Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic...

25
Carrés symétriques Carrés symétriques, formes modulaires arithmétiques et fonctions Lp -adiques Bertrand GORSSE, Fabienne JORY-HUGUE, Alexei PANTCHICHKINE, Juilien PUYDT, Gilles ROBERT Institut Fourier, Université Grenoble-1 B.P.74, 38402 St.–Martin d’Hères, FRANCE cette présentation est disponible à l’adresse : http://www-fourier.ujf-grenoble.fr/˜panchish/06if.pdf Carrés symétriques Table des matières Introduction Formes modulaires arithmétiques et opérateurs différentiels Familles de Coleman Familles de carrés symétriques Familles de produits triples Énoncé du probleme pour les produits triples Description de la méthode Énoncé du résultat principal sur les produits triples Distributions and admissible measures Quelques avantages de la nouvelle méthode p-adique 2

Transcript of Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic...

Page 1: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Carrés symétriques, formes modulairesarithmétiques et fonctions L p-adiques

Bertrand GORSSE, Fabienne JORY-HUGUE,Alexei PANTCHICHKINE, Juilien PUYDT, Gilles ROBERT

Institut Fourier, Université Grenoble-1

B.P.74, 38402 St.–Martin d’Hères, FRANCE

cette présentation est disponible à l’adresse :http://www-fourier.ujf-grenoble.fr/˜panchish/06if.pdf

Carrés symétriques

Table des matières

Introduction

Formes modulaires arithmétiques et opérateurs différentiels

Familles de Coleman

Familles de carrés symétriques

Familles de produits triples

Énoncé du probleme pour les produits triples

Description de la méthode

Énoncé du résultat principal sur les produits triples

Distributions and admissible measures

Quelques avantages de la nouvelle méthode p-adique

2

Page 2: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Introduction

Familles p-adiques de formes modulaires

Le groupe de travail est centré sur l’article [PaTV], Two variablep-adic L functions attached to eigenfamilies of positive slope,contenant une solution du problème :Étant donnée une famille p-adique analytique

k 7→ fk =

∞∑

n=1

an(k)qn ∈ Q[[q]] d’une pente positive σ > 0,

construire une fonction L de deux variables, donnant uneinterpolation de valeurs spéciales L∗(fk , s, χ) sur tous le couples(s, k), avec 1 ≤ s ≤ k − 1

( voir [CoM], p.6)

3

Carrés symétriques

Introduction

Formes modulaires et leurs fonctions LOn considèreles formes modulaires comme1) certaines séries de puissances de la variable q :

f =

∞∑

n=0

anqn ∈ C[[q]] et comme

2) certaines fonctions holomorphes

sur le demi-plan de Poincaré

H = {z ∈ C | Im z > 0}

où q = exp(2πiz),z ∈ H, et on considèreles fonctions L attachées

L(f , s, χ) =

∞∑

n=1

χ(n)ann−s

pour tout caractère de Dirichletχ : (Z/NZ)∗ → C∗.

Le corps de Tate Cp

On fixe un nombre premier p, et soit Cp = Qp

le corps de Tate(the completion of the fieldof p-adic numbers)

We fix an embeddingip : Q → Cp, and viewalgebraic numbers asp-adic numbers via ip.

4

Page 3: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Introduction

On étudie aussi les autres familles de fonctions L :les carrés symmétriques (travail de Berttrand GORSSE et de Gilles ROBERT),produits triples (travail de Siegfried BOECHERER et d’AlexeiPANTCHICHKINE) (voir aussi [PaB1]), sur lesfonctions L de formes modulaires de Siegel et de Hilbert-Siegel (travail deMichel COURTIEU, de JungJu CHOIE et d’Alexei PANTCHICHKINE).On essaye d’utiliser un cadre adélique pour la méthode de Rankin-Selberg pourune étude des valuers spéciales (travail de Fabienne JORY-HUGUE et de JulienPUYDT).Produits triples p-adiques des formes modulaires construits en collaborationavec S.BOECHERER (Mannheim, Allemagne), en 2004-2005, et nouvel article :“Admissible p-adic measures attached to triple products of elliptic cusp forms”soumis dans Documenta Math. en 2005 (volume spécial dédié à John COATES)ce travail est disponible à l’ adresse :http ://www-fourier.ujf-grenoble.fr/˜panchish/tc/tc.pdf.

5

Carrés symétriques

Formes modulaires arithmétiques et opérateurs différentiels

Formes modulaires arithmétiques et opérateurs différentiels

Let A be a commutative ring (a subring of C or Cp)Arithmetical nearly holomorphic modular forms (in the sense ofShimura, [ShiAr] are certain formal series

g =

∞∑

n=0

a(n;R)qn ∈ A[[q]][R], with the property

that for A = C, z = x + iy ∈ H, R = (4πy)−1, the seriesconverges to a C

∞-modular form on H of a given weight k andDirichlet character ψ. The coefficients a(n;R) are polynomials inA[R]. If degR a(n;R) ≤ r for all n, we call g nearly holomorphic oftype r (it is annihilated by ( ∂

∂z)r+1, see [ShiAr]).

