Application de la modélisation par Réseaux Bayésiens à la ...

74
1 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Université Application de la modélisation par Réseaux Bayésiens à la sûreté de fonctionnement Philippe WEBER Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039 CNRS - Nancy Université 2, rue Jean Lamour F-54519 Vandoeuvre-lès-Nancy Cedex – France Email: [[email protected]] Présentation disponible sur HAL http:// http:// hal.archives hal.archives - - ouvertes.fr ouvertes.fr

Transcript of Application de la modélisation par Réseaux Bayésiens à la ...

Page 1: Application de la modélisation par Réseaux Bayésiens à la ...

1 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Application de la modélisation par Réseaux Bayésiens à la sûreté de fonctionnement

Philippe WEBER

Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039 CNRS - Nancy Université

2, rue Jean Lamour F-54519 Vandoeuvre-lès-Nancy Cedex – FranceEmail: [[email protected]]

Présentation disponible sur HALhttp://http://hal.archiveshal.archives--ouvertes.frouvertes.fr

Page 2: Application de la modélisation par Réseaux Bayésiens à la ...

2 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The objective is to define maintenance / control strategy of the Equipment

In regard toorganisational resources

financial resources and technical: diagnosis, reliability and

performances of the system

Several types of strategies are available

Decision aid methodbased on Bayesian

Networks model

Manufacturing systems

Page 3: Application de la modélisation par Réseaux Bayésiens à la ...

3 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The objective is to define maintenance / control strategy of the Equipment

In regard toorganisational resources

financial resources and technical: diagnosis, reliability and

performances of the system

Several types of strategies are available

Decision aid methodbased on Bayesian

Networks model

Manufacturing systems

Page 4: Application de la modélisation par Réseaux Bayésiens à la ...

4 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

BayesianBayesian Networks Networks modelmodel in in ReliabilityReliability AnalysisAnalysis

DynamicDynamic BayesianBayesian Networks Networks modelmodel in in ReliabilityReliability AnalysisAnalysis aandnd DiagnosisDiagnosis

BayesianBayesian Networks in Networks in Risk analysis of socio-technical systems

Conclusion

Outline

Page 5: Application de la modélisation par Réseaux Bayésiens à la ...

5 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

X1 up down0.2 0.8

X2 State 1 State 2 State 3

up 0.7 0.1 0.2down 0.1 0.6 0.3

X1

Conditional Probability TableCPT

p(X2|X1)?

Bayesian Network model of component

Discrete random variable

variable states

a priori distribution

( ) ( ) ( )( ) ( )downXpdownX1 StateXp

upXpupX1 StateXp 1 StateXp

=⋅==+

=⋅====

112

1122

The marginal probability X2 is computed as follows

( ) 22.08.01.02.002 =⋅+⋅== .7 1 StateXp

Static Bayesian Networks

X1 X2

knowledge

With the a priori knowledge

Page 6: Application de la modélisation par Réseaux Bayésiens à la ...

6 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

X1 up down0.2 0.8

X2 State 1 State 2 State 3

up 0.7 0.1 0.2down 0.1 0.6 0.3

X1

Conditional Probability TableCPT

p(X2|X1)?

Bayesian Network model of component

Discrete random variable

variable states

a priori distribution

The marginal probability X1 is computed with the Bayes theorem as follows

The propagation of this probability through the BN is based on inference algorithms

Static Bayesian Networks

X1 X2

knowledge

( ) ( ) ( )( )1 StateX

X1 StateXX1 StateXX

2

12121 =

==⋅====

p

uppuppupp

Page 7: Application de la modélisation par Réseaux Bayésiens à la ...

7 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Root Node

X0

p(X1 | X0)

State 1 State 2State 1 0.6 0.4State 2 0.8 0.2

p(X2 | X1)

p(X1)

up down0.1 0.9

p(X0)

p(X0)

State 1 State 2up 0.1 0.9

down 0.7 0.3

Bayesian Network model of component

X1

X2

Static Bayesian Networks

Page 8: Application de la modélisation par Réseaux Bayésiens à la ...

8 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

p(X2 | X1)

p(X1)

p(X(X22=state1)=0.7*0.6+0.3*0.8==state1)=0.7*0.6+0.3*0.8=0.660.66p(X(X22=state2)=0.7*0.4+0.3*0.2==state2)=0.7*0.4+0.3*0.2=0.340.34

up down0 1

Hard evidenceHard evidence

p(X1 | X0)

p(X0)

p(X0) 11

00

11

00

11

00

Bayesian Network model of component

Root Node

X0

X1

X2

State 1 State 2up 0.1 0.9

down 0.7 0.3

State 1 State 2State 1 0.6 0.4State 2 0.8 0.2

Static Bayesian Networks

p(X(X11=state1)==state1)=0.70.7p(X(X11=state2)==state2)=0.30.3

Page 9: Application de la modélisation par Réseaux Bayésiens à la ...

9 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

p(X2)

up down0 1

Hard evidenceHard evidence

p(X1 | X0)

p(X0)

p(X0) 11

00

11

00

Bayesian Network model of component

Root Node

X0

X1

X2

State 1 State 2up 0.1 0.9

down 0.7 0.3

Static Bayesian Networks

State 1 State 20 1

Hard evidenceHard evidence 11

00

p(X(X11=state1)==state1)=0.82350.8235p(X(X11=state2)==state2)=0.17650.1765

Page 10: Application de la modélisation par Réseaux Bayésiens à la ...

