이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf ·...

15
이산수학 이산수학(Discrete Mathematics) (Discrete Mathematics) 이산수학 이산수학(Discrete Mathematics) (Discrete Mathematics) 집합 집합 (Set) (Set) 2011 2011년 봄학기 봄학기 강원대학교 강원대학교 컴퓨터과학전공 컴퓨터과학전공 문양세 문양세

Transcript of 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf ·...

Page 1: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

이산수학이산수학(Discrete Mathematics) (Discrete Mathematics) 이산수학이산수학(Discrete Mathematics) (Discrete Mathematics) 집합집합 (Set)(Set)집합집합 (S )(S )

20112011년년 봄학기봄학기

강원대학교강원대학교 컴퓨터과학전공컴퓨터과학전공 문양세문양세강원대학교강원대학교 컴퓨터과학전공컴퓨터과학전공 문양세문양세

Page 2: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Introduction to SetsIntroduction to Sets1.6 Sets

정의

• 집합(set)이란 순서를 고려하지 않고 중복을 고려하지 않는 객체(object)들의 모임이다.

• A set is a new type of structure, representing an unordered collection (group) of zero or more distinct (different) objects.

Basic notations for sets• For sets, we’ll use variables S, T, U, …

We can denote a set S in writing by listing all of its elements in curly braces { and }:• We can denote a set S in writing by listing all of its elements in curly braces { and }:

{a, b, c} is the set of whatever three objects are denoted by a, b, c.

• Set builder notation: {x|P(x)} means the set of all x such that P(x).

원소 나열법 (예: {…, -3, -2, -1, 0, 1, 2, 3, …})

조건 제시법 (예: {x | x is an integer})

Discrete Mathematicsby Yang-Sae MoonPage 2

Page 3: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Basic Properties of SetsBasic Properties of Sets1.6 Sets

Sets are inherently unordered: (순서가 중요치 않다!)

• No matter what objects a, b, and c denote,No matter what objects a, b, and c denote,

{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.

All elements are distinct (unequal); multiple listings make no difference! (중복은 의미가 없다!)

• If a=b, then {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}.

• This set contains at most two elements!

Discrete Mathematicsby Yang-Sae MoonPage 3

Page 4: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Definition of Set EqualityDefinition of Set Equality1.6 Sets

Two sets are declared to be equal if and only if they contain exactly the same elements.y(동일한 원소들로 이루어진 두 집합은 동일하다.)

In particular, it does not matter how the set is defined or denoted. (집합의 equality에서 정의나 표현은 중요치 않다.)

For example: The set {1, 2, 3, 4} = For example: The set {1, 2, 3, 4} {x | x is an integer where x > 0 and x < 5 } = {x | x is a positive integer whose square is >0 and <25}{ | p g q }

Discrete Mathematicsby Yang-Sae MoonPage 4

Page 5: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Infinite Sets (Infinite Sets (무한무한 집합집합))1.6 Sets

Conceptually, sets may be infinite (i.e., not finite, without end, unending). (집합은 무한할 수 있다. 무한집합), g) ( 있 )

Symbols for some special infinite sets:• N = {0, 1, 2, …} The Natural numbers. (자연수의 집합)

• Z = {…, -2, -1, 0, 1, 2, …} The Zntegers. (정수의 집합)

Z+ {1 2 3 } Th iti i t (양의 정수의 집합)• Z+ = {1, 2, 3, …} The positive integers. (양의 정수의 집합)

• Q = {p/q | pZ, qZ, q0} The rational numbers. (유리수의 집합)

• R = The Real numbers such as 3 141592 (실수의 집합)• R = The Real numbers, such as 3.141592… (실수의 집합)

Infinite sets come in different sizes!(무한집합이라도 크기가 다를 수 있다.) We will cover it in $3.2.

Discrete Mathematicsby Yang-Sae MoonPage 5

Page 6: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Venn DiagramsVenn Diagrams1.6 Sets

Discrete Mathematicsby Yang-Sae MoonPage 6

Page 7: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

원소원소(Elements or Members)(Elements or Members)1.6 Sets

xS (“x is in S”) is the proposition that object x is an lement or member of set S. (x는 S의 원소이다.)

• e.g. 3N, ‘a’{x | x is a letter of the alphabet}

C d fi t lit i t f l ti• Can define set equality in terms of relation:(원소 기호를 사용한 두 집합의 동치 증명)

S = T x(xS xT) x(xT xS) x(xS xT)“Two sets are equal iff they have all the same members.”

S ( S) “ i t i S” 는 의 원소가 아니다xS (xS) “x is not in S” (x는 S의 원소가 아니다.)

Discrete Mathematicsby Yang-Sae MoonPage 7

Page 8: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

공집합공집합(Empty Set)(Empty Set)1.6 Sets

(“null”, “the empty set”) is the unique set that contains no elements. (공집합()이란 원소가 하나도 없는 유일한 집합이다.)

