mo-

des de défaillances spécifiques aux ESD et énumère les techniques d’analyses sus-

ceptibles de les révéler.

La synthèse s’achève par l’étude des méthodes de protection « on-chip » des cir-

cuits intégrés contre les ESD. Des règles sont à respecter pour concevoir des

structures de protection adéquates puis pour les insérer sur le circuit intégré à pro-

téger. Une attention particulière sera réservée aux nouvelles technologies et aux

évolutions qu’elles entraînent.

0RGqOHV GH GpFKDUJHV

Pour qualifier la tenue d’un composant aux décharges électrostatiques, il est néces-

saire de disposer de modèles représentant cet environnement hostile dans lequel

évoluent les composants [AMER95][VINS98].

Deux familles de tests sont distinguées dans ce chapitre :

• les tests en qualification ou méthodes de caractérisations normées et couram-

ment utilisées chez tous les fabricants de composants et chez certains équipe-

mentiers,

• les tests d’aide à la conception ou méthodes de caractérisations plus ou moins

bien normées et non encore utilisées de manière systématique par tous les fa-

bricants de composants.

Page 3: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

7HVWV HQ TXDOLILFDWLRQ

$ 0RGqOH GX FRUSV KXPDLQ

Le modèle du corps humain, HBM (Human Body Model), est le test le plus large-

ment utilisé pour qualifier la tenue des composants aux ESD. Depuis son introduc-

tion dans les années 1980, il a permis de réduire considérablement le taux de dé-

fauts survenus lors de la fabrication puis de l’utilisation des composants.

Le test simule la décharge d’une personne chargée sur un composant électronique.

Le corps de l’opérateur est modélisé par une capacité placée en série avec la résis-

tance de contact de la peau (fonction de la surface de contact de l’opérateur et de

sa résistivité). La sensibilité d’un composant au test HBM est définie par la tension

de charge maximum que le circuit intégré peut supporter sans présenter de dé-

faillance notoire.

La norme HBM, remise à jour en 1998, décrit [AEC98-a][EIAJ97-a][ESD98] :

• les valeurs de la capacité CHBM (100 pF), de la résistance de contact RHBM

(1,5 kΩ) et de l’inductance LHBM (7,5 µH) (cf. Figure 1. 1),

• la forme de l’onde HBM aux bornes d’un court-circuit ou d’une résistance de

500 Ω (cf. Figure 1. 2 et Tableau 1. 1),

• les valeurs maximales de distorsions en courant autorisées1 [LEE99],

• la classification des composants selon leur niveau de tenue aux impulsions

HBM2.

Pour limiter la durée et les coûts des tests HBM industriels, proportionnels au

nombre de broches des circuits, tout en garantissant une certaine reproductibilité

des mesures, il est conseillé de tester sur un échantillon représentatif :

• chaque broche une par une par rapport aux broches d’alimentation,

• chaque broche d’entrée/sortie une par une par rapport aux autres broches

d’entrée/sortie,

1 Les distorsions de courant sont liées aux capacités et inductances parasites présentes dans les testeurs commerciaux.

2 Classe 1 : composant endommagé par une impulsion HBM inférieure ou égale à 2000 V ; classe 2 : composant qui

fonctionne après un test HBM de 2000 V mais qui ne résiste pas à une impulsion de 4000 V ; classe 3 : composant quifonctionne après un test HBM de 4000 V.

Page 4: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

• toutes les broches du circuit intégré avec un niveau de tension HBM avant de

passer au niveau de tension supérieur.

La broche la plus fragile détermine le seuil de défaillance du composant.

Les spécifications HBM, données dans les « datasheets » des fabricants, sont mal

détaillées car la procédure de test HBM est mal standardisée. Elle impose que les

circuits intégrés soient de classe 1, 2 ou 3 mais le pas en tension des tests HBM

n’est pas fixé par la norme HBM (il peut être égal ou inférieur à 500 V). Les spéci-

fications ne précisent pas non plus le signe de la tension HBM qui conduit à la dé-

faillance du composant.

)LJXUH 0RGqOH GH GpFKDUJH GX FRUSV KXPDLQ +%03

)LJXUH )RUPH G¶RQGH +%0 WKpRULTXH DX[ ERUQHV G¶XQ FRXUWFLUFXLW SRXU XQH

WHQVLRQ GH 9

3 CHBM est la capacité de décharge initialement chargée à la tension HVHBM. Le composant, DUT (Device Under Test), est

testé sur un support adapté aux différents boîtiers électroniques.

0,0

0,5

1,0

1,5

0 50 100 150 200

Temps (ns)

Cou

rant

(A

)

22 S)

5+%0

&&

&+%0

Ω

+9+%0

Ω

'87

/+%0

+

Page 5: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

+DXWH WHQVLRQ

+9+%0 9

&RXUDQW GH SLF HQ FRXUWFLUFXLW

,S6 $

&RXUDQW GH SLF SRXU Ω,S5 $

1$ 1$ 1$

7HPSV GH PRQWpH HQ FRXUWFLUFXLW

WU6 QV

7HPSV GH PRQWpH SRXU ΩWU5 QV

1$ 1$ 1$

7HPSV GH GHVFHQWH HQ FRXUWFLUFXLW

WG6 QV

7HPSV GH GHVFHQWH SRXU ΩWG5 QV

1$ 1$ 1$

'LVWRUVLRQ GX FRXUDQW

,U $ GH ,S6 GH ,S6 GH ,S6 GH ,S6 HW ,S5

7DEOHDX 6SpFLILFDWLRQV GH OD IRUPH G¶RQGH +%0 >(,$-D@4

Les tests HBM, décrits précédemment, permettent de qualifier les composants en

ESD avant de les monter sur cartes. Lors de leur utilisation, les risques de surchar-

ges électriques EOS doivent aussi être pris en compte. Ils sont générés par des

phénomènes transitoires : surtensions d’alimentation, montages sur cartes électro-

niques, stockage...

Pour modéliser ces surcharges électriques, des tests sont réalisés sur équipements

au moyen de pistolets de décharges conformément à la norme IEC 6100-4-2 ou à

d’autres normes (en fonction du domaine d’application des cartes électroniques).