10 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

p(X2)

up down0 1

Hard evidenceHard evidence

p(X1 | X0)

p(X0)

p(X0) 11

00

11

00

Bayesian Network model of component

Root Node

X0

X1

X2

State 1 State 2up 0.1 0.9

down 0.7 0.3

Static Bayesian Networks

State 1 State 20.2 0.8

soft evidencesoft evidence 11

00

p(X(X11=state1)==state1)=0.780.78p(X(X11=state2)==state2)=0.220.22

Page 11: Application de la modélisation par Réseaux Bayésiens à la ...

11 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Définition de la structure des TPC de FE

Fonction i affectée par la défaillance du composent

…défaillance n

…………

…défaillance 1

…Etat de fonctionnement

Mode de défaillance n de la fonction n

…Mode de défaillance 1 de la fonction i

Fonctionnement de la fonction i

Distribution des effets d’une défaillance sur plusieurs modes de défaillance ou de fonctionnement

Composant 0.6

11

00

Distribution des effets de la Distribution des effets de la défaillance 1 sur le défaillance 1 sur le

fonctionnement de la fonction ifonctionnement de la fonction ipropagation dpropagation d’’incertitudeincertitude

0.1 0.2

Apprentissage sur Historiques de GMAOHistoriques de GMAO

Bayesian Network model of component Static Bayesian Networks

Page 12: Application de la modélisation par Réseaux Bayésiens à la ...

12 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

A) Architecture parallèle

( ) ( ) ( )RBi

iDF OKSpHSFpSp ===−= ∏=

3

2

1

1

F1=F1=HSHS F2=F2=HSHS

ERER SS33==HSHS

Diagramme de Fiabilité

Arbre de Défaillances

Réseau Bayésien

Modèle de fiabilité d’un système à 2 composants (les variables sont à 2 états : OK et HS)

Bayesian Network model of system Static Bayesian Networks

Page 13: Application de la modélisation par Réseaux Bayésiens à la ...

13 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

( ) ( ) ( )RBi

iDF OKSpOKFpSp ==== ∏=

3

2

1

F1=F1=HSHS F2=F2=HSHS

ERER SS33==HSHS

B) Architecture série

Arbre de Défaillances

Réseau Bayésien

Modèle de fiabilité d’un système à 2 composants (les variables sont à 2 états : OK et HS)

Diagramme de Fiabilité

Bayesian Network model of system Static Bayesian Networks

Page 14: Application de la modélisation par Réseaux Bayésiens à la ...

14 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Modèle de fiabilité d’un système complexe

CMP1

CMP2

CMP3

CMP4

CMP5

La représentation sous la forme d’un arbrede défaillances n’est pas adaptée car CMP1, CMP2 et CMP5 ne peuvent pas être factorisés

En RB le modèle est structuré sous la forme d’un graphe et les calculs sont réalisés par inférence

ER = CMP3.CMP4+CMP1.CMP2 +CMP1.CMP5.CMP4 +CMP2.CMP5.CMP3

Bayesian Network model of system Static Bayesian Networks

Page 15: Application de la modélisation par Réseaux Bayésiens à la ...

15 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dans un cadre de modélisation réaliste, les composants peuvent subir plusieurs défaillances ce qui conduit à plusieurs modes de défaillance ! Le Modèle de fiabilité de ce type de système ne peut plus reposer sur un arbre de défaillances (car le modèle n’est plus booléen)

Prise en compte des dépendancesPrise en compte des dépendances

Codage directe d’équation complexe dans la TPC avec F2 multimodale

Bayesian Network model of system Static Multimodal Bayesian Networks

Page 16: Application de la modélisation par Réseaux Bayésiens à la ...

16 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Structuration du modèle sous la forme d’un graphe avec dépendance des branches et F2 multimodale

Bayesian Network model of system Static Multimodal Bayesian Networks

Page 17: Application de la modélisation par Réseaux Bayésiens à la ...

17 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

DynamicDynamic BayesianBayesian Networks in Networks in SystemSystem ReliabilityReliability AnalysisAnalysis

Page 18: Application de la modélisation par Réseaux Bayésiens à la ...

18 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

System reliability

)(tRS The probability that no failure occurred during the interval [0, t])(tSλ Failure rate of the system at time t

−= ∫t

SS dtttR0

)(exp)( λ

Problem statement

The probability that a failure occurred between t and t+dt is approximated by

When the system is composed with several components

Then the failure rate is defined for each component)(tnλ

dttp nn ⋅= )(λ

Markov Chain is a classic solution to model this so rt of system Reliability when failure rates are constant

Page 19: Application de la modélisation par Réseaux Bayésiens à la ...

19 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Example of application to reliability

Problem statement

1

2

3

pp1212

pp1313

operational states

2 failure states

4

pp2424

Operational states and failure states represent a system up or down

( ){ }∑

∈==

2,1)(

iitS sXptR

)( MCt

Tt X

dt

dXPI −⋅=

The reliability computation needs the solution of a differential equation system

Page 20: Application de la modélisation par Réseaux Bayésiens à la ...

20 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Unfortunately Markov Processare not enough sufficient to model real systems

Therefore Markov Process are extended to model more realistic problem as

Degradation results in parameters are time-variant (SMP) Phase Type Distribution

Exogenous constraint results in a conditional behaviourMarkov Switching Model

Moreover in practice the complexity of the system leads to a combinatorial explosion of states resulting in a Markov Chain with a great size

Then Dynamic Bayesian Networks (DBN) are proposed as a more synthetic model to represent these stochastic processes

Problem statement

Page 21: Application de la modélisation par Réseaux Bayésiens à la ...

