Contrôle de la position des vibrisses chez le rat ...

103
Contrôle de la position des vibrisses chez le rat : intégrations sensori-motrices sous-tendant le contrôle moteur volontaire : Polysémies vibrissales Thèse Michaël Elbaz Doctorat en neurosciences Philosophiæ doctor (Ph. D.) Québec, Canada © Michaël Elbaz, 2021

Transcript of Contrôle de la position des vibrisses chez le rat ...

Page 1: Contrôle de la position des vibrisses chez le rat ...

Contrôle de la position des vibrisses chez le rat : intégrations sensori-motrices sous-tendant le

contrôle moteur volontaire : Polysémies vibrissales

Thèse

Michaël Elbaz

Doctorat en neurosciences

Philosophiæ doctor (Ph. D.)

Québec, Canada

© Michaël Elbaz, 2021

Page 2: Contrôle de la position des vibrisses chez le rat ...

Contrôle de la position des vibrisses chez le rat : intégrations sensori-motrices sous-tendant le contrôle moteur volontaire

Polysémies vibrissales

Thèse Doctorat de neurosciences

Michaël ELBAZ

Sous la direction de :

Martin DESCHÊNES, directeur de recherche

Christian ETHIER, co-directeur de recherche

Page 3: Contrôle de la position des vibrisses chez le rat ...

ii

Résumé

Que ce soit par nos yeux ou par nos mains, nous interagissons avec notre environnement

par l’intermédiaire de senseurs mobiles. L'utilisation efficace de tels organes, dits

« sensorimoteurs », implique de garder trace de leur position tandis que nous les bougeons.

Dans le cas contraire, la stabilité perceptive et la préhension dirigée seraient profondément

entravées. Cependant, les mécanismes neuronaux qui informent le système nerveux de la

position de ces organes restent largement inexplorés. Deux mécanismes impliquant une

information retour peuvent théoriquement être en jeu : la copie efférente et/ou le retour

sensoriel. Pour évaluer leur contribution, nous avons entraîné des rats à placer une vibrisse

dans une plage angulaire prédéterminée sans contact, une tâche dépendant de la

connaissance qu’ils ont de la position de leur vibrisse. Nous établissons que le retour

sensoriel n'est pas requis pour effectuer cette tâche. Le cortex moteur n'est pas non plus

requis, même en l'absence de retour sensoriel. Enfin, nous démontrons que le noyau rouge,

qui reçoit des entrées du cortex moteur, du cervelet, des afférences vibrissales, et qui

projette vers les motoneurones faciaux est impliqué de façon critique dans l'exécution de

cette tâche. Ces résultats démontrent l'existence d'un modèle interne, indépendant du

cortex moteur et suffisant au contrôle moteur volontaire. Ils suggèrent en outre que le

cervelet pourrait être impliqué en tant qu’élément efférent de ce modèle interne.

Page 4: Contrôle de la position des vibrisses chez le rat ...

iii

Abstract

Whether through our eyes or our hands, we interact with our environment through mobile

sensors. The efficient use of these organs implies to keep track of their position over time.

Otherwise, perceptive stability and directed prehension would be profoundly impeded. Yet,

the neural mechanisms informing the nervous system about organs’ position remain largely

unexplored. Two feedback mechanisms may theoretically be at play: efference copy and/or

sensory feedback. To assess their contribution, we trained head-restrained rats to place

their vibrissae in a predetermined angular range without contact, a task that depends on the

knowledge of vibrissa position. We find that sensory feedback is not required to perform the

task. The motor cortex is neither required, even in the absence of sensory feedback. Finally,

we find that the red nucleus, which receives motor cortex, cerebellar and vibrissa inputs,

and projects to facial motoneurons is critically involved in the execution of the task. These

results demonstrate the existence of a motor cortex-independent internal model sufficient

for voluntary motor control. They further suggest that the cerebellum may be involved as an

efferent part of this internal model.

Page 5: Contrôle de la position des vibrisses chez le rat ...

iv

Table des matières

Résumé ............................................................................................................................................................ ii

Abstract ............................................................................................................................................................ iii

Table des matières ....................................................................................................................................... iv

Liste des figures ............................................................................................................................................. v

Liste des acronymes ................................................................................................................................... vii

Remerciements .............................................................................................................................................. x

Avant-propos .................................................................................................................................................. xi

Introduction ..................................................................................................................................................... 1

Chapitre 1 A cortical-independent internal model for the control of voluntary vibrissa

movement ..................................................................................................................................................... 24

1.1 Résumé .............................................................................................................................................. 24

1.2 Abstract .............................................................................................................................................. 24

Chapitre 2 A Vibrissal Pathway that Activates the Limbic System .............................................. 48

2.1 Résumé .............................................................................................................................................. 48

2.2 Abstract .............................................................................................................................................. 48

Conclusion .................................................................................................................................................... 77

Bibliographie................................................................................................................................................. 79

Page 6: Contrôle de la position des vibrisses chez le rat ...

v

Liste des figures

Figures de l’introduction

Figure Introduction 1 – Photographie d’un rat à l’arborescence vibrissale manifeste (issu

de (Deschenes et al., 2012))

Figure Introduction 2 – Gros plan sur les macro-vibrisses mystaciales (issu de (Knutsen and

Ahissar, 2009))

Figure Introduction 3 - Mouvements de vibrisses et locomotions (selon (Sofroniew and

Svoboda, 2015))

Figure Introduction 4 - Un rat soumis au "gap crossing" (issu de (Carvell and Simons, 1990))

Figure Introduction 5 - Tâche de localisation d'objets réalisée par une vibrisse en

mouvement

Figure Introduction 6 - Complexe sinusal folliculaire d’où émane une vibrisse (selon (Rice et

al., 1993))

Figure Introduction 7 - Noyaux de la colonne trigéminale (d’après (Urbain and Deschênes,

2009))

Figure Introduction 8 - Voies trigémino-thalmiques vibrissales (d’après (Pouchelon et al.,

2012))

Figure Introduction 9 - Barrelettes vibrissales dans le PrV (selon (Bosman et al., 2011))

Figure Introduction 10 - Cortex somatosensoriel des rongeurs (adapté de (Maier et al.,

1999))

Figure Introduction 11 - Schéma des voies lemniscale 1 et paralemniscale (depuis (Frangeul

et al., 2014))

Figure Introduction 12 - Désinhibition de la voie paralemniscale (issu de (Urbain and

Deschênes, 2009))

Figure Introduction 13 - Muscles intrinsèques et extrinsèques (issu de (Hill et al., 2008))

Figure Introduction 14 - Cartographie des motoneurones des vibrisses au sein du noyau

facial ("ML", "NL", "DN" et "NLP" désignent des muscles extrinsèques ; issu de (Deschenes

et al., 2016))

Figure Introduction 15 - Boucles sensorimotrices vibrissales (depuis (Prescott et al., 2016))

Page 7: Contrôle de la position des vibrisses chez le rat ...

vi

Figures du Chapitre 1

Figure 1 & Supplementary Figure 1: Intact animals can learn the vibrissa positioning task

Figure 2 & Supplementary Figure 2: Sensory feedback is neither required before, nor after

learning

Figure 3 & Supplementary Figure 3: Motor cortex is not required to learn the task

Figure 4 & Supplementary Figure 4: Inactivation of the rubro-facial pathway disrupts

performance

Figures du Chapitre 2

Figure 1. Axonal Projections of Interpolaris Cells that Give Rise to the Paralemniscal

Pathway

Figure 2. Vibrissa-Evoked Responses in KF and MdD

Figure 3. Axonal Projections of KF/PB Cells that Receive Interpolaris Input

Figure 4. Vibrissa-Evoked Responses in Central Amygdala

Figure 5. Separate Cellular Populations in KF/PB Project to the CeA and the Facial Nucleus

Figure 6. Transsynaptic Labeling of Brainstem Cells that Receive Input from the KF

Figure 7. Optogenetic Stimulation of KF Axons Inhibits Vibrissa-Evoked Responses in

Monovibrissa-Responsive Interpolaris Cells

Figure 8. Summary of the First-Order Axonal Projections of Interpolaris Cells, and the

Second-Order Projections that Derive from the KF/PB Complex

Figure S1. Interpolaris cells project to KF/PB and MdD (Supplementary information related

to Figure 1)

Figure S2. Additional projection sites of KF/PB cells that receive interpolaris input

(Supplementary information related to Figure 3)

Figure S3. Labeling of KF cells that project to lower brainstem (Supplementary information

related to Figure 4)

Page 8: Contrôle de la position des vibrisses chez le rat ...

vii

Liste des acronymes

ION : infraorbital

KF : Kölliker-Fuse

LFP : Long Field Potential

M1 : cortex moteur primaire

MdD : dorsal medullary reticular nucleus

PB : parabrachial

PO : noyau postérieur du thalamus

PrV : Principal du V

S1 : cortex sensoriel primaire

S2 : cortex sensoriel secondaire

SpV : noyau spinal du V

SpVc : noyau spinal du V, caudalis

SpVi : noyau spinal du V, interpolaris

SpVo : noyau spinal du V, oralis

vIRT : formation réticulaire vibrissale

VPM : noyau ventral postéromedial

VPMdm : noyau ventral postéromédial dorsomédial

ZIv : zona incerta ventrale

Page 9: Contrôle de la position des vibrisses chez le rat ...

viii

À mon Maître,

le Rav Pin'has haCohen Pachter זצ"ל.

Votre dévouement, votre intégrité,

votre aversion pour les mirages de ce monde,

les lueurs que vous m'avez si généreusement

permis d'entrevoir me guideront toujours.

Aucun remerciement ne rendra justice

à ce que je vous dois.

Page 10: Contrôle de la position des vibrisses chez le rat ...

ix

הבן בחכמה וחכם בבינה ספר יצירה

« Quî enim posset fieri, si salus in promptu esset, et

sine magno labore reperiri posset, ut ab omnibus ferè

negligeretur ? Sed omnia praeclara tam difficilia,

quàm rara sunt. »

Ethica, Pars V, Propositio 42, Scholium

B. Spinoza

„Wir fühlen, daß selbst, wenn alle möglichen

wissenschaftlichen Fragen beantwortet sind, unsere

Lebensprobleme noch gar nicht berührt sind.“

Tractatus logico-philosophicus

L. Wittgenstein

« Objection contre la science :

Ce monde ne mérite pas d’être connu. »

Syllogismes de l’amertume

E. Cioran

Page 11: Contrôle de la position des vibrisses chez le rat ...

x

Remerciements

Voici donc venu le moment de boucler une petite folie entamée en septembre 2014. De la

définition d’un projet à sa laborieuse implémentation (3264 expériences comportementales

tout de même), ce doctorat m’aura permis d’entrevoir ce qu’être chercheur peut signifier.

Je le dois avant tout à Martin Deschênes dont la passion incarnée au quotidien a constitué,

pour moi, la plus belle illustration de ce que la recherche est magnifiée quand elle relève

d’une vocation. A rebours de cette « ère technologique » qui en puissance s’empare des

neurosciences, vous m’avez appris à d’abord envisager la pertinence des questions

scientifiques, pour seulement alors mettre les techniques appropriées au service de leur

élucidation. Ces instants dont j’ai parfois eu la chance d’être témoin à vos côtés où la refonte

des hypothèses s’impose, où les perspectives se renversent pour peu qu’on y soit prêt, ont

été les plus inattendus, les plus heureux et les plus instructifs de mon doctorat. Vous m’avez

permis en somme de soupçonner in situ qu’un cercle vertueux en recherche se fonde sur

un échange permanent entre intuition et analyse, gage d’une rigueur non bornée.

Christian Ethier est devenu co-superviseur de ce doctorat en mai 2016, pour guider ce qui

allait en constituer le projet principal. Nos échanges, toujours engagés, m’ont d’abord fait

réaliser la primauté des protocoles comportementaux, puisque leurs particularités

détermineront ni plus ni moins ce qui sera déductible de toute l’expérience. Je te dois de

m’avoir donné la possibilité de m’impliquer dans bien d’autres projets, dont l’un au cœur de

mon intérêt pour les neurosciences (des systèmes cognitives), et toucher à des méthodes

d’analyse contemporaines. Ton ouverture, ton écoute et ta patience démesurée m’ont été

très souvent essentielles.

Maxime Demers, je ne saurais trop te remercier pour ton aide primordiale et généreuse dans

la réalisation concrète des projets. Je me suis grâce à toi confronté à cette intelligence

pratique en action qui te semble si naturelle.

Merci à tous les membres des laboratoires, en particulier à Saravanan, Windsor (le meilleur

professeur d’anglais qui se pût concevoir), Sergiu, Maxime, Quentin, Marie-Andrée et

Alireza.

Au-delà du centre de recherche, ces personnes devenues des ami-es dont la présence a

éclairé mon expérience québécoise : l’extraordinaire Myriam, David qui a fini par s’auto-

proclamer « bouc émissaire de [m]a procrastination », Warren pour l’art et le génie

combinés, Jocelyne pour m’avoir fait chanter du Bach sans le regretter, Jonathan pour ta

confiance dans l’organisation de ces conférences aux thèmes m’échappant tout à fait.

Merci enfin à mes parents, à ma fratrie, à ma grand-mère et à mon oncle dont la présence

constante me permet coûte que coûte de braver ce drôle de monde.

Page 12: Contrôle de la position des vibrisses chez le rat ...

xi

Avant-propos

Le premier chapitre de cette thèse correspond à un manuscrit non encore soumis ; il devrait

être soumis en juin 2021. L’article publié devrait correspondre à la version présentée dans

cette thèse. J’en suis le premier auteur. L’idée maîtresse de ce projet a été définie avec

Martin Deschênes, les arcanes du protocole expérimental établis avec Christian Ethier et

j’en ai réalisé expériences et analyses. Les co-auteurs en sont : Maxime Demers, Christian

Ethier et Martin Deschênes.

Le second chapitre est un manuscrit soumis en juin 2020, actuellement en révision. L’article

publié devrait correspondre à la version présentée dans cette thèse. J’en suis premier

auteur. Mon rôle a consisté à penser ce projet aux côtés de Martin Deschênes, à en réaliser

des expériences et analyses. Les co-auteurs en sont : Amalia Callado-Pérez, Maxime

Demers, David Kleinfeld et Martin Deschênes.

Page 13: Contrôle de la position des vibrisses chez le rat ...

1

Introduction

Que cela soit par nos yeux ou par nos mains, nous nous représentons le monde qui nous

entoure par l’intermédiaire de senseurs mobiles, également appelés organes

sensorimoteurs. L’utilisation efficace de tels organes suppose de garder trace de leur

position tandis que nous les bougeons. Considérons à titre d’illustration un objet posé sur

une table que nous tenterions de saisir : sans connaissance de la position de notre main en

mouvement, il n’y aurait d’adéquation possible (autre qu’aléatoire) entre la position visée et

la position de notre main, et nos tentatives s’avéreraient le plus souvent infécondes.

Comment la connaissance de la position d’organes en mouvement est-elle rendue

possible ? Les vibrisses offrent l’opportunité d’explorer les fondements neurophysiologiques

de ce défi, commun à tous les organes sensorimoteurs.

Les vibrisses sont des moustaches sensibles dont disposent de nombreuses espèces de

mammifères (Ahl, 1986; Brecht et al., 1997), hautement mobiles chez certains rongeurs.

Rats et souris sont en effet capables de palper activement leurs environs via des

mouvements de vibrisse rythmiques, mouvements appelés « whisking » (Grant et al., 2011).

Ils peuvent localiser précisément (à 6° près) des objets touchés par leur intermédiaire

(O'Connor et al., 2010), impliquant qu’ils en « connaissent » la position alors que celles-ci

bougent par rapport à leur museau ; les vibrisses exemplifient donc le défi sensorimoteur.

Les vibrisses offrent de surcroît d’importants avantages expérimentaux : leurs mouvements

relativement simples (pour l’essentiel définis par un unique degré de liberté) sont très

précisément quantifiables et perturbables, tout comme les phénomènes

neurophysiologiques associés.

En guise d’introduction aux deux projets détaillés dans cette thèse, nous commencerons

par un tour d’horizon de la riche éthologie vibrissale. En un second temps, nous décrirons

les principaux acquis de la neurophysiologie vibrissale autant sensorielle que motrice. Enfin,

nous montrerons en quoi un fossé demeure ici entre éthologie et neurophysiologie ; nos

projets ont été pensés afin de contribuer à le réduire.

1. Ethologie vibrissale

Les souris et les rats sont pour la plupart des espèces qui les composent des animaux

nocturnes (Hartmann, 2011; Mrosovsky and Hattar, 2005; Pisano and Storer, 1948),

pourvus d’une faible acuité visuelle (Birch and Jacobs, 1979; Prusky et al., 2002). Le sens

Page 14: Contrôle de la position des vibrisses chez le rat ...

2

du toucher médié par leurs vibrisses leur est à ce titre crucial pour explorer leur

environnement.

Description des vibrisses

De part et d’autre du museau des rats se trouvent une trentaine de macro-vibrisses mobiles,

longues de 2 à 5 cm (ce sont les vibrisses dites « mystaciales »), ainsi qu’une centaine de

micro-vibrisses immobiles d’environ 7 mm (Brecht et al., 1997; Grant et al., 2011; Vincent,

1913) (Figure Introduction 1).

Figure Introduction 1

Photographie d’un rat à l’arborescence vibrissale manifeste (issu de (Deschenes et al., 2012))

Les macro-vibrisses mystaciales sont organisées en une matrice de cinq lignes (A à E dans

la direction dorso-ventrale) et de sept colonnes (1 à 7 dans la direction caudo-rostrale)

(Figure Introduction 2) ; quatre vibrisses, désignées par des lettres grecques (alpha, bêta,

gamma et delta) forment un arc additionnel caudalement à ladite matrice. L’étendue de

déflection maximale des vibrisses est bien supérieure dans l’axe rostro-caudal que dans

l’axe dorso-ventral.

Page 15: Contrôle de la position des vibrisses chez le rat ...

3

Figure Introduction 2 – Gros plan sur les macro-vibrisses mystaciales (issu de (Knutsen and Ahissar, 2009))

Outre les macro-vibrisses mystaciales existent des macro-vibrisses supraorbitales, génales

et infra-mandibulaires (Chorev et al., 2016; Severson et al., 2019). À moins de précision

contraire, nous nous référerons aux vibrisses mystaciales par l’emploi du seul mot

« vibrisses ».

Utilisation qu’un rat fait de ses vibrisses dans divers contextes

Lorsqu’un rat rencontre des congénères (Ebbesen et al., 2017), explore son environnement

(Ebbesen et al., 2017) ou attend une récompense (Dominiak et al., 2019), ses vibrisses

décriront des mouvements typiques rythmiques rapides (5-10 Hz) de protractions-

rétractions : le « whisking ». Le whisking (verbe apparié : « whisker ») peut être décomposé

en trois sous-mouvements : la phase, l’amplitude et le « setpoint », soit l’angle moyen autour

duquel les mouvements rapides surviennent (Hill et al., 2011).

L’apparition du whisking en des contextes comportementaux différents atteste de ce que

l’utilisation des vibrisses répond chez les rongeurs à des fonctions multiples. Distinguer ces

fonctions s’impose afin de saisir la « valence » distincte des informations sensorielles

récoltées, impliquant des mécanismes neurophysiologiques possiblement distincts.

Explorer son environnement

Se mouvoir : marcher, courir, nager

Le whisking a été comparé aux tâtonnements par lesquels, avec sa canne, un aveugle

sonde activement ses environs (Kleinfeld and Deschenes, 2011). Et pour cause, durant la

marche, les pattes d’un rat iront sur la surface que ses vibrisses auront préalablement

palpée par le whisking (Grant et al., 2018). Lorsqu’ils courent par contre, les rats

maintiennent leurs vibrisses protractée sans mouvement rythmique, une stratégie semblant

Page 16: Contrôle de la position des vibrisses chez le rat ...

4

suggérer qu’ils sont alors moins intéressés par explorer leur enrivonrment que par éviter

des obstacles (Arkley et al., 2014). Des rats privés de vision ont été ainsi entraînés à courir

au travers d’un couloir pour y trouver de la nourriture : ceux qui devaient s’attendre à ce que

des obstacles soient disposés à des endroits indéterminés de leur parcours avaient

tendance à y courir moins vite et à maintenir leurs vibrisses plus protractées,

comparativement à ceux qui s’attendaient à un couloir vide d’obstacles (Arkley et al., 2014).

En matière de marche comme de course, tout se passe donc comme si les vibrisses

« ouvraient la voie » (Figure Introduction 3).

Figure Introduction 3 - Mouvements de vibrisses et locomotions (selon (Sofroniew and Svoboda, 2015))

Aussi, une asymétrie de mouvements vibrissaux (côtés gauche vs. droite de la face)

précède les mouvements de tête (Grant et al., 2012; Towal and Hartmann, 2006), les

guidant possiblement. Tailler toutes les vibrisses d’un côté induit un « thigmotactisme »

(Meyer and Meyer, 1992), soit une propension à garder les vibrisses non taillées en contact

permanent avec une paroi extérieure tel un mur. Couper les vibrisses de rats nageurs altère

profondément leur nage, entraînant une inclinaison du corps et/ou une plongée du nez dans

l'eau ; leurs vibrisses contribuent donc à leur permettre de maintenir la tête hors de l’eau

(Ahl, 1982).