= {} = {x|False}

{}

공집합을 원소로 하는 집합

공집합

공집합을 원소로 하는 집합

Discrete Mathematicsby Yang-Sae MoonPage 8

Page 9: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Subsets(Subsets(부분집합부분집합) and Supersets() and Supersets(모집합모집합))1.6 Sets

S T (“S is a subset of T”) means that every element of Sis also an element of T. (S의 모든 원소는 T의 원소이다.)

S T x (xS xT)

S, S S (모든 집합은 공집합과 자기 자신을 부분집합으로 가진다.)

S T (“S is a superset of T”) means TS.

Note S = T (S T) (S T)

S T means (S T) i e ( S T)S T means (S T), i.e. x(xS xT)

Discrete Mathematicsby Yang-Sae MoonPage 9

Page 10: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Proper Subsets & SupersetsProper Subsets & Supersets1.6 Sets

S T (“S is a proper subset of T”) means that S T

but T S Similar for S Tbut T S. Similar for S T.(S가 T에 포함되나 T는 S에 포함되지 않으면, S를 T의 진부분집합이라 한다.)

Example:

S

p{1,2} {1,2,3}

ST

Venn Diagram equivalent of S T

Discrete Mathematicsby Yang-Sae MoonPage 10

Page 11: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Sets are Objects, Too!Sets are Objects, Too!1.6 Sets

The objects that are elements of a set may themselves be sets. (집합 자체도 객체가 될 수 있고, 따라서 집합도 다른 집합의 원소가 될 수 있다.)

For example, let S={x | x {1,2,3}}p , { { , , }}

then S={ , {1} {2} {3}{1}, {2}, {3},{1,2}, {1,3}, {2,3},{1,2,3} }{ , , } }

Note that 1 {1} {{1}} !!!!{ } {{ }}

Discrete Mathematicsby Yang-Sae MoonPage 11

Page 12: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Cardinality and FinitenessCardinality and Finiteness1.6 Sets

|S| (read “the cardinality of S”) is a measure of how many different elements S has.(|S|는 집합 S의 원소 중에서 서로 다른 값을 가지는 원소의 개수이다.)

E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2,

|{{1,2,3},{4,5}}| = ____|{{ , , },{ , }}| ____

If |S|N, then we say S is finite.

Otherwise, we say S is infinite.

What are some infinite sets we’ve seen?

Discrete Mathematicsby Yang-Sae MoonPage 12

Page 13: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Power Sets (Power Sets (멱집합멱집합))1.6 Sets

The power set P(S) of a set S is the set of all subsets of S.

P(S) {x | x S} (P(S)는 집합 S의 모든 부분집합을 원소로 하는 집합)P(S) = {x | x S} (P(S)는 집합 S의 모든 부분집합을 원소로 하는 집합)

Examples:

• P({a,b}) = {, {a}, {b}, {a,b}}.

• P() = {}, P({}) = {, {}}.

Sometimes P(S) is written 2S.

Note that for finite S |P(S)| = |2S|= 2|S|Note that for finite S, |P(S)| = |2 |= 2| |.

It turns out that |P(N)| > |N|.

There are different sizes of infinite sets!(자연수 집합의 power set의 크기가 자연수 집합보다 크다?!)

Discrete Mathematicsby Yang-Sae MoonPage 13

Page 14: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Ordered Ordered nn--tuplestuples1.6 Sets

Ordered n-tuples are like sets, except that duplicates matter, and the order makes a difference.,(Ordered n-tuple에서는 원소의 중복이 허용되고, 순서도 차이를 나타낸다.)

For nN an ordered n-tuple or a sequence of length n is For nN, an ordered n-tuple or a sequence of length n is written (a1, a2, …, an). The first element is a1, etc.

Note (1 2) (2 1) (2 1 1)Note (1, 2) (2, 1) (2, 1, 1).

순서가 중요함(의미를 가짐)

중복이 허용됨(의미를 가짐)

Empty sequence, singlets, pairs, triples, quadruples, …,

순서가 중요함(의미를 가짐)

p y q , g , p , p , q p , ,n-tuples.

Discrete Mathematicsby Yang-Sae MoonPage 14

Page 15: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Cartesian ProductsCartesian Products1.6 Sets

For sets A, B, their Cartesian product

A B = {(a b) | aA bB }A B = {(a, b) | aA bB }.(a가 A의 원소이고 b가 B의 원소인 모든 순서쌍(pair) (a, b)의 집합이다.)

E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)}

Note that for finite A B |A B| |A||B|Note that for finite A, B, |AB|=|A||B|.

Note that the Cartesian product is not commutative: Note that the Cartesian product is not commutative: AB: AB=BA (Cartesian product는 교환법칙이 성립하지 않는다.)

E { b} {1 2} {1 2} { b} {(1 ) (1 b) (2 ) (2 b)}• E.g. {a,b}{1,2} {1,2}{a,b} = {(1,a),(1,b),(2,a),(2,b)}

A1 A2 A = {(a1 a2 a ) | aiAi i = 1 2 3 n}

Discrete Mathematicsby Yang-Sae MoonPage 15

A1 A2 … An = {(a1, a2, …, an) | aiAi, i = 1, 2, 3, …, n}