21 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

2 Time 2 Time slices slices A Dynamic Bayesian Network (DBN) is a BN extension including temporal dimensionality

Red arcs represent the temporal dependence between different time slices

Defining these impacts as transition-probabilities between the states of the variable X at time (k-1) and (k)

The DBN compute the behaviour of the probability distribution over the stats of the variable X

X(k) up downup 0.9 0.1

down 0 1X(k-1)

X(k-1) X(k)

inter-time slices CPT

Bayesian Network model of component Dynamic Bayesian Networks

Page 22: Application de la modélisation par Réseaux Bayésiens à la ...

22 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Then the inter-time slices CPTis a Markov Chain model

Starting from an observed situation at time k=0, the probabilitydistribution over the states at the next time is computed

using successive inferences

(the variable Xk is considered as the new observation of Xk-1 through a time feedback)

a time feedbacka time feedback

inter-time slices CPT

X(k) up downup 0.9 0.1

down 0 1X(k-1)

X(k-1) X(k)

Bayesian Network model of component Dynamic Bayesian Networks

Page 23: Application de la modélisation par Réseaux Bayésiens à la ...

23 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Then the reliability is given by simulation

Application in Reliability of component Dynamic Bayesian Network / Markov Chain modelBayesian Network / Markov Chain model

))(()( upkXPkRn ==

WEBER P., JOUFFE L. Reliability modelling with Dynamic Bayesian Networks. 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS'03), Washington, D.C., USA, 9-11 juin, 2003.

MTTFn

1=λ

tp n ∆≅ λ12

X(k) up down

up 1- p 12 p 12

down 0 1X(k-1)

Page 24: Application de la modélisation par Réseaux Bayésiens à la ...

24 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

BEN SALEM A., BOUILLAUT L., AKNIN P., WEBER P. Dynamic Bayesian Networks for classification of rail defects. IEEE 4th International Conference on Intelligent Systems Design and Applications (ISDA 2004), Budapest, Hungary, August 26-28, 2004.

Application in Reliability of component Dynamic Bayesian Network / Markov model of order nBayesian Network / Markov model of order n

))(()( upkXPkRn ==

Open problem: to learn the parameter !

Page 25: Application de la modélisation par Réseaux Bayésiens à la ...

25 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dynamic Bayesian Network / semi Markov ProcessBayesian Network / semi Markov Process

))(()( upkXPkRn ==

System with time variant failure rate System with time variant failure rate ((weibullweibull) )

The parameter in the CPT The parameter in the CPT are indexed by timeare indexed by time

50,5.2,)(1

1 ==⋅=−

ηβη

βλ β

β

t

t

Application in Reliability of component

Page 26: Application de la modélisation par Réseaux Bayésiens à la ...

26 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Markov Switching Model Markov Switching Model

Dynamic Bayesian Network / Markov Switching ModelBayesian Network / Markov Switching Model

A process changes its behavior according to the state of A process changes its behavior according to the state of exogenous constraints representing functioning conditions, exogenous constraints representing functioning conditions, maintenance events …maintenance events …

The exogenous constraint is represented by an external variable The exogenous constraint is represented by an external variable UUkk

U(k)=U(k)=αα U(k)=U(k)=ββ

OK

f)(1 α=λ f

OK

f)(1 β=λ f

Application in Reliability of component

)( MCt

Tt X

dt

dXPI −⋅=

Analytic solution Analytic solution

DiscretDiscret simulationsimulation

WEBER P., MUNTEANU P., JOUFFE L. Dynamic Bayesian Networks modelling the dependability of systems with degradations and exogenous constraints. 11th IFAC Symposium on Information Control Problems in Manufacturing, INCOM'04. Salvador-Bahia, Brazil, April 5-7th, (2004).

Page 27: Application de la modélisation par Réseaux Bayésiens à la ...

27 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dynamic Bayesian Network / Markov Switching ModelBayesian Network / Markov Switching Model

))(()( upkXPkRn ==

Application in Reliability of component

Page 28: Application de la modélisation par Réseaux Bayésiens à la ...

28 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

X(k-1) X(k)

U(k-1) Y(k)

Hidden Process

Observations

Dynamic Bayesian Network / IOHMMBayesian Network / IOHMM

Application in Reliability of component

In the previous slides the stochastic processes are supposed to be completely observable. In practice this is seldom the reality because the physical degradations of a component result in a change of its state which is observed only through a variation in the component functionality.

Parameter estimation needs many data !!!Parameter estimation needs many data !!!

Page 29: Application de la modélisation par Réseaux Bayésiens à la ...

29 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dynamic Bayesian Network Bayesian Network -- Factorized MC modelFactorized MC model

Application in Reliability of system

The reliability of component can be modelled as a DBN as presented beforeIf the components are independent the DBN allows to merge the models through a factorised form

X1(k-1) X1(k)

U(k-1)

Y3(k)

X2(k-1) X2(k)

X3(k-1) X3(k)

Y2(k)

Y1(k)

IOHMMIOHMMIOHMMIOHMM

X2(k-2)

MarkovMarkov 22

1/2Markov1/2Markov

Page 30: Application de la modélisation par Réseaux Bayésiens à la ...

30 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application in Reliability of system

The reliability of component can be modelled as a DBN as presented beforeIf the components are independent the DBN allows to merge the models through a factorised form

X1(k-1) X1(k)

U(k-1)

Y3(k)

X2(k-1) X2(k)

X3(k-1) X3(k)

Y2(k)

Y1(k)

IOHMMIOHMMIOHMMIOHMM

X2(k-2)

MarkovMarkov 22

1/2Markov1/2Markov

S(k)

Page 31: Application de la modélisation par Réseaux Bayésiens à la ...