Page 17: Contrôle de la position des vibrisses chez le rat ...

5

Détection et localisation d’objets

Les vibrisses contribuent largement à la détection et à la localisation d’objets et ce dès les

premiers jours post-partum des rats : couper les vibrisses de tous jeunes rats leur fera

manquer le mamelon qu’ils visent (Sullivan et al., 2003), ce qui résulte en une moindre

croissance (Arakawa and Erzurumlu, 2015). Cette implication des vibrisses dans le fait de

se nourrir se retrouvera, chez les adultes, jusque dans la détection des courants d’air

(l’« anémotactisme »), dont les effluves peuvent mener vers des cibles d’intérêt comme de

la nourriture (Yu et al., 2016).

Afin de mieux quantifier les capacités de détection d’objets en laboratoire, deux tâches

comportementales bien connues des vibrissologues ont été amplement utilisées : le

franchissement d’un fossé (« gap crossing ») et la localisation fine d’objets.

Gap crossing – Un rat placé sur une plateforme évaluera, par l’intermédiaire de ses

vibrisses, la présence d’une autre plateforme espacée de celle sur laquelle il se trouve par

un fossé. Sur la seule base des informations recueillies par ses vibrisses, le rat décidera de

se rendre sur l’autre plateforme (Carvell and Simons, 1990). Moyennant un entraînement

suffisant, les rats sont capables d’accomplir cette tâche avec une seule vibrisse (Hutson and

Masterton, 1986), quoique plus lentement que lorsqu’ils en ont plusieurs (Celikel and

Sakmann, 2007).

Figure Introduction 4 - Un rat soumis au "gap crossing" (issu de (Carvell and Simons, 1990))

Page 18: Contrôle de la position des vibrisses chez le rat ...

6

Localisation d’objets – Chez des rats libres de leurs mouvements, la localisation d’objets

est ralentie lorsque les macro-vibrisses sont coupées (Brecht et al., 1997; Sellien et al.,

2005). À la détection d’un objet par les vibrisses suit un mouvement d’orientation de la tête

(réduit si les vibrisses sont coupées (Symons and Tees, 1990)), de sorte à ce que le museau

se trouve symétriquement en regard de l’objet détecté, avec une palpation impliquant alors

les vibrisses des deux côtés du museau (Grant et al., 2009). S’ensuivra un contrôle de la

protraction des vibrisses, maximisant le nombre de contacts avec l’objet (Mitchinson and

Prescott, 2013) : un type de whisking qualifié de « fovéal » (Berg and Kleinfeld, 2003;

Carvell and Simons, 1990). Une expérience très contrôlée visant à estimer les capacités de

localisation fine d’objets consiste à entraîner des animaux libres de leurs mouvements, ou

bien maintenus tête fixe, à comparer deux positions distinctes (Cheung et al., 2019; Knutsen

et al., 2006; Mehta et al., 2007; O'Connor et al., 2010; O'Connor et al., 2013) (Figure

Introduction 5). Ces expériences ont démontré une capacité maximale de discrimination de

deux positions de l’ordre de 6° tandis que seul l’un des deux objets est présent, une capacité

sous-tendue donc par la mémoire des deux emplacements (O'Connor et al., 2010).

Figure Introduction 5 - Tâche de localisation d'objets réalisée par une vibrisse en mouvement

Discrimination de formes et de textures

Les rats sont capables de discriminer avec leurs vibrisses des objets (Brecht et al., 1997) et

même des textures (Guic-Robles et al., 1989), dans ce dernier cas avec un degré de

précision comparable aux humains utilisant leurs doigts (Carvell and Simons, 1990). Si les

rats mettent plus de temps à localiser des objets lorsqu’ils sont dépourvus de leurs macro-

vibrisses mystaciales, ils mettent plus de temps à discriminer des textures s’ils s’ont

dépourvus de micro-vibrisses (Brecht et al., 1997; Kuruppath et al., 2014), suggérant une

implication éthologique des macro-vibrisses dans la localisation et des micro-vibrisses dans

Page 19: Contrôle de la position des vibrisses chez le rat ...

7

la discrimination fine. Ainsi typiquement, un rat muni de toutes ses vibrisses, ayant détecté

la présence d’un objet par l’intermédiaire de ses macro-vibrisses, en approchera alors son

museau pour le palper par l’intermédiaire de ses micro-vibrisses. Cette séquence

éthologique n’empêche pas pour autant les rats de discriminer des objets par l’intermédiaire

de leurs macro-vibrisses, lorsque l’expérimentateur les y conduit (von Heimendahl et al.,

2007).

Enjeux sociaux

Les vibrisses ne servent pas qu’à l’exploration d’objets, mais aussi à celle de congénères

(Bobrov et al., 2014; Wolfe et al., 2011). Les souris, tout comme probablement les rats, les

utilisent de surcroît corrélativement à l’instauration de hiérarchies sociales (les souris

dominantes taillant les vibrisses des dominées) (Long, 1972). Enfin, comme précédemment

évoqué, les rats whiskent lorsqu’ils s’attendent à recevoir une récompense (Dominiak et al.,

2019), ce qui pourrait jouer un rôle social autant avec les congénères qu’avec

l’expérimentateur se sentant désiré.

Nous concluons ainsi ce tour d’horizon de ce en quoi les vibrisses contribuent à l’éthologie

des rats, éthologie dont nous retiendrons l’hétérogénéité. Nous reviendrons sur certaines

des facultés tout juste évoquées en troisième partie, après avoir planté le décor

neurophysiologique de base en deuxième.

2. Neuroanatomie et neurophysiologie vibrissales

Suivant les distinctions communes, nous allons dans un premier temps tenter de distinguer

les physiologies sensorielle et motrice, pour ensuite en évoquer les interactions. Notons

d’emblée cependant que, dès le tronc cérébral, processus sensoriels et moteurs

interagissent largement (puisque certains des premiers relais sensoriels sont aussi des

prémotoneurones).

Voies sensorielles

Mécanorécepteurs

Chaque vibrisse se trouve logée dans un complexe sinusal folliculaire, constitué d’un

follicule encapsulé dans un sinus vasculaire (Rice et al., 1986) (Figure Introduction 6).

Page 20: Contrôle de la position des vibrisses chez le rat ...

8

Figure Introduction 6 - Complexe sinusal folliculaire d’où émane une vibrisse (selon (Rice et al., 1993))

Au moins huit types de mécanorécepteurs innervent le follicule (Dorfl, 1985; Ebara et al.,

2002; Rice et al., 1993; Rice et al., 1986), se distinguant notamment selon qu’ils s’adaptent

rapidement à des déflections vibrissales et qu’ils sont sensibles à de plus ou moins fortes

amplitudes de déflections (Stuttgen et al., 2006). Chaque follicule est innervé par 100 à 200

afférences (Rice et al., 1986), lesquelles cheminent, pour ce qui est des vibrisses

mystaciales, vers la branche infraorbitale du nerf trijumeau. En cas de toucher, les moments

de forces s’exerçant à la base de la vibrisse varient selon la courbature de la vibrisse, la

position radiale du contact et l’orientation de la vibrisse (Quist and Hartmann, 2012; Quist

et al., 2014).

Page 21: Contrôle de la position des vibrisses chez le rat ...

9

Ganglions

Chaque afférence n’innerve qu’un mécanorécepteur (Zucker and Welker, 1969). Les

neurones ganglionnaires encodent de façon très robuste les déflections vibrissales (Jones

et al., 2004) vis-à-vis desquelles ils présentent une forte préférence angulaire (Lichtenstein

et al., 1990). Outre le toucher, les mêmes neurones encodent de façon fiable des signaux

ré-afférents, du moins durant le whisking, c’est-à-dire un retour sensoriel des mouvements

de vibrisses effectués par l’animal (Severson et al., 2017; Severson et al., 2019).

Les neurones ganglionnaires projettent vers les différents noyaux de la colonne du trijumeau

(ou colonne trigéminale), lesquels donneront lieu à de nombreuses voies parallèles que voici

décrites.

Voies trigémino-thalamo-corticales

Les vois trigémino-thalamiques vibrissales émanent des différents noyaux de la colonne

trigéminale soit le noyau principal (PrV), le noyau spinal (SpV) qui consiste en l’oralis

(SpVo), en l’interpolaris (SpVi) et en le caudalis (SpVc) (Figure Introduction 7).

Figure Introduction 7 - Noyaux de la colonne trigéminale (d’après (Urbain and Deschênes, 2009))

Cinq voies trigémino-thalamiques vibrissales ont été anatomiquement caractérisées (Figure

Introduction 8) (Urbain and Deschênes, 2009) : quatre qui communiquent avec différentes

sous-régions du noyau ventral postéromédial thalamique (VPM) et une qui projette vers le

noyau postérieur thalamique (PO – sous-région tapissant la partie dorsomédiale du VPM).

Page 22: Contrôle de la position des vibrisses chez le rat ...

10

Figure Introduction 8 - Voies trigémino-thalmiques vibrissales (d’après (Pouchelon et al., 2012))

Voie lemniscale 1

La première voie lemniscale est de loin la plus étudiée, peut-être du fait de ce qu’elle est

quasi-parfaitement discrétisée du tronc cérébral, au cortex, en passant par le thalamus : les

neurones de cette voie ont une préférence de réponse marquée pour une vibrisse

spécifique. Cette discrétisation est d’ordre anatomique, visible en cytochrome oxydase : à

chaque vibrisse correspond une « barrelette » trigéminale, un « barréloïde » thalamique et

Page 23: Contrôle de la position des vibrisses chez le rat ...

11

un « barrel » cortical. Cette voie connecte le PrV au cœur du VPM et se termine dans la

couche 4 du cortex somatosensoriel (le fameux « barrel cortex » ou « cortex à tonneaux »).

Tronc cérébral : PrV

Le PrV est localisé à l’extrémité antérieur de la colonne trigéminale. Les barrelettes qu’on

y trouve (Ma and Woolsey, 1984) suivent la disposition des vibrisses (Figure Introduction

9).

Figure Introduction 9 - Barrelettes vibrissales dans le PrV (selon (Bosman et al., 2011))

Les neurones peuplant les barrelettes présentent donc une activité électrophysiologique

directement influencée par une seule vibrisse, quoique 90% des neurones répondent, à plus

forte latence, à d’autres vibrisses, du fait de connexions inter-barelettes. Ils projettent

seulement vers le VPM dorsomédial (VPMdm) contralatéral (Minnery and Simons, 2003).

Thalamus : cœur du VPMdm

Le VPMdm n’est constitué que de neurones de relai formant les barréloïdes (Van Der Loos,

1976), dont chacun reçoit des projections d’un à deux neurones du PrV (Castro-Alamancos,

2002). Tout comme le PrV, les neurones du VPMdm répondent à faible latence (4-6 ms)

surtout à une vibrisse en particulier, pour laquelle ils présentent en outre une sélectivité

directionnelle (Minnery et al., 2003). Ces neurones projettent vers le noyau réticulaire

Page 24: Contrôle de la position des vibrisses chez le rat ...

12

thalamique (Harris, 1987) duquel ils reçoivent en retour des projections inhibitrices

(Peschanski et al., 1983; Varga et al., 2002), unique source locale d’inhibition (Barbaresi et

al., 1986).

Cortex : cortex somatosensoriel primaire

Les axones barréloïdeux projettent vers le cortex somatosensoriel primaire (S1), en

particulier vers ses couches 3 et 4 (laquelle couche 4 constitue le « cortex à tonneaux »

(Woolsey and Van der Loos, 1970)) et dans une moindre mesure vers sa couche 6 (Arnold

et al., 2001; Petersen, 2007). À l’instar des autres aires corticales primaires sensorielles, les

neurones de la couche 4 projettent vers les couches 2/3, lesquelles projettent vers la couche

5, laquelle établit des sorties sous-corticales (Lubke and Feldmeyer, 2007). Ainsi, lorsqu’une

vibrisse est défléchie, une excitation rapide se met en branle de la barrelette, au barréloïde

au tonneau correspondants (Armstrong-James et al., 1992; Lefort et al., 2009).

Le cortex à tonneaux occupe une part majoritaire du cortex somatosensoriel des rongeurs

(Figure Introduction 10, (Prescott et al., 2016)), et le ratio entre le volume du cortex

somatosensoriel primaire et le volume du cortex visuel primaire est supérieur chez les

rongeurs nocturnes que diurnes (Campi et al., 2011; Campi and Krubitzer, 2010).

Figure Introduction 10 - Cortex somatosensoriel des rongeurs (adapté de (Maier et al., 1999))

Chaque tonneau contient, chez le rat, environ 20.000 neurones (Meyer et al., 2010). Bien

que depuis sa découverte en 1970, les descriptions du cortex à tonneaux abondent dans la

Page 25: Contrôle de la position des vibrisses chez le rat ...

13

littérature, notamment quant aux méandres de son organisation neuronale (Feldmeyer et

al., 2013; Petersen, 2007; Petersen, 2019; Stuttgen and Schwarz, 2018), notons que le rôle

de cette organisation demeure incertain, s’agissant d’un cas relativement particulier dans le

monde animal. L’hypothèse qu’il s’agisse d’une « trompe » évolutive (spandrel) a été

avancée (Horton and Adams, 2005).

S1 a été très étudié pour ses propriétés plastiques, tant durant le développement (Van der

Loos and Woolsey, 1973) qu’à l’âge adulte (Polley et al., 2004), ouvrant la voie à des

comparaisons (souvent à des analogies) avec les cortex visuel et auditif (Feldman, 2009;

Fox and Wong, 2005). En bref, contrairement au thalamus, le cortex somatosensoriel

connaît une période critique durant laquelle, à défaut d’informations vibrissales, il

dégénèrera (Fox et al., 2002; Glazewski and Fox, 1996).

Le cortex somatosensoriel primaire projette vers le cortex somatosensoriel secondaire (S2)

et vice versa (Aronoff et al., 2010; Chakrabarti and Alloway, 2006). Il a été démontré que

les réponses de S2 à la déflection des vibrisses dépendaient davantage que S1 des

corrélations de déflections entre vibrisses, et étaient sujettes à une plus longue fenêtre

d’intégration que S1 (Goldin et al., 2018). De là à envisager que S2 serait davantage

impliqué dans la mémoire à court-terme…

Voie lemniscale 2

Tronc cérébral : PrV

La voie lemniscale 2 naît d’une population du PrV répondant identiquement à plusieurs

vibrisses, même chez le rat anesthésié (Urbain and Deschenes, 2007b; Veinante and

Deschenes, 1999).

Thalamus : tête du VPM dorsomédial

Le PrV multi-vibrissal projette à la lisière dorsale du VPM, en bordure du PO, au sein d’une

fine couche cellulaire. Celle-ci présente, contrairement aux corps des barréloïdes, des

réponses multi-vibrissales (Urbain and Deschenes, 2007b).

Cortex : S1

La tête du VPMdm projette vers les régions septales de la couche 4 de S1, c’est-à-dire entre

les tonneaux (Furuta et al., 2009), ainsi que vers sa couche 6.

Page 26: Contrôle de la position des vibrisses chez le rat ...

14

Voie extralemniscale

Tronc cérébral : SpVi caudal

La voie extralemniscale naît d’une population répondant identiquement à plusieurs vibrisses

du SpVi caudal (Veinante et al., 2000).

Thalamus : VPM ventrolatéral

La voie extralemniscale chemine vers le VPM ventrolatéral (c’est-à-dire vers la queue des

barréloïdes). Une population spécifique du réticulaire thalamique y projette (Bokor et al.,

2008).

Cortex : S1 et S2

Le VPM ventrolatéral projette vers les couches 6 et 4, où il pourrait contribuer aux activités

septales (Urbain and Deschênes, 2009).

Voie paralemniscale

Figure Introduction 11 - Schéma des voies lemniscale 1 et paralemniscale (depuis (Frangeul et al., 2014))

Tronc cérébral : SpVi rostral

La partie rostrale de l’interpolaire contient des cellules multi-vibrissales (Williams et al.,

1994), ayant majoritairement une préférence directionnelle (du bas vers le haut) (Furuta et

al., 2006). Ces neurones montrent une arborescence très riches, pourvus de collatérales

entre autres au sein du PO, de la zone incerta ventrale (ZIv), du collicule supérieur, de l’olive

inférieure (Veinante et al., 2000), du Kölliker-Fuse (KF) (Elbaz et al., 2021).

Page 27: Contrôle de la position des vibrisses chez le rat ...

15

Thalamus : PO

Suivant la déflection de vibrisses, des réponses à fortes latences (de l’ordre de 15 ms) sont

enregistrables dans le PO (Diamond et al., 1992; Sosnik et al., 2001), et abolies lorsque S1

est inhibé (Diamond et al., 1992). Il a été établi qu’une inhibition exercée par la ZIv sur le

PO était responsable de l’inhibition des réponses ascendantes émanant du SpVi rostral

(Bartho et al., 2002; Lavallee et al., 2005). L’inactivation de la ZIv ré-établit en effet la

transmission de réponses à faible latence du SpVi rostrale vers le PO (Trageser and Keller,

2004). Il a par conséquent été proposé qu’un mécanisme de désinhibition (inhibition de

l’inhibition incerto-thalamique) permettait d’ouvrir la voie lemniscale. Cette possibilité a été

corroborée par la découverte de ce que le cortex moteur est capable d’inhiber les réponses

vibrissales au sein de la ZIv, une inhibition médiée par un réseau inhibiteur intra-incertal

(Figure Introduction 12) (Urbain and Deschenes, 2007a).

Figure Introduction 12 - Désinhibition de la voie paralemniscale (issu de (Urbain and Deschênes, 2009))

Le défi principal concernant la voie paralemniscale reste de déterminer les contextes

comportementaux durant lesquels elle est désinhibée (soit ceux durant lesquels la ZIv

projetant au PO est inhibée), permettant un encodage par le PO des informations

sensorielles émanant du SpVI rostral. De nombreux éléments laissent à penser que la voie

paralemniscale serait désinhibée dans un contexte aversif (cf. chapitre 2 de cette thèse).

Page 28: Contrôle de la position des vibrisses chez le rat ...

16

Cortex

Le PO paralemniscal projette vers de nombreuses régions corticales (incluant S1, S2, cortex

périrhinal, insulaire, moteur) (Urbain and Deschênes, 2009).

Voie issue du SpVo

Une population neuronale multi-vibrissale située dans le SpVo (Jacquin and Rhoades, 1990)

projette vers la partie la plus postérieure du VPM et du PO, devant le prétectum, lequel

projette pour sa part vers le cortex périrhinal, le striatum et l’amygdale.

Interactions entre voies trigémino-thalamo-corticales

Lorsqu’un traceur rétrograde est injecté au sein de n’importe lequel des noyaux de la

colonne trigéminale, la vaste majorité des cellules rétrogradement marquées apparaissent

dans d’autres noyaux de la colonnes trigéminale, dans les aires corticales

somatosensorielles et dans le noyau cholinergique pédonculopontin (Urbain and

Deschênes, 2009). Ainsi par exemple, le PrV reçoit des projections inhibitrices depuis le

SpVi caudal et excitatrices depuis le SpVc (Furuta et al., 2008). La projection depuis S1 est

massive et topographiquement organisée, connectant des tonneaux aux barrelettes

correspondantes (Urbain and Deschênes, 2009).

Voies trigémino-colliculaire et cortico-colliculaire

Les couches intermédiaires du collicule supérieur reçoivent des informations vibrissales

sensorielles autant de de la colonne trigéminale que du cortex à tonneaux (Bruce et al.,

1987; Huerta et al., 1983; Veinante and Deschenes, 1999). Du fait des projections

trigéminales, les neurones colliculaires répondent de façons robuste et rapide aux

déflections vibrissales (Hemelt and Keller, 2007). Du fait des projections corticales, les

neurones colliculaires répondent par un second pic d’activité aux déflections vibrissales

(Cohen et al., 2008).

Voie trigémino-cérébelleuse

Le cervelet reçoit des informations vibrissales par deux voies impliquant des fibres

moussues. D’une part, directement depuis des cellules de la colonne trigéminale, dont des

cellules du PrV et du SpVi rostral (Watson and Switzer, 1978) ne correspondant pas à celles

projetant au PO (Woolston et al., 1982). D’autre part, par l’intermédiaire du noyau pontin,

Page 29: Contrôle de la position des vibrisses chez le rat ...

17

lequel reçoit lui-même des projections de la colonne trigéminale (Mihailoff et al., 1989;

Swenson et al., 1984).

Le cervelet reçoit également des projections de l’olive inférieure (fibres grimpantes), à

laquelle projette le SpVi (Molinari et al., 1996; Yatim et al., 1996).

Enfin, le cervelet reçoit des projections de S1 et du cortex moteur vibrissal (Swenson et al.,

1989).

