cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions...

12
CI20 Cinématique et actions mécaniques dans les systèmes Cours de statique Contenu 1 DOMAINE DE LA STATIQUE...................................................................................... 2 2 ACTIONS MECANIQUES ........................................................................................... 2 2.1 ACTIONS DE CONTACT ....................................................................................................................................................... 2 2.2 ACTIONS A DISTANCE......................................................................................................................................................... 2 2.3 MODELISATION DUNE ACTION MECANIQUE........................................................................................................................... 3 2.3.1 Résultante d’une action mécanique en Newton (N)............................................................................... 3 2.3.2 Moment d’une action mécanique en Newton mètre (Nm) .................................................................... 3 2.3.3 Action mécanique quelconque (cas des liaisons) torseur d’action mécanique ...................................... 3 2.3.4 Torseurs particuliers (glisseur et couple) ................................................................................................ 3 3 MODELISATION DES MECANISMES .......................................................................... 4 3.1 GRAPHE DES ACTIONS MECANIQUES (AM) ........................................................................................................................... 4 3.2 GRAPHE CINEMATIQUE MINIMAL ......................................................................................................................................... 4 3.3 SCHEMA DARCHITECTURE .................................................................................................................................................. 5 3.4 PROBLEME PLAN, SIMPLIFICATIONS APPORTEES ...................................................................................................................... 5 4 METHODES DE RESOLUTION D’UN PROBLEME DE STATIQUE ................................... 6 4.1 REMARQUES GENERALES PRELIMINAIRES ............................................................................................................................... 6 4.1.1 Théorème des actions mutuelles ............................................................................................................ 6 4.1.2 Condition d’équilibre, repère galiléen .................................................................................................... 6 4.2 PRINCIPE FONDAMENTAL DE LA STATIQUE (PFS) .................................................................................................................... 6 4.2.1 Théorème de la résultante dynamique (TRS) ......................................................................................... 6 4.2.2 Théorème du moment dynamique (TMS)............................................................................................... 6 4.2.3 Exemple .................................................................................................................................................. 6 4.3 CONSEILS POUR LA RESOLUTION .......................................................................................................................................... 7 4.3.1 Conseils généraux ................................................................................................................................... 7 4.3.2 Cas d’un problème plan, simplification .................................................................................................. 7 4.3.3 Isolement de systèmes soumis à 2 forces ............................................................................................... 7 4.4 VERIFICATION DE LISOSTATISME (H=0)................................................................................................................................. 7 5 MODELISATION DU FROTTEMENT ET DE L’ADHERENCE ........................................... 8 5.1 LOIS DE COULOMB POUR LE FROTTEMENT (LORSQUE 2 PIECES GLISSENT LUNE CONTRE LAUTRE) ..................................................... 8 5.1.1 Modélisation du frottement ................................................................................................................... 8 5.1.2 Cône de frottement et coefficient de frottement ................................................................................... 8 5.1.3 Résolution de l’exemple de la voiture en pente...................................................................................... 9 5.2 LOI DE COULOMB POUR LADHERENCE (2 PIECES IMMOBILES ENTRE ELLES) .................................................................................. 9 5.3 ARC-BOUTEMENT ............................................................................................................................................................. 9 6 MODELISATION DES ACTIONS LOCALES USUELLES ................................................. 10 6.1 CAS DE LA PESANTEUR, POIDS ET CENTRE DE GRAVITE............................................................................................................. 10 6.1.1 Modèle local ......................................................................................................................................... 10 6.1.3 Barycentre ............................................................................................................................................ 10 6.2 ACTIONS SURFACIQUES DE CONTACT (FLUIDE SOUS PRESSION, OU CONTACT REPARTI) .................................................................. 11 6.2.1 Modèle local ......................................................................................................................................... 11 6.2.2 Modèle global, centre de poussée (action d’un fluide) ou centre de liaison (action d’un solide) ........ 11 6.3 LIAISON SURFACIQUE AVEC FROTTEMENT, APPLICATION AU FREINAGE ....................................................................................... 11 7 EXERCICE RESOLU (CONSOLE PORTANTE DE BATEAU) ............................................. 1

Transcript of cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions...