31 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

V2

V3

V1

The method is applied to a classical example of reliability analysis.

Three valves are used to distribute or not a fluid.

Every valves have two failure modes • remains closed (RC)• remains opened (RO)

WEBER P., JOUFFE L. Reliability modelling with Dynamic Bayesian Networks. 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS'03), Washington, D.C., USA, 9-11 juin, 2003.

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 1 in Reliability

Page 32: Application de la modélisation par Réseaux Bayésiens à la ...

32 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

V1 Av.V2 RCV3 Av.

V1 Av.V2 Av.V3 RC

V1 RCV2 RCV3 Av.

V1 Av.V2 RCV3 RC

V1 RCV2 Av.V3 RC

s6

s2

s23

s24

s12

V1 RCV2 Av.V3 Av.

V1 Av.V2 Av.V3 Av.

V1 Av.V2 ROV3 Av.

V1 ROV2 Av.V3 Av.

V1 ROV2 ROV3 Av.

V1 ROV2 Av.V3 RO

V1 Av.V2 Av.V3 RO

V1 Av.V2 ROV3 RO

V1 ROV2 ROV3 RO

s1

s3

s4

s5

s9

s26

s16

s19

s18

V1 RO.V2 RCV3 Av.

V1 Av.V2 RCV3 RO.

V1 RO.V2 Av.V3 RC

V1 Av.V2 RO.V3 RC

V1 RO.V2 RCV3 RO.

V1 RC.V2 RCV3 RO.

V1 RO.V2 RCV3 RC.

V1 RO.V2 RO.V3 RC

V1 RC.V2 ROV3 RC.

s7 s8s13s14

V1 RC.V2 ROV3 Av.

s15

V1 RCV2 ROV3 RO

s17

V1 RC.V2 AVV3 RO.

s20

s11 s10s22

s21

s25

Markov Chain

The Markov Chain is defined from 27 states

729729 parametersparameters

Application 1

75 different 75 different from 0from 0

a graphical a graphical

representation of this representation of this

model is difficultmodel is difficult

Page 33: Application de la modélisation par Réseaux Bayésiens à la ...

33 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

the nodes

• 6 nodes are described the 3 valves

• 3 nodes are described the system state

the CPTs

• 3 small MC

• and the logic of the failures propagation

ReliabilityReliability

58 parameters are equal to 58 parameters are equal to 1173 different from 073 different from 0143143 parametersparameters

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 1 in Reliability

Page 34: Application de la modélisation par Réseaux Bayésiens à la ...

34 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The inter time slices CPT represents a small MC

OK

RO

RC

0.20.2

0.10.1

Equivalent toEquivalent to

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 1 in Reliability

Page 35: Application de la modélisation par Réseaux Bayésiens à la ...

35 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

ReliabilityReliability = = TrueTrue

The behavior of the probability representing• The System Remains Close (light blue) • The System Remains Open (blue)• The System Reliability (red)

The results after successive inferences

)(tRS

Application 1 in Reliability

Page 36: Application de la modélisation par Réseaux Bayésiens à la ...

36 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Process modelling approach in real application

• Methodology– Process and flow based approach

• Functional/Dysfunctional reasoning• Hierarchical structure

– Elaboration of the probabilistic network• Formalism: BN/DBN• Generic rules to transform the process model into

a probabilistic one

But the Bayesian Network (BN)needs Acyclic structure

Page 37: Application de la modélisation par Réseaux Bayésiens à la ...

37 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

To Control

To transform

To measure

PLC

Sensor

Machine

Position order

input product finished product

finished product

Product report

Probabilistic network development (2)

The cycle problem

Cycle

Cycle

Page 38: Application de la modélisation par Réseaux Bayésiens à la ...

38 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Probabilistic network development (2)

The translation with specification

► No cycle

To measure

To Control

To transform

PLC

Sensor

Machine

Order(k+1)

input product (k )finished product (k+1)

finished product (k)

Product report

Flow decomposition

(k+1)

Page 39: Application de la modélisation par Réseaux Bayésiens à la ...

39 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

V

R1

R2

Qi Ti

Qo To

H P

H sensor

T sensor

Water heater (Physical process)

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 2 in Reliability

WEBER P., JOUFFE L., Complex system reliability modelling with Dynamic Object Oriented Bayesian Networks (DOOBN). Reliability Engineering and SystemSafety, Volume 91, Issue 2, February 2006, Pages 149-162 (Selected Papers Presented at QUALITA 2003).

MULLER A., WEBER P., BEN SALEM A. Process model-based Dynamic Bayesian Networks for Prognostic. IEEE 4th International Conference on Intelligent Systems Design and Applications (ISDA 2004), Budapest, Hungary, August 26-28, 2004.

Page 40: Application de la modélisation par Réseaux Bayésiens à la ...

40 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Page 41: Application de la modélisation par Réseaux Bayésiens à la ...

41 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

P(state1) P(state 2)

P(state 3)

P(state 4)

HEATING RESISTOR (k)

1

2 λ1

4

λ2

3 λ4 λ3

λ5

R1 R1 andand R2 maxR2 max

R1 or R2 downR1 or R2 down

Action Action to emplace to emplace

Page 42: Application de la modélisation par Réseaux Bayésiens à la ...

42 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Page 43: Application de la modélisation par Réseaux Bayésiens à la ...