Les cellules de Purkinje répondant aux déflections vibrissales se trouvent surtout dans les

lobules corticaux CRUS1 et CRUS2 (Bosman et al., 2010).

Voies motrices

La grande majorité des études ayant porté sur la motilité des vibrisses se sont concentrées

sur le whisking et sur les macro-vibrisses mystaciales, tandis que les vibrisses

supraorbitales et génales sont également mobiles (Severson et al., 2019).

Musculature des follicules

L’innervation des vibrisses mystaciales est assurée par le nerf facial (Dorfl, 1982, 1985),

plus spécifiquement par ses branches buccales et mandibulaires (Semba and Egger, 1986).

Les muscles dits intrinsèques sont protracteurs des vibrisses, tandis que les muscles dits

extrinsèques sont protracteurs, rétracteurs et déflecteurs verticaux des coussinets sur

lesquels les vibrisses sont incrustées (Figure Introduction 13) (Haidarliu et al., 2015).

Figure Introduction 13 - Muscles intrinsèques et extrinsèques (issu de (Hill et al., 2008))

Page 30: Contrôle de la position des vibrisses chez le rat ...

18

Les muscles extrinsèques et intrinsèques sont striés, de trois types pour les extrinsèques :

rapides, intermédiaires et lents (White and Vaughan, 1991). Les muscles intrinsèques

correspondent essentiellement à des fibres rapides (Haidarliu et al., 2010; Jin et al., 2004).

La protraction des vibrisses est surtout régie par les muscles intrinsèques, tandis que la

rétraction des vibrisses est largement passive (Berg and Kleinfeld, 2003). Les muscles

extrinsèques contrôlent davantage l’orientation et le gonflement du pad que la protraction

des vibrisses.

Motoneurones

Les motoneurones des vibrisses se trouvent dans les parties latérale et intermédiaire du

noyau facial. Les motoneurones des muscles intrinsèques se logent dans sa portion

ventrale, ceux des muscles extrinsèques dans sa portion dorsale (Figure Introduction 14).

Figure Introduction 14 - Cartographie des motoneurones des vibrisses au sein du noyau facial ("ML", "NL",

"DN" et "NLP" désignent des muscles extrinsèques ; issu de (Deschenes et al., 2016))

Prémotoneurones

Les régions prémotoneuronales contrôlant les motoneurones des vibrisses ont été

déterminées par des études transynaptiques sur lesquelles se fonde cette partie

(Sreenivasan et al., 2015; Takatoh et al., 2013). Ces régions prémotoneuronales sont

légion, en voici un florilège.

Page 31: Contrôle de la position des vibrisses chez le rat ...

19

Noyaux trigéminaux

L’interpolaire rostral et l’oralis projettent au noyau facial, médiant un réflexe de rétraction

suivant le toucher (Bellavance et al., 2017).

Formation réticulaire intermédiaire ventrale

La formation réticulaire intermédiaire ventrale contient les prémotoneurones dont l’activité

rhythmiques est à l’origine du whisking (Deschenes et al., 2016; Moore et al., 2013).

Cortex moteur

D’éparses projections cortico-faciales existent mais jouent probablement un rôle secondaire

par rapport à celles, bien plus massives, connectant le cortex moteur et les ganglions de la

base ou le colliculus supérieur. Comme nous le verrons dans la partie 3 (et dans le chapitre

1), le rôle du cortex moteur demeure très nébuleux.

Noyau rouge parvocellulaire

Le noyau rouge parvocellulaire donne lieu à la voie rubro-faciale. Il reçoit des projections du

cervelet, du cortex moteur et des noyaux trigéminaux (Godefroy et al., 1998; Pacheco-

Calderon et al., 2012). Cette voie médie l’exécution du réflexe de clignement des paupières,

suivant l’exposition à un stimulus conditionnel (tel qu’une déflection vibrissale) annonçant

l’occurrence d’un stimulus inconditionnel (typiquement, un jet d’air visant les yeux) (Freeman

and Steinmetz, 2011; Pacheco-Calderon et al., 2012).

Kölliker-Fuse

Le Kölliker-Fuse (KF) envoie des projections glutamatergiques vers la région du facial

contrôlant les muscles intrinsèques (Elbaz et al., 2021). Une autre population GABAergique

du KF inhibe, possiblement par un mécanisme d’inhibition présynaptique, les noyaux de la

colonne trigéminale (Chamberlin, 2004; Elbaz et al., 2021).

Collicule supérieur

Chaque colliculus supérieur envoie de denses projections bilatérales aux noyaux faciaux

(Hattox et al., 2002; Miyashita and Mori, 1995).

Page 32: Contrôle de la position des vibrisses chez le rat ...

20

Voies sensorimotrices

Signaux moteurs et sensoriels interagissent dès le tronc cérébral (Bellavance et al., 2017),

au niveau du thalamus paralemiscal (PO), entre les cortex sensoriel et moteur, des

ganglions de la base, du cervelet, du colliculus supérieur, et du noyau rouge (Figure

Introduction 15).

Figure Introduction 15 - Boucles sensorimotrices vibrissales (depuis (Prescott et al., 2016))

Ganglions de la base

Le striatum dosrsolatéral reçoit des projections du PO, mais aussi de S1, S2, du cortex

pariétal postérieur et du cortex moteur (Smith et al., 2012). Une convergence de projections

depuis S1 et le cortex moteur sur de mêmes neurones du striatum dorsolatéral a été décrite

(Charpier et al., 2020), avec cependant une asymétrie dans leur physiologie (Lee et al.,

2019).

Le striatum peut contrôler la position des vibrisses d’au moins deux façons : via la boucle

ganglions de la base-thalamo-corticale, ou bien via ses projections vers le colliculus

supérieur (lequel projette également vers le noyau facial) (Kaneda et al., 2008).

Page 33: Contrôle de la position des vibrisses chez le rat ...

21

Cervelet

Comme précédemment évoqué, le cervelet répond au toucher vibrissal, mais son activité

corrélée avec les mouvements des vibrisses durant le whisking précède lesdits mouvements

(Chen et al., 2016). Le cervelet est donc le siège d’informations vibrissales autant

sensorielles qu’efférentes (relèveraient-elles d’une copie efférente).

Collicule supérieur

En plus de recevoir des projections de la colonne trigéminale et de projeter au noyau facial,

le collicule supérieur reçoit ipsilatéralement du cortex moteur (Miyashita et al., 1994), du

cortex somatensoriel (Wise and Jones, 1977) et du cervelet (May, 2006).

3. Neuroéthologie

Nous avons jusque-là évoqué d’une part des comportements divers impliquent les vibrisses,

d’autre part des fondements anatomo-physiologiques du « cerveau vibrissal ». Cependant,

nous nous tenons encore loin d’une explication de ces premiers par ces seconds. Nous

tenterons toutefois ci-dessous de faire un panorama des données neuroéthologiques

connues.

Mouvements spontanés (whisking)

Comme mentionné précédemment, le whisking est le fait d’un oscillateur qui projette

directement vers les motoneurones des vibrisses. Cependant, ce qui initie le whisking, soit

ce qui active l’oscillateur en question, demeure énigmatique. Si le cortex moteur des

vibrisses peut influencer l’amplitude du whisking (Ebbesen et al., 2017), les rats peuvent

tout aussi bien l’initier, avec ou sans cortex (Gao et al., 2003). Se pose donc la question du

rôle des activités, au sein du cortex moteur, depuis lesquelles le whisking (incluant son

initiation) peut être décodé (Hill et al., 2011).

Des activités ré-afférentes sont retrouvées, lorsqu’un rat whiske, autant au niveau des

mécanorécepteurs, du tronc cérébral, que dans le thalamus (Moore et al., 2015b; Severson

et al., 2019) et le cortex (Gutnisky et al., 2017), mais nous ignorons si ces activités jouent

un rôle proprioceptif, s’avérant peut-être utiles pour permettre aux rats adultes de savoir

« où sont leurs vibrisses ». Le whisking persiste cependant après déafférentation (Welker,

1964) et ablation corticale (Semba and Komisaruk, 1984).

Page 34: Contrôle de la position des vibrisses chez le rat ...

22

Explorer son environnement

Locomotion

Les liens entre informations vibrissales et locomotion, que les observations

comportementales permettaient déjà de soupçonner, ont été corroborés par une étude qui

a établi que l’activité neuronale, dans S1, associée aux vibrisses les plus proches du sol (3

vibrisses sous le menton) encodent la vitesse de la marche. La microstimulation de ces

neurones a pour effet de modifier la vitesse de la marche (Chorev et al., 2016).

Détection et localisation d’objets

La lésion de S1 rend impossible la réalisation du « gap crossing » (Hutson and Masterton,

1986). Cependant, S1 n’est pas requis pour la simple détection d’objets (Hong et al., 2018).

Nous en déduisons qu’outre la simple détection d’objets, l’estimation de distances pourrait

requérir S1. D’ailleurs, S1 est requis pour discriminer des positions distinctes (O'Connor et

al., 2010).

La détection d’une forte déflection vibrissale annonçant un choc électrique n’est détectable

que si ou le collicule supérieur ou le thalamus sensoriel est actif, mais requiert ces deux

régions si la déflection vibrissale est de faible amplitude (Cohen and Castro-Alamancos,

2010) ; intéressant cas de redondance et de synergie entre deux régions cérébrales.

Discrimination de textures

S1 est requis pour discriminer des textures (preprint « Deep and superficial layers of the

primary somatosensory cortex are critical for whisker-based texture discrimination in mice »)

mais l’étude en question n’a pas permis aux sujets expérimentaux l’utilisation de leurs

microvibrisses, pourtant utilisées dans un cadre éthologique pour discriminer des textures.

Questions ouvertes

Deux questions principales se dégagent : 1) Quels contextes comportementaux particuliers

implique telle voie sensorielle ou motrice ? 2) Quelle est la portée éthologique des signaux

corrélés avec la position des vibrisses et des signaux efférents retrouvés au sein du cortex

et du cervelet ?

Nous avons tâché de nous avancer sur chacune de ces questions, avec deux projets dont

les approches sont complémentaires. Le premier projet, partant d’un comportement, vise à

déterminer le circuit minimal par lequel un rat peut finement contrôler la position de ses

vibrisses, capacité dépendant de sa connaissance de leur position. Le second projet, partant

Page 35: Contrôle de la position des vibrisses chez le rat ...

23

de données anatomo-physiologiques, établit l’existence d’une nouvelle voie vibrissale

sensori-motrice, qui pourrait être impliquée dans l’expression d’émotions.

Page 36: Contrôle de la position des vibrisses chez le rat ...

24

Chapitre 1 A cortical-independent internal model

for the control of voluntary vibrissa movement

1.1 Résumé

Que ce soit par nos yeux ou par nos mains, nous interagissons avec notre environnement

par l’intermédiaire de senseurs mobiles. L'utilisation efficace de tels organes, dits

« sensorimoteurs », implique de garder trace de leur position tandis que nous les bougeons.

Dans le cas contraire, la stabilité perceptive et la préhension dirigée seraient profondément

entravées. Cependant, les mécanismes neuronaux qui informent le système nerveux de la

position de ces organes restent largement inexplorés. Deux mécanismes impliquant une

information retour peuvent théoriquement être en jeu : la copie efférente et/ou le retour

sensoriel. Pour évaluer leur contribution, nous avons entraîné des rats à placer une vibrisse

dans une plage angulaire prédéterminée sans contact, une tâche dépendant de la

connaissance qu’ils ont de la position de leur vibrisse. Nous établissons que le retour

sensoriel n'est pas requis pour effectuer cette tâche. Le cortex moteur n'est pas non plus

requis, même en l'absence de retour sensoriel. Enfin, nous démontrons que le noyau rouge,

qui reçoit des entrées du cortex moteur, du cervelet, des afférences vibrissales, et qui

projette vers les motoneurones faciaux est impliqué de façon critique dans l'exécution de

cette tâche. Ces résultats démontrent l'existence d'un modèle interne, indépendant du

cortex moteur et suffisant au contrôle moteur volontaire. Ils suggèrent en outre que le

cervelet pourrait être impliqué en tant qu’élément efférent de ce modèle interne.

1.2 Abstract

Whether through our eyes or our hands, we interact with our environment through mobile

sensors. The efficient use of these organs implies to keep track of their position over time.

Otherwise, perceptive stability and directed prehension would be profoundly impeded. Yet,

the neural mechanisms informing the nervous system about organs’ position remain largely

unexplored. Two feedback mechanisms may theoretically be at play: efference copy and/or

sensory feedback. To assess their contribution, we trained head-restrained rats to place

their vibrissae in a predetermined angular range without contact, a task that depends on the

knowledge of vibrissa position. We find that sensory feedback is not required to perform the

task. The motor cortex is neither required, even in the absence of sensory feedback. Finally,

we find that the red nucleus, which receives motor cortex, cerebellar and vibrissa inputs,

and projects to facial motoneurons is critically involved in the execution of the task. These

Page 37: Contrôle de la position des vibrisses chez le rat ...

25

results demonstrate the existence of a motor cortex-independent internal model sufficient

for voluntary motor control. They further suggest that the cerebellum may play a role as an

efferent part of this internal model.

Introduction

Decoding information gathered through moving sensors – the hallmark of “active sensing” –

requires keeping track of the sensors’ position (Kleinfeld and Deschenes, 2011; Wolpert and

Ghahramani, 2000). Haptic exploration in rodents instantiates this faculty: mice and rats can

report the location of an object in their vibrissa field with great precision (Knutsen et al.,

2006; Mehta et al., 2007; O'Connor et al., 2010), which implies that they know the position

of their vibrissae with respect to their own body (Cheung et al., 2019). As facial muscles are

devoid of proprioceptors, two non-exclusive feedback mechanisms may account for the

knowledge of vibrissa position (Fee et al., 1997; Wolpert and Ghahramani, 2000; Wolpert et

al., 1995): efference copy (internal feedback) and/or reafferent signals (external, sensory

feedback). With efference copy, internal brain signals are transmitted from motor regions

responsible for the movement to other regions, allowing the brain to keep track of the

consequences of motor actions. With reafferent signals, sensory receptors encode the

position of the vibrissae or the kinematics of the ongoing movement. Although previous

studies established that both mechanisms are plausible at the level of the vibrissa system

(Chen et al., 2016; Hill et al., 2011; Moore et al., 2015b; Severson et al., 2017; Severson et

al., 2019), their ethological value remains unknown. We designed a behavioral task which

allowed to untangle the contribution of these two mechanisms.

Vibrissa tasks involving touch are not well-suited for distinguishing the role of efference copy

and reafferent signals. First, primary vibrissa afferents multiplex exafferent (touch) and

reafferent (self-motion) signals (Gutnisky et al., 2017; Moore et al., 2015b; Severson et al.,

2017; Severson et al., 2019), which makes it virtually impossible to manipulate reafferent

signals without interfering with exafferent signals. Second, in the somatosensory cortex, a

region involved and required for localizing objects with vibrissae (Guo et al., 2014; O'Connor

et al., 2010), sensory and efference copy signals interact via sensorimotor loops (Mao et al.,

2011; Petreanu et al., 2012; Veinante and Deschenes, 2003), blurring their respective

contribution. To circumvent these limitations, we designed a vibrissa positioning task which

is carried out in the dark and does not involve touch, so that the sensory information at play

Page 38: Contrôle de la position des vibrisses chez le rat ...

26

consists of reafferent signals only. We reasoned that if rats can finely control the position of

their vibrissae, they know their location.

Results

The vibrissa positioning task

Head-restrained rats were trained to move their left C1 vibrissa (Brecht et al., 1997) from a

retracted position, the “go zone”, to a protracted “reward zone”. Once rats self-initiated trials

by moving their vibrissa in the “go zone”, they were allowed a maximum of 10 seconds to

reach and hold their vibrissa within the “reward zone” for a given duration (figure 1A). The

required hold time in the reward zone adaptatively increased over learning, from 10 ms

initially to 1 s at the performance level (Online Methods). Once rats reached the 1 s-

performance criterion, the hold-time was fixed and the effect of permanent and/or transient

experimental manipulations was assessed.

Intact rats can learn the vibrissa positioning task

Water-deprived rats quickly learnt to reliably lick upon reward delivery (supplementary figure

1A). Given the short hold time initially required (10 ms), naïve rats were able to obtain

rewards through spontaneous vibrissa movements, such as upward twitches (figure 1B, left).

Over training, normal rats (n=10) tended to reach and maintain their vibrissa in the reward

zone more swiftly following trial onset (figure 1C; mixed-effect linear regression p<0.01).

Reaching the 1-sec hold time criterion required on average 6000 trials (4 weeks of training).

Expert animals exerted sustained protractions during the 1-sec successful hold times (figure

1B), without high-frequency (“whisking”) movements in most cases (93±1% of successful

hold time periods). As reward expectation is normally associated with whisking (Dominiak

et al., 2019), the task requires rats to curb their natural proclivity to whisk. An increasing

trend to protract was also apparent during intertrials (figure 1D); as a result, expert animals

started most trials via backwards twitches (supplementary figure 1B). This suggests either

that permanent sustained protraction is an effective strategy to succeed as learning

progresses, or that rats did not distinguish between trials and intertrials. We invalidate the

latter hypothesis by showing that, in expert animals, hold times preceding inopportune (false

alarms) licks are shorter during trials than during intertrials, all other things being equal

(supplementary figure 1C).

In summary, expert rats’ strategy consists in maintaining their vibrissa close to or within the

reward zone and briefly retracting the vibrissae to initiate a new trial.

Page 39: Contrôle de la position des vibrisses chez le rat ...

27

Sensory feedback is neither required before nor after learning

Do rats require sensory feedback to finely move their vibrissae? This is physiologically

plausible since reafferent signals are widespread throughout the rodent’s brain (encoded by

mechanoreceptors’ afferents (Severson et al., 2017; Severson et al., 2019), brainstem

(Moore et al., 2015b; Zucker and Welker, 1969), thalamus (Gutnisky et al., 2017; Moore et

al., 2015b), cortex (Berg and Kleinfeld, 2003; Cheung et al., 2020; Fee et al., 1997) and

cerebellum (Chen et al., 2016)). To test the requirement of sensory feedback during our

task, we first deafferented two expert rats once their steady-state level was measured (figure

2A; Online methods). They recovered their success rate pre-lesion level after some (5 and

6, respectively) experimental sessions. To assess whether deafferentation altered whiskers

motor control, we compared their movement parameters across conditions. Deafferentation

did not alter the whisker mean angle during trials (figure 2B; mixed-effect linear regression,

p>.05), nor the distribution of maximum hold times in the reward zone (figure 2C; KS test,

p>.05), nor the occurrence of 10°-wide holds in the reward zone (figure 2D; permutation test,

p>.05). During the 1-sec successful hold times, the mean vibrissa position remained

unchanged (figure; 2E mixed-effect linear regression, p>.05) as well as the inter-trial

variability (figure 2F, permutation test, p>.05). However, deafferentation diminished the

prevalence of high-frequency movements (whisking and discrete twitches) (supplementary

figure 2B, mixed-effect linear regression, p<.05).

The dispensability of a brain region in the execution of a behavior, once learnt, does not

exclude its requirement over learning (Kawai et al., 2015). To test the potential requirement

of sensory feedback for learning the task, we deafferented three rats before their first training

session. These animals displayed the same signs of learning as intact animals, reaching at

least similar performance level (supplementary figures 2C-F).

These results indicate that sensory feedback is required neither for learning nor for

executing the task; in other terms, rats can finely control their vibrissae’ position via an

internal model.

Page 40: Contrôle de la position des vibrisses chez le rat ...

28

Motor cortex is not required to learn the task

Since the vibrissa position can be decoded from the vibrissa motor cortex (Ebbesen et al.,

2017; Friedman et al., 2012; Hill et al., 2011; Sreenivasan et al., 2016) both in the presence

and in the absence of sensory feedback (Hill et al., 2011), we tested its requirement during

our task, before and after deafferentation. We bilaterally ablated the motor cortex

(supplementary figure 3A, Online methods) of two naïve rats and exposed them to the task.

These rats learned the task (supplementary figures 3B-D) and reached a steady-state

performance level at least similar to that of intact rats (figure 3A). This learning ability was

also verified in five rats whose motor cortex was unilaterally ablated, contralaterally to the

tracked vibrissa (data not shown). Thus, the motor cortex is neither necessary for learning

nor for executing our task in the presence of sensory feedback.

In the absence of motor cortex, sensory feedback is required for vibrissa

stability

To test the requirement of motor cortex in the absence of sensory feedback, we deafferented

the bilaterally decorticated expert rats. Both rats recovered their pre-deafferentation level in

terms of occurrence of holds in the reward zone and success rate (figure 3A; logistic mixed-

effect regression, p>.05). Yet, as in corticated rats, deafferentation diminished the

prevalence of fast oscillations during hold times (mixed-effect linear regression, p<.05).

Surprisingly, deafferentation in decorticated rats led to changes that did not occur in intact

rats. First, following deafferentation, the variance of the vibrissa angle increased during trials

(test permutation, p<.05) while the mean angle did not change (linear mixed-effect, p>.05).