Page 1: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

Cours de statique Contenu

1 DOMAINE DE LA STATIQUE ...................................................................................... 2

2 ACTIONS MECANIQUES ........................................................................................... 2

2.1 ACTIONS DE CONTACT ....................................................................................................................................................... 2 2.2 ACTIONS A DISTANCE ......................................................................................................................................................... 2 2.3 MODELISATION D’UNE ACTION MECANIQUE ........................................................................................................................... 3

2.3.1 Résultante d’une action mécanique en Newton (N) ............................................................................... 3

2.3.2 Moment d’une action mécanique en Newton mètre (Nm) .................................................................... 3

2.3.3 Action mécanique quelconque (cas des liaisons) torseur d’action mécanique ...................................... 3

2.3.4 Torseurs particuliers (glisseur et couple) ................................................................................................ 3

3 MODELISATION DES MECANISMES .......................................................................... 4

3.1 GRAPHE DES ACTIONS MECANIQUES (AM) ........................................................................................................................... 4 3.2 GRAPHE CINEMATIQUE MINIMAL ......................................................................................................................................... 4 3.3 SCHEMA D’ARCHITECTURE .................................................................................................................................................. 5 3.4 PROBLEME PLAN, SIMPLIFICATIONS APPORTEES ...................................................................................................................... 5

4 METHODES DE RESOLUTION D’UN PROBLEME DE STATIQUE ................................... 6

4.1 REMARQUES GENERALES PRELIMINAIRES ............................................................................................................................... 6

4.1.1 Théorème des actions mutuelles ............................................................................................................ 6

4.1.2 Condition d’équilibre, repère galiléen .................................................................................................... 6

4.2 PRINCIPE FONDAMENTAL DE LA STATIQUE (PFS) .................................................................................................................... 6

4.2.1 Théorème de la résultante dynamique (TRS) ......................................................................................... 6

4.2.2 Théorème du moment dynamique (TMS) ............................................................................................... 6

4.2.3 Exemple .................................................................................................................................................. 6

4.3 CONSEILS POUR LA RESOLUTION .......................................................................................................................................... 7

4.3.1 Conseils généraux ................................................................................................................................... 7

4.3.2 Cas d’un problème plan, simplification .................................................................................................. 7

4.3.3 Isolement de systèmes soumis à 2 forces ............................................................................................... 7

4.4 VERIFICATION DE L’ISOSTATISME (H=0)................................................................................................................................. 7

5 MODELISATION DU FROTTEMENT ET DE L’ADHERENCE ........................................... 8

5.1 LOIS DE COULOMB POUR LE FROTTEMENT (LORSQUE 2 PIECES GLISSENT L’UNE CONTRE L’AUTRE) ..................................................... 8

5.1.1 Modélisation du frottement ................................................................................................................... 8

5.1.2 Cône de frottement et coefficient de frottement ................................................................................... 8

5.1.3 Résolution de l’exemple de la voiture en pente ...................................................................................... 9

5.2 LOI DE COULOMB POUR L’ADHERENCE (2 PIECES IMMOBILES ENTRE ELLES) .................................................................................. 9 5.3 ARC-BOUTEMENT ............................................................................................................................................................. 9

6 MODELISATION DES ACTIONS LOCALES USUELLES ................................................. 10

6.1 CAS DE LA PESANTEUR, POIDS ET CENTRE DE GRAVITE ............................................................................................................. 10

6.1.1 Modèle local ......................................................................................................................................... 10

6.1.3 Barycentre ............................................................................................................................................ 10

6.2 ACTIONS SURFACIQUES DE CONTACT (FLUIDE SOUS PRESSION, OU CONTACT REPARTI) .................................................................. 11

6.2.1 Modèle local ......................................................................................................................................... 11