43 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Water heater (Process model)

To regulate theinput water flow

rate

Valve

Input Water Flow

To heat water

Heatingresistors

To measure thewater temperature

Temperaturesensor

To measure thewater level

Level sensor

To distribute water

Water pipe

To control the'Water heater'

process

PLC

Water level report

Water temperature report

Water distributed& heated

To store water

Tank

Water to heatWater to heat Water to distributeWater to distribute

Position order

Water to distribute (k) Water distributed& heated (k)Heating order

E.E.

E.E. E.E.

E.E.

E.E. = Electrical Energy

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 2 in Reliability

Page 44: Application de la modélisation par Réseaux Bayésiens à la ...

44 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Water heater (Probabilistic model - DBN)

1

2 λ1

4

λ2

3 λ4 λ3

λ5

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 2 in Reliability

Page 45: Application de la modélisation par Réseaux Bayésiens à la ...

45 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

To provide Warm Water

HD1 Order T=50°C

AD2 water input pressure and Ti

AD4 WATER HEATER PROCESS

RHD water output temperature T and flow rate Qo

AD1 Electric Power

AD3 system parameters temperature T and level H

To transform Pressure

to Qi

HD Order V

AD2 water input pressure and Ti

AD4-1 VALVE V

RHD Qi

AD1 Electric Power

AD Ti To transform

H to Qo

AD4-4 WATER PIPE

RHD water output flow rate Qo

HD1 Order T=50°C

To transform Qi to H

Ti to T

AD Qi

AD4-3 TANK, HEATING RESISTOR

RHD water output temperature T

AD1 Electric Power

To control V and P

AD4-2 COMPUTER, SENSORS

HD Order P

AD3 system parameters temperature T and level H

AD1 Electric Power

AD water level H

RHD V

RHD P

A1

A2

A3

A4

RHD water level H

Water heater (SADT model and OODBN model)

Dynamic Bayesian Network Dynamic Bayesian Network -- Factorized MC modelFactorized MC model

Application 2 in Reliability

Page 46: Application de la modélisation par Réseaux Bayésiens à la ...

46 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

AD Ti To heat water

from Ti to T

AD Qi

AD4-3 HEATING RESISTOR

RHD water temperature T

AD1 Electric Power

HD Order P

A3

AD4-3 TANK

To stock water

Qi to H

RHD water level H

A31

A32

AD water level H

to heat water

to stock water

AD Ti

AD Qi RHD level H

RHD temperature T

AD Electric Power HD Order P

EF to stock water AD Qi

TANK

RHD level H

EF to heat water AD Ti

HEATING RESISTOR

AD Electric Power

HD Order P

AD water level H

RHD temperature T

Application 2 in Reliability

Page 47: Application de la modélisation par Réseaux Bayésiens à la ...

47 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

EF to heat water AD Ti

HEATING RESISTOR

AD Electric Power

HD Order P

AD water level H

RHD temperature T

EF to stock water AD Qi

TANK

RHD level H

RHD water level H

0

0.10.20.30.40.50.60.70.80.9

1

0 400 800 1200 1600 2000

P(correct)P(incorrect)

EF to heatwater(k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

P(state1)P(state2)

P(state3)P(state4)

Page 48: Application de la modélisation par Réseaux Bayésiens à la ...

48 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

RHD water output temperature T (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

P(correct) P(incorrect)

RHD water output flow rate Qo (k)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0 400 800 1200 1600 2000

P(correct) P(incorrect)

To transform Pressure

to Qi

HD Order V

AD2 water input pressure and Ti

AD4-1 VALVE V

RHD Qi

AD1 Electric Power

AD Ti To transform

H to Qo

AD4-4 WATER PIPE

RHD water output flow rate Qo

HD1 Order T=50°C

To transform Qi to H

Ti to T

AD Qi

AD4-3 TANK, HEATING RESISTOR

RHD water output temperature T

AD1 Electric Power

To control V and P

AD4-2 COMPUTER, SENSORS

HD Order P

AD3 system parameters temperature T and level H

AD1 Electric Power

AD water level H

RHD V

RHD P

A1

A2

A3

A4

RHD water level H

Application 2

Page 49: Application de la modélisation par Réseaux Bayésiens à la ...

49 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

R(k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To provide Warm Water

HD1 Order T=50°C

AD2 water input pressure and Ti

AD4 WATER HEATER PROCESS

RHD water output temperature T and flow rate Qo

AD1 Electric Power

AD3 system parameters temperature T and level H

Application 2 in Reliability

Page 50: Application de la modélisation par Réseaux Bayésiens à la ...

50 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

DynamicDynamic BayesianBayesian Networks in Networks in DiagnosisDiagnosis & & ReliabilityReliability AnalysisAnalysis

Page 51: Application de la modélisation par Réseaux Bayésiens à la ...

51 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Dynamic Bayesian Networks in System Diagnosis

The diagnosis is composed of three stages:

• Classically, decision making is realized by an elementary logic

Nevertheless, in this case, when multiple faults, false alarms and missing detections occur, the faults can not be isolated

• In the spirit of (Isermann, 1994), fault isolation performance can increase through the integration of other knowledge in the diagnosis

residuals generation residuals

evaluation decision making

uj Fn

rjmi

Page 52: Application de la modélisation par Réseaux Bayésiens à la ...

52 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Problem statementProblem statement

Increasing effectiveness of modelIncreasing effectiveness of model --based fault diagnosisbased fault diagnosis

Computed by means of stochastic process model, reliability analyComputed by means of stochastic process model, reliability analysis sis define define the the a prioria priori behavior of the probabilities distribution behavior of the probabilities distribution over the over the functioning and malfunctioning and mal--functioning states of the systemfunctioning states of the system

with the integration of reliability analysiswith the integration of reliability analysis

In fault diagnosis the decision is then based on the fusion of information coming from residuals evaluation and an a prioria prioribehaviorbehavior computed by a computed by a probabilistic model of reliability

The probabilistic model of reliability must take into account must take into account the observations on the system, the observations on the system, this is new in reliability analysisthis is new in reliability analysis!?!?