Second, the inter-trial variability over the 1-sec successful hold time fragments was

increased (figure 3C-D, stats). Taken together, these results indicate that, in the absence of

motor cortex, sensory feedback plays a non-compensable role in motor precision and the

ability to maintain vibrissae still. Nevertheless, in the absence of motor cortex and sensory

feedback, the overall ability to voluntarily protract vibrissae is preserved, suggesting the

existence of an internal model independent from the vibrissa motor cortex and afferents.

Inactivation of the rubro-facial pathway disrupts performance

Which brain pathway might sustain the ability to do the task without requiring the motor

cortex, but involving it at least in case of deafferentation? Amid the numerous premotor

nuclei controlling vibrissa motoneurons (Hattox et al., 2002; Isokawa-Akesson and

Komisaruk, 1987; Sreenivasan et al., 2015; Takatoh et al., 2013), the parvocellular part of

Page 41: Contrôle de la position des vibrisses chez le rat ...

29

the red nucleus seems of particular interest: first, it receives both cortical and cerebellar

inputs (Daniel et al., 1987; Hattox et al., 2002; Pacheco-Calderon et al., 2012); second, it

has access to vibrissae’ sensory information via direct projections from the primary sensory

relay (Elbaz et al., 2021; Godefroy et al., 1998); third, Purkinje cells’ activity anticipates

vibrissa position, even when the motor cortex is inactivated (Chen et al., 2016).

We examined the involvement of the rubrofacial pathway by expressing inhibitory DREADDs

(Zhu and Roth, 2014) in neurons projecting from the red nucleus to the facial nucleus (Online

methods; figure 4A and supplementary figure 4A). This expression allowed for the

conditional inactivation of rubrofacial neurons during the entire duration of chosen

experimental sessions, following intraperitoneal injection of Clozapine N-oxide (CNO; Online

Methods). To account for potential endogenous effects of CNO (Gomez et al., 2017; Mahler

and Aston-Jones, 2018; Manvich et al., 2018), the effects of CNO were compared between

rats expressing DREADDs (n=3) and rats not expressing DREADDs (n=3).

Inactivation of the red nucleus dramatically impaired rats’ ability to maintain their vibrissa in

the reward zone (figure 4B and supplementary figure 4B; logistic mixed-effect regression on

success rates, interaction effect group:CNO, p<0.05). The vibrissa position was more

retracted during trials (figure 4C), including during whisking periods (regression mixed-effect

regressions on whisking setpoint, interaction effect group:CNO, p<.05). Finally, the duration

of holds within the reward zone prior to “false alarm” licks were shorter (supplementary figure

4C; linear mixed-effect regression, interaction effect group:CNO, p<.05), suggesting an

impeded motor perception. Rubrofacial neuron inactivation led to the same deficits in

deafferented animals (data not shown). These results indicate that the rubrofacial pathway

is a premotoneuronal region crucially involved in the execution of the task.

Discussion

In the present study, we aimed to identify the mechanisms whereby rats keep track of the

position of their vibrissae (Cheung et al., 2019; Kleinfeld and Deschenes, 2011). To address

this question, we conditioned rats to a vibrissa motor sequence task without contact, so that

deafferenting animals was strictly akin to abolishing sensory feedback, one of the two

feedback mechanisms potentially at play along with efference copy. By contrast, tasks

involving touch tangle up reafferent and exafferent signals, making the specific role of

reafferent signals intractable (and deafferentation making such tasks unrealizable).

We draw five main observations from our experimental data. First, intact rats were able to

learn our task, which indicates that they are aware of the position of their vibrissae even

Page 42: Contrôle de la position des vibrisses chez le rat ...

30

without touching objects. This is in line with previous reports in which free whisking

movements were reinforced (Bermejo et al., 1996; Gao et al., 2009; Sehara et al., 2019).

Second, intact rats who reached the expert criterion remained able to execute the task

similarly well after deafferentation. Furthermore, rats could learn the task even when initially

exposed to it after being deafferented. Therefore, an internal model exists and provides

sufficient awareness of vibrissae relative position to allow rats to execute a fine whisker

positioning task. Third, rats whose motor cortex was bilaterally lesioned were also able to

learn the task, indicating that the motor cortex is not a required part of this internal model.

Fourth, deafferentation increased motor variability in decorticated rats but not in corticated

rats. This implies that sensory feedback and motor cortex can interact and compensate for

each other, an illustration of plastic redundancy. Despite these control deficits, the overall

ability to do the task was preserved even in decorticated deafferented rats, implying the

existence of a cortically-independent internal model. As far as we know, this is the first

demonstration of voluntary movements in mammals without motor cortex and without

sensory feedback. Fifth, inactivation of rubrofacial neurons drastically impeded rats’

performance, indicating that the red nucleus is a premotor region critically involved in the

execution of the task. Its inputs make it an ideally situated integrator of reafferent and

efferent (motor cortical and cerebellar) signals.

Motor cortex and sensory feedback

Using lesions, our study reveals the dispensability of sensory feedback and motor cortex in

fine vibrissa movements but leaves open the question of their normal physiological

involvement. The literature remains quite incomplete in this regard. The importance of

sensory feedback has been evidenced in the establishment of vibrissa sensorimotor maps

during development (Carvell and Simons, 1996; Fox and Wong, 2005; Khazipov et al., 2004;

Landers and Philip Zeigler, 2006). In adult rats, sensory feedback was proposed to cancel

self-movement signals in the somatosensory cortex (Gutnisky et al., 2017). As for the

vibrissa motor cortex, it has been shown to modulate whisking’s amplitude and setpoint

(Ebbesen et al., 2017; Gao et al., 2003), even though it is not required for initiating whisking

(Lovick, 1972; Semba and Komisaruk, 1984). Behavioral contexts which would highlight

more fundamental roles remain to be identified. By analogy with the forelimb motor cortex,

one may assume that the vibrissa motor cortex is either required for the execution of “skilled

movements” (Castro, 1972; Miri et al., 2017) or for temporally constrained motor sequences

(Kawai et al., 2015). This first possibility seems unlikely given that rats were able to reach a

Page 43: Contrôle de la position des vibrisses chez le rat ...

31

10°-wide reward zone after lesion of the motor cortex (data not shown), which is comparable

to the performance of intact animals. The second possibility has not yet been addressed.

Red nucleus and cerebellum

Contrary to our cortical and sensory manipulations, we chose to transiently inactivate rather

than lesion the red nucleus, thereby testing its involvement rather than its requirement. Yet,

transient manipulations can make it difficult to disambiguate the nature of the involvement,

either instructive or permissive (Otchy et al., 2015), and can even lead to fast compensatory

mechanisms unfolding in the space of single behavioral sessions (Fetsch et al., 2018),

blurring the probed normal physiology. Yet, the deficits observed in our inactivation

experiments are unlikely to be strictly due to a permissive involvement of the red nucleus,

since the targeted cells (rubrofacial neurons) are glutamatergic premotoneurons (personal

communications from Fan Wang and Jun Takato) and the targeted motoneuronal region

(facial nucleus) houses only motoneurons (Courville, 1966; Moore et al., 2015b), whose

single spikes trigger movements (Herfst and Brecht, 2008). The changes observed under

red nucleus inactivation in both sustained movements and whisking suggest a common

regulatory mechanism for setpoint control. This idea is reinforced by the existence of

projections from the red nucleus to the whisking oscillator (personal communications from

Fan Wang and Jun Takato), the inhibitory nature of the whisking oscillator whose inputs

modulate setpoint (Moore et al., 2013) and, in our data, the positive correlation between the

whisking angles in adjacent whisking and non-whisking fragments (data not shown).

The involvement of the red nucleus also implies the motor cortex and/or the cerebellum, its

two major inputs. Both latter regions anticipate vibrissa position, indicating that they are part

of a common network. Elucidating their specific contributions vis-à-vis the red nucleus will

require further investigation. An ideal experiment may consist in recording the red nucleus,

while sequentially or simultaneously manipulating the motor cortex and the cerebellum

optogenetically in a closed-loop fashion.

Since cerebellar activity anticipates vibrissa position even when the motor cortex is

inactivated, it is tempting to speculate that the cerebellum might take control of the red

nucleus in the absence of the motor cortex, possibly resulting in cerebello-rubral synaptic

sprouting (the reciprocal phenomenon, cortico-rubral sprouting, had been observed at the

level of the rubrospinal pathway following cerebellar lesion (Murakami et al., 1976;

Tsukahara, 1974)). Furthermore, since rubrofacial neurons send collaterals to the lateral

reticular nucleus (supplementary 4A), which projects back to the cerebellum, the cerebellum

Page 44: Contrôle de la position des vibrisses chez le rat ...

32

receives an efference copy of the vibrissa movements instructed by the red nucleus. This

might grant the cerebello-rubro-lateral reticular nucleus loop with the capability not only to

control but also to correct vibrissa movements, even in the absence of external (sensory)

feedback. A number of studies indicate that the cerebello-rubro-facial pathway is involved in

plastic changes associated with motor learning, especially in the eye blink reflex elicited by

somatic or auditory conditional stimuli. The reward-related signals to which the cerebellum

has access (Giovannucci et al., 2017; Heffley and Hull, 2019; Kostadinov et al., 2019; Larry

et al., 2019) are likely to substantiate these learning abilities.

Beyond vibrissae

Like eye muscles, vibrissa muscles are not load-bearing, hence their lack of proprioceptors.

This property and the dispensability of reafferent signals reported in this study position

vibrissae as a powerful system to study internal models in movement control, without

environmental confounding variables related to the properties of the borne objects.

Methods

This study’s protocol was approved by the Comité de Protection des Animaux de l’Université

Laval (CPAUL). All procedures were caried out in strict accordance with Canadian federally-

prescribed animal care and use guidelines. All surgical procedures were performed under

ketamine-xylazine anesthesia.

Animals

Male Long Evans adult rats, 250 to 350 g in mass (Charles River), were used for combined

behavioral, neurophysiological and anatomical experiments. They were housed in a reverse

dark-light cycle in a facility with controlled temperature and humidity. After a week of daily

handling aimed at getting them habituated to the experimental room and to the manipulator,

they were implanted with a head-plate, following procedures previously described (Moore et

al., 2015a). A week after head-plate implantation, the rats were water-deprived from Sunday

to Friday and watered in the experimental room only. They were progressively head-

restrained over increased periods of time and watered concomitantly. When they tolerated

being watered with a sufficient amount of water (~20 ml per day) while being head-

restrained, we considered that they could be exposed to the vibrissa positioning task

(referred to below as “the task”). From that moment on, all their vibrissae but left C1 were

trimmed weekly under light isoflurane anesthesia, in order to optimize the online detection

of the vibrissa of interest and to prevent tactile contact with any element of the surrounding

Page 45: Contrôle de la position des vibrisses chez le rat ...

33

environment. The choice of C1 was motivated by the relative stable dorso-ventral

(azimuthal) level of this vibrissa along its whole retracted-to-protracted range. Rats were

then trained to the task twice a day, 20 minutes per session, from Monday to Friday.

Detailed description of the vibrissa positioning task

All behavioral experiments were carried out with head-restrained rats, in a silent and dark

room. The task was implemented with customized codes written under Matlab (Mathworks),

operating two cameras: one to detect tongue movement used as a lickometer, the other one

to detect vibrissa position with respect to head’s antero-posterior axis (i.e., monitoring of the

absolute vibrissa angle). An infrared light source illuminated the behavioral setup.

Task’s trials were self-initiated by the rat when its vibrissa was detected in the “go zone” (70-

90°). Trial initiation was accompanied by an auditory cue (4 kHz, 300 ms), after which the

rat had 10 seconds to succeed in the trial by moving its vibrissa to the “reward zone” (100-

130°) and maintaining it within it for a given required hold time. Over training, the required

hold time increased from 10 ms up to 1 s in an adaptative way, depending on the success

rate of previously “attempted trials”. An attempted trial is defined as a trial during which the

vibrissa went beyond 5° above the upper limit of the go zone (i.e., beyond 95°). If the mean

success rate of the 50 past attempted trials reached 50%, the hold time was increased by

5% of its previous value, up to 1 s (the expert level). At the end of every trial, one of two

possible sounds was played depending on whether the trial was successful or failed (1 kHz

and 8 kHz respectively, 300 ms). In case of success, a pump was concomitantly activated,

delivering 75 µl of water. After a successful trial, a pause of random duration (between 5

and 8 seconds), during which it was impossible to initiate another trial, allowed animals to

lick the delivered water without interfering with the task. After an unsuccessful trial, there

was a 1-s pause to prevent the juxtaposition of trials in case the vibrissa was in the go zone

as a trial ended, which allowed to play distinctly the sounds announcing the end of the failed

trial and the one announcing the onset of the following one.

With some of the rats which reached the expert criterion (hold time: 1 seconds), we further

investigated their ability to finely control their vibrissa by keeping the hold time constant but

adaptatively diminishing the upper limit of the reward zone (by 1° in case of at least 70% of

successes in the 50 previous trials). This allowed us to quantify rats’ maximum angular

precision. Finally, some of the rats which went through this precision stage were also tested

in terms of their ability to adjust when shifting the whole reward zone, while keeping its width

Page 46: Contrôle de la position des vibrisses chez le rat ...

34

constant (typical shift: from 100-110° to 105-115°). This allowed to test rats’ dynamic

adaptative capabilities.

Deafferentation

Our deafferentation procedure took advantage of the fact that the vibrissae’ sensory and

motor nerves are distinct: on the side of the tracked vibrissa (left), we transected the

infraorbital (sensory) branch of the infraorbital nerve at its entrance to the orbit (Gao et al.,

2001; Hill et al., 2011); on the opposite side (right), we transected the branches of the facial

(motor) nerve (Henstrom et al., 2012) innervating the musculature of the mystacial pad

(namely, the buccal and marginal branches (Henstrom et al., 2012)). Thus, the mysticial pad

does not convey any information related to self-motion. A comparable result could have

been achieved by bilaterally transecting the infraorbital nerves, but this latter possibility

would have led to bilateral anesthesia of the face, diminishing rats’ well-being by making the

use of all their mystacial vibrissae as sensors impossible. Four days after deafferentation,

the rats were exposed back to the task. The effectiveness of the facial nerve lesion was

assessed by the absence of vibrissa movement on the related side. Once the behavioral

training ended, the effectiveness of the deafferentation was verified by the absence of a

long-term potential (LFP) in the vibrissa lemniscal sensory thalamus (ventral posteromedial

nucleus, VPM) (Castro-Alamancos, 2002), upon electrical stimulation of the pad

(supplementary figure 2A). To confirm the emplacement of the LFP pipette in the VPM,

Chicago Sky Blue dye was iontophoretically injected through the recording pipette, the rat

was perfused, and its brain tissue processed for histology.

Some concern may be raised about the completeness of our deafferentation model, since

there exist three non-mystacial moving vibrissae (two supra-orbital and one genal) on each

side of rats’ face, whose sensory innervation is not provided by the infraorbital nerve, and

whose afferents encode amounts of information about whisking setpoint comparable to

mystacial vibrissae’ afferents (Severson et al., 2019). Yet, the much higher number of

mysticial vibrissae (30 in total) (Brecht et al., 1997) and the requirement of infraorbital-

dependent information for the proper development of whisking movements (Landers and

Philip Zeigler, 2006) suggest a primacy involvement of mysticial vibrissae’ sensory

information in reafference.

Page 47: Contrôle de la position des vibrisses chez le rat ...

35

Cortical lesion

The vibrissa motor cortex was unilaterally or bilaterally lesioned by the application, over the

pia mater, of a small crystal of silver nitrate, a strong cauterizing agent (Lavallee et al., 2005)

(with respect to the bregma, centered to 2 mm on the antero-posterior axis and 2 mm on the

medio-lateral axis). The crystal was left in place for 5 min to allow diffusion of the chemical

to the deep layers. Then, the cortical surface was abundantly rinsed with saline and sucked

out. A head-plate was then implanted.

Transient inactivation of the red nucleus

Inhibitory DREADDs were expressed in rubrofacial neurons via dual viral injections (100

nanoliters each): AAV-hSyn-DIO-hM4D(Gi)-mCherry (Addgene) in the right parvocellular

red nucleus and retrogradeAAV-hSyn.Cre.WPRE.hGH (Addgene) in the vibrissa subpart of

the left facial nucleus. Both regions were identified based on their standard stereotaxic

coordinates (Paxinos and Watson, 2007) (red nucleus: 1 mm lateral, 5.5 mm behind the

bregma, 6.5 mm below the dura; facial: 2 mm lateral, 2 mm behind the bregma, 7.5 mm

below the dura) and functional criteria (the red nucleus is vibrissa-responsive and the micro-

stimulation of vibrissa motoneurons elicits vibrissa micro-twitches even in anesthetized

animals). A head-plate was implanted immediately after the viral injections were completed.

Given the recovery period following this surgery (1 week) and the time needed for rats to

reach the expert level (at least 3 weeks), the inactivation experiments were caried out at

least 4 weeks after the viral injections, a sufficient time for an optimal AAV-mediated

expression. To inactivate the rubrofacial neurons expressing DREADDs, Clozapine N-oxide

dihydrochloride (Tocris) was intraperitoneally injected (2 mg/kg) one hour prior to the

behavioral experiment. The exact same procedure was employed for rats who did not

express DREADDs (SHAM group).

When all the behavioral sessions were completed, the animals were perfused and their brain

processed for histology. Images of the red nucleus and brainstem containing labelled

neurons were acquired using a confocal microscope (Zeiss) and a slide scanner (Huron

Digital Pathology).

Page 48: Contrôle de la position des vibrisses chez le rat ...

36

Data analysis

All data analyses were carried out under Matlab (Mathworks).

Licking learning

In order to isolate the vibrissa positioning task learning, the vibrissa data was analyzed only

from the moment when rats had learnt to lick reliably upon water delivery. This moment was

defined as the trial before which the likelihood of licking occurrence in the 250 previous post-

reward pauses was higher than 80%. Licking had to start between 0 and 2 s following reward

delivery to be considered.

Vibrissa task learning

As per our behavioral protocol, required hold times do not interfere with the way the vibrissa

position is evaluated during intertrials; thus, intertrials’ mean angles can be compared over

learning. This is not the case for trials, given that, during trials, rats are not given the

possibility to protact their whisker in the reward zone for more than the required hold time,

a parameter which changes over learning. Intertrial pauses following successful trials

dedicated to licking were excluded from the analyses (vibrissa retraction typically

accompanies licking), as well as the 1-s pause following unsuccessful trials.

“False alarm” licks during the performance stage

For each “false alarm” lick, we computed the maximum hold time in the reward zone in the

1-s fragment preceding the lick’s occurrence. To compare these hold times between trials

and intertrials, we excluded from the analysis the licks occurring during trials, whose the 1-

s preceding window included intrusion in the go zone (as this would not have been possible

during intertrials, leading to their end).

Recovery from deafferentation

The session from which rats were considered to have recovered from deafferentation is the

first of the three consecutive sessions whose pooled success rate was not statistically

different from the pooled success rate of the last three sessions preceding deafferentation

(chi-squared test, p>.05). All subsequent analyses aimed at comparing steady-state

execution before and after deafferentation were carried out with the post-recovery data.

Page 49: Contrôle de la position des vibrisses chez le rat ...

37

Spectral analyses

All spectral analyses were done using multitaper estimates (Kleinfeld and Mitra, 2014), as

implemented by the Chronux Matlab toolbox (Bokil et al., 2010).

At least 500-ms long whisking fragments were detected using spectrograms. The extraction

of whisking parameters (setpoint, amplitude and phase) was done, as previously described,

using the Hilbert transform (Hill et al., 2011; Moore et al., 2013).

All analyses on animal groups were weighted, so that every animal influences the final

measure equivalently. All error bars and shaded regions correspond to 95% confidence

intervals.

Page 50: Contrôle de la position des vibrisses chez le rat ...

38

Figure legends

Figure 1: Intact animals can learn the vibrissa positioning task

A: Scheme of the vibrissa positioning task. Rats are trained to move their vibrissa from a

retracted zone to a protracted zone, and maintain it in the reward zone for a given duration

(the “required hold time”) which adaptatively increases over training sessions.

B: Average vibrissa traces of successful hold times in the reward zone, throughout learning

(data from an illustrative rat).

C: Latencies between trials’ onset and the first at least 50 ms long holds in the reward zone

over learning.

D: Mean vibrissa angle over the 500 ms preceding trials’ onset over learning.

Figure 2: Sensory feedback is neither required before, nor after learning

A: Scheme of the deafferentation procedure. The infraorbital nerve is transected on the side

of the tracked vibrissa, the buccal and marginal branches of the facial nerve are transected

on the opposite side.

B: Mean angles over trials before and after deafferentation.

C: Empirical cumulative distribution of the maximum hold times in the reward zone across

trials, before and after deafferentation (each color represents a specific rat).

D: 10°-wide holds before and after deafferentation.