6.2.2 Modèle global, centre de poussée (action d’un fluide) ou centre de liaison (action d’un solide) ........ 11

6.3 LIAISON SURFACIQUE AVEC FROTTEMENT, APPLICATION AU FREINAGE ....................................................................................... 11

7 EXERCICE RESOLU (CONSOLE PORTANTE DE BATEAU) ............................................. 1

Page 2: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 2 sur 12 TSI Eiffel Dijon

1 DOMAINE DE LA STATIQUE

La statique du solide étudie l’équilibre de systèmes ou de mécanismes soumis à des actions mécaniques extérieures. C'est

une étape essentielle pour le dimensionnement des systèmes mécaniques réels.

Le point de départ consiste à faire le bilan des actions mécaniques extérieures que subit le solide S élément unique ou

ensemble de pièces.

Pour un solide indéformable et immobile par rapport à un repère galiléen, on appliquera le principe fondamental de la

statique (PFS) pour fixer cette situation d’équilibre ;

- absence de translation par le théorème de la résultante statique (TRS),

- absence de rotation par le théorème du moment statique (TMS).

En l’absence d’équilibre des forces, PFS non vérifié, il s’agit d’un problème de dynamique.

Si on admet une déformation du solide immobile, il s’agit d’un problème de résistance des matériaux (RDM).

2 ACTIONS MECANIQUES

Une action mécanique tend à DEPLACER, IMMOBILISER OU DEFORMER la matière, sous forme solide, liquide ou gazeuse.

La force F met en mouvement ou

entretien le mouvement

Les actions mécaniques de 2 mors

de serrage maintiennent l’objet

La masse répartie déforme le plancher

2.1 Actions de contact Exemples :

Liaisons entre solides

Connaissance du torseur

d’action mécanique de la

liaison

Pression d’un liquide ou gaz

Connaissance de la pression

et de la surface sous pression

Action d’un ressort

Connaissance du coefficient

de raideur

2.2 Actions à distance Exemples :

Force d’attraction (électro aimant)

Couple (moteur)

Pesanteur ou attraction terrestre Electromagnétisme

Page 3: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 3 sur 12 TSI Eiffel Dijon

2.3 Modélisation d’une action mécanique

2.3.1 Résultante d’une action mécanique en Newton (N)

La résultante d’une action mécanique d’un solide 1 sur un solide 2 traduit la capacité de l’action mécanique à arrêter,

déplacer ou déformer le solide 2 en translation.

Exemple de solide soumis à la pesanteur

1011 .. →→ =−= pespes RzgmF

Torseur d’action mécanique { }

−=→

0

z.g.mT 01

G

1pes

1

1→pesF

2.3.2 Moment d’une action mécanique en Newton mètre (Nm)

Le moment d’une action mécanique d’un solide 1 sur un solide 2 en un point A, traduit la capacité de l’action mécanique à

arrêter, déplacer ou déformer le solide 2 en rotation.

Action de l’opérateur 1 sur la clé 2 exprimée en A, moment

nul en A

0)( =∧= FAAFM A

Action de l’opérateur 1 sur la clé 2 exprimée en B, moment

négatif en B (tendance à une rotation de sens horaire)

zFdyFxdFBAFMB ....)( −=−∧=∧=

2.3.3 Action mécanique quelconque (cas des liaisons) torseur d’action mécanique

Pour une action mécanique quelconque, en particulier pour les liaisons normalisées, on utilise le torseur des actions

mécaniques avec sa résultante (composantes X, Y, Z) et son moment (composantes L, M, N) au centre de la liaison.