6

Page 4: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Formes modulaires arithmétiques et opérateurs différentiels

We use the notation Mk,r (N, ψ,A) or M(N, ψ,A) for A-modulesof such forms (In our constructions the weight k varies).A known example (see the introduction to [ShiAr]) is given by theseries

− 12R + E2 := −12R + 1 − 24∞∑

n=1

σ1(n)qn

=3π2

lims→0

y s∑

m1,m2∈Z

′(m1 + m2z)−2|m1 + m2z |

−2s , (R = (4πy)−1)

where σ1(n) =∑

d|n d .The action of the Shimura differential operator

δk : Mk,r (N, ψ,A) → Mk+2,r+1(N, ψ,A),

is given over C by δk(f ) = (1

2πi∂

∂z−

k4πy

)f .7

Carrés symétriques

Familles de Coleman

Une famille de la pente σ > 0 de formes paraboliques fk depoids k ≥ 2 :

k 7→ fk =

∞∑

n=1

an(k)qn

∈ Q[[q]] ⊂ Cp[[q]]A model exampleof a p-adic family(not cusp and σ = 0) :Eisenstein series

an(k) =∑

d|n

dk−1, fk = Ek

1) the Fourier coefficients an(k) of fkand one of the Satake

p-parameters α(k) := α(1)p (k)

are given by certain p-adic analyticfunctions k 7→ an(k) for (n, p) = 1

2) the slope is constant and positive :ord(α(k)) = σ > 0

L’existence de familles d’une pente positive σ > 0 a été établi par Coleman, voir[CoPB]

R.Coleman gave an example withp = 7, f = ∆, k = 12a7 = τ(7) = −7 · 2392, σ = 1.

A program in PARI for computingsuch families is contained in [CST98](see also the Web-page of W.Stein,http ://modular.fas.harvard.edu/ )

8

Page 5: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Familles de Coleman

Théorie des modules de Banach-Coleman :• The operator U acts asa completely continuous operatoron each A-submodule M†(Npv ;A)⊂ A[[q]] (i.e. U is a limitof finite-dimensional operators)

=⇒ there existsthe Fredholm determinantPU(T )= det(Id − T · U) ∈ A[[T ]]

• there is a versionof the Riesz theory :for any inverse root α ∈ A∗

of PU(T ) there existsan eigenfunction g , Ug = αg

such that evk(g) ∈ Cp[[q]]are classical cusp eigenformsfor all k in a neigbourhoodB ⊂ X (see in [CoPB])

9

Carrés symétriques

Familles de Coleman

Motivationcomes from the conjecture of Birch and Swinnerton-Dyer, see in [Colm03] , Colmez, P. :La conjecture de Birch et Swinnerton-Dyer p-adique. Séminaire Bourbaki. [ExposéN

◦.919] (Juin 2003). For a cusp eigenform f = f2, corresponding to an elliptic curve E byWiles [Wi95], we consider a family containing f .

One can try to approach k = 2, s = 1from the other direction, taking k → 2 ,instead of s → 1, this leads to a formulalinking the derivative over s at s = 1of the p-adic L-function with thederivative over k at k = 2of the p-adic analytic functionαp(k), see in [CST98] :

L′p,f (1) = Lp(f )Lp,f (1)

with Lp(f ) = −2dαp(k)

dk

∣∣k=2

0 1 2 3 4 50

1

2

3

4

5

s

k′

The validity of this formulaneeds the existence ofour two variable L-function !

10

Page 6: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Familles de carrés symétriques

Familles de carrés symétriques

Take Coleman’s family k ′ 7→ fk′ =

∞∑

n=1

an(k′)qn ∈ Q[[q]] of slope σ > 0 of cusp

eigenforms fk′ of weight k ′ ≥ 2 containing f , and consider the symmetric squareL-function :

D(s, fk′ , χ) = L(2s − 2k ′ + 2, ψ2χ2)∞∑

n=1

χ(n)an2(k ′)n−s = (4.1)

l prime

{(1 − χ(l)α2

l (k′)l−s)(1 − χ(l)αl (k

′)βl (k′)l−s)(1 − χ(l)β2

l (k ′)l−s)}−1

◮ Holomorphy of the function : (4.1) G.Shimura, [Shi75]◮ Algebraicity for critical values of the function (4.1) Don Zagier, [Za77],

J.Sturm, [St80]◮ Admissible p-adic L-functions attached to (4.1) A.Dabrowski, D.Delbourgo,

[Da-De]

11

Carrés symétriques

Familles de carrés symétriques

Question : To construct two variable p-adic symmetricsquares attached to Coleman’s families.

For ordinary families this was done by Hida, and for Coleman’sfamilies this is the topic of the PhD Thesis of B.Gorsse, (InstitutFourier, Grenoble).Il utilise les séries Eisenstein de Cohen-Zagier de poids demi-entier,et le critère général d’admissibilité du Théorème principal dans[PaJTNB], p. 816 avec κ = 2.See also [Go-Ro] for a related algebraic computation of a certainPetersson product.Related techniques were used by W.Kim (Berkeley) in [Kim], whodeveloped the method of Hida [Hi81], and suggested a conjecturaldescription of the zeroes of such L-function in terms of theramification points of the eigencurve.