Bayesian Networks (BN) are investigated to compute the decision => BN are able to model dynamic and probabilistic problems

Page 53: Application de la modélisation par Réseaux Bayésiens à la ...

53 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

FDI decision making

a) b) D(n,j) F1 Fn FN D(n,j) F1 Fn FN

u1 1 0 0 u1 0 1 1

uj 0 1 0 uj 1 0 1

uJ 0 0 1 uJ 1 1 0

u1

uj

uJ

1F

nF

NF

u1

uj

uJ

1F

nF

NF

The fault is the cause of the residual deviationThe fault is the cause of the residual deviation

The BN Structure is defined directly by the incidence matrix DD

A fault is modelled as a random variable Fndefined over defined over two states

{not Occurred, Occurred}

A symptom is represented also as ujdefined over the states

{not detected, detected}

WEBER P., THEILLIOL D., AUBRUN C., EVSUKOFF A.G., Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making. 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, P.R. China (30/08/2006), pp. 109-114.

Page 54: Application de la modélisation par Réseaux Bayésiens à la ...

54 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

not occured 1occured 0

F

u not detected detectednot occured

occuredF

Conditional Probability Table CPT

ujFn

P(uj|Fn)

Bayesian Network ParametersBayesian Network Parameters

Discrete random variable

variable states

a prioridistribution P(Fn)

FDI decision making

jc-1 jc

jb jb-1

The Bayes theorem is applied in the BN inference to compute the probability that a fault occurred according to the states of the symptoms uj

)(

)()()(

j

njn

jn up

FupFpuFp =

a priori distribution on Fault

Conditional Probability Table parameters

Online residual evaluation

uj

Fn

Fn

( )( )occurredFdnotdetecteupb

occurred notFdetectedupc

njj

njj

===

===

missing detection

false alarms

Page 55: Application de la modélisation par Réseaux Bayésiens à la ...

55 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

the inter-time slices CPT are equivalent to Markov Chain model of each component

Starting from an observed situation at time k=0, the probability distribution over the states is computed (simulation) using successive inferences

a time feedbacka time feedback

inter-time slices CPT

a priori Reliability ModelDynamic Bayesian Network ParametersDynamic Bayesian Network Parameters

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200 250 300

)(tRn

a priori Reliability of the component n

)1( −kni

)(kni

CPT )(kni

)1( −kni up down

up 1-p12 p12

down 0 1

Page 56: Application de la modélisation par Réseaux Bayésiens à la ...

56 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Fusion

The a priori Reliability of the component n is used to initialise the is used to initialise the a priori distribution distribution on the fault Fn states

Hypothesis to simplify the model in this first work:

•• Only one component contribute to the Only one component contribute to the a priori distribution distribution on a fault

• A component reliability is independent from the others components states

u not occured occuredup 1 0

down 0 1F

Fn

)(kni

1u

Ju

nF

)(kni

)1( −kni

WEBER P., THEILLIOL D., AUBRUN C., EVSUKOFF A.G., Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making. 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, P.R. China (30/08/2006), pp. 109-114.

Page 57: Application de la modélisation par Réseaux Bayésiens à la ...

57 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Application in Diagnosis

Water heater (Physical process)Water heater (Physical process)

V

R1

R2

Qi Ti

Qo To

H P

H sensor

T sensor

Q sensor

The goal of the process is to assure a constant water flow rate Qowith a given controlled temperature To.

Page 58: Application de la modélisation par Réseaux Bayésiens à la ...

58 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The decision DBN modelThe decision DBN model

011u3

001u2

100u1

TQHSensor faults

Incidence matrix

Application in Diagnosis

Page 59: Application de la modélisation par Réseaux Bayésiens à la ...

59 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The decision DBN modelThe decision DBN model

982occured

595not occured

detectednot detectedFault T

u1

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

Application in Diagnosis

Page 60: Application de la modélisation par Réseaux Bayésiens à la ...

60 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The decision DBN modelThe decision DBN model

982occured

595not occured

detectednot detectedFault T

u1

982occured

595not occured

detectednot detectedFault Q

u2

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

Application in Diagnosis

Page 61: Application de la modélisation par Réseaux Bayésiens à la ...

61 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The decision DBN modelThe decision DBN model

982occured

595not occured

detectednot detectedFault T

u1

99.960.04occured

98.11.9not occuredOccurred

98.11.9occured

9.7590.25not occurednot occurred

detectednot detectedFault QFault H

u3

982occured

595not occured

detectednot detectedFault Q

u2

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

Application in Diagnosis

Page 62: Application de la modélisation par Réseaux Bayésiens à la ...

62 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

The decision DBN modelThe decision DBN model

up dgd

λ1 down

λ2

λ3

Markov Chains

up down

λ1

up down

λ1

sensor Q

sensor T

sensor H

λ1=0.22 10-4

λ1=2 10-4

λ1=1.25 10-4

λ2=3.3 10-4

λ3=0.22 10-4

Application in Diagnosis

Page 63: Application de la modélisation par Réseaux Bayésiens à la ...