Exemple : { }0R01

01

01

01

01

A

10

N

M

0

Z

Y

X

T

=→

Liaison pivot De centre A d’axe x

),( xAP ∈∀

2.3.4 Torseurs particuliers (glisseur et couple)

Le torseur d’action mécanique d’un ensemble (E) sur un corps (S) au

point A, est un torseur à résultante (glisseur) s’il est de la forme :

{ }),,(

0

0

0

0

)()(

zyxAA Z

Y

XSER

SET

=

→=→

Un torseur à résultante est représentable par un vecteur unique (vecteur force)

Le torseur d’action mécanique d’un ensemble (E) sur un corps (S) au point A, est un

torseur couple s’il est de la forme :

{ }),,(

0

0

0

)(

0)(

zyxA

A

A

A

AA N

M

L

SEMSET

=

→=→

Ci-contre, le couple appliqué sur l’écrou de la roue peut-être schématisé par deux

forces d’intensité F distante de 2d ou par deux forces d’intensité 2F distante de d.

Un couple est représentable d’une infinité de manières par deux torseurs à résultantes (forces) de même direction, de

même intensité mais de sens opposés.

C

-F

F Clé

Roue d

d

m1

�������

������

��

��

A

����

Page 4: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 4 sur 12 TSI Eiffel Dijon

3 MODELISATION DES MECANISMES

Pour résoudre l’étude de l’équilibre des systèmes (étude statique) on

dispose de différents types de schémas établis à partir du système réel

afin d’établir son modèle.

• Graphe des actions mécaniques (ou d’analyse) afin de poser les

inconnues du problème et de choisir l’isolement adéquat,

• Schéma cinématique minimal pour obtenir les lois entrée/sortie

sur les efforts,

• Schéma d’architecture afin de déterminer les actions de contact

pour essentiellement dimensionner les composants de guidage.

Cette partie suppose l’identification des classes d’équivalence et la

connaissance des liaisons en place.

3.1 Graphe des Actions Mécaniques (AM)

ETAPE 1 :

On établit un graphe de liaisons sur lequel on ajoute les

actions qui ne sont pas des actions de liaisons entre solides

indéformables (pesanteur, action des vérins ou ressort,

couple des moteurs, fluide, utilisateur humain) ainsi que le

bâti.

On obtient ainsi une vue d'ensemble des inconnues du

problème statique.

ETAPE 2 : L’isolement

• Isoler un solide ou un ensemble de solides.

• Tracer la frontière sur le « graphe d’analyse »

autour du système isolé.

Exemple : ensemble isolé S={1,2}

• Recenser les AM (Actions Mécaniques) extérieures sur S

(BAME Bilan des Actions Mécaniques Extérieures)

• Décrire chaque AM de la façon la plus appropriée.

3.2 Graphe cinématique minimal

La procédure de tracé est celle vue dans le cours sur les

schémas cinématiques.

Le schéma cinématique permet de :

• donner une représentation schématique du

mécanisme,

• choisir les projections utiles à la recherche des lois

d'entrée/sortie.

Ce schéma permet de décrire précisément les actions des

liaisons. Pour les liaisons normalisées on retrouve rapidement le torseur d’action mécanique (ou statique) à partir des mobilités du

torseur cinématique. Attention à la nature du moment en colonne de droite pour chaque torseur !

Page 5: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 5 sur 12 TSI Eiffel Dijon

3.3 Schéma d’architecture

Le schéma d'architecture est un schéma cinématique non

minimal, où plusieurs liaisons peuvent relier 2 ensembles

cinématiques.

Le schéma architectural permet notamment de définir par

des liaisons chacune des zones de contact du guidage que

l'on souhaite étudier.

On pourra ainsi :

• quantifier les actions mécaniques au niveau des

zones de contact

• dimensionner les composants de guidage

correspondants.

Les liaisons équivalentes aux liaisons en série et en parallèle

doivent pouvoir se réduire (voir fiche outil « fo_liaisons

équivalentes.pdf »).

3.4 Problème plan, simplifications apportées Hypothèses d'un problème plan :

• la géométrie admet un plan de symétrie ou ses ensembles cinématiques ont un mouvement plan sur plan,

• les forces extérieurs au système sont dans ce plan (ou symétriques par rapport à ce plan),

• les moments extérieurs au système sont orthogonaux à ce plan.

Beaucoup de mécanismes peuvent être étudiés dans le

cadre des hypothèses précédentes et seront donc étudiées

dans ce cadre.