12

Page 7: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Familles de produits triples

Cas de produits triples (S.Boecherer, A.Pantchichkine)The triple product with a Dirichlet character χ is defined as the following complexL-function (an Euler product of degree eight) :

L(f1 ⊗ f2 ⊗ f3, s, χ) =∏

p∤N

L((f1 ⊗ f2 ⊗ f3)p , χ(p)p−s ), (5.2)

where L((f1 ⊗ f2 ⊗ f3)p,X )−1 = (5.3)

det

(18 − X

(1)p,1

00α

(2)p,1

)⊗

(1)p,2

00α

(2)p,2

)⊗

(1)p,3

00α

(2)p,3

))

=∏

η

(1 − α(η(1))p,1 α

(η(2))p,2 α

(η(3))p,3 X )

= (1 − α(1)p,1α

(1)p,2α

(1)p,3X )(1 − α

(1)p,1α

(1)p,2α

(2)p,3X )·. . .·(1 − α

(2)p,1α

(2)p,2α

(2)p,3X ),

product taken over all 8 maps η : {1, 2, 3} → {1, 2}.

13

Carrés symétriques

Familles de produits triples

Critical values and functional equation

We use the corresponding normalized L function (see [De79], [Co],[Co-PeRi]), which has the form :

Λ(f1 ⊗ f2 ⊗ f3, s, χ) = (5.4)

ΓC(s)ΓC(s − k3 + 1)ΓC(s − k2 + 1)ΓC(s − k1 + 1)L(f1 ⊗ f2 ⊗ f3, s, χ),

where ΓC(s) = 2(2π)−sΓ(s).The Gamma-factor determines the critical valuess = k1, · · · , k2 + k3 − 2 of Λ(s), which we explicitely evaluate (like

in the classical formula ζ(2) =π2

6). A functional equation of Λ(s)

has the form :s 7→ k1 + k2 + k3 − 2 − s.

14

Page 8: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Énoncé du probleme pour les produits triples

Énoncé du probleme pour les produits triples : Given threep-adic analytic families fj of slope σj ≥ 0, to construct afour-variable p-adic L-function attached to Garrett’s tripleproduct of these families

(we show that this function interpolates the special values

(s, k1, k2, k2) 7−→ Λ(f1,k1 ⊗ f2,k2 ⊗ f3,k3 , s, χ)

at critical points s = k1, · · · , k2 + k3 − 2 for balanced weights k1 ≤ k2 + k3 − 2 ; weprove that these values are algebraic numbers afters dividing by certain “periods”).However the construction uses directly modular forms, and not the L-values inquestion, and a comparison of special values of two functions is done after theconstruction.

15

Carrés symétriques

Description de la méthode

Pour les produits triples la méthode inclue :• a version of Garrett’s integral representation for the triple L-functions of the form :for r = 0, · · · , k2 + k3 − k1 − 2,Λ(f1,k1 ⊗ f2,k2 ⊗ f3,k3 , k2 + k3 − r , χ) =∫ ∫ ∫

(Γ0(N2p2v )\H)3

f1,k1(z1)f2,k2(z2)f3,k3(z3)E(z1, z2, z3;−r , χ)∏

j

(dxjdyj

y2j

)

where fj ,kj=: f 0

j ,kjis an eigenfunction of U∗

p in Mkj(Np, ψj ),

E(z1, z2, z3;−r , χ) ∈ MT (N2p2v )= Mk1(N

2p2v , ψ1) ⊗ Mk2(N2p2v , ψ2) ⊗ Mk3(N

2p2v , ψ3)is the triple modular form of triple weight (k1, k2, k3), and of fixed triple Nebentupuscharacter (ψ1, ψ2, ψ3), obtained from a nearly holomorphic Siegel-Eisenstein seriesFχ,r = G ⋆(z ,−r ; k , (Npv )2,ψ), of degree 3, of weight k = k2 + k3 − k1, and theNebentypus character ψ = χ2ψ1ψ2ψ3

16

Page 9: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Énoncé du résultat principal sur les produits triples

Théorème principal sur les fonctions p-adiques analytiquesen quatre variables attachées aux produits triples)

1) The function Lf : (s, k1, k2, k3) 7→

⟨f0,E(−r , χ)

⟨f0, f0

⟩ depends

p-adic analytically on four variables(χ · y r

p , k1, k2, k3) ∈ X × B1 × B2 × B3 ;2) Comparison of complex and p-adic values : for all (k1, k2, k3) inan affinoid neighborhood B = B1 × B2 × B3 ⊂ X 3, satisfyingk1 ≤ k2 + k3 − 2 : the values at s = k2 + k3 − 2 − r coincide withthe normalized critical special values

L∗(f1,k1 ⊗ f2,k2 ⊗ f3,k3 , k2 + k3 − 2 − r , χ) (8.5)

(r = 0, · · · , k2 + k3 − k1 − 2),

for Dirichlet characters χ mod Npv , v ≥ 1, such that all threecorresponding Dirichlet characters χj have Np-completeconductors :

17

Carrés symétriques

Énoncé du résultat principal sur les produits triples

Main Theorem (continued)

χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ3χ, (8.6)

χ3 mod Npv = ψ1ψ3χ,ψ = χ2ψ1ψ2ψ3.

The normalisation of L∗ in (8.5) is the same as in Theorem C below.3) Dependence on x ∈ X : let H = [2ordp(λ)] + 1. For any fixed(k1, k2, k3) ∈ B and x = χ · y r

p the function

x 7−→

⟨f0,E(−r , χ)

⟨f0, f0

extends to a p-adic analytic function of type o(logH(·)) of thevariable x ∈ X.