Ces mesures sont également appelées tests HBM. Il reste pourtant à harmoniser les

méthodologies de test du composant jusqu’au système sur carte car les niveaux de

sévérité des impulsions HBM appliquées sur les circuits intégrés (inférieures ou

égales à 8 kV) n’ont rien avoir avec ceux des décharges appliquées sur les systè-

mes (de 20 à 25 kV par exemple pour les équipements militaires) [AECT91].

La nature des dégradations EOS (seuil de défaillance, localisation) et de leur forme

d’onde (durée, amplitude) est en effet très différente de celles de tests HBM car de

multiples composants parasites de type RLC se trouvent sur le chemin de la dé-

charge [STAN89]. Avec le pistolet, l’amplitude de la décharge HBM que voit le

composant est probablement très inférieure aux 8 kV directement appliqués sur le

circuit intégré.

4 La signification du sigle N/A est Non Applicable. Le courant de pic (en A) à travers 1500 Ω est approximativement

HVHBM(V)/1500 Ω.

Page 6: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

% 0RGqOH GH OD PDFKLQH

Le modèle de la machine, MM (Machine Model), a d’abord été utilisé au Japon

puis aux Etats-Unis pour qualifier des composants fabriqués en masse pour

l’industrie automobile. Il simule la décharge d’un appareil métallique sur un com-

posant électronique relié à la masse.

Le circuit électrique équivalent du testeur MM, identique à celui du testeur HBM,

consiste en une capacité de charge de 200 pF en série avec une résistance de sur-

face dont la valeur théorique est nulle. La sensibilité d’un composant au test MM

se caractérise comme pour le modèle HBM par la tension de charge de la capacité

que le circuit peut supporter sans présenter une quelconque défaillance.

La norme MM décrit [AEC98-b][EIAJ97-b][ESD99-a] :

• la valeur de la capacité de charge CMM (200 pF), de la résistance de contact

RMM (nulle) et de l’inductance LMM (0,5 µH),

• la forme de l’onde MM aux bornes d’un court-circuit ou d’une résistance de

500 Ω (cf. Figure 1. 3),

• les valeurs maximales de distorsions en courant autorisées,

• la classification des composants selon leur niveau de tenue aux impulsions

MM 5.

)LJXUH )RUPH G¶RQGH 00 WKpRULTXH j WUDYHUV XQ FRXUWFLUFXLW SRXU XQH

WHQVLRQ GH 96

5 Classe 1 : composant endommagé par une impulsion MM inférieure ou égale à 100 V ; classe 2 : composant qui fonc-

tionne après un test MM de 100 V mais qui ne résiste pas à une impulsion de 200 V ; classe 3 : composant qui fonctionneaprès un test MM de 200 V.6 La forme d’onde MM appliquée à un transistor quelconque est très différente de la forme d’onde théorique.

-4

-2

0

2

4

0 50 100 150 200

Temps (ns)

Cou

rant

(A

)

Page 7: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

L’amplitude de courant maximum et la forme d’onde de la décharge MM la ren-

dent différente de l’impulsion HBM. Elle est en particulier caractérisée par des os-

cillations sinusoïdales représentatives d’un second ordre amorti. D’autres paramè-

tres tels que la pente dI/dt ou l’énergie imposée par les impulsions MM peuvent

être comparables. Ils expliqueraient pourquoi les résultats des tests MM sont sou-

vent corrélés à ceux des tests HBM et pourquoi certains industriels se dispensent

de les réaliser.

Les résultats des tests MM donnés dans les spécifications des composants devront

en outre être considérés avec la même prudence que les données HBM car les pro-

cédures de mise en œuvre de ces tests sont aussi peu standardisées.

7HVWV G¶DLGH j OD FRQFHSWLRQ

$ 0HVXUHV SDU LPSXOVLRQV FDUUpHV GH FRXUDQW

La mise en œuvre des tests « go/no go » de types HBM, MM et EOS est possible

en qualification pour tous types de circuits. Ces tests ne permettent par contre pas

de caractériser un composant élémentaire ou un circuit intégré du point de vue de

sa sensibilité aux ESD. Le test TLP (Transmission Line Pulse) a été introduit dans

cet objectif.

Il utilise des impulsions carrées de courant d’amplitudes variables pour étudier le

fonctionnement de composants élémentaires et déterminer leur susceptibilité aux

ESD [BART00][DELA99-a][HENR01-b][KHUR85]. Une ligne de transmission

(câble coaxial de 50 Ω) est chargée à travers une résistance de 2,2 MΩ à une ten-

sion inférieure ou égale à 10 kV (cf. Figure 1. 4) [DUFR99-a]. Au basculement du

relais, la résistance de 50 Ω en parallèle avec le DUT garantit que la résistance du

montage sera toujours inférieure à la résistance caractéristique de la ligne coaxiale.

Il est ainsi peu probable de perturber la forme finale de l’impulsion par

d’éventuelles réflexions parasites dans la ligne de transmission. La conversion de

l’impulsion en courant est réalisée par la résistance en série de 700 Ω tant que la

résistance interne du composant est très inférieure à 700 Ω. Aucune norme ne dé-

crit le test TLP mais il est tout de même possible de déterminer, grâce à ce test, la

robustesse ESD d’un composant.

Page 8: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

Les principales caractéristiques d’une impulsion TLP sont :

• sa largeur : déterminée par la longueur du câble (~10 ns/m) et fixée à 100 ns

(ordre de grandeur de l’impulsion HBM),

• son temps de montée : d’une durée comprise entre 2 et 20 ns,

• son amplitude en courant : mesurée au cours du temps à travers une sonde ac-

tive de courant et visualisée sur un oscilloscope7,

• la réponse du DUT en tension : mesurée avec une sonde en tension au cours du

temps.

Pour chaque niveau d’impulsion TLP, les valeurs moyennes du courant et de la

tension correspondante sont extraites aux bornes du DUT. Il est ensuite possible,

avec les couples de valeurs [<I>,<V>], de construire une caractéristique <I>=f<V>

quasi-stationnaire du composant sous test. Le courant de fuite est enfin mesuré à

travers le composant après chaque onde TLP pour vérifier si ce dernier fonctionne.

)LJXUH 6FKpPD pOHFWULTXH G¶XQ DSSDUHLO GH WHVWV 7/3

Pour rendre pertinentes les mesures par impulsions carrées, la largeur d’une impul-

sion TLP est, si possible, fixée égale à celle d’une décharge HBM. Les temps de

montée des ondes sont aussi très proches[NOTE98-a]. La suite de ce document

comparera les résultats des tests HBM et TLP pour savoir s’il serait possible

d’abandonner les mesures HBM au profit de tests TLP « industrialisés ».