Ici bras MAXPID en position verticale dans le plan ),( yx .

La conséquence d'un problème plan est de conclure à la

nullité de 3 composantes parmi les 6 possibles des torseurs

de liaison. Ce résultat se superpose aux composantes nulles

qui dépendent des liaisons.

Torseurs des actions mécaniques pour les trois situations de problèmes plans.

� Une fois la simplification de problème plan prise en compte, il n'y a plus de liens directs entre le torseur statique et le

torseur cinématique.

On obtient dans le plan 3 types de torseurs différents souvent nommés dans des logiciels de simulation plane par :

Page 6: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 6 sur 12 TSI Eiffel Dijon

4 METHODES DE RESOLUTION D’UN PROBLEME DE STATIQUE

4.1 Remarques générales préliminaires

4.1.1 Théorème des actions mutuelles

On montre que deux actions réciproques entre deux systèmes S1 et S2 sont opposées

4.1.2 Condition d’équilibre, repère galiléen

Un système est en équilibre :

• s'il est immobile,

• s'il se déplace en translation rectiligne uniforme par rapport à un repère fixe ou absolu.

Dans la mécanique newtonienne, ce repère est dit galiléen.

Pour l'étude des systèmes de notre environnement (mécanismes étudiés en laboratoire), un repère lié à la terre sera admis

comme étant galiléen.

Cette hypothèse est admissible si :

• les vitesses en jeu sont négligeables par rapport à celle de la lumière,

• ses dimensions sont négligeables par rapport à la terre,

• si la durée d’étude est courte (pas d’action de la force de Coriolis).

4.2 Principe Fondamental de la Statique (PFS) Un système est en équilibre :

- si la somme des torseurs des actions mécaniques extérieures auxquels il est soumis est nulle,

{ } { }0)( =→ SST (6 équations)

- et si le système est immobile par rapport à un repère galiléen.

Ceci est une condition nécessaire d'équilibre mais non suffisante :

Le mécanisme sera à l'équilibre si tous ses ensembles cinématiques SI respectent : { } { }0)( =→ II SST

Finalement le Principe Fondamental de la Statique (PFS) s’écrit : { } { }0)(1

=→∑ =

n

I II SST

Le développement du PFS se décline en 2 théorèmes

4.2.1 Théorème de la résultante dynamique (TRS)

Le Théorème de la Résultante Statique (TRS) s’applique sur la résultante donc sur ses 3 composantes axiales.

0=→SSR (3 équations scalaires par projection sur ����,��� et ��)

4.2.2 Théorème du moment dynamique (TMS)

Le Théorème du Moment Statique en un point (ex : TMS en O) s’applique sur le moment donc sur ses 3 termes, moments.

0, =→SSOM (3 équations scalaires par projection sur ����,��� et ��)

Une fois le théorème énoncé, il faut l’appliquer…

4.2.3 Exemple

PFS { } { } { } { } { }0TTTT 101stator2pes1pes =+++ →→→→

TRS

010121 =+++ →→→→ RFFF statorpespes

TMS en O

0)10()1()2()1( =+++ →→→→ OstatorOpesOpesO MMMM

TMS en A projeté sur 0x ici centre de liaison pivot

0x.x.x.x. 0)10(0)1(0)2(0)1( =+++ →→→→ AstatorApesApesA MMMM

Page 7: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 7 sur 12 TSI Eiffel Dijon

4.3 Conseils pour la résolution

4.3.1 Conseils généraux

• Calculer le strict minimum. Si l’on doit calculer la projection 0)1pes(A x.M → pas besoin de calculer une autre

projection !

• Organiser ses calculs : faire ses calculs en plusieurs étapes et revenir à la fin sur le résultat final. Ne pas recopier

inutilement des grandes lignes d’équations. D’une part une très grande perte de temps, d’autre part un risque accru

de faire une erreur d’étourderie.