E: Traces of the vibrissa position during 1-sec successful hold times, before and after

deafferentation.

F: Angular standard deviation across 1-sec successful hold times, before and after

deafferentation.

Figure 3: Motor cortex is not required to learn the task

A: Empirical cumulative distribution of the maximum hold times in the reward zone across

trials in bilaterally decorticated rats, before and after deafferentation (each color represents

a specific rat).

B: Mean angles over trials in bilaterally decorticated rats, before and after deafferentation.

C: Traces of the vibrissa position during 1-sec successful hold times in bilaterally

decorticated rats, before and after deafferentation

D: Angular standard deviation across 1-sec successful hold times in bilaterally decorticated

rats, before and after deafferentation

Figure 4: Inactivation of the rubro-facial pathway disrupts performance

A: Fluorescent microscopy image of the parvocellular red nucleus and its surroundings

(PAG: periaqueductal gray; RPC: red parvocellular nucleus; RMC: red magnocellular

nucleus; ML: medial lemniscus; SNR: substantia nigra pars reticulata).

B: Empirical cumulative distribution of the maximum hold times in the reward zone across

trials in DREADDs and SHAM groups, before and after CNO administration (each color

represents a specific rat).

C: Mean angles over trials in DREADDs and SHAM groups, before and after CNO

administration.

Page 51: Contrôle de la position des vibrisses chez le rat ...

39

D: Circuit diagram of rubrofacial neurons’ inputs and outputs.

Supplementary Figure 1 A: Likelihood of licking occurrence up to 2 seconds after reward delivery over successive trials (data from an illustrative rat). B: Average vibrissa traces of trial initiation, throughout learning (data from an illustrative rat).

C: At the performance level (required hold time: 1 sec), hold times in reward zone preceding “false alarm” licks. Supplementary Figure 2 A: Post-hoc assessment of the effectiveness of the infraorbital nerve lesion, through bilateral LFP recording in the vibrissa ventral posteromedial nucleus of the thalamus, during electrical stimulation of pad muscles. B: Power spectrum during 1-s successful hold times, before and after deafferentation. C: Average vibrissa traces of successful hold times in the reward zone throughout learning,

for a deafferented rat.

D: Latencies between trials’ onset and the first at least 50 ms long holds in the reward zone

over learning, for deafferented rats.

E: Mean vibrissa angle over the 500 ms preceding trials’ onset over learning, for deafferented rats. F: Empirical cumulative distribution of the maximum hold times in the reward zone across

trials, for rats deafferented before learning and for rats deafferented after learning (each

color represents a specific rat).

Supplementary Figure 3 A: Fluorescent microscopy images and pictures of a bilateral motor cortical lesion. B: Average vibrissa traces of successful hold times in the reward zone throughout learning,

for a bilaterally decorticated rat.

C: Latencies between trials’ onset and the first at least 50 ms long holds in the reward zone

over learning, for bilaterally decorticated rats.

D: Mean vibrissa angle over the 500 ms preceding trials’ onset over learning, for bilaterally decorticated rats. Supplementary Figure 4: A: Fluorescent microscopy images of collaterals of rubrofacial neurons. B: Success rates across trials at the performance level in DREADDs and SHAM groups,

before and after CNO administration, and the associated mixed-effect logistic regression

estimates.

C: At the performance level (required hold time: 1 sec), mixed-effect linear regression

estimates for hold times in reward zone preceding “false alarm” licks, in DREADDs and

SHAM groups, before and after CNO administration.

Page 52: Contrôle de la position des vibrisses chez le rat ...

40

Figure 1: Intact animals can learn the vibrissa positioning task

eward zone

o zone

successtrial starts

vib

ris

sa

an

gle

reward

4 k z1 k z

1s hold time

1

time after hold onset (s)

0

90

100

110

vib

ris

sa

an

gle

(°)

vib

ris

sa

an

gle

(°)

0 1 2 3

initial training

A

B

C D

50ms hold time

110

1

time after hold onset (s)

0

90

100

0 1 2 3

performance

1s hold time

93

97

95

99

vib

ris

sa

an

gle

(°)

0.05 0.1 0.95 1

required hold time (s)

0.05 0.1 0.95 1

required hold time (s)

1.2

1.4

1.6

1.

late

ncy

(s)

01000 2000 3000 4000 5000 6000 7000

.5

1

e

qu

ire

d

ho

ld tim

e (

s)

learning performance

trials

Page 53: Contrôle de la position des vibrisses chez le rat ...

41

Figure 2: Sensory feedback is neither required before, nor after learning

Page 54: Contrôle de la position des vibrisses chez le rat ...

42

Figure 3: Motor cortex is not required to learn the task

Page 55: Contrôle de la position des vibrisses chez le rat ...

43

Figure 4: Inactivation of the rubro-facial pathway disrupts performance

Page 56: Contrôle de la position des vibrisses chez le rat ...

44

Supplementary Figure 1

Page 57: Contrôle de la position des vibrisses chez le rat ...

45

Supplementary Figure 2

Page 58: Contrôle de la position des vibrisses chez le rat ...

46

Supplementary Figure 3

Page 59: Contrôle de la position des vibrisses chez le rat ...

47

Supplementary Figure 4

Page 60: Contrôle de la position des vibrisses chez le rat ...

48

Chapitre 2 A Vibrissal Pathway that Activates the

Limbic System

2.1 Résumé

Nous décrivons un circuit du tronc cérébral convertissant des entrées sensorielles

orofaciales en réactions émotionnelles. Des expériences de traçage viral chez les rongeurs

révèlent que les cellules sensibles aux vibrisses dans le sous-noyau interpolaris du

complexe trigéminal, qui donnent naissance à la voie paralemniscale, projettent

massivement vers le noyau réticulaire médullaire dorsal et vers la corne dorsale de la moelle

cervicale. Les neurones interpolaires projettent également vers le complexe Kölliker-

Fuse/parabrachial, traditionnellement associé aux réactions aversives et au contrôle des

fonctions respiratoires et cardiovasculaires. Les cellules parabrachiales qui reçoivent une

entrée de l’interpolaris, projettent vers les régions limbiques du cerveau antérieur, tandis

que les cellules Kölliker-Fuse donnent lieu à des projections descendantes vers les régions

autonomes, respiratoires et motrices de la moelle. Nous avons également découvert une

population distincte de cellules de Kölliker-Fuse qui ne reçoivent pas d'entrée de

l’interpolaris mais qui projettent vers les noyaux sensoriels du trijumeau. Les données

électrophysiologiques et de microscopie électronique suggèrent que ce dernier groupe de

cellules du Kölliker-Fuse contrôle le relais de l'entrée sensorielle dans la voie paralemniscale

par un mécanisme d'inhibition présynaptique.

2.2 Abstract

We describe a brainstem circuit for the conversion of orofacial sensory input into emotional

reactions. Viral tracing experiments in rodents reveal that vibrissa-responsive cells in the

interpolaris subnucleus of the trigeminal complex, which give rise to the paralemniscal

pathway, send a massive input to the dorsal medullary reticular nucleus and the dorsal horn

of the cervical cord. Interpolaris neurons also project to the Kölliker-Fuse/parabrachial

complex, traditionally associated with aversive reactions and the control of respiratory and

cardiovascular functions. Parabrachial cells that receive interpolaris input project to limbic

regions of the forebrain while Kölliker-Fuse cells give rise to descending projections to the

autonomic, respiratory, and motor regions of the medulla. We also found a separate

population of Kölliker-Fuse cells that do not receive interpolaris input but project to the

trigeminal sensory nuclei. Electrophysiological, and electron microscopic data suggest that

Page 61: Contrôle de la position des vibrisses chez le rat ...

49

the latter pool of Kölliker-Fuse cells gate the relay of sensory input in the paralemniscal

pathway by a mechanism of presynaptic inhibition.

INTRODUCTION

Most sensory systems comprise parallel pathways of sensory information that encode

different features of a stimulus and take part in the control of sensor motion (Igarashi et al.,

2012; Lomber and Malhotra, 2008; Merigan and Maunsell, 1993; Nassi and Callaway, 2009;

Niu et al., 2013). The vibrissa system of rodents is no exception, as it comprises two main

trigeminothalamic pathways (reviewed in (Urbain and Deschênes, 2009)): (1) a lemniscal

pathway that arises from the trigeminal nucleus principalis (PrV), transits through the ventral

posterior medial nucleus (VPM) of the thalamus, and projects to the primary somatosensory

cortex; (2) a paralemniscal pathway that arises from the rostral part of trigeminal nucleus

interpolaris (SpVIr), transits through the posterior group (Po) of the thalamus, and projects

to the somatosensory cortical areas and to the vibrissa motor cortex.

In contrast with PrV cells, which innervate principally VPM thalamus, interpolaris cells that

project to Po thalamus also innervate a number of additional regions by means of branching

axons (Bellavance et al., 2017; Pierret et al., 2000; Veinante et al., 2000). These include the

superior colliculus, the anterior pretectal nucleus, the ventral division of zona incerta, and

the dorsal lateral sector of the facial nucleus. Tract tracing studies by means of classic

tracers also reported interpolaris projections to the brainstem and spinal cord (Jacquin et

al., 1986; Phelan and Falls, 1991). Whether the latter projections also arise from Po-

projecting cells remains an open question.

While the lemniscal pathway conveys tactile information and information about the relative

position (phase) of the vibrissae during whisking (Moore et al., 2015; Yu et al., 2006), the

role of the paralemniscal pathway remains puzzling. It was proposed that this pathway

conveys information about whisking kinematics (Yu et al., 2006), but later studies found that

encoding of whisking along the paralemniscal pathway is relatively poor (Moore et al., 2015;

Urbain et al., 2015). It was also proposed that the paralemniscal pathway is specifically

activated upon noxious stimulation (Frangeul et al., 2014; Masri et al., 2009), but it has never

been shown that interpolaris cells that respond to vibrissa deflection are also activated by

noxious stimuli. Thus the general function of the paralemnical pathway remains unresolved.

Page 62: Contrôle de la position des vibrisses chez le rat ...

50

Here we used virus-based tract tracing methods and electrophysiology to document the full

extent of the collateral projections of interpolaris cells that give rise to the paralemniscal

pathway. We searched for new pathways of ascending information to forebrain regions as

well as for feedback projections to brainstem nuclei as a means to uncover the role of the

paralemniscal pathway in rat’s behavior.

RESULTS

Collateral Projections of Interpolaris Cells that Project to Po Thalamus

To map the collateral projections of interpolaris cells that innervate Po thalamus, we injected

the retrograde virus G-pseudotyped Lenti-Cre in Po thalamus, and AAV2/8-hSyn-DIO-GFP

in the vibrissa-responsive sector of SpVIr (5 juvenile rats). This approach revealed an

unexpected diversity of axonal projections (Figure 1). In accordance with prior studies,

terminal fields are found in Po thalamus, the ventral division of zona incerta, the anterior

pretectal nucleus, the superior colliculus, the perirubral region, the dorsal lateral part of the

facial nucleus, and in the other subdivisions of the sensory trigeminal complex (Bellavance

et al., 2017; Jacquin et al., 1989; Jacquin et al., 1986; Veinante et al., 2000). Profuse

projections are also found in the ipsilateral dorsal medullary reticular nucleus (MdD) and

further caudally in the dorsal horn of the cervical cord. An ascending projection terminates

ipsilaterally in the intertrigeminal region (ITr) and in the Kölliker-Fuse/parabrachial complex

(KF/PBc). Whether individual interpolaris cells project to each of the above-mentioned target

regions remains an open issue. What is clear, however, is that interpolaris cells that project

to Po broadcast sensory messages to multiple midbrain and hindbrain regions.

Injection of the anterograde virus AAV1-hSyn-eGFP-WPRE in the vibrissa-responsive

sector of the SpVIr (3 rats) yields similar results (Figure S1); yet in these cases anterograde

labeling is also found in the cerebellum. This is consistent with prior studies, which reported

that different populations of SpVI cells project to the thalamus and cerebellum (Jacquin et

al., 1986; Steindler, 1985). Of note, in sagittal sections of the brainstem, the terminal field of

interpolaris axons in KF/PBc covers an extensive crescent-shaped territory at the rostral

border of PrV and the trigeminal motor nucleus (Figure S1B).

Page 63: Contrôle de la position des vibrisses chez le rat ...

51

KF/PBc and MdD Cells Respond to Vibrissa Deflection

Interpolaris cells that give rise to the paralemniscal pathway respond to vibrissa deflection

(Veinante et al., 2000). Thus, one expects KF/PBc and MdD neurons to also respond to

vibrissa deflection. We indeed found vibrissa-responsive neurons in the KF/PBc (latency:

8.0 ± 1.2 ms; mean ± SD; 22 cells) and in the MdD (latency: 6.0 ± 1.4 ms; mean ± SD; 33

cells) (Figure 2). The location of recorded units was assessed by single cell juxtacellular

labeling in the KF/PBc (8 cells), and by iontophoretic deposit of Chicago Sky Blue in the

MdD (3 rats). Like interpolaris cells, the receptive field of KF/PBc and MdD cells includes

multiple vibrissae. In KF/PBc, vibrissa-responsive cells are intermingled with cells that

discharge in phase with the respiratory rhythm. Yet the spontaneous activity of vibrissa-

responsive cells displays no statistically significant coherence with respiration (mean

coherence <C> in the spectral band of breathing is |<C>| = 0.16 for vibrissa-responsive cells

versus |<C>| = 0.72 for respiratory units (Figure 2D).

Axonal Projections of KF/PBc Cells that Receive Interpolaris Inputs

Among the targets of the paralemniscal pathway, we focused on the KF/PBc because of the

well-documented hodology of its axonal projections (see review by Saper, 2015). As a

means to visualize the axonal projections of KF/PBc cells that receive interpolaris input, we

injected AAV2/1 that expresses Cre in the vibrissa-responsive sector of the SpVI to achieve

anterograde transsynaptic expression of Cre (Zingg et al., 2017), and AAV-DIO-hChR2-

eYFP was injected in the KF/PBc (3 rats). We observed anterograde labeling in the lateral

part of the facial nucleus, throughout the ventral lateral medulla, the MdD, the nucleus of the

solitary tract, and the cervical cord (Figure 3). Ascending projections were found in the dorsal

raphe, the Edinger-Wesphal nucleus, the periaqueductal gray, the posterior lateral

hypothalamus, the paracentral and central medial thalamic nuclei, the parvicellular part of

the ventral posterior thalamic nucleus, the ventral division of zona incerta, the central

amygdala (CeA), and the lateral part of the bed nucleus of stria terminalis (Figure 3 and S2).

In summary, KF/PBc cells that receive interpolaris input in turn project to most of the

brainstem and forebrain regions previously identified by means of anterograde tracer

injections in the KF/PBc (Saper, 2015). Yet, it is worth noting that no anterograde labeling

is observed in the trigeminal sensory nuclei. This negative result is significant, as it indicates

that KF/PB cells that receive interpolaris input do not feed back to the relay cells that give

rise to the paralemniscal pathway (see below).

Page 64: Contrôle de la position des vibrisses chez le rat ...

52

As PB cells that project to the CeA receive input from vibrissa-responsive SpVI neurons,

one expects to find vibrissa-evoked responses in the amygdala. We addressed this issue by

recording the local field potential evoked by air jet deflection of the vibrissae (Figure 4).

These experiments were carried out under urethane instead of ketamine/xylazine

anesthesia as 2 agonists (e.g. xylazine) strongly depress synaptic transmission in the

parabrachial-amygdaloid pathway (Delaney et al., 2007). Vibrissa deflection evoked a clear

negative field potential in the CeA (peak latency, 12 ms; Figure 4). This response was

abolished following electrolytic lesion of the ipsilateral PB (3 rats). Together, our anatomical

(Figure 3) and electrophysiological (Figure 4) data delineate a pathway of vibrissa

information that reaches the CeA and several limbic regions of the forebrain via a relay in

the KF/PBc.

Differential Projections of KF and PB Cells

Prior studies in mice have shown that separate pools of KF/PB neurons project to the

forebrain and to lower brainstem (Barik et al., 2018; Geerling et al., 2017). We thus examined

whether descending and ascending projections of KF/PBc in rats arise from different or

overlapping neurons. We made large injections (100 nl) of the retrograde labels retroAAV-

CAG-eGFP and retroAAV-CAG-mCherry in the CeA and the facial nucleus, respectively (2

rats; Figure 5 A-D). Although a number of retrogradely labeled cells were found in the

KF/PBc, none was doubly labeled. Amygdala-projecting cells (326 in rat 1, and 312 in rat 2)

were mainly concentrated in lateral and medial PB, while the majority of facial projecting

cells (299 in rat 1, and 140 in rat 2) were located in KF. In complementary experiments, we

injected retroAAV expressing Cre in the ventral respiratory group and AAV2/8-hSyn-DIO-

GFP in KF/PBc (2 rats). Anterograde labeling was observed in the facial nucleus, the ventral

respiratory group and the MdD (Figure S3), but not in midbrain and forebrain regions.

Together these results confirm that neighboring but separate populations of KF/PB neurons

project to the forebrain and to the lower brainstem.

GABAergic KF cells gate sensory transmission in the SpVI

In rodents, KF projection to the brainstem arises from two neuronal populations:

glutamatergic cells that project to the autonomic, respiratory, and motor regions of the

medulla, and GABAergic neurons, which project principally to the SpVI (Geerling et al.,

2017). To determine whether GABAergic KF cells inhibit interpolaris cells, we made large

injections (200 nl) of anteroAAV-expressing Cre in KF/PB and AAV-Ef1a-Dio-eYFP in the

Page 65: Contrôle de la position des vibrisses chez le rat ...

53

SpVI (3 rats). Unexpectedly, few interpolaris neurons were labeled (n = 44, 48, 53

respectively in each of the rats). Anterograde labeling was observed in the KF/PB complex

and in the parvicellular part of the ventral posterior thalamic nucleus, a region known to

process input from the tongue and oral cavity (Ogawa and Nomura, 1988; Verhagen et al.,

2003). No labeling was observed in the cerebellum, or in brainstem and midbrain regions

that receive input from the paralemniscal pathway (cf. Fig. 1). Yet, labeled cells were present

in the parvicellular reticular formation at the medial border of the trigeminal nuclei, which

indicates that the paucity of cell labeling in SpVI is hardly ascribable to a technical pitfall.

Together these results indicate that projections from the KFn do not innervate the SpVI

interneurons or the projection cells that give rise to the paralemniscal pathway.

To further assess these anatomical results, we injected AAV-hSyn-ChR2-eYFP in KF and

used an optrode to concurrently stimulate KF axons and record the activity of SpVI neurons.

Interpolaris cells either discharged spontaneously or were driven by jiggling a single vibrissa

with a piezoelectric stimulator. Optogenetic stimulation suppressed sensory-evoked

discharges in monovibrissa-responsive cells (n=26) but did not affect the firing of

multivibrissa-responsive units (n=32). Together with the lack of transsynaptic labeling of

local circuit cells from the KFn, these results raise the possibility that KF-induced

suppression of sensory responses in local circuit interpolaris cells is mediated by

presynaptic or extrasynaptic inhibition.

DISCUSSION

The present study reveals a hitherto unsuspected diversity of axonal projections of

interpolaris cells that give rise to the paralemniscal pathway. We identified two new collateral

projections that target the MdD and the KF/PBc. Furthermore, we show that the KF/PBc

contains two populations of vibrissa-responsive neurons; one gives rise to an ascending

pathway, which projects to limbic regions of the forebrain, and the other one projects to the

autonomic, respiratory, and motor regions of the medulla. Lastly, KF contains a pool of

GABAergic neurons, which do not receive interpolaris input, but project locally and to the

trigeminal sensory nuclei. The diagram in Figure 8 summarizes the first-order axonal

projections of interpolaris cells that give rise to the paralemniscal pathway, and the second-

order projections that derive from the KF/PBc.

Page 66: Contrôle de la position des vibrisses chez le rat ...

54

Descending Projection to the MdD

By far the most abundant collateral projection of vibrissa-responsive interpolaris cells is to

the MdD and the dorsal horn of the cervical cord. The finding of vibrissa-responsive cells in

the MdD is unexpected as most studies reported that MdD neurons best respond to noxious

stimuli (reviewed in Martins and Tavares, 2017). Although there is no reason to believe that

vibrissa deflection per se is painful, an unexpected air puff directed toward the head of a rat

elicits fear-related behavior such as a startle response (Engelmann et al., 1996), 22 kHz

ultrasonic vocalization (Knapp and Pohorecky, 1995) and avoidance behavior (Cimadevilla

et al., 2001). As the MdD sends profuse projections to the cervical cord and the facial

nucleus (Bernard et al., 1990; Takatoh et al., 2013), these results suggest that vibrissa

messages to the MdD may elicit avoidance or flight behaviors. This conclusion is in line with

that of the recent study, which reported that the MdD is part of a brainstem-spinal circuit to

control escape responses to noxious stimuli (Barik et al., 2018).