7 Le testeur TLP peut être considéré comme une source pure de courant délivrant un courant théorique en ampères égal à

la valeur de la haute tension (HVTLP en kV) divisée par 1400 Ω.

+97/3

Ω

Ω

Ω

/

'87

6RQGH ,

6RQGH 9

W

9W

,W

W

,!

,!

9!

9!

Page 9: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

% 0RGqOH GX FRPSRVDQW FKDUJp

La décharge électrostatique modélisée par les tests ESD classiques vient de

l’appareil de test et va vers le circuit intégré. Il arrive cependant que les compo-

sants se chargent par triboélectricité. La constitution des composants (boîtiers,

taille de la puce et capacités internes) doit donc être prise en compte dans un nou-

veau modèle de tests ESD.

Le modèle du circuit chargé, CDM (Charged Device Model), représente la dé-

charge propre d’un circuit intégré assemblé dans un boîtier. Dans cette situation, le

circuit précédemment chargé, se décharge lorsqu’une de ses pattes se connecte à la

masse. La source de l’impulsion est alors constituée par le dispositif lui-même et le

rôle du boîtier est bien pris en compte [GOSS97][OLN96].

Le composant, placé pattes en l’air « dead-bug » sur une électrode de charge ou in-

séré dans un support de test (SCDM Socketed CDM), est chargé :

• par un champ électrique lors du test FCDM (Field CDM) (cf. Figure 1. 5),

• par contact lors du test CCDM (Contact CDM) [STRI01].

)LJXUH 5HSUpVHQWDWLRQ VFKpPDWLTXH G¶XQ DSSDUHLO GH WHVWV )&'0 >+(15@

Les tests CDM sont définis par une norme JEDEC [EIAJ95] et par une norme de

« l’ESD Association » [ESD99-b]. Ces documents décrivent l’onde CDM (intensité

du pic de courant, temps de montée…) [CHAI01][HENR00-b][ORYX01] pour plu-

sieurs modules de calibration :

• des cylindres métalliques de 25,4 et 8,9 mm de diamètre pour la norme JEDEC,

• des cylindres diélectriques (mylar) de 26 et 9 mm de diamètre recouverts d’une

métallisation pour la norme de « l’ESD Association ».

Ils précisent également les conditions de mise en œuvre : séquences de tests, taille

des échantillons représentatifs, classes des composants.

Page 10: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

Il ne sera plus question du standard JEDEC dans le reste de ce document car cette

norme ne définit pas la procédure de test CCDM alors que la norme de « l’ESD

Association » présente les deux méthodes de tests. Dans la suite de ce manuscrit,

les travaux sur le CDM auront pour but de déterminer les différences de compor-

tement liées aux processus de charge FCDM et CCDM. Ils statueront sur la néces-

sité, à plus ou moins long terme, de qualifier les composants en CDM avec l’un ou

l’autre des modèles (ou les deux).

A l’heure actuelle, les spécifications des fabricants de composants ne font pas état

de mesures CDM. Ces tests ne sont pas utilisés de manière systématique pour la

qualification des composants et de telles mesures engendreraient des dépenses con-

sidérables.

La mise en œuvre des tests CDM est particulièrement longue car le composant

stressé ne peut être testé in situ pour les mesures traditionnelles de courant de

fuite. De nombreux utilisateurs de composants craignent pourtant que les circuits

submicroniques soient particulièrement sensibles aux décharges de type CDM. La

démarche à adopter vis-à-vis des tests CDM mérite donc d’être davantage justifiée.

'LVFXVVLRQ

Cette présentation des différents modèles de tests ESD permet de définir le con-

texte de l’étude et de poser plusieurs questions essentielles pour les concepteurs de

composants et pour leurs utilisateurs :

• Les tests HBM et MM correspondent-ils aux besoins de qualifications ?

• Les tests TLP et CDM sont-ils indispensables ?

• Les résultats des tests HBM, MM et CDM peuvent-ils être corrélés entre eux et

au test TLP [GIES96][NOTE98-a][STAD97] ?

• Quel test CDM faut-il privilégier ?

En complément des informations recensées dans la littérature, les résultats des me-

sures et des simulations réalisées dans le cadre de la thèse auront pour objectif de

répondre à ces questions et de définir une procédure de test ESD mieux adaptée.

Page 11: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

3KpQRPqQHV SK\VLTXHV HW PRGHV GH GpIDLOODQFHV DVVRFLpV

DX[ (6'

Dès qu’une décharge électrostatique est initiée, la charge électrique commence à

être redistribuée. Ce mouvement de porteurs de charges génère des courants liés à

la densité des porteurs et à leur vitesse de déplacement. Il induit des tensions liées

aux composants R, L, C des structures traversées. La manière dont le composant

supporte ces courants et ces tensions transitoires détermine s’il répond toujours à

son cahier des charges.

(IIHWV SDUDVLWHV GX ERvWLHU

Le rôle du boîtier8 d’un composant sur sa sensibilité aux ESD est particulièrement

complexe. Il est lié à de multiples paramètres :

• nature du matériau d’enrobage (plastique, céramique ou métallique),

• type du boîtier (DIP, BGA…),

• nombre de broches et écartement,

• résistance de substrat,

• répartition des broches ou des lignes d’alimentation…

Mais le poids relatif de ces paramètres n’est pas simple à évaluer et les publica-

tions sont en plus assez rares dans ce domaine [DABR98][DUVV95].

La présence de composants parasites de type RLC, induits par le boîtier sur le

chemin d’une décharge, modifie l’impulsion ESD appliquée en entrée du compo-

sant. La nature du boîtier est également importante pour la tenue des composants

aux tests CDM car elle détermine la quantité de charges stockées. Enfin, la répar-

tition des lignes d’alimentations sur le circuit imprimé et la prise de contact du

substrat déterminent les différents chemins d’évacuation de l’énergie. Mais tous

ces paramètres ne sont pas pris en compte lors de la conception de nouvelles

structures ESD, qualifiées pour supporter les formes d’ondes HBM et MM. Ils in-

duisent donc un risque de dégradation prématurée des dispositifs qui pourrait être

dissipé grâce au développement des testeurs CDM.