63 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Test scenarioTest scenario

false

alar

m o

n u1

failu

re o

n th

e se

nsor

Q

fault

-free

case

T an

d H s

enso

rs fa

ults

0 5 10 15 20 25 30 35 400

0.5

1

0 5 10 15 20 25 30 35 400

0.5

1

0 5 10 15 20 25 30 35 400

0.5

1

Samples

A B C D

0 5 10 15 20 25 30 35 400

0.5

1

u1

0 5 10 15 20 25 30 35 400

0.5

1

u2

0 5 10 15 20 25 30 35 400

0.5

1

u3

Samples

A B C D

011u3

001u2

100u1

TQHSensor faults

Incidence matrix

Application in Diagnosis

Page 64: Application de la modélisation par Réseaux Bayésiens à la ...

64 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Test scenarioTest scenario

0 5 10 15 20 25 30 35 400

0.5

1

0 5 10 15 20 25 30 35 400

0.5

1

0 5 10 15 20 25 30 35 400

0.5

1

Samples

A B C D

0 5 10 15 20 25 30 35 400

0.5

1

u1

0 5 10 15 20 25 30 35 400

0.5

1

u2

0 5 10 15 20 25 30 35 400

0.5

1

u3

Samples

A B C D

A B C DA B C D

0 5 10 15 20 25 30 35 400

0.5

1

Fau

lt H

0 5 10 15 20 25 30 35 400

0.5

1

Fau

ltQ

0 5 10 15 20 25 30 35 400

0.5

1

Fau

ltT

Samples

close to 0

close to 0

close to 0

Reset

false

alar

m o

n u1

failu

re o

n th

e se

nsor

Q

fault

-free

case

T an

d H s

enso

rs fa

ults

)(

)()()(

j

njn

jn uP

FuPFPuFP =

Application in Diagnosis

Page 65: Application de la modélisation par Réseaux Bayésiens à la ...

65 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

A safety barriers-based approach for the risk analysis of socio-technical systems

LEGER A., DUVAL C., WEBER P., LEVRAT E., FARRET R., Bayesian Network Modelling the risk analysis of complex socio technical systems. Workshop on Advanced Control and Diagnosis, ACD'2006, Nancy, France (16/11/2006).

DUVAL C., LEGER A., WEBER P., LEVRAT E., IUNG B., FARRET R., Choice of a risk analysis method for complex socio-technical systems. European Safety and Reliability Conference, ESREL 2007, Stavanger, Norvège (25/06/2007).

Page 66: Application de la modélisation par Réseaux Bayésiens à la ...

66 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

A global risk analysis model

Ein 1 Ein 2 Ein 3 Ein 4 Ein 5 Ec 6 Ein 7 Ec 8

EI EI EI EI

EI

EI

ERC

ERS

ERS

PhD PhD PhD PhD

EM EM

EM EM EM EM

&

Or

&

Or

Or

Or

Or

Decision a Decision b

Organi s ational factor a

Organis ati onal factor b

Internal organis ational layer

Decisions and actions layer

Technical layer

External organi s ational layer

Natural environment layer

Organis ational factor c

Organis ational factor d

Environmental factor a

Environmental factor b

Transactional exchange Vertical exchange Horizontal e xchange

Caption Risk reduction barrier

Paté-Cornell M.E.-Murphy D.M.,‘Human and management factors in probabilistic risk analysis: the SAM approach and observations from recent applications’, Reliability Engineering and System Safety, n°53, pp. 115-126, 1996.

Necessity to establish relations between different kinds of layers in the model of the system: the technical layer (closed system) and the human/organisational layer (open system)

Page 67: Application de la modélisation par Réseaux Bayésiens à la ...

67 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

A global risk analysis modelThe generic global Bayesian network model structureThe generic global Bayesian network model structure

InternalInternal organisationalorganisational layer layer

Page 68: Application de la modélisation par Réseaux Bayésiens à la ...

68 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

A global risk analysis model

DecisionsDecisions andand actions layer actions layer

InternalInternal organisationalorganisational layer layer

DecisionsDecisions andand actions layer actions layer

Page 69: Application de la modélisation par Réseaux Bayésiens à la ...

69 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Application Pentane storageTransitional storage tank (product: liquid pentane)

Extremely flammable in air → storage operation made in presence of gaseous nitrogen (to prevent any reaction with air)

Safety components : actuator 1 (A1), vent hole, safety valve, pressure sensor, retention pool

Necessity of a regular and specific control for the actuator 1 and the safety valve :

- Actuator 1 has to remain open (to insure an optimal pentane output) → padlocking and regular follow-up (actions schedule) ,

- Safety valve has to be operational in case of important pressure rises → regular control of its good operating .

Nitrogen (gas)

A1 A2 A3

A4

Pentane (liquid)

Safety valve Vent hole

Pentane

Nitrogen

Pressure sensor

Retention pool

Pentane (liquid)

A1: manual actuator (opened)

A2, A3, A4: automatic actuator

Page 70: Application de la modélisation par Réseaux Bayésiens à la ...