18

Page 10: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Énoncé du résultat principal sur les produits triples

Outline of the proof

1) • At each classical weight (k1, k2, k3) let us use the equality

⟨f0,E(−r , χ)

⟩=⟨f0, πλ(E(−r , χ))

deduced from the definition of the projector πλ :Kerπλ :=

⋂n≥1 Im (UT − λI )n, Imπλ :=

⋃n≥1 Ker (UT − λI )n.

Notice that the coefficients of E(−r , χ) ∈ M(A) depend p-adicanalytically on (k1, k2, k3) ∈ B = B1 × B2 × B3, whereA = A(B1 × B2 × B3) is the p-adic Banach algebra ofrigid-analytic functions on B.

19

Carrés symétriques

Énoncé du résultat principal sur les produits triples

Interpolation to all p-adic weights :• At each classical weight (k1, k2, k3) the scalar product

⟨f0,E(−r , χ)

⟩is

given by the first coordinate of πλ(E(−r , χ)) with respect to an orthogonalbasis of M

λ(A) containing f0 with respect to Hida’s algebraic Petersson product

〈g , h〉a :=⟨gρ|(

0

Np−1

0

), h⟩, see [Hi90].

Let us extend the linear form ℓ(h) =〈f0,h〉〈f0,f0〉

(defined for classical weights), to

Coleman’s type submodule of overconvergent families h ∈ Mλ(A)† ⊂ M

λ(A) asthe first coordinate of h with respect to some A-basis of eigenfunctions of all(triple) Hecke operators Tq for q ∤ Np, having the first basis vectorf0 ∈ M

λ(A)†.The linear form ℓ can be characterized as a normalized eigenfunction of theadjoint Atkin’s operator, acting on the dual A-module of M

λ(A)† : ℓ(f0) = 1.In order to extend ℓ to h = E(−r , χ), we need to choose a certain representativeof E(−r , χ) in the A-submodule M

λ(A)† , which is locally free of finite rank.

20

Page 11: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Énoncé du résultat principal sur les produits triples

A representative of E(−r , χ) in the (locally free of finiterank A-submodule) M

λ(A)†

Choose a (local) basis ℓ1, · · · , ℓn given by some triple Fouriercoefficients of the dual (locally free of finite rank) A-moduleM

λ(A)†∗.Then define

ℓ = β1ℓ1 + · · · + βnℓ

n,

where βi = ℓ(ℓi ) ∈ A, and ℓi denotes the dual basis of Mλ(A)† :

ℓj(ℓi ) = δij . At each p-adic weight (k1, k2, k3) ∈ B let us define

ℓ(E(−r , χ)) := β1ℓ1(E(−r , χ))+· · ·+βnℓ

n(E(−r , χ)) (belongs to A),

where βi = ℓ(ℓi ) ∈ A, and ℓi(E(−r , χ)) ∈ A are certain Fouriercoefficients of the seies E(−r , χ).

21

Carrés symétriques

Énoncé du résultat principal sur les produits triples

ConclusionThere exists an element

E(−r , χ) ∈ Mλ(A)† ⊂ M(A)†

such that ℓ(E(−r , χ)) = ℓ(E(−r , χ)) (at each weight (k1, k2, k3)). In

fact, let us define

E(−r , χ) := ℓ1(E(−r , χ))ℓ1 + · · · + ℓn(E(−r , χ))ℓn

⇒ ℓ(E(−r , χ)) = ℓ(ℓ1)ℓ1(E(−r , χ)) + · · · + ℓ(ℓn)ℓ

n(E(−r , χ))= β1ℓ

1(E(−r , χ)) + · · · + βnℓn(E(−r , χ))

= ℓ(E(−r , χ)) (at each weight (k1, k2, k3)).Thus, the dependence of ℓ(E(−r , χ)) ∈ A on (k1, k2, k3) ∈ X 3 is p-adicanalytic.

In order to prove the remaining statements 2), 3), the dependence onx = χ · y r

p is studied in the next section.22

Page 12: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Distributions and admissible measures

Distributions and measures with values in Banach modules

A

VC(Y ,A)∪

Cloc−const(Y ,A)

(a p-adic Banach algebra)(an A-module)(the A-Banach algebraof continuous functions on Y )(the A-algebraof locally constant functions on Y )

23

Carrés symétriques

Distributions and admissible measures

Definition (Distributions and measures)

a) A distribution D on Y with values in V is an A-linear form

D : Cloc−const(Y ,A) → V , ϕ 7→ D(ϕ) =

Y

ϕdD.

b) A measure µ on Y with values in V is a continuous A-linear form

µ : C(Y ,A) → V , ϕ 7→

Y

ϕdµ.

The integral∫

Y

ϕdµ can be defined for any continuous function ϕ,

and any bounded distribution µ, using the Riemann sums.

24

Page 13: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Distributions and admissible measures

Admissible measures of Amice-Vélu

Admissible measuresLet h be a positive integer. A more delicate notion of anh-admissible measure was introduced in [Am-V] by Y. Amice, J.Vélu (see also [MTT], [V]) :

Definition

a) For h ∈ N, h ≥ 1 let Ph(Y ,A) denote the A-module of locally

polynomial functions of degree < h of the variableyp : Y → Z×

p → A× ; in particular,

P1(Y ,A) = C

loc−const(Y ,A)

(the A-submodule of locally constant functions). Let also denoteCloc−an(Y ,A) the A-module of locally analytic functions, so that

P1(Y ,A) ⊂ P

h(Y ,A) ⊂ Cloc−an(Y ,A) ⊂ C(Y ,A).