8 Dans le contexte ESD, le boîtier est défini par le matériau d’enrobage, les broches d’interconnexions, les fils du ca-

blage, l’embase, la colle et la puce en silicium.

Page 12: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

5pSRQVH G¶XQ WUDQVLVWRU 026 j XQH GpFKDUJH pOHFWURVWDWLTXH

Le point suivant dans le trajet de la charge est son passage dans le circuit intégré.

Les transistors NMOS sont souvent utilisés pour dissiper l’énergie induite par

d’éventuelles décharges électrostatiques. Les plots d’interconnexions du circuit

sont alors reliés au drain tandis que la grille, la source et le substrat sont connectés

ensembles à la masse (cf. Figure 1. 6 (a)). De cette manière, le composant est blo-

qué lors d’une utilisation normale du circuit intégré. Il ne modifie pas la fonction-

nalité du circuit. Cette structure de protection sera appelée « Grounded Gate

NMOS » (GGNMOS) dans la suite du document.

La Figure 1. 6 (b) donne la caractéristique I=f(V) du composant lorsqu’une dé-

charge ESD positive est appliquée sur son contact de drain. Les paragraphes sui-

vants décrivent le fonctionnement d’une telle structure [AMER99]. Ils définissent :

• la tension du claquage par avalanche : BV

• le point de premier claquage : Vt1, It1• la tension de maintien : Vh• la résistance dynamique : Rdyn

• le point de second claquage : Vt2, It2.

)LJXUH &RPSRVDQW **1026 D 3URFHVVXV GH FRQGXFWLRQ GDQV OH WUDQVLVWRU

E &DUDFWpULVWLTXH , I9 W\SLTXH GX FRPSRVDQW >6=(@

Le premier mécanisme de conduction du GGNMOS est le courant de fuite associé

aux déplacements de porteurs minoritaires à travers la jonction drain/substrat pola-

risée en inverse. Si le champ à l’intérieur de la zone désertée n’est pas trop élevé,

9

,

%9

9W -W

9K

5G\Q

9W -W

D E

1

,QMHFWLRQ

GLUHFWH

6RXUFH

*ULOOH

6XEVWUDW

,

9

'UDLQ

1

Page 13: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

ce processus conduira tout simplement au courant inverse normal Ileak. Un courant

capacitif s’additionne à ce courant de fuite. Il est lié aux capacités de déplétion ou

de recouvrement présentes au sein du composant (cf. Figure 3.12). Il peut abaisser

la tension de claquage par avalanche dynamique des structures.

Si le champ électrique est suffisamment élevé (de l’ordre de 1,5.105 V/cm), les

électrons et les trous vont acquérir assez d’énergie cinétique pour être susceptibles,

par collisions avec les atomes du réseau, de générer de nouvelles paires élec-

trons/trous [GROV75][SZE81]. Au cours de ce processus de multiplication par

avalanche (ou d’ionisation par impacts), la conduction du GGNMOS est assurée

par le courant d’avalanche de la jonction en inverse : les électrons transitent im-

médiatement vers le drain tandis que les trous traversent le volume du substrat.

Avec l’augmentation du courant, la chute de tension due à la résistance de substrat

devient assez grande pour polariser la jonction source/substrat en direct. Des élec-

trons sont alors injectés en grand nombre depuis la source jusqu’au substrat du

transistor GGNMOS. La conduction du transistor bipolaire parasite est amorcée.

Le drain du transistor GGNMOS représente alors le collecteur du transistor bipo-

laire N+/P/N+ parasite, la source l’émetteur et le substrat la base.

Ce courant d’électrons majoritaires permet ensuite d’entretenir la conduction du

transistor bipolaire avec une multiplication moins importante. La tension aux bor-

nes du dispositif, moteur de la multiplication, diminue donc de Vt1 (tension de 1er

claquage) à Vh (tension de maintien du transistor bipolaire) ; c’est ce qui explique

le retournement « snapback » observé sur la caractéristique I=f(V) du GGNMOS9.

Le dernier processus de conduction dans le transistor est lié à l’augmentation de

température dans le composant. Les propriétés thermiques des semi-conducteurs

sont complexes [AMER98][GALY99][SZE81]. La perte de mobilité des porteurs

avec la température augmente la résistance électrique Rdyn et la génération de pai-

res électron/trou augmente avec la température.

Le second claquage (Vt2, It2) ou claquage thermique survient lorsque le nombre de

porteurs générés thermiquement n’est plus négligeable devant le dopage initial du

silicium [SALO98]. Le courant électrique a alors tendance à se concentrer dans

9 La tension Vt1 peut être identifiée à la tension de claquage BVCB0 d’un transistor bipolaire, la tension Vh à la tension

BVCE0 [AHAR75].

Page 14: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

certaines régions privilégiées du composant. Ce phénomène surchauffe localement

le silicium. L’emballement thermique ainsi généré peut alors conduire à la forma-

tion d’un micro-plasma et à une éventuelle fusion du silicium10 [AMER91].

0RGHV GH GpIDLOODQFHV HW WHFKQLTXHV G¶DQDO\VHV

Après avoir présenté la réponse d’un transistor NMOS soumis une décharge élec-

trostatique, il est nécessaire d’étudier les mécanismes de défaillances associés aux

ESD ainsi que les techniques d’analyses permettant de les trouver pour correcte-

ment évaluer la robustesse de composants soumis à des décharges électrostatiques

et pour trouver des règles de prévention limitant les causes d’agressions.

Bien que difficiles à identifier, les mécanismes de défaillances les plus souvent

rencontrés sont parfaitement connus. Ils sont pour la plupart induits par des phé-

nomènes de nature thermique et sont localisés dans le silicium, dans les oxydes ou

dans les métaux11 [AMER97][LEE99][SALO97][VINS98] :

• Le mécanisme de destruction du silicium dépend des profondeurs de jonctions

et de l’étendue des structures. Il se caractérise, dans les composants MOS et bi-

polaires, par des phénomènes de focalisation du courant et par un fort courant

de fuite de jonctions polarisées en inverse. Il peut conduire à un court-circuit

dans le composant [PIER01].

• La température des porteurs déthermalisés, générée par le claquage d’une jonc-

tion polarisée en inverse, peut aussi induire l’injection de porteurs chauds dans

les oxydes voisins. Ce mécanisme de défaillance survient à proximité des zones

les plus fortement dopées des jonctions.