The Trigemino-Parabrachial Amygdaloid Pathway

A number of studies have reported trigeminal projections to the KF and PB subnuclei

(Cechetto et al., 1985; Chamberlin, 2004; Dallel et al., 2004; Feil and Herbert, 1995;

Rodriguez et al., 2017; Slugg and Light, 1994). Most of these studies focused on ascending

projections from subnucleus caudalis, which convey pruriceptive and nociceptive inputs to

the KF/PBc (Jansen and Giesler, 2015). Thus, it came as a surprise to find vibrissa-

responsive neurons in KF/PBc, and further find that vibrissa signals are conveyed to the

limbic regions of the forebrain via the medial and lateral PB. One study previously reported

short-latency (about 11 ms) activation of amygdala neurons upon electrical stimulation of

the mystacial pad (Bernard et al., 1992). Such a short latency is consistent with the activation

of a trigemino-parabrachial-amygdaloid pathway by A primary vibrissa afferents.

The Paralemniscal Pathway and Threat

Although vibrissa-responsive interpolaris cells do not respond to noxious stimuli, many of

the regions they innervate contain cells that process nociceptive or aversive inputs. This is

the case for the MdD (reviewed in (Martins and Tavares, 2017)), the KF/PBc (Jansen and

Giesler, 2015), the superior colliculus (Dean et al., 1989; Redgrave et al., 1996), the zona

incerta (Masri et al., 2009), and Po thalamus (Frangeul et al., 2014; Masri et al., 2009;

Sobolewski et al., 2015). These anatomical data suggest that the paralemniscal pathway

Page 67: Contrôle de la position des vibrisses chez le rat ...

55

conveys signals from threatening or alarming sensory inputs, perhaps through association

with aversive contexts.

In light of the evidence that interpolaris cells innervate brain regions that process nociceptive

or aversive stimuli, we postulate that the KF is primarily involved in orchestrating defensive

reactions to aversive and threatening stimuli. Four additional lines of evidence support this

hypothesis. First, the KF projects to the cardio-respiratory medullary centers, the facial,

hypoglossal and ambiguous motor nuclei, the nucleus of the solitary tract, and to the

preganglionic neurons of the sympathetic nervous systems (reviewed in Saper and

Stornetta, 2015). Second, activation of KF cells elicits changes in respiration, heart rate,

blood pressure (Chamberlin, 2004; Chamberlin and Saper, 1992; Guo et al., 2002; Lara et

al., 1994), and contraction of facial muscle. Third, individual KF neurons project to many of

the above-mentioned targets by means of branching axons, which might form the anatomical

substrate for coordinating autonomic and somatic reactions (Song et al., 2012).

Conclusion

Our results clearly indicate that the paralemniscal pathway broadcasts vibrissa-based

sensory signals to a number of brainstem and forebrain regions that are involved in the

expression of emotional reactions. They provide a different viewpoint on the role of the

Kollliker-Fuse nucleus, which is currently considered to control the mechanics of respiratory

and cardiac rhythms, but no more. We propose that the Kollliker-Fuse nucleus is involved in

the larger role of orchestrating the expression of emotional reactions, e.g., facial

expressions, autonomic and somatic reactions, of which respiration is one of many players.

ACKNOWLEDGMENTS

We thank Fan Wang for critically reading the manuscript and sharing retrograde-Lenti-Cre.

This work was supported by grants from the Canadian Institutes of Health Research (grant

MT-5877) and the National Institutes of Health (U19 NS107466 and R35 NS097265).

AUTHOR CONTRIBUTIONS

D.K. and M. Deschênes supervised the project. M.E. and A.C-P. performed the experiments.

M. E. and M. Demers analyzed data. M.E., D.K. and M. Deschênes wrote the manuscript.

Page 68: Contrôle de la position des vibrisses chez le rat ...

56

DECLARATION OF INTEREST

The authors declare no competing interests

FIGURE LEGENDS

Figure 1. Axonal Projections of Interpolaris Cells that Give Rise to the Paralemniscal

Pathway

(A) Viral method used for labeling paralemniscal projections.

(B) Labeling of interpolaris cells after injection of G-pseudotyped Lenti-Cre virus in Po

thalamus, and a Cre-dependent AAV that expresses GFP in the vibrissa-responsive sector

of SpVIr.

(C) Anterograde labeling of terminal fields in Po thalamus and zona incerta.

(D) Anterograde labeling in KF/PB.

(E) Anterograde labeling in the ITr.

(F) Anterograde labeling in the dorsal sector of the facial nucleus.

(G) Anterograde labeling in the MdD and cervical cord.

See Figure S1 for additional data. Abbreviations: 5N, trigeminal motor nucleus; 7n, facial

nerve tract; ITr, intertrigeminal region; KF/PB, Kolliker-Fuse/parabrachial complex; MdD,

dorsal part of the medullary reticular formation; Po, posterior nuclear group of the thalamus;

PrV, principal trigeminal nucleus; VPM, ventral posterior medial nucleus; SpVC, caudalis

division of the spinal trigeminal complex; SpVIr, rostral division of the interpolaris nucleus;

ZIv, ventral division of zona incerta.

Figure 2. Vibrissa-Evoked Responses in KF and MdD

(A) Population peristimulus time histogram of spike discharges evoked in KF (22 cells) by

air puff deflection of the vibrissae. A representative response is shown in the insert.

Page 69: Contrôle de la position des vibrisses chez le rat ...

57

(B) Example of a vibrissa responsive KF cell labeled by juxtacellular delivery of Neurobiotin.

(C) Location of 8 juxtacellularly labeled KF cells. Horizontal brainstem sections in (B and C)

were counterstained for cytochrome oxidase.

(D) Coherence of spontaneous discharges of KF cells with the respiratory cycle. Note that,

in contrast with the respiratory units (blue dots), spontaneous discharges of vibrissa-

responsive cells (red triangles) display low coherence with respiration.

(E) Population peristimulus time histogram of spike discharges evoked in MdD (33 cells) by

air puff deflection of the vibrissae.

(F) Recording site in the MdD labeled by an iontophoretic injection of Chicago Sky Blue.

This coronal section was counterstained for cytochrome oxidase and a negative image was

generated.

Abbreviations: 5N, motor trigeminal nucleus; KF, Kolliker-Fuse nucleus; mcp, middle

cerebellar peduncle; MdD, dorsal part of the medullary reticular formation; MdV, ventral part

of the medullary reticular formation; PrV, principal trigeminal nucleus; s5, sensory root of the

trigeminal nerve; Sol, nucleus of the solitary tract; SpVC, caudalis division of the spinal

trigeminal complex; VLL, ventral nucleus of the lateral lemniscus.

Figure 3. Axonal Projections of KF/PB Cells that Receive Interpolaris Input

(A) AAV2/1-hSyn-Cre-WPRE was injected in the vibrissa-responsive sector of the SpVIr,

and AAV2/1-EF1a-DIO-hChR2-eYFP was injected in KF/PB. This parasagittal section

shows labeling in KF/PB. The section was immunostained for choline acetyltransferase. The

green and red framed areas are enlarged in (B) and (C).

(D) Terminal labeling in the ventral respiratory group underneath the ambiguus nucleus.

(E) Anterograde labeling in the central amygdala.

(F) Anterograde labeling in the paracentral and central medial thalamic nuclei.

Page 70: Contrôle de la position des vibrisses chez le rat ...

58

(G) Anterograde labeling in the parvocellular division of the ventral posterior medial nucleus

of the thalamus (see Figure S2 for additional projection sites).

Frontal sections in (E-G) were counterstained for cytochrome oxidase. Abbreviations: 5n,

root of the trigeminal motor nucleus; 7N, facial nucleus; 7n, facial nerve tract; Amb,

ambiguus nucleus; CeA, central amygdala; CM, central medial thalamic nucleus; mt,

mammillothalamic tract; PC, paracentral thalamic nucleus; PrV, principal trigeminal sensory

nucleus; SpVI, interpolaris division of the spinal trigeminal complex; VPPc, parvocellular part

of the ventral posterior thalamic nucleus; VRG, ventral respiratory group.

Figure 4. Vibrissa-Evoked Responses in Central Amygdala

(A) Average response (n = 50) evoked in the CeA by air puff stimulation of the vibrissae

before (red trace) and after (black trace) an electrolytic lesion of the PB complex.

(B) Recording site in the amygdala labeled by an iontophoretic injection of Chicago Sky Blue

(cytochrome oxidase counterstaining).

(C) Electrolytic lesion of the PB complex.

Abbreviations: 5N, trigeminal motor nucleus; CeA, central amygdala; PB, parabrachial

nuclei; scp, superior cerebellar peduncle.

Figure 5. Separate Cellular Populations in KF/PB Project to the CeA and the Facial

Nucleus

(A) Injection site of retroAAV-CAG-eGFP in the CeA.

(B) Injection site of retroAAV-CAG-mCherry in the facial nucleus.

(C) Retrogradely labeled cells in KF/PB.

(D) 3D reconstruction showing the distribution of amygdala-projecting cells (green dots) in

the medial and lateral PB, and facial-projecting neurons in the KF (magenta dots). Note that

Page 71: Contrôle de la position des vibrisses chez le rat ...

59

a few cells in lateral PB project to the facial nucleus; yet, none of the KF/PB cells is doubly

labeled.

(E) Wiring diagram of the projections of KF and PB cells that receive vibrissa input from the

interpolaris nucleus (see also Figure S3 for additional evidence). Abbreviations: 5N,

trigeminal motor nucleus; 5n, motor root of the trigeminal nucleus; 7N, facial motor nucleus;

7n, facial nerve tract; CeA, central amygdala; CPu, caudate putamen; opt, optic tract; scp,

superior cerebellar peduncle.

Figure 6. Transsynaptic Labeling of Brainstem Cells that Receive Input from the KFn

The viral method used to label cells that receive input from the KFn is shown in (A). (B)

Transsynaptic labeling in SpVI is restricted to a small population of cells (C) which project

to VPCC (B). Yet, numerous cells are transsynaptically labeled in the parvicellular reticular

formation (D). Abbreviations: 5t, trigeminal tract; Hab, habenula; PCRT, parvicellular

reticular formation; Po, posterior group of the thalamus; PrV, principal trigeminal sensory

nucleus; Rt, reticular thalamic nucleus; SpVC, caudalis division of the trigeminal sensory

nuclei; SpVIc, caudal sector of the interpolaris trigeminal nucleus; VPL, ventral

posterolateral thalamic nucleus; VPM, ventral posteromedial thalamic nucleus; VPCC,

parvicellular sector of the ventral posteromedial thalamic nucleus.

Figure 7. Optogenetic Stimulation of KF Axons Inhibits Vibrissa-Evoked Responses

in Monovibrissa-Responsive Interpolaris Cells

Injection of AAV2/1-hSyn-hChR2-eYFP in KF results in anterograde labeling in SpVI (A).

The framed region in A is shown in B; arrowheads point to labeled cell bodies. Note the

dense network of axon collaterals within the KF/PB complex. (C) Representative responses

of a monovibrissa-responsive cell (biphasic unit) and a multivibrissa-responsive cell (positive

unit) upon optogenetic stimulation of KF axons. (D) Population peristimulus time histogram

Page 72: Contrôle de la position des vibrisses chez le rat ...

60

of responses of 26 monovibrissa-responsive units upon optogenetic stimulation of KF axons.

Abbreviations: KF, Kölliker-Fuse nucleus; PrV, principal trigeminal sensory nucleus; SpVI,

interpolaris division of the trigeminal sensory nuclei; vsc, ventral spinocerebellar tract.

Figure 8. Summary of the First-Order Axonal Projections of Interpolaris Cells, and the

Second-Order Projections that Derive from the KF/PB Complex

(A) Projection sites in the framed area are from prior studies (see review by Saper and

Stornetta, 2014). Abbreviations: APT, anterior pretectal nucleus; BSTL, bed nucleus of the

stria terminalis; CeA, central amygdala; Cerv Cord, cervical cord; CM/PC, central

medial/paracentral thalamic nuclei; DR, dorsal raphe; EW, Edinger-Westphal; IML,

intermedio-lateral column of the spinal cord; ITr, intertrigeminal nucleus; KF, Kölliker-Fuse;

MdD, medullary reticular nucleus dorsal part; NA, nucleus ammbiguus; NTS, nucleus of the

solitary tract; PB, parabrachial nuclei; PLH, posterior lateral hypothalamus; PAG,

periaqueductal gray; Po. posterior group of the thalamus; RN, red nucleus; SC, superior

colliculus; SpVIr, rostral division of the interpolaris nucleus; TG, trigeminal ganglion; VPCC,

ventral posterior thalamic nucleus (parvicellular part); VRG, ventral respiratory group; ZIv,

ventral division of zona incerta.

EXPERIMENTAL PROCEDURES

Animals

Experiments were carried out in Long Evans rats of both sexes (250-350 g in mass),

according to the National Institutes of Health Guidelines. All experiments were approved by

the Institutional Animal Care and Use Committee at Laval University and the University of

California at San Diego.

Viruses

Page 73: Contrôle de la position des vibrisses chez le rat ...

61

G-pseudotyped Lenti-Cre virus was designed and produced as described (Stanek et

al., 2016). AAV2/8-hSyn-DIO-GFP and AAV-Flex-ChR2-mCherry were obtained from the

Neurophotonics Centre, Laval University. AAV2/1-EF1a-DIO-hChR2-EYFP-WPRE-

HGHpA, AAV1-hSyn-Cre WPRE, AAV1-hSyn-eGFP-WPRE, retroAAV-CAG-tdTomato,

retroAAV-CAG-eGFP, retroAAV-pmSyn1-EBFP-Cre, and AAV5-hSyn-Flex-ChrimsonR-

tdTomato were obtained from Addgene.

Surgery and virus injections

All, but three rats were anesthetized with ketamine (75 mg/kg) and xylazine (5

mg/kg), and body temperature was maintained at 37 C with a thermostatically controlled

heating pad. Three rats were anesthetized with urethane (1.4 g/kg) to record the local field

potential evoked in the amygdala by vibrissa deflection. All virus injections were carried out

after electrophysiolological identification of the target regions. When AAV injections were

made in the interpolaris nucleus, we targeted the lateralmost sector of the nucleus based on

the well-known somatotopic representation of the vibrissae in this nucleus. This precaution

proved useful to avoid infecting cells in neighboring regions. Viruses were pressure injected

(40-100 nl) using micropipettes of 15-20 m tip diameter. After 3 to 4 weeks of survival

animals were either perfused with saline and paraformaldehyde (4% (v/v) in PBS), or

anesthetized with ketamine (75 mg/kg) and xylazine (5 mg/kg) for optogenetic stimulation.

In three rats the vibrissa-responsive sector of the KF/PB was first located by

electrophysiological recording, and then lesioned by passing 0.5 mA through a stainless

steel electrode with a tip (10 m) de-insulated over a length of 500 m.

Electrophysiology

Single unit recordings were carried out in KF/PB and MdD with micropipettes (tip

diameter, 1 m) filled with either 0.5 M potassium acetate and 2% (w/v) Neurobiotin, or 0.5

M potassium acetate and 4% (w/v) Chicago Sky Blue. To maximize the chance of cell

recovery after juxtacellular labeling in the KF/PB, we injected one cell per animal and

perfused the rat thereafter. Vibrissae were deflected in the dorsocaudal direction with air-

puffs. The time delay between the command voltage and the onset of vibrissa deflection

was measured with a piezoelectric film positioned at the same distance from the puffer tip.

Respiration was monitored with a cantilevered piezoelectric film (LDT1 028K; Measurement

Specialties) resting on the rat’s abdomen just caudal to the torso. To monitor vibrissa motion

Page 74: Contrôle de la position des vibrisses chez le rat ...

62

we used a Basler A602f camera operated in line-scan mode with a 1-kHz scan rate. All

signals were sampled at 10 kHz and logged on a computer using the Labchart acquisition

system (AD Instruments).

Glutamate stimulation of KF/PB neurons

Glass micropipettes with an outer tip diameter of 10 - 15 m were used to pressure-

inject glutamate (10 mM in PBS) in KF/PB. Injections were carried out after locating the

vibrissa-responsive sector of KF/PB. The injected volume (20 - 40 nl) was estimated by

measuring the movement of the meniscus with an operating microscope. At the end of each

experiment another pipette filled with 4% (w/v) Chicago Sky Blue in 0.5 M potassium acetate

was lowered at the very same location to label the glutamate injection site by iontophoresis

(negative current pulses of 4 A, 2 s duration, half duty cycle for 5 min).

Optogenetic stimulation in alert head-restrained rats

On the day of virus injections, a head-restraining post was secured to the skull with

screws and acrylic cement, and a NTS thermistor (MEAS-G22K7MCD419, Measurement

Specialties) was positioned over the nasal epithelium to record respiration (McAfee et al.,

2016). A fiber-optic cannula (OD, 125 m; core diameter, 100 m; NA, 0.22; Doric Lens)

was positioned about 200 m above the site of virus injection in KF/PB, and fixed in place

with acrylic cement. Three weeks after virus injections rats were head restrained and

recordings were performed under near-infrared illumination (760 nm). Optogenetic

stimulation was carried out with laser diode fiber light sources (473 nm for ChR2, Doric

Lenses; 637 nm for Chrimson, Coherent). Stimulus parameters were as follow: pulse

duration, 5 - 10 ms; frequency, 50 - 100 Hz; train duration 300 - 800 ms; intensity 2 - 5 mW.

A high speed video camera (HiSpec 2G; Fastec Imaging) was used to record nose and

vibrissa motion at a rate of 500 fps. A 45 degree mirror installed below the rat enabled

tracking nose motion in all planes.

Histology

Following perfusion brains were postfixed for 1 h, and cryoprotected overnight in 30%

(w/w) sucrose in PBS. Brains were cut at thickness of 50 µm on a freezing microtome.

Labeled material was processed for either fluorescence or brightfield microscopy. For

fluorescence microscopy, sections were immunoreacted with a chicken anti-GFP antibody

Page 75: Contrôle de la position des vibrisses chez le rat ...

63

(1:1000; Abcam), and a donkey anti-chicken Alexa 488 IgG (Abcam). NeuN immunostaining

was carried out with a rabbit anti-NeuN antibody (1:1000; EM Millipore) and an anti-rabbit

IgG conjugated to Alexa 594. For brightfield microscopy, sections were first counterstained

for cytochrome oxidase, and then immunoreacted with a rabbit anti-GFP antibody (1:1000;

Novus Biological), a biotinylated anti-rabbit IgG (1:200: Vector Labs), the avidin/biotin

complex (Vectastain ABC kit, Vector Labs), and the SG peroxidase substrate (Vector Labs).

In three rats brainstem sections were first immunoreacted with a goat anti-choline

acetyltransferase antibody (1:1000; Millipore Sigma) and a rabbit anti-goat IgG conjugated

to horseradish peroxidase (Vector Labs), which was revealed with diaminobenzidine (brown

reaction product). Sections were then immunoreacted with a mouse anti-GFP antibody

(1:2000; Abcam), a biotinylated anti-mouse IgG, which was revealed with streptavidin

horseradish peroxidase conjugate and the Ni-DAB substrate (black reaction product).

Finally, the extent of electrolytic lesions was assessed on material stained with Neutral Red.

Sections were scanned at a resolution of 0.5 µm/pixel (TissueScope LE; Huron Digital

Pathology), and imported in Fiji or Photoshop for color and contrast adjustments.

Data analysis

Three-dimensional maps of retrogradely labeled KF/PB cells were constructed with

the Neurolucida software (Microbrightfield).

Peristimulus time histograms were built using the LabChart 8.0 spike histogram

module (AD Instruments), and the Matlab Chronux toolbox (http://www.chronux.org) was

used to compute the spectral coherence between respiration and the firing rate of KF/PB

cells.

Vibrissa and nose movements were extracted from video recordings using home

scripts in Matlab.

SUPPLEMENTAL INFORMATION

Figure S1. Interpolaris cells project to KF/PB and MdD (Supplementary information related

to Figure 1).

(A) Injection site of AAV1-hSyn-eGFP-WPRE-hgh in SpVIr.

Page 76: Contrôle de la position des vibrisses chez le rat ...

64

(B) Anterograde labeling in KF/PB.

(C) Anterograde labeling in the MdD. The framed region is enlarged in (D).

(E) Terminal field in the dorsal lateral sector of the facial nucleus.

(F) Anterograde labeling in the cerebellum.

Sections were immunostained for NeuN (A-E), or counterstained with DAPI (F).

Abbreviations: icp, inferior cerebellar peduncle; LRT, lateral reticular nucleus; SpVC,

caudalis division of the spinal trigeminal complex.

Figure S2. Additional projection sites of KF/PB cells that receive interpolaris input

(Supplementary information related to Figure 3).

(A-D) AAV2/1-hSyn-Cre-WPRE was injected in the vibrissa-responsive sector of the SpVIr,

and AAV2/1-EF1a-DIO-hChR2-eYFP was injected in KF/PB. Anterograde labeling is

present in the posterior lateral hypothalamus (A), the Edinger-Westphal nucleus (B), the

parvocellular division of the red nucleus (C), and in the dorsal raphé and ventral lateral

periaqueductal gray (D). Sections were counterstained for cytochrome oxidase.