25

Carrés symétriques

Distributions and admissible measures

Admissible measures of Amice-Vélu

Definition of admissible measures (continued)

b) Let V be a normed A-module with the norm | · |p,V . For a givenpositive integer h an h-admissible measure on Y with values in V isan A-module homomorphism

Φ : Ph(Y ,A) → V

such that for fixed a ∈ Y and for v → ∞ the following growthcondition is satisfied :∣∣∣∣∣

a+(Npv )(yp − ap)h

∣∣∣∣∣p,V

= o(p−v(h′−h)) (9.7)

for all h′ = 0, 1, . . . , h − 1, ap := yp(a)

The condition (9.7) allows to integrate the locally-analyticfunctions on Y along Φ using Taylor’s expansions ! This means :there exists a unique extension of Φ to Cloc−an(Y ,A) → V .26

Page 14: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Quelques avantages de la nouvelle méthode p-adique

La construction peut être fait en quelques étapesindépendants :

◮ 1) Construction of distributions Φj (on a profinite or adelic space Y likeY = A∗

K/K∗ for a number field K ) with values in an infinite dimensional

modular tower M(ψ) over complex numbers (or in an A-module of infinite rankover some algebra A).

◮ 2) Application of a canonical projector of type πα onto a finite dimensionalsubspace Mα(ψ) of Mα(ψ) (or over locally free A-module of finite rank oversome algebra A) :

πα(g) = (Uα)−vπα,0(Uv (g)) ∈ Mα(Γ0(Np), ψ,Cp) (this works only for

nonzero α !) (this is the α-characteristic projector of g ∈ M(Γ0(Npv+1), ψ,C)(independant of v)).

◮ 3) On démontre un critère général d’admissibilité (voir Théorème principal dans[PaJTNB], p. 816) disant que la suite πα(Φj) de distributions à valeurs dansMα(ψ) donne une h-mesure admissible Φ à valeur dans ce module de rank finipour un nombre naturel h convenable (déterminé par la pente ordp(α)).

27

Carrés symétriques

Quelques avantages de la nouvelle méthode p-adique

◮ 4) Application of a linear form ℓ of typeg 7→ 〈f 0, πα(g)〉/〈f , f 〉 produces distributions µj = ℓ(πα(Φj )),and (automatically ) an admissible measure : the growthcondition is automatically satisfied starting from congruencesbetween modular forms πα(Φj )

◮ 5) One shows that certain integrals µj(χ) of the distributionsµj coincide with certain L-values ; however, these integrals arenot necessary for the construction of measures (already doneat stage 4).

◮ 6) One shows a resultat on uniqueness for the constructedh-admissibles measures : they are determined by many of theirintegrals over Dirichlet characters (not all), for example, onlyover Dirichlet characters with sufficiently large conductor (thisstage is not necessary, but it is nice to have uniqueness of inthe construction), see [JoH05].

28

Page 15: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Quelques avantages de la nouvelle méthode p-adique

◮ 7) If we are lucky, we can prove a functional equation for theconstructed measure µ (using the uniqueness in 6), and usinga functional equation for the L-values (over complex numbers,comuted at stage 5), for example, for Dirichlet characters withsufficiently large conductor (again, this stage is not necessary,but it is nice to have a functional equation)This strategy is applicable in various cases (described above),cf. [PaJTNB], [Puy], [Go02].

Note that the eigenspaces M(α) of U are contained in the primary

subspaces Mα, and they where used by D. Kazhdan, B. Mazur,

C.-G. Schmidt, see [KMS2000], in the p-ordinary case via a p–adiclimit procedure. Notice that we do not need a p–adic limitprocedure, and we treat the general case of any positive slope.

29

Carrés symétriques

Références

Références

Amice, Y. and Vélu, J., Distributions p-adiques associées auxséries de Hecke, Journées Arithmétiques de Bordeaux (Conf.Univ. Bordeaux, 1974), Astérisque no. 24/25, Soc. Math.France, Paris 1975, 119 - 131

Batut, C., Belabas, D., Bernardi, H., Cohen, H., Olivier, M. :The PARI/GP number theory system.http ://pari.math.u-bordeaux.fr

Böcherer, S., Über die Funktionalgleichung automorpherL–Funktionen zur Siegelscher Modulgruppe, J. reine angew.Math. 362 (1985) 146–168

Böcherer S., Über die Fourier–Jacobi Entwickelung SiegelscherEisensteinreihen. I.II., Math. Z. 183 (1983) 21-46 ; 189 (1985)81–100.

30

Page 16: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Böcherer, S., Ein Rationalitätssatz für formale Heckereihen zurSiegelschen Modulgruppe. Abh. Math. Sem. Univ. Hamburg56, 35–47 (1986)

Boecherer, S., Heim, B. L-functions for GSp2 × Gl2 of mixedweights. Math. Z. 235, 11-51(2000)

Böcherer, S., Satoh, T., and Yamazaki, T., On the pullback ofa differential operator and its application to vector valuedEisenstem series, Comm. Math. Univ. S. Pauli, 41 (1992),1-22.