• Les défauts d’oxyde [BARB86] induits par des champs électriques élevés appa-

raissent quant à eux lorsqu’un signal d’entrée est appliqué sur la grille d’un

composant MOS et si le champ électrique à travers l’oxyde dépasse le seuil de

claquage du diélectrique12 (V>BVox). Ce type de dégradations est favorisé par la

présence de défauts précurseurs dans les oxydes. Il est caractérisé par

l’existence d’un chemin de conduction privilégié.

10 La température de fusion du silicium est 1685 K.

11 Température de fusion d’un matériau=TF : TF(silicium)=1688 K, TF(aluminium)=933 K

12 Rigidité diélectrique du SiO2 : Eox=107 V/cm avec Eox=BVox/Tox [SZE81]

Page 15: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

• La fusion des métallisations est enfin liée à la dissipation de chaleur par effet

Joule dans la résistance finie des pistes en aluminium. Ce phénomène est géné-

ré par des impulsions en courant d’amplitude et de durée suffisantes. La des-

truction des interconnexions peut également apparaître suite à la chaleur géné-

rée par la présence d’un défaut précurseur dans le silicium ou les oxydes.

Deux sujets principaux mobilisent aujourd’hui les industriels des laboratoires

d’analyses en microélectronique :

• l’identification de signatures de défaillances associées aux agressions électri-

ques ESD et EOS,

• la détection de défauts latents susceptibles, après vieillissement, d’induire des

dégradations sévères des composants.

A l’heure actuelle, l’identification des défauts et de leur origine (EOS, HBM, MM

ou CDM) impose de connaître l’histoire du composant (stade de détection de la

dégradation, environnement dans lequel évoluait le composant, tests subits…). Ces

informations sont souvent confidentielles et difficiles à connaître vu le grand nom-

bre d’intervenants extérieurs ce qui explique la nécessité de créer un herbier de si-

gnatures de défaillances associées aux agressions électriques [LAAS02].

Le présence de sites de défaillances latentes ou « défauts latents » induits dans les

circuits intégrés par des impulsions ESD est un sujet encore très controversé

[CROC84][VINS98]. Ces défauts, évolutifs en fonction du temps, ne sont pas dé-

tectables lors des tests de fonctionnalité. Ils conduiraient ensuite à des vieillisse-

ments prématurés du composant.

Des méthodes expérimentales d’analyses des défauts sont donc indispensables pour

détecter et identifier d’éventuelles dégradations ESD. Elles s’organisent après des

tests de qualification ESD ou pour une expertise de la façon suivante [AMER96]

[URBI87] :

1. Caractérisation électrique du composant (mesures de courants de fuite des

« buffers » d’entrée/sortie et tests fonctionnels)

2. Examen optique non-destructif (microscopie optique, microscopie à émission

EMMI [RUSS98][SALO97], analyses par faisceaux d'ions focalisés FIB, inter-

férométrie laser [POGA01] ou cristaux liquides)

3. Retrait sélectif des couches constituant le circuit intégré

Page 16: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

4. Examen optique approfondi (microscopie électronique à balayage MEB, micro-

scopie à transmission MET)

La caractérisation électrique de la panne est une étape décisive de l’analyse de dé-

faillance. Il est en effet inconcevable de débuter l’analyse physique sans avoir une

connaissance préalable du défaut électrique interne. Elle nécessite de définir un

critère électrique de défaillance. Pour les composants du commerce seules les spé-

cifications font foi. Pour les composants non spécifiés, le choix du critère est plus

libre et peut conduire à des différences d’interprétations des résultats de tests ESD

[AMER97].

La Figure 1. 7 illustre cette difficulté dans le cas d’une diode polarisée en inverse

et soumise au cours de sa vie à des décharges ESD d’amplitudes croissantes -de (1)

à (3)-. Selon la tension (0,4 V ou 5,5 V) pour laquelle le critère de (10-6 A) est sur-

veillé, différents niveaux de dégradation (ou de claquage) ESD sont obtenus. Par

précaution, dès qu’une mesure s’éloigne de la gamme de tolérance de la caracté-

ristique initiale du composant, celui-ci sera déclaré défaillant (cf. p70).

)LJXUH &DUDFWpULVWLTXHV , I9 G¶XQH GLRGH SRODULVpH HQ LQYHUVH HW WHVWpH HQ

(6' SDU GHV GpFKDUJHV G¶DPSOLWXGHV FURLVVDQWHV j

Sur un circuit très intégré de type ULSI comme par exemple une mémoire dynami-

que comportant plus de 4 millions de cellules élémentaires, il est impossible

d’accéder à des défauts aussi localisés que les impacts ESD sans avoir recours à

des techniques de visualisation performantes. Une fois le composant désencapsulé,

la microscopie optique est immédiate de mise en œuvre mais elle ne permet de lo-

caliser que les phénomènes de décoloration ou de fusion des pistes en aluminium.

Dans de nombreux cas, cette investigation ne donne que peu de résultats car les

couches de surface font écran au défaut.

&ULWqUH GH GpIDLOODQFH

$

9 9

, ORJ $

&DUDFWpULVWLTXH

LQLWLDOH

Page 17: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

L’observation optique est donc complétée par deux examens non-destructifs : la

microscopie à émission lumineuse EMMI [AMER95][AMER97][SALO97] et

l’utilisation de cristaux liquides nématiques. Ces méthodes qualitatives ont une

mise en œuvre et une interprétation complexe liée à la densité d’intégration des

composants. Les nombreux niveaux de métaux masquent par exemple souvent

l’émission lumineuse en EMMI. L’observation est donc de plus en plus souvent

faite en face arrière du silicium ce qui est nécessite d’amincir le substrat.

La localisation de la défaillance menée à bien, l’analyse physique approfondie est

l’étape qui mène à la compréhension du mécanisme de dégradation. Pour ce faire,

les technologues effectuent un retrait sélectif des couches constituant le circuit in-

tégré. Deux moyens sont utilisés : la gravure par chimie sèche et par chimie hu-

mide [GUIL99]. La connaissance du procédé de fabrication des composants est très

utile pour réaliser à bien ces tâches mais ces informations confidentielles ne sont

pas toujours connues (surtout par les utilisateurs de composants). Les composants

sont observés entre chaque étape de gravure au microscope optique, au MEB et au

TEM. De façon parallèle à l’analyse physique, l’opération de « reverse enginee-

ring » est menée systématiquement. Elle aide à comprendre les points de faiblesses

d’un circuit intégré du point de vue de sa tenue aux ESD. Toutes ces techniques

nécessitent un personnel hautement qualifié. Elles sont de plus longues à mettre en

œuvre.