• Utiliser les figures planes de changement de base pour faire des produits scalaires et des produits vectoriels. La

méthode qui consiste à projeter dans une base intermédiaire est beaucoup plus longue ! le jour du concours, vous

êtes également évalués sur votre rapidité.

4.3.2 Cas d’un problème plan, simplification

Pour un problème plan, par exemple dans le plan ���,���, le PFS se réduit à 3 projections :

• pour le TRS, une équation de projection sur �� et une sur ��,

• pour le TMS une équation de projection sur ��.

4.3.3 Isolement de systèmes soumis à 2 forces

Dans le cas où un seul isolement ne permet pas de résoudre le problème, on procède par succession d'isolements.

Les isolements les plus simples à résoudre sont les systèmes à 2 forces :

• les résultantes ont comme droite support la droite reliant les points d'application des 2 forces,

• les résultantes ont même intensité mais un sens opposé.

Dans le pire des cas, l'isolement d'un système à 2 forces ne laisse plus qu'une inconnue (la composante d'une des forces).

4.4 Vérification de l’isostatisme (h=0) Dans le cas où l'on souhaite déterminer les actions de liaisons, le calcul du degré d'hyperstatisme h permet de savoir si le

problème peut être résolu.

Rappel : L'ensemble des inconnues de liaisons ne peut être déterminé que si le mécanisme est isostatique (h=0).

• h = Ns – 6(n-1) + m pour un problème spatial

• h = Ns – 3(n-1) + m pour un problème plan

Avec Ns inconnues statiques ; n pièces y compris le bâti, m = mu + mi mobilités utiles et internes

Voir fiche outils « Hyperstatisme » pour plus de précisions.

Exemple : toiture suspendue de stade

Montrer que pour un problème spatial h = 1, mais que pour un problème dans le plan ���,���, h =0.

Problème spatial :

Problème plan :

Dans le cas où le problème n'est pas isostatique et que l'on souhaite malgré tout résoudre le problème, il convient :

- de faire une étude plane si les symétries du problème le permettent et si cela supprime les hyperstatismes,

- de faire intervenir d'autres équations (nullité des composantes hyperstatiques du fait des jeux dans les liaisons, équations

liées aux déformations des pièces).

Page 8: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 8 sur 12 TSI Eiffel Dijon

5 MODELISATION DU FROTTEMENT ET DE L’ADHERENCE

Les liaisons étant considérées imparfaites, il y a lieu de faire intervenir la modélisation du frottement et de trouver la

condition limite entre adhérence et frottement.

Cette recherche est parfois au cœur de l’étude quand il s’agit de :

• dimensionner un frein,

• dimensionner un limiteur de couple,

• de poser les éléments qui seront nécessaires à l’évaluation des pertes ou puissance interne d’un système.

5.1 Lois de Coulomb pour le frottement (lorsque 2 pièces glissent l’une contre l’autre)

5.1.1 Modélisation du frottement

La loi de Coulomb permet de modéliser le frottement sec, c'est-à-dire indépendant de la vitesse de glissement entre les 2

solides. Ceci est une approximation qui sera admise en l’absence d’autres éléments, expérimentaux par exemple.

Exemple : Voiture (1) glissant sur une route (0) verglacée et en pente, les roues (2) et (3) étant immobiles par rapport à (0).

Cas d’un contact ponctuel parfait, liaison

sphère/plan en A (ou B) de normale �����.

Le torseur réduit en A du sol sur la roue 2 est :

L’isolement de la roue (2) montre qu’elle est

soumise à 2 forces de même droite support et de

sens opposés, le moment en A est donc nul.

Cas d’un contact ponctuel avec frottement en A (ou B).

La modélisation ci-contre entre 2 solides S1 et S2 montre un effort

normal �����/� et un effort tangentiel ����/� de sens opposé au mouvement

Pour le contact en A du sol sur la roue 2 on obtient :

• La composante normale 00220 .yYN =→ dans l’exemple

• La composante tangentielle0.0220 xXT =→ dans l’exemple

Soit le torseur réduit en A :

La relation de Coulomb entre l’effort normal et l’effort tangentiel s’exprime lors du glissement par :

les indices 0→ 2 et 2/0 sont permutés, le résultat correspond à une puissance interne, négative.