Böcherer, S., and Schmidt, C.-G., p-adic measures attached toSiegel modular forms, Ann. Inst. Fourier 50, N

◦5, 1375-1443(2000).

Böcherer, S. and Schulze-Pillot, R., On the central criticalvalue of the triple product L-function. David, Sinnou (ed.),Number theory. Séminaire de Théorie des Nombres de Paris

31

Carrés symétriques

Références

1993–94. Cambridge : Cambridge University Press. Lond.Math. Soc. Lect. Note Ser. 235, 1-46 (1996).

Buecker, K., Congruences between Siegel modular forms on thelevel of group cohomology. Ann. Inst. Fourier (Grenoble) 46(1996), no. 4, 877–897.

Chandrasekharan, K. Arithmetical functions.Berlin–Heidelberg–New York, Springer–Verlag (1970).

Coates, J. On p–adic L–functions. Sem. Bourbaki, 40emeannee, 1987-88, n◦ 701, Asterisque (1989) 177–178.

Coates, J. and Perrin-Riou, B., On p-adic L-functions attachedto motives over Q, Advanced Studies in Pure Math. 17, 23–54(1989)

Coleman, Robert F., p-adic Banach spaces and families ofmodular forms, Invent. Math. 127, No.3, 417-479 (1997)

32

Page 17: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Coleman, R. and Mazur, B., The eigencurve, Scholl, A. J. (ed.)et al., Galois representations in arithmetic algebraic geometry.Proceedings of the symposium, Durham, UK, July 9–18, 1996.Cambridge : Cambridge University Press. Lond. Math. Soc.Lect. Note Ser. 254, 1-113 (1998).

R. Coleman, G. Stevens, J. Teitelbaum, Numerical experimentson families of p-adic modular forms, in : Computationalperspectives in Number Theory, ed. by D.A. Buell, J.T.Teitelbaum, Amer. Math. Soc., 143-158 (1998).

Colmez, P. Fonctions L p-adiques, Séminaire Bourbaki, exposén◦ 851, novembre 1998.

Colmez, P. La conjecture de Birch et Swinnerton-Dyerp-adique. Séminaire Bourbaki, exposé n◦ 919, juin 2003.

Courtieu, M., Familles d’opérateurs sur les formes modulairesde Siegel et fonctions L p-adiques,

33

Carrés symétriques

Références

http ://www-fourier.ujf-grenoble.fr/THESE/ps/

t101.ps.gz, Thèse de Doctorat, Institut Fourier, 2000, 1–122.

Courtieu, M., Panchishkin, A.A., Non-Archimedean L-Functionsand Arithmetical Siegel Modular Forms, Lecture Notes inMathematics 1471, Springer-Verlag, 2004 (2nd augmented ed.)

A.Dabrowski, D.Delbourgo, S-adic L-functions attached to thesymmetric square of a Newform Proc. London Math. Soc. (3)74 (1997) pp. 559-611

Deligne P., Formes modulaires et reprèsentations l -adiques,Sem. Bourb. 1968/69 ,exp. no 335. Springer-Verlag, Lect.Notes in Math. N

◦179 (1971) 139 - 172

Deligne P., Valeurs de fonctions L et périodes d’intégrales,Proc. Symp. Pure Math AMS 33 (part 2) (1979) 313–342.

Feit, P., Poles and Residues of Eisenstein Series for Symplecticand Unitary Groups, Memoir AMS 61 N

◦346 (1986), 89 p.34

Page 18: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Garrett, P.B., Decomposition of Eisenstein series : Rankin tripleproducts, Ann. of Math. 125 (1987), 209–235

Garrett, P.B. and Harris, M., Special values of triple productL–functions, Amer. J. Math 115 (1993) 159–238

Gorsse, B., Carrés symétriques de formes modulaires etintégration p-adique. Mémoire de DEA de l’Institut Fourier,juin 2002

Gorsse B., Robert G., Computing the Petersson product〈f 0, f0〉. Prépublication de l’Institut Fourier, N

◦654, (2004).

: P.Guerzhoy, Jacobi-Eisenstein series and p-adic interpolationof symmetric squares of cusp forms, Annales de l’InstitutFourier (1995)).

Ha Huy, Khoai, p-adic interpolation and the Mellin-Mazurtransform, Acta Math. Viet. 5, 77-99 (1980).

35

Carrés symétriques

Références

Harris, M., and Kudla, S., The central critical value of a tripleproduct L-functions, Ann. Math. 133 (1991), 605–672

Hasse, H., Vorlesungen über Zahlentheorie. Zweiteneubearbeitete Auflage. Die Grundlehren der MathematischenWissenschaften, Band 59 Springer-Verlag, Berlin-New York1964 xv+504 pp.

H. Hida, Congruence of cusp forms and special values of theirzeta functions. Invent. Math. 63 (1981), no. 2, 225–261.

Hida, H., A p-adic measure attached to the zeta functionsassociated with two elliptic cusp forms. I, Invent. Math. 79(1985) 159–195

Hida, H., Galois representations into GL2(Zp[[X ]]) attached toordinary cusp forms, Invent. Math. 85 (1986) 545–613

36

Page 19: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Hida, H., Le produit de Petersson et de Rankin p-adique,Séminaire de Théorie des Nombres, Paris 1988–1989, 87–102,Progr. Math., 91, Birkhäuser Boston, Boston, MA, 1990.