Lors de l’expertise de composants défaillants, la démarche précédente en quatre

étapes ne permet néanmoins pas toujours de conclure sur l’origine du défaut

[KELL95]. La signature physique d’un défaut CDM est bien entendu très diffé-

rente de celle d’un défaut induit par une surcharge électrique ou EOS. Il n’est par

contre pas facile de déterminer, sur les circuits très intégrés d’aujourd’hui, si un

défaut EOS a été initié ou non par un défaut ESD précurseur. Il est donc important

mais souvent impossible vu le grand nombre d’intervenants extérieurs, de retracer

l’historique du composant de sa conception à son utilisation. Il est également re-

commandé d’analyser plusieurs composants identiques pour s’affranchir des pro-

blèmes de reproductibilité liés aux ESD.

Pour compléter les tests ESD et les méthodes expérimentales, de plus en plus

d’industriels se tournent enfin vers les outils de simulation électriques et physi-

ques. Leurs principes d’utilisation, leurs forces et leurs limites seront présentés

dans le chapitre 2 de ce document.

Page 18: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

3URWHFWLRQ GHV FRPSRVDQWV pOHFWURQLTXHV FRQWUH OHV

GpFKDUJHV pOHFWURVWDWLTXHV

Connaître les consignes données par les responsables qualité ainsi que les démar-

ches adoptées par les technologues et par les concepteurs en termes de protection

ESD lors de l’élaboration de nouveaux composants peut aider les équipementiers à

définir des critères de sélection de composants robustes sans obligatoirement avoir

à tester eux-mêmes les composants.

Ce paragraphe présente donc les principes fondamentaux appliqués par les fabri-

cants de semiconducteurs pour protéger leurs composants vis-à-vis des ESD. Il

s’agit pour eux de limiter au maximum le risque de décharges dans les salles blan-

ches [CROW01][LEES01][MONT01] et de concevoir des composants capables de

dissiper l’énergie des ESD. Pour être efficace, la protection « on-chip » des com-

posants se fait au niveau : du circuit intégré complet, des structures de protections

et du procédé technologique. Technologues et concepteurs sont donc amenés à

partager leurs connaissances pour répondre ensemble à un cahier des charges

sévère dans un domaine complexe en perpétuelle évolution.

3URWHFWLRQ GHV FLUFXLWV LQWpJUpV

Les structures élémentaires de protection contre les ESD, optimisées pour chaque

technologie, sont insérées sur le circuit intégré à protéger de manière à :

• lutter contre les décharges ESD positives et négatives,

• ne pas affecter la fonctionnalité du circuit en conditions normales de

fonctionnement,

• écrêter les hautes tensions et évacuer le courant de décharge,

• occuper un minimum de place,

• ne pas induire d’étape supplémentaire dans le procédé de fabrication des

composants.

La Figure 1. 8 montre de façon schématique comment les structures de protections

ESD sont généralement positionnées sur le circuit. Trois régions distinctes de la

circuit intégré sont protégées : les entrées, les sorties et les alimentations.

Page 19: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

)LJXUH 6FKpPD GH SULQFLSH G¶XQ FLUFXLW LQWpJUp HQ WHFKQRORJLH &026 HW GHV

VWUXFWXUHV (6' QpFHVVDLUHV j VD SURWHFWLRQ13>0(5*@

$ 3URWHFWLRQ GHV HQWUpHV

Les inverseurs d’entrées CMOS sont directement exposés aux contraintes externes

telles que les ESD. Une tension supérieure à la tension de claquage des oxydes

BVox14, appliquée sur les grilles des transistors, entraîne une défaillance sévère des

« buffers » d’entrée. Une proposition pour les protéger consiste à évacuer l’excès

de courant vers les lignes d’alimentation VSS et VDD (cf. Figure 1. 8). Il est alors

conseillé d’utiliser des structures de protection à deux étages [AMER98][TAIL91].

Ces structures sont constituées d’éléments primaires PTIS1/D1 séparés de compo-

sants secondaires PTIS2/D2 par une résistance d’entrée de découplage Rin. Ainsi, la

surtension d’une décharge est réduite en deux étapes : l’élément primaire se dé-

clenche rapidement (Vt1 faible) et écrête une première partie du courant puis

l’augmentation de courant dans la résistance de découplage Rin fournit une tension

suffisante pour activer l’élément secondaire moins rapide mais capable de dissiper

davantage de courant (It2 élevé).

13 I est l’entrée du circuit, O sa sortie, VDD et VSS ses lignes d’alimentations. Pour les indices relatifs aux protections ESD

(PT) : I est l’entrée, O la sortie, D une protection vers VDD, S une protection vers VSS, 1 l’étage primaire de protection, 2

l’étage secondaire de protection. Rin est la résistance de découplage des étages de protection en entrée, Rout la résistancede découplage des étages de sortie. RDDi est la ième résistance distribuée de la ligne d’alimentation VDD, RSSi celle deVSS.14

La tension de claquage BVox d’un composant mature d’une épaisseur de grille de 50 nm vaut 50 V, celle d’un compo-sant submicronique d’une épaisseur de grille de 10 nm vaut 10 V.

2

37,6 37,6

37,'37,' 37'

376

376

5LQ 5RXW

566L

966

9''

,

3URWHFWLRQ G¶HQWUpH3URWHFWLRQ GH VRUWLH

3URWHFWLRQ

GHV

DOLPHQWDWLRQV

5''L

$ %

&¯85

'8

&,5&8,7

,17(*5(

&°XU GX

FLUFXLW

LQWpJUp

Page 20: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

% 3URWHFWLRQ GHV VRUWLHV

L’utilisation de siliciures et de diffusions faiblement dopées LDD, désormais cou-

rante en technologie CMOS, rend primordiale la protection des « buffers » de sor-

tie contre les ESD [AMER98] (cf. le point 1.4.3). Pour éviter le déclenchement des

transistors bipolaires parasites du circuit de sortie, des structures de protection

PTOS/D sont insérées entre le plot de sortie et les lignes d’alimentations. Une résis-

tance Rout de découplage complète la protection. Elle limite le courant et force les

structures de protection à se déclencher avant les « buffers » de sortie. Par ailleurs,

cette résistance diminue la performance du « driver » de sortie. Des compromis se-

ront faits par les concepteurs entre performance des « drivers » et niveau de pro-

tection ESD.