5.1.2 Cône de frottement et coefficient de frottement

Lors du glissement, on définit un cône de frottement tel que la résultante ��� soit

tangent à ce cône d’angle φ par rapport à la normale ����.

On a alors :

���� �������

������� �coefficient de frottement

Page 9: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 9 sur 12 TSI Eiffel Dijon

5.1.3 Résolution de l’exemple de la voiture en pente

En conclusion, la voiture ne glissera pas (adhérence) si en valeur absolue α < φ.

5.2 Loi de Coulomb pour l’adhérence (2 pièces immobiles entre elles) L’étude et l’exemple ci-dessus permet d’écrire une inéquation en valeur absolue en introduisant cette fois le coefficient

d’adhérence fa, tel que fa = tan φa , φa étant l’angle maximum entre la normale au contact et la résultante de 0→ 2 à la limite

du glissement.

• La composante tangentielle s’oppose toujours au déplacement qui tend à être provoqué,

• La valeur de fa (adhérence) est proche de celle de f (frottement) mais en réalité supérieure, phénomène de

« décollage »,

• L’alternance sous forme périodique d’adhérence / frottement ou stick / slip en anglais explique le bruit de crissement

(freins ou craie au tableau) et les tremblements de terre dus aux plaques tectoniques. Ce phénomène fait intervenir la

déformation élastique des liaisons au contact.

• Les systèmes ABS et ESP ont pour objectif de maintenir les roues en situation d’adhérence et non de glissement.

5.3 Arc-boutement

L'arc-boutement est une configuration pour laquelle l'équilibre permis

par l'adhérence est indépendant de l'intensité des forces "motrices".

L'arc-boutement se produit lorsque l'angle α entre la normale au

contact et la résultante en ce point est inférieur à l'angle φ du cône de

frottement.

Ici en déplaçant le point d’application de la force �����à gauche, la

résultante va sortir du cône d’adhérence, il y aura glissement.

��

Page 10: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 10 sur 12 TSI Eiffel Dijon

6 MODELISATION DES ACTIONS LOCALES USUELLES

Contrairement au modèle global auquel on associe un torseur d’action mécanique et dont l’utilisation est pratique pour

l’étude de l’équilibre ou de la dynamique, le modèle local permet d’étudier l’action et son effet en tout point de la zone où

elle s’exerce : étude des pressions de contact, contraintes dans les matériaux, déformation du solide.

Modèle local Modèle global

Ces deux modèles ne sont pas interchangeables, on peut déterminer le torseur d’action mécanique à partir de la répartition

locale des efforts, mais on ne peut pas faire le travail inverse sans faire des hypothèses sur la répartition.

6.1 Cas de la pesanteur, poids et centre de gravité

6.1.1 Modèle local

L’accélération de la pesanteur g s’exerce sur chaque volume élémentaire dv au point M d’un solide S de masse volumique ρ

et permet de définir une force locale en M ou poids, tel que :

En intégrant sur la totalité du solide S, le torseur des actions mécaniques au point A est :

6.1.2 Modèle global, centre de gravité

En SII, on admet uniforme le champ de gravité g, le centre de masse est alors le centre de gravité G définit par :

Pour un solide élémentaire S de masse volumique ρ uniforme, le torseur des actions mécaniques en g est :

Pour un cylindre d’acier de masse volumique ρ = 7900kg/m

3 le torseur d’action mécanique au centre de gravité est :

6.1.3 Barycentre

Pour un système constitué de n solides élémentaires homogènes, dont on connaît pour chacun le centre de gravité Gi et la

masse Mi, on peut écrire l’égalité suivante dite du barycentre « centre des poids » avec M masse totale du solide :