Abbreviations: 3N, oculomotor nucleus; cp, cerebral peduncle; DR, dorsal raphe; EW,

Edinger-Westphal nucleus; PAG, periaqueductal gray; PLH, posterior lateral hypothalamus;

RMC, red nucleus magnocellular part; RPC, red nucleus parvocellular part; STh,

subthalamic nucleus.

Figure S3. Labeling of KF cells that project to lower brainstem (Supplementary information

related to Figure 4).

(A) Labeling of KF cells after injection of retroAAV-pmSyn1-EBFP-Cre in the ventral

respiratory group, and AAV2/8-hSyn-DIO-GFP in the KF/PB. Note the absence of

anterograde labeling in the sensory trigeminal nuclei.

(B) Anterograde labeling in the lateral part of the facial nucleus and in the ventral respiratory

group.

Page 77: Contrôle de la position des vibrisses chez le rat ...

65

No anterograde labeling is observed in midbrain or forebrain regions. Horizontal sections

were immunostained for NeuN. Abbreviations: 5N, trigeminal motor nucleus; 7N, facial

nucleus; 7n, facial nerve tract; Amb, ambiguous nucleus; ITr, intertrigeminal region; SpVI,

interpolaris division of the spinal trigeminal complex; VRG, ventral respiratory group.

Page 78: Contrôle de la position des vibrisses chez le rat ...

66

Figure 1:

Axonal Projections of Interpolaris Cells that Give Rise to the Paralemniscal Pathway

Page 79: Contrôle de la position des vibrisses chez le rat ...

67

Figure 2: Vibrissa-Evoked Responses in KF and MdD

Page 80: Contrôle de la position des vibrisses chez le rat ...

68

Figure 3: Axonal Projections of KF/PB Cells that Receive Interpolaris Input

Page 81: Contrôle de la position des vibrisses chez le rat ...

69

Figure 4: Vibrissa-Evoked Responses in Central Amygdala

Page 82: Contrôle de la position des vibrisses chez le rat ...

70

Figure 5:

Separate Cellular Populations in KF/PB Project to the CeA and the Facial Nucleus

Page 83: Contrôle de la position des vibrisses chez le rat ...

71

Figure 6: Transsynaptic Labeling of Brainstem Cells that Receive Input from the KF

Page 84: Contrôle de la position des vibrisses chez le rat ...

72

Figure 7:

Optogenetic Stimulation of KF Axons Inhibits Vibrissa-Evoked Responses in

Monovibrissa-Responsive Interpolaris Cells

Page 85: Contrôle de la position des vibrisses chez le rat ...

73

Figure 8:

Summary of the First-Order Axonal Projections of Interpolaris Cells, and the

Second-Order Projections that Derive from the KF/PB Complex

Page 86: Contrôle de la position des vibrisses chez le rat ...

74

Supplementary Figure 1:

Interpolaris cells project to KF/PB and MdD

(Supplementary information related to Figure 1)

Page 87: Contrôle de la position des vibrisses chez le rat ...

75

Supplementary Figure 2:

Additional projection sites of KF/PB cells that receive interpolaris input

(Supplementary information related to Figure 3)

Page 88: Contrôle de la position des vibrisses chez le rat ...

76

Supplementary figure 3:

Labeling of KF cells that project to lower brainstem

(Supplementary information related to Figure 4)

Page 89: Contrôle de la position des vibrisses chez le rat ...

77

Conclusion

Que des causes et mécanismes distincts mènent à des mouvements semblables, et que

des stimuli semblables soient interprétés diversement selon le contexte comportemental :

ce sont là les potentialités d’un réseau dont les multiples voies parallèles sensorielles,

motrices et sensori-motrices accèdent à la même information sensorielle, ou bien

communiquent avec les mêmes motoneurones, mais en vertu de principes distincts.

L’interaction de cette cohorte de régions en termes computationnels reste à définir. In fine,

nous déduirons de nos études que :

1) Les rats peuvent finement apprendre à contrôler la position de leurs vibrisses à la

faveur d’un modèle interne ne requérant pas même le cortex moteur. Cela

approfondit encore le mystère qui entoure cette région corticale de la lésion de

laquelle les rongeurs se remettent invariablement, sans déficits manifestes.

Puisqu’ils permettent de distinguer activités ré-afférentes d’efférentes, le modèle des

vibrisses et notre modèle expérimental ouvrent la voie à une meilleure

compréhension des déterminants du modèle interne, notamment des interactions

fondamentales prévalant entre ses composantes.

2) Les vibrisses ne servent pas qu’à l’exploration : les projections de régions répondant

aux vibrisses vers le système limbique en sont un témoignage anatomique. Il

demeure, par des manipulations spécifiques de ces projections en divers contextes

comportementaux, à en cerner l’implication physiologique.

Par ces études visant le même système sensorimoteur mais envisagé dans son étonnante

diversité fonctionnelle, nous voulions rendre hommage à la polysémie vibrissale. Nous

reconnaîtrons toutefois que nos études relèvent strictement de ce que David Chalmers avait

qualifié de « problèmes faciles », par opposition à celui, à notre connaissance inentamé, du

« problème difficile », celui du contenu phénoménal des expériences (qualias). Que plus

d’un demi-siècle d’études scientifiques, « à la troisième personne », du système des

vibrisses, ne nous permette un tant soit peu d’apprécier ce que cela fait que d’explorer le

monde par l’intermédiaire de moustaches en mouvement, pourrait avoir de quoi interpeller

même les plus optimistes partisans d’un programme fort des sciences cognitives. Pour

comprendre ce qui sous-tend la possibilité que les mots que nous agençons désormais à

peine mieux que les traducteurs automatiques contrairement à ces derniers nous parlent, le

Page 90: Contrôle de la position des vibrisses chez le rat ...

78

principal reste encore à penser et à faire. Pour peu que ce problème, qui nous apparaît

principal, ne soit occulté par la communauté neuroscientifique.

Page 91: Contrôle de la position des vibrisses chez le rat ...

79

Bibliographie

Ahl, A.S. (1982). Evidence of use of vibrissae in swimming in Sigmo don fulviventer. Animal

Behaviour, 1203-1204.

Ahl, A.S. (1986). The role of vibrissae in behavior: a status review. Vet Res Commun 10, 245-268.

Arakawa, H., and Erzurumlu, R.S. (2015). Role of whiskers in sensorimotor development of C57BL/6

mice. Behav Brain Res 287, 146-155.

Arkley, K., Grant, R.A., Mitchinson, B., and Prescott, T.J. (2014). Strategy change in vibrissal active

sensing during rat locomotion. Curr Biol 24, 1507-1512.

Armstrong-James, M., Fox, K., and Das-Gupta, A. (1992). Flow of excitation within rat barrel cortex

on striking a single vibrissa. J Neurophysiol 68, 1345-1358.

Arnold, P.B., Li, C.X., and Waters, R.S. (2001). Thalamocortical arbors extend beyond single cortical

barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136, 152-168.

Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., and Petersen, C.C. (2010). Long-range

connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31, 2221-2233.

Barbaresi, P., Spreafico, R., Frassoni, C., and Rustioni, A. (1986). GABAergic neurons are present in

the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res 382, 305-326.

Bartho, P., Freund, T.F., and Acsady, L. (2002). Selective GABAergic innervation of thalamic nuclei

from zona incerta. Eur J Neurosci 16, 999-1014.

Bellavance, M.A., Takatoh, J., Lu, J., Demers, M., Kleinfeld, D., Wang, F., and Deschenes, M.

(2017). Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa

Movement. Neuron 95, 673-682 e674.

Berg, R.W., and Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well as protraction of the

vibrissae is under active muscular control. J Neurophysiol 89, 104-117.

Bermejo, R., Harvey, M., Gao, P., and Zeigler, H.P. (1996). Conditioned whisking in the rat.

Somatosens Mot Res 13, 225-233.

Birch, D., and Jacobs, G.H. (1979). Spatial contrast sensitivity in albino and pigmented rats. Vision

Research 19, 933-937.

Bobrov, E., Wolfe, J., Rao, R.P., and Brecht, M. (2014). The representation of social facial touch in

rat barrel cortex. Curr Biol 24, 109-115.

Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., and Mitra, P.P. (2010). Chronux: a platform for

analyzing neural signals. J Neurosci Methods 192, 146-151.

Page 92: Contrôle de la position des vibrisses chez le rat ...

80

Bokor, H., Acsady, L., and Deschenes, M. (2008). Vibrissal responses of thalamic cells that project to

the septal columns of the barrel cortex and to the second somatosensory area. J Neurosci 28, 5169-

5177.

Bosman, L.W., Houweling, A.R., Owens, C.B., Tanke, N., Shevchouk, O.T., Rahmati, N., Teunissen,

W.H., Ju, C., Gong, W., Koekkoek, S.K., et al. (2011). Anatomical pathways involved in generating

and sensing rhythmic whisker movements. Front Integr Neurosci 5, 53.

Bosman, L.W., Koekkoek, S.K., Shapiro, J., Rijken, B.F., Zandstra, F., van der Ende, B., Owens,

C.B., Potters, J.W., de Gruijl, J.R., Ruigrok, T.J., et al. (2010). Encoding of whisker input by cerebellar

Purkinje cells. J Physiol 588, 3757-3783.

Brecht, M., Preilowski, B., and Merzenich, M.M. (1997). Functional architecture of the mystacial

vibrissae. Behavioural Brain Research 84, 81-97.

Bruce, L.L., McHaffie, J.G., and Stein, B.E. (1987). The organization of trigeminotectal and

trigeminothalamic neurons in rodents: a double-labeling study with fluorescent dyes. J Comp Neurol

262, 315-330.

Campi, K.L., Collins, C.E., Todd, W.D., Kaas, J., and Krubitzer, L. (2011). Comparison of area 17

cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. Brain

Behav Evol 77, 116-130.

Campi, K.L., and Krubitzer, L. (2010). Comparative studies of diurnal and nocturnal rodents:

differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol 518, 4491-

4512.

Carvell, G.E., and Simons, D.J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat.

J Neurosci 10, 2638-2648.

Carvell, G.E., and Simons, D.J. (1996). Abnormal tactile experience early in life disrupts active touch.

The Journal of Neuroscience 16, 2750-2757.

Castro-Alamancos, M.A. (2002). Properties of primary sensory (lemniscal) synapses in the

ventrobasal thalamus and the relay of high-frequency sensory inputs. J Neurophysiol 87, 946-953.

Castro, A.J. (1972). The effects of cortical ablations on digital usage in the rat. Brain Research 37,

173-185.

Celikel, T., and Sakmann, B. (2007). Sensory integration across space and in time for decision

making in the somatosensory system of rodents. Proc Natl Acad Sci U S A 104, 1395-1400.

Chakrabarti, S., and Alloway, K.D. (2006). Differential origin of projections from SI barrel cortex to the

whisker representations in SII and MI. J Comp Neurol 498, 624-636.

Charpier, S., Pidoux, M., and Mahon, S. (2020). Converging sensory and motor cortical inputs onto

the same striatal neurons: An in vivo intracellular investigation. PLoS One 15, e0228260.

Page 93: Contrôle de la position des vibrisses chez le rat ...

81

Chen, S., Augustine, G.J., and Chadderton, P. (2016). The cerebellum linearly encodes whisker

position during voluntary movement. Elife 5, e10509.

Cheung, J., Maire, P., Kim, J., Sy, J., and Hires, S.A. (2019). The Sensorimotor Basis of Whisker-

Guided Anteroposterior Object Localization in Head-Fixed Mice. Curr Biol.

Cheung, J.A., Maire, P., Kim, J., Lee, K., Flynn, G., and Hires, S.A. (2020). Independent

representations of self-motion and object location in barrel cortex output. PLoS Biol 18, e3000882.

Chorev, E., Preston-Ferrer, P., and Brecht, M. (2016). Representation of egomotion in rat's trident

and E-row whisker cortices. Nat Neurosci 19, 1367-1373.

Cohen, J.D., and Castro-Alamancos, M.A. (2010). Detection of low salience whisker stimuli requires

synergy of tectal and thalamic sensory relays. J Neurosci 30, 2245-2256.

Cohen, J.D., Hirata, A., and Castro-Alamancos, M.A. (2008). Vibrissa sensation in superior colliculus:

wide-field sensitivity and state-dependent cortical feedback. J Neurosci 28, 11205-11220.

Courville, J. (1966). The nucleus of the facial nerve; the relation between cellular groups and

peripheral branches of the nerve. Brain Res 1, 338-354.

Daniel, H., Billard, J.M., Angaut, P., and Batini, C. (1987). The interposito-rubrospinal system.

Anatomical tracing of a motor control pathway in the rat. Neuroscience Research 5, 87-112.

Deschenes, M., Moore, J., and Kleinfeld, D. (2012). Sniffing and whisking in rodents. Curr Opin

Neurobiol 22, 243-250.

Deschenes, M., Takatoh, J., Kurnikova, A., Moore, J.D., Demers, M., Elbaz, M., Furuta, T., Wang, F.,

and Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron 90, 374-387.

Diamond, M.E., Armstrong-James, M., Budway, M.J., and Ebner, F.F. (1992). Somatic sensory

responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial

nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319, 66-

84.

Dominiak, S.E., Nashaat, M.A., Sehara, K., Oraby, H., Larkum, M.E., and Sachdev, R.N.S. (2019).

Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. J Neurosci 39,

9818-9830.

Dorfl, J. (1982). The musculature of the mystacial vibrissae of the white mouse. J Anat 135, 147-154.

Dorfl, J. (1985). The innervation of the mystacial region of the white mouse: A topographical study. J

Anat 142, 173-184.

Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J.E., and Rice, F.L. (2002). Similarities and

differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a

confocal microscopic study. J Comp Neurol 449, 103-119.

Page 94: Contrôle de la position des vibrisses chez le rat ...

82

Ebbesen, C.L., Doron, G., Lenschow, C., and Brecht, M. (2017). Vibrissa motor cortex activity

suppresses contralateral whisking behavior. Nat Neurosci 20, 82-89.

Elbaz, M., Callado-Pérez, A., Demers, M., Kleinfeld, D., and Deschênes, M. (2021). A Vibrissal

Pathway that Activates the Limbic System. under review.

Fee, M.S., Mitra, P.P., and Kleinfeld, D. (1997). Central versus peripheral determinants of patterned

spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78, 1144-1149.

Feldman, D.E. (2009). Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci 32, 33-

55.

Feldmeyer, D., Brecht, M., Helmchen, F., Petersen, C.C., Poulet, J.F., Staiger, J.F., Luhmann, H.J.,

and Schwarz, C. (2013). Barrel cortex function. Prog Neurobiol 103, 3-27.

Fetsch, C.R., Odean, N.N., Jeurissen, D., El-Shamayleh, Y., Horwitz, G.D., and Shadlen, M.N.

(2018). Focal optogenetic suppression in macaque area MT biases direction discrimination and

decision confidence, but only transiently. Elife 7.

Fox, K., Wallace, H., and Glazewski, S. (2002). Is there a thalamic component to experience-

dependent cortical plasticity? Philos Trans R Soc Lond B Biol Sci 357, 1709-1715.

Fox, K., and Wong, R.O. (2005). A comparison of experience-dependent plasticity in the visual and

somatosensory systems. Neuron 48, 465-477.

Frangeul, L., Porrero, C., Garcia-Amado, M., Maimone, B., Maniglier, M., Clasca, F., and Jabaudon,

D. (2014). Specific activation of the paralemniscal pathway during nociception. Eur J Neurosci 39,

1455-1464.

Freeman, J.H., and Steinmetz, A.B. (2011). Neural circuitry and plasticity mechanisms underlying

delay eyeblink conditioning. Learn Mem 18, 666-677.

Friedman, W.A., Zeigler, H.P., and Keller, A. (2012). Vibrissae motor cortex unit activity during

whisking. J Neurophysiol 107, 551-563.

Furuta, T., Kaneko, T., and Deschenes, M. (2009). Septal neurons in barrel cortex derive their

receptive field input from the lemniscal pathway. J Neurosci 29, 4089-4095.

Furuta, T., Nakamura, K., and Deschenes, M. (2006). Angular tuning bias of vibrissa-responsive cells

in the paralemniscal pathway. J Neurosci 26, 10548-10557.

Furuta, T., Timofeeva, E., Nakamura, K., Okamoto-Furuta, K., Togo, M., Kaneko, T., and

Deschenes, M. (2008). Inhibitory gating of vibrissal inputs in the brainstem. J Neurosci 28, 1789-

1797.

Gao, P., Bermejo, R., and Zeigler, H.P. (2001). Whisker Deafferentation and Rodent Whisking

Patterns: Behavioral Evidence for a Central Pattern Generator. The Journal of Neuroscience 21,

5374-5380.

Page 95: Contrôle de la position des vibrisses chez le rat ...

83

Gao, P., Hattox, A.M., Jones, L.M., Keller, A., and Zeigler, H.P. (2003). Whisker motor cortex ablation

and whisker movement patterns. Somatosens Mot Res 20, 191-198.

ao, P., Ploog, B.O., and Zeigler, .P. (2009). Whisking as a “voluntary” response: operant control of

whisking parameters and effects of whisker denervation. Somatosensory & Motor Research 20, 179-

189.

Giovannucci, A., Badura, A., Deverett, B., Najafi, F., Pereira, T.D., Gao, Z., Ozden, I., Kloth, A.D.,

Pnevmatikakis, E., Paninski, L., et al. (2017). Cerebellar granule cells acquire a widespread

predictive feedback signal during motor learning. Nat Neurosci 20, 727-734.

Glazewski, S., and Fox, K. (1996). Time course of experience-dependent synaptic potentiation and

depression in barrel cortex of adolescent rats. J Neurophysiol 75, 1714-1729.

Godefroy, J.N., Thiesson, D., Pollin, B., Rokyta, R., and Azerad, J. (1998). Reciprocal connections

between the red nucleus and the trigeminal nuclei: a retrograde and anterograde tracing study.

Physiol Res 47, 489-500.

Goldin, M.A., Harrell, E.R., Estebanez, L., and Shulz, D.E. (2018). Rich spatio-temporal stimulus

dynamics unveil sensory specialization in cortical area S2. Nat Commun 9, 4053.

Gomez, J.L., Bonaventura, J., Lesniak, W., Mathews, W.B., Sysa-Shah, P., Rodriguez, L.A., Ellis,

R.J., Richie, C.T., Harvey, B.K., Dannals, R.F., et al. (2017). Chemogenetics revealed: DREADD

occupancy and activation via converted clozapine. Science 357, 503-507.

Grant, R., Mitchinson, B., and Prescott, T. (2011). Vibrissal behavior and function. Scholarpedia 6.

Grant, R.A., Breakell, V., and Prescott, T.J. (2018). Whisker touch sensing guides locomotion in

small, quadrupedal mammals. Proc Biol Sci 285.

Grant, R.A., Mitchinson, B., Fox, C.W., and Prescott, T.J. (2009). Active touch sensing in the rat:

anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol

101, 862-874.

Grant, R.A., Mitchinson, B., and Prescott, T.J. (2012). The development of whisker control in rats in

relation to locomotion. Dev Psychobiol 54, 151-168.

Guic-Robles, E., Valdivieso, C., and Guajardo, G. (1989). Rats can learn a roughness discrimination

using only their vibrissal system. Behav Brain Res 31, 285-289.

Guo, Z.V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J.T., Feng, G., and Svoboda, K. (2014).

Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179-194.

Gutnisky, D.A., Yu, J., Hires, S.A., To, M.S., Bale, M.R., Svoboda, K., and Golomb, D. (2017).

Mechanisms underlying a thalamocortical transformation during active tactile sensation. PLoS

Comput Biol 13, e1005576.

Page 96: Contrôle de la position des vibrisses chez le rat ...

84

Haidarliu, S., Kleinfeld, D., Deschenes, M., and Ahissar, E. (2015). The Musculature That Drives

Active Touch by Vibrissae and Nose in Mice. Anat Rec (Hoboken) 298, 1347-1358.

Haidarliu, S., Simony, E., Golomb, D., and Ahissar, E. (2010). Muscle architecture in the mystacial

pad of the rat. Anat Rec (Hoboken) 293, 1192-1206.

Harris, R.M. (1987). Axon collaterals in the thalamic reticular nucleus from thalamocortical neurons of

the rat ventrobasal thalamus. J Comp Neurol 258, 397-406.

Hartmann, M.J. (2011). A night in the life of a rat: vibrissal mechanics and tactile exploration. Ann N Y

Acad Sci 1225, 110-118.

Hattox, A.M., Priest, C.A., and Keller, A. (2002). Functional circuitry involved in the regulation of

whisker movements. J Comp Neurol 442, 266-276.

Heffley, W., and Hull, C. (2019). Classical conditioning drives learned reward prediction signals in

climbing fibers across the lateral cerebellum. Elife 8.

Hemelt, M.E., and Keller, A. (2007). Superior sensation: superior colliculus participation in rat vibrissa

system. BMC Neurosci 8, 12.