& 3URWHFWLRQV GHV DOLPHQWDWLRQV

De nombreux chemins de conduction électrique sont possibles dans les circuits à

fort taux d’intégration actuels. Pour dévier le courant du cœur fonctionnel et éviter

d’éventuelles dégradations, il est prudent de positionner une structure de retour à

déclenchement rapide entre les deux lignes d’alimentations. Le cas idéal est un

écrêteur capable de dissiper de forts niveaux de courants (Rdyn très faibles et It2

grand).

En termes de protection ESD, la difficulté est donc de positionner judicieusement

des structures de protection adaptées sur un circuit intégré complexe pour prendre

en compte les surcharges électriques sans pour cela détériorer le fonctionnement

normal du circuit.

6WUXFWXUHV GH SURWHFWLRQ

Il est aussi nécessaire de disposer d’un large panel de structures de protection ca-

pables de se déclencher plus ou moins rapidement, de limiter la tension générée

par les décharges et de tenir des niveaux de courant importants. Ces structures de-

vront remplir l’ensemble de ces conditions dans le respect des spécifications élec-

triques initiales du composant qu’elles protégent.

Page 21: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

$ )HQrWUH GH FRQFHSWLRQ (6'

La caractéristique I=f(V) d’une structure de protection idéale se situe dans une fe-

nêtre de conception ESD (cf. Figure 1. 9)[MERG01]. Le seuil inférieur de déclen-

chement et la tension de maintien des structures de protection sont supérieurs ou

égaux à la tension d’alimentation du composant plus une tolérance de 10%. Ainsi,

les structures de protections n’affectent pas le fonctionnement normal du compo-

sant. La limite supérieure de la fenêtre est quant à elle égale à la tension de cla-

quage BVox de l’oxyde en transitoire moins une tolérance de +10%15. Elle assure la

protection des grilles d’entrée des « buffers ».

)LJXUH 6WUXFWXUHV GH SURWHFWLRQ (6' )HQrWUH GH FRQFHSWLRQ (6' DYHF OHV FD

UDFWpULVWLTXHV FODVVLTXHV G¶XQH GLRGH HW G¶XQ WUDQVLVWRU **1026

HQ LQYHUVH

% 6WUXFWXUHV FODVVLTXHV GH SURWHFWLRQ

Les dimensions géométriques, les règles de conception et les principes physiques

de fonctionnement des structures de protections ESD les plus classiques (résistan-

ces, diodes, transistors MOS et bipolaires, thyristors) sont décrits dans de nom-

breux articles [ALEX98][AMER95][ISHI97][POLG92][VOLD99][VOLD01].

La Figure 1. 10 compare les caractéristiques I=f(V) typiques de composants classi-

ques de protection polarisés en inverse : une diode PN, un transistor GGNMOS, un

transistor NMOS à grille couplée GCNMOS (Gate Coupled NMOS) [AMER94],

15 La tension de claquage BVox d’un transistor MOS testé en dynamique (par un test CDM par exemple) est inférieure à

celle de ce même transistor testé en statique. Il est donc prudent de prendre une tolérance de -10% par rapport à BVox.

)HQrWUH GH FRQ

FHSWLRQ (6'

7HQVLRQ GH FODTXDJH

G¶R[\GH

7HQVLRQ

G¶DOLPHQWDWLRQ

,

9

Page 22: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

un transistor MOS à oxyde épais et un thyristors LVTSCR à faible tension de dé-

clenchement (Low Voltage Triggering Silicon Controlled Rectifier) [MERG01].

En accord avec le principe de fenêtre, ces courbes montrent, pour les protections

d’entrée d’un circuit intégré (cf. Figure 1. 8), que :

• le transistor GCNMOS est un candidat excellent,

• les transistors GGNMOS, bipolaire et MOS à oxyde épais font également

l’affaire malgré leur seuil de déclenchement élevé,

• les thyristors sont préférables pour l’étage secondaire car leur tension de dé-

clenchement est assez élevée. Ils peuvent évacuer des quantités de courant im-

portantes.

)LJXUH &DUDFWpULVWLTXHV , I9 GH VWUXFWXUHV FODVVLTXHV >'899@

Quelques principes de prudence sont aussi à appliquer pour assurer la fiabilité des

structures ESD et des circuits intégrés qu’elles protégent :

• concevoir des structures de protection et des lignes de métallisations suffisam-

ment larges pour évacuer de fortes densités de courant,

• éviter les angles fermés et les connexions non uniformes pour limiter les effets

de coins,

• placer des contacts en nombres suffisants pour permettre la distribution uni-

forme des courants et limiter les phénomènes de focalisation.

3URFpGpV WHFKQRORJLTXHV

La sélection des structures de protection adéquates, les efforts d’optimisation

(structures multi-digitées [NOTE97][POLG92], grilles couplées [AMER94], tran-

sistors NMOS à pompages de substrat SPNMOS [DUVV01] etc…) et la concep-

'LRGH LQYHUVH

7UDQVLVWRU **1026 RX ELSRODLUH

*&1026

7UDQVLVWRU 026 j R[\GH pSDLV

/976&5

,

9

Page 23: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

tion de nouveaux dispositifs [RUSS01] sont également liés aux évolutions des

technologies.

La diminution des profondeurs de jonctions, des épaisseurs d’oxyde et du volume

de dissipation de la puissance générée par les décharges électrostatiques contribue

à une détérioration des performances ESD (cf. Figure 1. 11) [AMER95]

[VOLD93].

)LJXUH 5pGXFWLRQ G¶pFKHOOH GH OD SURIRQGHXU GH MRQFWLRQ GH O¶pSDLVVHXU

G¶R[\GH HW GX YROXPH GH GLVVLSDWLRQ G¶pQHUJLH HW HIIHW VXU OD WHQXH

(6' GHV FRPSRVDQWV >%2&.@

L’introduction de nouveaux procédés de fabrication peut également sensibiliser les

composants aux ESD (cf. Figure 1. 12). C’est le cas notamment des siliciures et

des jonctions LDD [AMER94].