Hida, H., Elementary theory of L-functions and Eisensteinseries, London Mathematical Society Student Texts. 26Cambridge : Cambridge University Press. ix, 386 p. (1993).

H. Hida, p-adic automorphic forms on Shimura varieties.Springer Monographs in Mathematics. Springer-Verlag, NewYork, 2004. xii+390 pp.

Jory–Hugue, F., Unicité des h–mesures admissibles p-adiquesdonnées par des valeurs de fonctions L sur les caractères,Prépublication de l’Institut Fourier (Grenoble), N

◦676, 1-33,2005

Iwasawa, K., Lectures on p–adic L–functions, Ann. of Math.Studies, N

◦74. Princeton University Press, 197237

Carrés symétriques

Références

Ibukiyama, T. On differential operators on automorphic formsand invariant pluriharmonic polynomials, Comm. Math. Univ.S. Pauli 48 (1999), 103-118

Kaneko, M., Zagier, Don, A generalized Jacobi theta functionand quasimodular forms. The moduli space of curves (TexelIsland, 1994), 165–172, Progr. Math., 129, Birkhäuser Boston,Boston, MA, 1995.

Katz, N.M., p-adic interpolation of real analytic Eisensteinseries, Ann. of Math. 104 (1976) 459–571

Katz, N.M., p-adic L-functions for CM–fields, Invent. Math. 48(1978) 199–297

D. Kazhdan, B. Mazur, C.-G. Schmidt, Relative modularsymbols and Rankin-Selberg convolutions. J. Reine Angew.Math. 519, 97-141 (2000).

38

Page 20: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

W. Kim, Ramification points on the Eigencurve. Manuscript,2004, pp.1-21

Kitagawa,Koji, On standard p-adic L-functions of families ofelliptic cusp forms, Mazur, Barry (ed.) et al. : p-adicmonodromy and the Birch and Swinnerton-Dyer conjecture. Aworkshop held August 12-16, 1991 in Boston, MA, USA.Providence, R : American Mathematical Society. Contemp.Math. 165, 81-110, 1994

Kubota T. and Leopoldt H.-W. , Eine p-adische Theorie derZetawerte, J. reine angew. Math. 214/215 (1964) 328–339

Lang S., Introduction to Modular Forms, Springer Verlag, 1976

Maass, H., Siegel’s Modular Forms and Dirichlet Series,Springer-Verlag, Lect. Notes in Math. N

◦216 (1971).

39

Carrés symétriques

Références

Manin, Yu.I., Periods of cusp forms and p-adic Hecke series,Mat. Sbornik 92 (1973) 378–401(in Russian) ; Math. USSR,Sb. 21(1973), 371-393 (1975) (English translation).

Manin, Yu.I., The values of p–adic Hecke series at integerpoints of the critical strip. Mat. Sbornik 93 (1974) 621 - 626(in Russian)

Manin, Yu.I., Non–Archimedean integration and p-adicL-functions of Jacquet – Langlands, Uspekhi Mat. Nauk 31(1976) 5–54 (in Russian) ; Russ. Math. Surv. 31, No.1, 5-57(1976) (English translation).

Manin, Yu.I. and Panchishkin, A.A. , Convolutions of Heckeseries and their values at integral points, Mat. Sbornik, 104(1977) 617–651 (in Russian) ; Math. USSR, Sb. 33, 539-571(1977) (English translation).

40

Page 21: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Manin, Yu.I. and Panchishkin, A.A. , Introduction to ModernNumber Theory, Encyclopaedia of Mathematical Sciences, vol.49 (2nd ed.), Springer-Verlag, 2005, 514 p.

Mazur, B., Tate, J. and Teitelbaum, J., On p-adic analogues ofthe conjectures of Birch and Swinnerton-Dyer, Invent. Math.84, 1-48 (1986).

Miyake, Toshitsune, Modular forms. Transl. from the Japaneseby Yoshitaka Maeda. Berlin etc. : Springer-Verlag. viii, 335 p.(1989).

Orloff T., Special values and mixed weight triple products (withan Appendix by D.Blasius), Invent. Math. 90 (1987) 169–180

Nagaoka, S., A remark on Serre’s example of p-adic Eisensteinseries, Math. Z. 235 (2000) 227-250.

41

Carrés symétriques

Références

Nagaoka, S., Note on mod p Siegel modular forms, Math. Z.235 (2000) 405-420.

Panchishkin, A.A., Admissible Non-Archimedean standard zetafunctions of Siegel modular forms, Proceedings of the JointAMS Summer Conference on Motives, Seattle, July 20–August2 1991, Seattle, Providence, R.I., 1994, vol.2, 251 – 292

Panchishkin, A. A. Non-Archimedean Mellin transform andp-adic L-Functions, Vietnam Journal of Mathematics, 1997,N3, 179–202.

Panchishkin, A.A., On the Siegel–Eisenstein measure. IsraelJournal of Mathematics, Vol. 120, Part B(2000), 467–509

Panchishkin, A.A., On p-adic integration in spaces of modularforms and its applications, J. Math. Sci., New York 115, No.3,2357-2377 (2003).