70 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Studied scenario

Temperature > 30°C

Absence or lowoutput of Nitrogen

Pressure rise in the

tank

Tank explosion

Pentane puddle in the workshop

(Liquid)

Pentane cloudin the workshop

(Gas)

Fire due to the pentane

puddle

Fire due to the pentane

cloud

Safety impact due to thepentane puddle

Availability impact due to the pentane puddle

Durability impact due to the pentane puddle

Safety impact due to thepentane cloud

Availability impact due to the pentane cloud

Durability impact due to the pentane cloud

Pressure sensor

Actuator 1 padlocked(Opened)

Safetyvalve

Vent hole Retention pool

Ein/Ec

EI ERC

ERS PhD

Local EM

Liquid pentane in the tank

Global safetyimpact

Global availabilityimpact

Global durabilityimpact

Global EM

Temperature > 30°C

Absence or lowoutput of Nitrogen

Pressure rise in the

tank

Tank explosion

Pentane puddle in the workshop

(Liquid)

Pentane cloudin the workshop

(Gas)

Fire due to the pentane

puddle

Fire due to the pentane

cloud

Safety impact due to thepentane puddle

Availability impact due to the pentane puddle

Durability impact due to the pentane puddle

Safety impact due to thepentane cloud

Availability impact due to the pentane cloud

Durability impact due to the pentane cloud

Pressure sensor

Actuator 1 padlocked(Opened)

Safetyvalve

Vent hole Retention pool

Ein/Ec

EI ERC

ERS PhD

Local EM

Liquid pentane in the tank

Global safetyimpact

Global availabilityimpact

Global durabilityimpact

Global EM

Context: - a temperature upper than 30°C (in summer),- liquid pentane in the tank ,- insufficient quantity of nitrogen in the tank .

Liquid pentane → gaseous pentane → pressure rise in the tank → evacuated by the vent hole and the safety valve (in a good operating) …

Risk of pressure rise in the tank → tank explosion → fire in the workshop

Page 71: Application de la modélisation par Réseaux Bayésiens à la ...

71 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Bayesian network model

Organisational layer

Decisions and actions layer

Technical layer

Natural environment

Organisational layer

Decisions and actions layer

Technical layer

Natural environment

Output indicators

Page 72: Application de la modélisation par Réseaux Bayésiens à la ...

72 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Bayesian network model

Page 73: Application de la modélisation par Réseaux Bayésiens à la ...

73 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Conclusion

Bayesian Networks

– Equivalence between the Bayesian Networks and fault tree…

– Multimodal model

– Acyclic Graph constraint only

Dynamic Bayesian Networks

– Equivalence between the Dynamic Bayesian Networks and MC, ½ MC, MSM, IOHMM

–– Thanks to the factorization,Thanks to the factorization, DBN leads to a synthetic representation of complex systems

Future works Future works

– MDP application in Maintenance

– Dynamic Evidential Networks in reliability

Page 74: Application de la modélisation par Réseaux Bayésiens à la ...

74 / 73 S3 31-01 2008, CRAN UMR 7039 CNRS, Nancy Univer sité

Some ref.

WEBER P., JOUFFE L., Complex system reliability modelling with Dynamic Object Oriented Bayesian Networks (DOOBN). Reliability Engineering andSystem Safety, Volume 91, Issue 2, pages 149-162 (Selected Papers Presented at QUALITA 2003) February (2006).

WEBER P., SUHNER M.C., IUNG B. System approach-based Bayesian Network to aid maintenance of manufacturing process. 6th IFAC Symposium on Cost Oriented Automation, Low Cost Automation, Berlin, 8-9 octobre, (2001).

WEBER P., SUHNER M.C. An application of Bayesian Networks to the Performance Analysis of a Process. European Conference on System Dependability and Safety (ESRA 2002/lambda-Mu13), Lyon (France), 19-21 mars (2002).

WEBER P., JOUFFE L. Reliability modelling with Dynamic Bayesian Networks. 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS'03), Washington, D.C., USA, 9-11 juin, (2003).

WEBER P., MUNTEANU P., JOUFFE L. Dynamic Bayesian Networks modelling the dependability of systems with degradations and exogenous constraints. 11th IFAC Symposium on Information Control Problems in Manufacturing, INCOM'04. Salvador-Bahia, Brazil, April 5-7th, (2004).

MULLER A., WEBER P., BEN SALEM A. Process model-based Dynamic Bayesian Networks for Prognostic. Fourth International Conference on Intelligent Systems Design and Applications (ISDA 2004), Budapest, Hungary, August 26-28, (2004).

BOUILLAUT L., WEBER P., BEN SALEM A., AKNIN P. Use of Causal Probabilistic Networks for the improvement of the Maintenance of Railway Infrastructure. IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands, October 10-13, (2004).

BEN SALEM A., BOUILLAUT L., AKNIN P., WEBER P. Dynamic Bayesian Networks for classification of rail defects. IEEE 4th International Conference on Intelligent Systems Design and Applications, Budapest, Hungary, August 26-28, (2004).

BEN SALEM A., MULLER A., WEBER P., Dynamic Bayesian Networks in system reliability analysis. 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, P.R. China (30/08/2006), pp. 481-486, (2006).

WEBER P., THEILLIOL D., AUBRUN C., EVSUKOFF A.G., Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making. 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, P.R. China (30/08/2006), pp. 109-114, (2006).

SIMON C., WEBER P., Bayesian Networks Implementation of the Dempster Shafer Theory to Model Reliability Uncertainty. Workshop on Bayesian Networks in Dependability (BND2006) in the First International Conference on Availiability, Reliability and Security, ARES 2006, Vienna, April 20-22, Autriche (2006), pp. 788-793, (2006).

LEGER A., DUVAL C., WEBER P., LEVRAT E., FARRET R., Bayesian Network Modelling the risk analysis of complex socio technical systems. Workshop on Advanced Control and Diagnosis, ACD'2006, Nancy, France (16/11/2006).

DUVAL C., LEGER A., WEBER P., LEVRAT E., IUNG B., FARRET R., Choice of a risk analysis method for complex socio-technical systems. European Safety and Reliability Conference, ESREL 2007, Stavanger, Norvège (25/06/2007).

References of CRAN are available with HAL

http://http://hal.archiveshal.archives--ouvertes.frouvertes.fr