Le siliciure TiSi2, présent dans les technologies MOS avancées, réduit la résistance

de ballast des composants [NOTE98-b]. Il améliore ainsi la vitesse des circuits

mais son effet sur la tenue des composants aux ESD est défavorable. Le maximum

de densité de courant est observé dans les diffusions siliciurées près du coin de la

source et du drain. Le composant est alors fragilisé par des phénomènes de focali-

sation du courant puis par la formation de filaments entre la source et le drain

[AMER95]. Une solution pour s’affranchir de ce problème consiste à bloquer la

formation de siliciures à proximité de la grille par l’utilisation d’un masque sup-

plémentaire.

0,001

0,01

0,1

1

10

100

0,1 1 10

Dimensions caractéristiques (µm)

Ech

elle

rel

ativ

e

Profondeur de jonction (µm)Epaisseur d'oxyde Tox (nm)Volume de dissipation de puissance PDV (µm^3)Densité de courant de 2nd claquage Jt2 (mA/µm)

Page 24: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

L’introduction de jonctions graduelles LDD réduit l’intensité du champ électrique

vertical près de la région de pincement du drain du transistor MOS ce qui diminue

les effets des électrons chauds. Cependant, elle est aussi responsable de la diminu-

tion de tenue aux ESD. Les jonctions LDD relativement peu profondes augmentent

la densité de courant. C’est pourquoi même si le champ électrique diminue dans la

région LDD, le produit E.J&&

demeure suffisamment important pour fragiliser les

dispositifs vis-à-vis des décharges électrostatiques. A cette élévation de puissance

est associée une élévation de température. Cette source de chaleur située juste sous

la grille peut s’étendre jusqu’au contact de drain et causer sa destruction. Elle peut

aussi endommager l’oxyde de grille.

)LJXUH (YROXWLRQ GHV VWUXFWXUHV GH SURWHFWLRQV (6' HQ IRQFWLRQ GHV DYDQFpHV

WHFKQRORJLTXHV >'899@

Il est donc impossible de transférer des structures de protection ESD d’une tech-

nologie à une autre en appliquant un simple facteur d’échelle.

Les technologies submicroniques ne sont enfin pas seules à être sensibles aux

ESD. D’autres composants, connus sous le nom de composants ESD² (ou Extre-

mely Sensitive ESD Device) sont aussi à surveiller car ils n’ont pas de composant

de protection in situ. Ils ont pourtant une très faible tension de défaillance (infé-

**1026

6&5

*&1026

631026

/''

$PLQFLVVHPHQW

GHV FRXFKHV

pSLWD[LpHV

6LOLFLXUHV

,VRODWLRQV SDU

SXLWV SURIRQGV

6&5

UHRSWLPLVp

6LOLFLXUHV

HW SXLWV

SURIRQGV

6HXLO GH FODTXDJH +%0 N9

W DQQpHV

-RQFWLRQV

DEUXSWHV

-RQFWLRQV /''

6LOLFLXUHV

Page 25: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

rieur à 50 V pour les mesures DC, HBM, TLP ou CDM) ou un très faible courant

de défaillance (inférieur à 50 mA). Parmi ces composants, les plus connus sont :

les circuits de radio-fréquences RF [RICH00], les composants sur isolants SOI

[VOLD96], les systèmes micro-électroniques MEMS [WALA01] et certains dispo-

sitifs optiques [MENE01].

&RQFOXVLRQV

Pour répondre aux exigences de fiabilité des équipementiers, les concepteurs, les

technologues, les spécialistes en analyses de défaillance et les ingénieurs qualité

qui travaillent chez les fabricants de semiconducteurs ne peuvent plus se dispenser

de se prémunir contre les décharges électrostatiques. Les ESD sont appliquées de

manière aléatoire sur les circuits intégrés. Elles font intervenir des mécanismes de

conductions parasites qui peuvent induire des défaillances prématurées des compo-

sants. Pour combattre ces agressions électriques, il est indispensable de :

• savoir correctement les modéliser,

• comprendre les phénomènes physiques et les modes de défaillances qui leur

sont associés,

• réduire le risque de décharges lié à l’environnement dans lequel les composants

évoluent,

• protéger les circuits intégrés « in situ » par des structures de protection répon-

dant à un cahier des charges sévères.

Le chapitre précédent est revenu sur ces différents aspects. Il a aussi soulevé les

difficultés encore existantes pour la protection des composants contre les ESD. Du

point de vue des normes et des protocoles de tests ESD, les spécifications du com-

posant au système sur carte ne sont pas assez précises. Elles sont également peu

représentatives du fonctionnement physique des composants soumis aux déchar-

ges. Enfin, elles sont mal harmonisées et le nombre de normes citées dans les ap-

pels d’offre est très élevé. La compréhension des mécanismes physiques associées

aux ESD se fait souvent a posteriori au moyen de techniques d’analyse des compo-

sants défaillants mais la localisation des dégradations n’est pas toujours possible

en particulier s’il s’agit de défauts latents. La dernière difficulté importante révélée

par ce chapitre est liée aux rapides progrés de la microélectronique. La réduction

des dimensions, l’augmentation de la densité d’intégration et la réduction des

temps de développements qui se sont opérées sur les circuits modernes rendent

Page 26: Evaluation de la robustesse de circuits intégrés vis-à-vis ...docinsa.insa-lyon.fr/these/2002/guilhaume/chap1.pdf · ment utilisé pour qualifier la tenue des composants aux ESD.

&KDSLWUH *pQpUDOLWpV VXU OHV GpFKDUJHV pOHFWURVWDWLTXHV

plus complexe la protection des composants vis-à-vis des ESD. Il est donc impos-

sible de transférer des structures de protection d’une échelle à une autre en appli-

quant un simple facteur d’échelle et il est impératif d’utiliser des moyens complé-

mentaires pour évaluer rapidement la robustesse des composants soumis à des

décharges électrostatiques.

Pour soulever ces difficultés, ce premier chapitre recommande aux fabricants de

composants de réaliser des tests TLP et peut-être CDM, de préciser les protocoles

de mise en œuvre de ces outils de caractérisation et de compléter les analyses ex-

périmentales (tests ESD et analyses physiques des composants) par des simulations

numériques. Pour les équipementiers, il s’agira plutôt de s’informer sur les

meilleures démarches industrielles en adéquation avec les progrès technologiques.

Tous ces travaux passent par l’étude de la robustesse ESD de composants de diffé-

rentes technologies (matures et submicroniques).