Henstrom, D., Hadlock, T., Lindsay, R., Knox, C.J., Malo, J., Vakharia, K.T., and Heaton, J.T. (2012).

The convergence of facial nerve branches providing whisker pad motor supply in rats: implications

for facial reanimation study. Muscle Nerve 45, 692-697.

Herfst, L.J., and Brecht, M. (2008). Whisker movements evoked by stimulation of single motor

neurons in the facial nucleus of the rat. J Neurophysiol 99, 2821-2832.

Hill, D.N., Bermejo, R., Zeigler, H.P., and Kleinfeld, D. (2008). Biomechanics of the vibrissa motor

plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28, 3438-3455.

Hill, D.N., Curtis, J.C., Moore, J.D., and Kleinfeld, D. (2011). Primary motor cortex reports efferent

control of vibrissa motion on multiple timescales. Neuron 72, 344-356.

Hong, Y.K., Lacefield, C.O., Rodgers, C.C., and Bruno, R.M. (2018). Sensation, movement and

learning in the absence of barrel cortex. Nature 561, 542-546.

Horton, J.C., and Adams, D.L. (2005). The cortical column: a structure without a function. Philos

Trans R Soc Lond B Biol Sci 360, 837-862.

Huerta, M.F., Frankfurter, A., and Harting, J.K. (1983). Studies of the principal sensory and spinal

trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J

Comp Neurol 220, 147-167.

Hutson, K.A., and Masterton, R.B. (1986). The sensory contribution of a single vibrissa's cortical

barrel. J Neurophysiol 56, 1196-1223.

Page 97: Contrôle de la position des vibrisses chez le rat ...

85

Isokawa-Akesson, M., and Komisaruk, B.R. (1987). Difference in projections to the lateral and medial

facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats. Exp Brain

Res 65, 385-398.

Jacquin, M.F., and Rhoades, R.W. (1990). Cell structure and response properties in the trigeminal

subnucleus oralis. Somatosens Mot Res 7, 265-288.

Jin, T.E., Witzemann, V., and Brecht, M. (2004). Fiber types of the intrinsic whisker muscle and

whisking behavior. J Neurosci 24, 3386-3393.

Jones, L.M., Depireux, D.A., Simons, D.J., and Keller, A. (2004). Robust temporal coding in the

trigeminal system. Science 304, 1986-1989.

Kaneda, K., Isa, K., Yanagawa, Y., and Isa, T. (2008). Nigral inhibition of GABAergic neurons in

mouse superior colliculus. J Neurosci 28, 11071-11078.

Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A.L., Dhawale, A.K., Kampff, A.R., and

Olveczky, B.P. (2015). Motor cortex is required for learning but not for executing a motor skill. Neuron

86, 800-812.

Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G.L., Ben-Ari, Y., and Buzsaki, G. (2004). Early

motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758-761.

Kleinfeld, D., and Deschenes, M. (2011). Neuronal basis for object location in the vibrissa scanning

sensorimotor system. Neuron 72, 455-468.

Kleinfeld, D., and Mitra, P.P. (2014). Spectral methods for functional brain imaging. Cold Spring Harb

Protoc 2014, 248-262.

Knutsen, P.M., and Ahissar, E. (2009). Orthogonal coding of object location. Trends Neurosci 32,

101-109.

Knutsen, P.M., Pietr, M., and Ahissar, E. (2006). Haptic object localization in the vibrissal system:

behavior and performance. J Neurosci 26, 8451-8464.

Kostadinov, D., Beau, M., Pozo, M.B., and Hausser, M. (2019). Predictive and reactive reward

signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci 22, 950-962.

Kuruppath, P., Gugig, E., and Azouz, R. (2014). Microvibrissae-based texture discrimination. J

Neurosci 34, 5115-5120.

Landers, M., and Philip Zeigler, H. (2006). Development of rodent whisking: trigeminal input and

central pattern generation. Somatosens Mot Res 23, 1-10.

Larry, N., Yarkoni, M., Lixenberg, A., and Joshua, M. (2019). Cerebellar climbing fibers encode

expected reward size. Elife 8.

Page 98: Contrôle de la position des vibrisses chez le rat ...

86

Lavallee, P., Urbain, N., Dufresne, C., Bokor, H., Acsady, L., and Deschenes, M. (2005).

Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25,

7489-7498.

Lee, C.R., Yonk, A.J., Wiskerke, J., Paradiso, K.G., Tepper, J.M., and Margolis, D.J. (2019).

Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior.

Curr Biol 29, 1313-1323 e1315.

Lefort, S., Tomm, C., Floyd Sarria, J.C., and Petersen, C.C. (2009). The excitatory neuronal network

of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301-316.

Lichtenstein, S.H., Carvell, G.E., and Simons, D.J. (1990). Responses of rat trigeminal ganglion

neurons to movements of vibrissae in different directions. Somatosens Mot Res 7, 47-65.

Long, S.Y. (1972). Hair-nibbling and whisker-trimming as indicators of social hierarchy in mice. Anim

Behav 20, 10-12.

Lovick, T.A. (1972). The behavioural repertoire of precollicular decerebrate rats. J Physiol 226, 4P-

6P.

Lubke, J., and Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column:

focus on barrel cortex. Brain Struct Funct 212, 3-17.

Ma, P.M., and Woolsey, T.A. (1984). Cytoarchitectonic correlates of the vibrissae in the medullary

trigeminal complex of the mouse. Brain Res 306, 374-379.

Mahler, S.V., and Aston-Jones, G. (2018). CNO Evil? Considerations for the Use of DREADDs in

Behavioral Neuroscience. Neuropsychopharmacology 43, 934-936.

Maier, D.L., Mani, S., Donovan, S.L., Soppet, D., Tessarollo, L., McCasland, J.S., and Meiri, K.F.

(1999). Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43

knockout mice. Proc Natl Acad Sci U S A 96, 9397-9402.

Manvich, D.F., Webster, K.A., Foster, S.L., Farrell, M.S., Ritchie, J.C., Porter, J.H., and Weinshenker,

D. (2018). The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and

produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep 8, 3840.

Mao, T., Kusefoglu, D., Hooks, B.M., Huber, D., Petreanu, L., and Svoboda, K. (2011). Long-range

neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111-123.

May, P.J. (2006). The mammalian superior colliculus: laminar structure and connections. Prog Brain

Res 151, 321-378.

Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A., and Kleinfeld, D. (2007). Active spatial

perception in the vibrissa scanning sensorimotor system. PLoS Biol 5, e15.

Page 99: Contrôle de la position des vibrisses chez le rat ...

87

Meyer, H.S., Wimmer, V.C., Oberlaender, M., de Kock, C.P., Sakmann, B., and Helmstaedter, M.

(2010). Number and laminar distribution of neurons in a thalamocortical projection column of rat

vibrissal cortex. Cereb Cortex 20, 2277-2286.

Meyer, M.E., and Meyer, M.E. (1992). The effects of bilateral and unilateral vibrissotomy on behavior

within aquatic and terrestrial environments. Physiol Behav 51, 877-880.

Mihailoff, G.A., Kosinski, R.J., Azizi, S.A., and Border, B.G. (1989). Survey of noncortical afferent

projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282,

617-643.

Minnery, B.S., Bruno, R.M., and Simons, D.J. (2003). Response transformation and receptive-field

synthesis in the lemniscal trigeminothalamic circuit. J Neurophysiol 90, 1556-1570.

Minnery, B.S., and Simons, D.J. (2003). Response properties of whisker-associated

trigeminothalamic neurons in rat nucleus principalis. J Neurophysiol 89, 40-56.

Miri, A., Warriner, C.L., Seely, J.S., Elsayed, G.F., Cunningham, J.P., Churchland, M.M., and Jessell,

T.M. (2017). Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor

Cortex. Neuron 95, 683-696 e611.

Mitchinson, B., and Prescott, T.J. (2013). Whisker movements reveal spatial attention: a unified

computational model of active sensing control in the rat. PLoS Comput Biol 9, e1003236.

Miyashita, E., Keller, A., and Asanuma, H. (1994). Input-output organization of the rat vibrissal motor

cortex. Exp Brain Res 99, 223-232.

Miyashita, E., and Mori, S. (1995). The superior colliculus relays signals descending from the

vibrissal motor cortex to the facial nerve nucleus in the rat. Neurosci Lett 195, 69-71.

Molinari, H.H., Schultze, K.E., and Strominger, N.L. (1996). Gracile, cuneate, and spinal trigeminal

projections to inferior olive in rat and monkey. J Comp Neurol 375, 467-480.

Moore, J.D., Deschenes, M., Furuta, T., Huber, D., Smear, M.C., Demers, M., and Kleinfeld, D.

(2013). Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205-

210.

Moore, J.D., Deschenes, M., and Kleinfeld, D. (2015a). Juxtacellular Monitoring and Localization of

Single Neurons within Sub-cortical Brain Structures of Alert, Head-restrained Rats. J Vis Exp.

Moore, J.D., Mercer Lindsay, N., Deschenes, M., and Kleinfeld, D. (2015b). Vibrissa Self-Motion and

Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through

Thalamus. PLoS Biol 13, e1002253.

Mrosovsky, N., and Hattar, S. (2005). Diurnal mice (Mus musculus) and other examples of temporal

niche switching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191, 1011-1024.

Page 100: Contrôle de la position des vibrisses chez le rat ...

88

Murakami, F., Fujito, Y., and Tsukahara, N. (1976). Physiological properties of the newly formed

cortico-rubral synapses of red nucleus neurons due to collateral sprouting. Brain Research 103, 147-

151.

O'Connor, D.H., Clack, N.G., Huber, D., Komiyama, T., Myers, E.W., and Svoboda, K. (2010).

Vibrissa-based object localization in head-fixed mice. J Neurosci 30, 1947-1967.

O'Connor, D.H., Hires, S.A., Guo, Z.V., Li, N., Yu, J., Sun, Q.Q., Huber, D., and Svoboda, K. (2013).

Neural coding during active somatosensation revealed using illusory touch. Nat Neurosci 16, 958-

965.

Otchy, T.M., Wolff, S.B., Rhee, J.Y., Pehlevan, C., Kawai, R., Kempf, A., Gobes, S.M., and Olveczky,

B.P. (2015). Acute off-target effects of neural circuit manipulations. Nature 528, 358-363.

Pacheco-Calderon, R., Carretero-Guillen, A., Delgado-Garcia, J.M., and Gruart, A. (2012). Red

nucleus neurons actively contribute to the acquisition of classically conditioned eyelid responses in

rabbits. J Neurosci 32, 12129-12143.

Paxinos, G., and Watson, C. (2007). The rat brain in stereotaxic coordinates, 6th edn (Amsterdam ;

Boston ;: Academic Press/Elsevier).

Peschanski, M., Ralston, H.J., and Roudier, F. (1983). Reticularis thalami afferents to the ventrobasal

complex of the rat thalamus: an electron microscope study. Brain Res 270, 325-329.

Petersen, C.C. (2007). The functional organization of the barrel cortex. Neuron 56, 339-355.

Petersen, C.C.H. (2019). Sensorimotor processing in the rodent barrel cortex. Nat Rev Neurosci.

Petreanu, L., Gutnisky, D.A., Huber, D., Xu, N.L., O'Connor, D.H., Tian, L., Looger, L., and Svoboda,

K. (2012). Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature

489, 299-303.

Pisano, R., and Storer, T. (1948). Burrows and Feeding of the Norway Rat. 29, 374–383.

Polley, D.B., Kvasnak, E., and Frostig, R.D. (2004). Naturalistic experience transforms sensory maps

in the adult cortex of caged animals. Nature 429, 67-71.

Pouchelon, G., Frangeul, L., Rijli, F.M., and Jabaudon, D. (2012). Patterning of pre-thalamic

somatosensory pathways. Eur J Neurosci 35, 1533-1539.

Prescott, T., Ahissar, E., and Izhikevich, E. (2016). Scholarpedia of Touch.

Prusky, G.T., Harker, K.T., Douglas, R.M., and Whishaw, I.Q. (2002). Variation in visual acuity within

pigmented, and between pigmented and albino rat strains. Behavioural Brain Research 136, 339-

348.

Quist, B.W., and Hartmann, M.J. (2012). Mechanical signals at the base of a rat vibrissa: the effect of

intrinsic vibrissa curvature and implications for tactile exploration. J Neurophysiol 107, 2298-2312.

Page 101: Contrôle de la position des vibrisses chez le rat ...

89

Quist, B.W., Seghete, V., Huet, L.A., Murphey, T.D., and Hartmann, M.J. (2014). Modeling forces

and moments at the base of a rat vibrissa during noncontact whisking and whisking against an

object. J Neurosci 34, 9828-9844.

Rice, F.L., Kinnman, E., Aldskogius, H., Johansson, O., and Arvidsson, J. (1993). The innervation of

the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337, 366-

385.

Rice, F.L., Mance, A., and Munger, B.L. (1986). A comparative light microscopic analysis of the

sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp

Neurol 252, 154-174.

Sehara, K., Bahr, V., Mitchinson, B., Pearson, M.J., Larkum, M.E., and Sachdev, R.N.S. (2019).

Fast, Flexible Closed-Loop Feedback: Tracking Movement in "Real-Millisecond-Time". eNeuro 6.

Sellien, H., Eshenroder, D.S., and Ebner, F.F. (2005). Comparison of bilateral whisker movement in

freely exploring and head-fixed adult rats. Somatosens Mot Res 22, 97-114.

Semba, K., and Egger, M.D. (1986). The facial "motor" nerve of the rat: control of vibrissal movement

and examination of motor and sensory components. J Comp Neurol 247, 144-158.

Semba, K., and Komisaruk, B.R. (1984). Neural substrates of two different rhythmical vibrissal

movements in the rat. Neuroscience 12, 761-774.

Severson, K.S., Xu, D., Van de Loo, M., Bai, L., Ginty, D.D., and O'Connor, D.H. (2017). Active

Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents. Neuron 94, 666-676 e669.

Severson, K.S., Xu, D., Yang, H., and O'Connor, D.H. (2019). Coding of whisker motion across the

mouse face. Elife 8.

Smith, J.B., Mowery, T.M., and Alloway, K.D. (2012). Thalamic POm projections to the dorsolateral

striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor

habits. J Neurophysiol 108, 160-174.

Sofroniew, N.J., and Svoboda, K. (2015). Whisking. Curr Biol 25, R137-140.

Sosnik, R., Haidarliu, S., and Ahissar, E. (2001). Temporal frequency of whisker movement. I.

Representations in brain stem and thalamus. J Neurophysiol 86, 339-353.

Sreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., and Petersen, C.C.H. (2016).

Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron 92, 1368-1382.

Sreenivasan, V., Karmakar, K., Rijli, F.M., and Petersen, C.C. (2015). Parallel pathways from motor

and somatosensory cortex for controlling whisker movements in mice. Eur J Neurosci 41, 354-367.

Stuttgen, M.C., Ruter, J., and Schwarz, C. (2006). Two psychophysical channels of whisker

deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26, 7933-7941.

Stuttgen, M.C., and Schwarz, C. (2018). Barrel cortex: What is it good for? Neuroscience 368, 3-16.

Page 102: Contrôle de la position des vibrisses chez le rat ...

90

Sullivan, R.M., Landers, M.S., Flemming, J., Vaught, C., Young, T.A., and Jonathan Polan, H.

(2003). Characterizing the functional significance of the neonatal rat vibrissae prior to the onset of

whisking. Somatosens Mot Res 20, 157-162.

Swenson, R.S., Kosinski, R.J., and Castro, A.J. (1984). Topography of spinal, dorsal column nuclear,

and spinal trigeminal projections to the pontine gray in rats. J Comp Neurol 222, 301-311.

Swenson, R.S., Sievert, C.F., Terreberry, R.R., Neafsey, E.J., and Castro, A.J. (1989). Organization

of cerebral cortico-olivary projections in the rat. Neurosci Res 7, 43-54.

Symons, L.A., and Tees, R.C. (1990). An examination of the intramodal and intermodal behavioral

consequences of long-term vibrissae removal in rats. Dev Psychobiol 23, 849-867.

Takatoh, J., Nelson, A., Zhou, X., Bolton, M.M., Ehlers, M.D., Arenkiel, B.R., Mooney, R., and Wang,

F. (2013). New modules are added to vibrissal premotor circuitry with the emergence of exploratory

whisking. Neuron 77, 346-360.

Towal, R.B., and Hartmann, M.J. (2006). Right-left asymmetries in the whisking behavior of rats

anticipate head movements. J Neurosci 26, 8838-8846.

Trageser, J.C., and Keller, A. (2004). Reducing the uncertainty: gating of peripheral inputs by zona

incerta. J Neurosci 24, 8911-8915.

Tsukahara, N. (1974). Sprouting of cortico-rubral synapses in red nucleus neurones after destruction

of the nucleus interpositus of the cerebellum.

Urbain, N., and Deschenes, M. (2007a). Motor cortex gates vibrissal responses in a thalamocortical

projection pathway. Neuron 56, 714-725.

Urbain, N., and Deschenes, M. (2007b). A new thalamic pathway of vibrissal information modulated

by the motor cortex. J Neurosci 27, 12407-12412.

Urbain, N., and Deschênes, M. (2009). Vibrissal afferents from trigeminus to cortices. In

Scholarpedia of Touch, Scholarpedia, ed.

Van Der Loos, H. (1976). Barreloids in mouse somatosensory thalamus. Neurosci Lett 2, 1-6.

Van der Loos, H., and Woolsey, T.A. (1973). Somatosensory cortex: structural alterations following

early injury to sense organs. Science 179, 395-398.

Varga, C., Sik, A., Lavallee, P., and Deschenes, M. (2002). Dendroarchitecture of relay cells in

thalamic barreloids: a substrate for cross-whisker modulation. J Neurosci 22, 6186-6194.

Veinante, P., and Deschenes, M. (1999). Single- and multi-whisker channels in the ascending

projections from the principal trigeminal nucleus in the rat. J Neurosci 19, 5085-5095.

Veinante, P., and Deschenes, M. (2003). Single-cell study of motor cortex projections to the barrel

field in rats. J Comp Neurol 464, 98-103.

Page 103: Contrôle de la position des vibrisses chez le rat ...

91

Veinante, P., Jacquin, M.F., and Deschenes, M. (2000). Thalamic projections from the whisker-

sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol 420, 233-243.

Vincent, S.B. (1913). The tactile hair of the white rat. The Journal of Comparative Neurology.

von Heimendahl, M., Itskov, P.M., Arabzadeh, E., and Diamond, M.E. (2007). Neuronal activity in rat

barrel cortex underlying texture discrimination. PLoS Biol 5, e305.

Watson, C.R.R., and Switzer, R.C. (1978). Trigeminal projections to cerebellar tactile areas in the rat-

origin mainly from n. interpolaris and n. principalis. Neuroscience Letters 10, 77-82.

Welker (1964). Analysis of Sniffing of the Albino Rat.

White, K.K., and Vaughan, D.W. (1991). The effects of age on atrophy and recovery in denervated

fiber types of the rat nasolabialis muscle. Anat Rec 229, 149-158.

Williams, M.N., Zahm, D.S., and Jacquin, M.F. (1994). Differential foci and synaptic organization of

the principal and spinal trigeminal projections to the thalamus in the rat. Eur J Neurosci 6, 429-453.

Wise, S.P., and Jones, E.G. (1977). Somatotopic and columnar organization in the corticotectal

projection of the rat somatic sensory cortex. Brain Res 133, 223-235.

Wolfe, J., Mende, C., and Brecht, M. (2011). Social facial touch in rats. Behav Neurosci 125, 900-

910.

Wolpert, D.M., and Ghahramani, Z. (2000). Computational principles of movement neuroscience.

Nat Neurosci 3 Suppl, 1212-1217.

Wolpert, D.M., Ghahramani, Z., and Jordan, M.I. (1995). An internal model for sensorimotor

integration. Science 269, 1880-1882.

Woolsey, T.A., and Van der Loos, H. (1970). The structural organization of layer IV in the

somatosensory region (S I) of mouse cerebral cortex. Brain Research 17, 205-242.

Woolston, D.C., La Londe, J.R., and Gibson, J.M. (1982). Comparison of response properties of

cerebellar- and thalamic-projecting interpolaris neurons. J Neurophysiol 48, 160-173.

Yatim, N., Billig, I., Compoint, C., Buisseret, P., and Buisseret-Delmas, C. (1996).

Trigeminocerebellar and trigemino-olivary projections in rats. Neurosci Res 25, 267-283.

Yu, Y.S., Graff, M.M., Bresee, C.S., Man, Y.B., and Hartmann, M.J. (2016). Whiskers aid anemotaxis

in rats. Sci Adv 2, e1600716.

Zhu, H., and Roth, B.L. (2014). Silencing synapses with DREADDs. Neuron 82, 723-725.

Zucker, E., and Welker, W.I. (1969). Coding of somatic sensory input by vibrissae neurons in the rat's

trigeminal ganglion. Brain Res 12, 138-156.