∑=

=n

iii AGm

mAG

1

.1

d’où

=

=

=

=

=

=

n

iiGG

n

iiGG

n

iiGG

mzm

z

mym

y

mxm

x

i

i

i

1

1

1

.1

.1

.1

Exemple : Solide composé de 2 parties 2 et 3 Relation pour chaque axe du repère (A, ����,���, ���

L

Page 11: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

J-C Rolin Page 11 sur 12 TSI Eiffel Dijon

6.2 Actions surfaciques de contact (fluide sous pression, ou contact réparti)

6.2.1 Modèle local

L’action d’un fluide 1 sur une surface élémentaire ds centrée en M d’un solide 2, est définie par la force élémentaire :

6.2.2 Modèle global, centre de poussée (action d’un fluide) ou centre de liaison (action d’un solide)

En intégrant l’action locale élémentaire sur la totalité de la surface S de contact entre 1 et 2, on obtient le torseur :

Par définition, le point C est le centre de poussée (action d’un fluide) ou le centre de liaison (action d’un solide sans

glissement) tel que le moment en ce point est nul.

La pression de contact est supposée uniforme, sur une surface

plane de diamètre d (diamètre du piston).

Le torseur de l’action mécanique du fluide sur le solide 1 se

réduit sur l’axe �!, ��� à la résultante :

==→ 4

...

2

1

dpspFFluide

π

C est le centre de poussée.

Exemple : tige de vérin

6.3 Liaison surfacique avec frottement, application au freinage Dans le cas d’un frottement, entre deux solides 0 et 2 en contact par une surface S, en tout point de contact M, l’action

mécanique élémentaire peut se décomposer en une composante normale ". $�� due à la pression p et en une composante

tangentielle "% . &� due au frottement.

Sur la totalité de la surface S en contact, le torseur d’action mécanique est :

L’application des lois de Coulomb permet d’écrire la relation "% � '. ", et donne le sens de &� qui s’oppose au déplacement.

On peut ainsi pour des géométries simples calculer l’effort de freinage à partir de la pression.

C

Page 12: cours de Statique TSI2 v9 - fltsi.fr et TD par centres_d... · CI20 Cinématique et actions mécaniques dans les systèmes J-C Rolin Page 2 sur 12 TSI Eiffel Dijon 1 DOMAINE DE LA

CI20 Cinématique et actions mécaniques dans les systèmes

7 EXERCICE RESOLU (CONSOLE PORTANTE DE BATEAU)

On s’intéresse à un système de console portante de bateau destiné à mettre les bateaux à l’eau ou à les en retirer à partir d’un quai dans les ports de plaisance. On donne ci-dessous

la modélisation sous forme de schéma d’architecture ainsi qu’un extrait du BDD du contexte.

La console (1) est en liaison avec le quai (0) par l’intermédiaire de 2 liaisons en parallèle, rotule de centre A, linéaire annulaire d’axe (B,….). Les coordonnées de B(0,0,4) en m.

Cette solution permet de faire pivoter la console autour de l’axe (B,z) à l’aide d’un vérin linéaire (5) dont la tige (non représentée) est rattachée au point C(0,yC ,zC). Ce vérin fonctionne

lors de la mise à l’eau et pour maintenir une position (celle de la figure par exemple).

Le bateau (4), de centre de gravité G est suspendu à la console par deux câbles (2) et (3) munis d’anneaux à leurs extrémités (donc 2 liaisons ponctuelles de normale ��.

Les masses de la console et des câbles ainsi que les frottements dans les liaisons supposées sans jeu sont négligés.

Graphe de structure (différent du graphe des liaisons)

qui fait ressortir les ensembles (0) à (4) et fait

apparaitre l’action de la pesanteur puis le nombre

d’inconnues de liaisons sur ce graphe.

L’action au point C étant négligée, on détermine les inconnues de liaisons en A et

B. Après étude de cet objectif, on isole (sur le graphe) l’ensemble choisi, et on

réalise le bilan des actions mécaniques (torseurs – écriture vectorielle détaillée)

puis on applique le PFS.

Faire l’application numérique.