42

Page 22: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Panchishkin, A.A., A new method of constructing p-adicL-functions associated with modular forms, MoscowMathematical Journal, 2 (2002), Number 2, 1-16

Panchishkin, A.A., Two variable p-adic L functions attached toeigenfamilies of positive slope, Invent. Math. v. 154, N3(2003), pp. 551 - 615

Panchishkin, A.A., The Maass–Shimura differential operatorsand congruences between arithmetical Siegel modular forms ,(accepté dans Moscow Mathematical Journal en octobre 2005(39 p.).

Panchishkin, A.A., Admissible measures for standardL-functions and nearly holomorphic Siegel modular forms ,Preprint MPI 2002 - 42, 1-65

43

Carrés symétriques

Références

Panchishkin A.A., Sur une condition suffisante pour l’existencedes mesures p-adiques admissibles, Journal de Théorie desNombres de Bordeaux, v. 15 (2003), pp. 1-24

Piatetski–Shapiro, I.I., and Rallis, S., Rankin triple L–functions,Compositio Math. 64 (1987) 333–399

Puydt, J., Valeurs spéciales de fonctions L de formesmodulaires adéliques, Thèse de Doctorat, Institut Fourier(Grenoble), 19 décembre 2003

Rankin, R.A., Contribution to the theory of Ramanujan’sfunction τ(n) and similar arithmetical functions. I.II, Proc.Camb. Phil. Soc 35 (1939) 351–372

Rankin, R.A., The scalar product of modular forms, Proc.London math. Soc. 2 (3) (1952) 198-217

44

Page 23: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Rankin, R.A., The adjoint Hecke operator. Automorphicfunctions and their applications, Int. Conf., Khabarovsk/USSR1988, 163-166 (1990)

Satoh,T., Some remarks on triple L-functions. Math.Ann.276,687-698(1987)

Schmidt, C.–G., The p-adic L-functions attached to Rankinconvolutions of modular forms, J. reine angew. Math. 368(1986) 201–220

Scholl, A., Motives for modular forms, Inv. Math. 100 (1990),419–430

Scholl, A.J., An introduction to Kato’s Euler systems, Scholl,A. J. (ed.) et al., Galois representations in arithmetic algebraicgeometry. Proceedings of the symposium, Durham, UK, July9-18, 1996. Cambridge : Cambridge University Press. Lond.Math. Soc. Lect. Note Ser. 254, 379-460 (1998).

45

Carrés symétriques

Références

Serre, J.–P., Formes modulaires et fonctions zêta p-adiques,Lect Notes in Math. 350 (1973) 191–268 (Springer Verlag)

Serre, J.-P., Endomorphisms completement continus desespaces de Banach p-adiques, Publ. Math. Inst. Hautes Etud.Sci., 12, 69-85 (1962).

Shimura G., Introduction to the Arithmetic Theory ofAutomorphic Functions, Princeton Univ. Press, 1971

Shimura G., On the holomorphy of certain Dirichlet series,Proc. Lond. Math. Soc. 31 (1975) 79–98

Shimura G., The special values of the zeta functions associatedwith cusp forms. Comm. Pure Appl. Math. 29 (1976), no. 6,783–804.

Shimura G., On the periods of modular forms, Math. Annalen229 (1977) 211–221

46

Page 24: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

Shimura, G., Confluent Hypergeometric Functions on TubeDomains, Math. Ann. 260 (1982), p. 269-302.

Shimura, G., On Eisentsein Series, Duke Math. J ; 50 (1983),p. 417-476.

Shimura, G., Arithmeticity in the theory of automorphic forms,Mathematical Surveys and Monographs. 82. Providence, RI :American Mathematical Society (AMS) . x, 302 p. (2000)

G. Stevens, Overconvergent modular symbols and a conjectureof Mazur, Tate and Teitelbaum. Unpublished notes

J. Sturm, Special Values of Zeta Functions and EisensteinSeries of half integral weight, Amer. J. Math. 102, 219-240(1980).

47

Carrés symétriques

Références

Tilouine, J. and Urban, E. , Several variable p-adic families ofSiegel-Hilbert cusp eigenforms and their Galois representations,Ann. scient. Éc. Norm. Sup. 4e série, 32 (1999) 499–574.

Visik, M.M., Non-Archimedean measures connected withDirichlet series, Math. USSR Sb. 28 (1976), 216-228 (1978).

Vishik, M.M. and Manin, Yu.I., p-adic Hecke series ofimaginary quadratic fields, Math. USSR, Sbornik 24 (1974),345-371 (1976).

Weil, A., On a certain type of characters of the idèle-classgroup of an algebraic number-field, Proceedings of theinternational symposium on algebraic number theory, Tokyo &Nikko, 1955, pp. 1–7, Science Council of Japan, Tokyo, 1956.

Wiles A., Modular elliptic curves and Fermat’s Last Theorem,Ann. Math., II. Ser. 141, No.3 (1995) 443–55.

48

Page 25: Carrés symétriques, formes modulaires arithmétiques et ...panchish/18.01.06if/06if.pdf · p-adic L functions attached to eigenfamilies of positive slope, contenant une solution

Carrés symétriques

Références

D.B. Zagier, Modular Forms whose Fourier Coefficients involveZeta-Functions of Quadratic Fields, In : Modular Functions. V,Springer-Verlag, Lect. Notes in Math. N◦ 627 (1977), p106-168.

49