Anneau de fonctions polynömes d′un anneau commutatif unitaire

20
This article was downloaded by: [University of North Carolina] On: 11 November 2014, At: 22:20 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Algebra Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lagb20 Anneau de fonctions polynömes dun anneau commutatif unitaire Geneviève Jacob a a 121, avenue du Maine, Paris, 75014 Published online: 27 Jun 2007. To cite this article: Geneviève Jacob (1980) Anneau de fonctions polynömes dun anneau commutatif unitaire, Communications in Algebra, 8:9, 793-811, DOI: 10.1080/00927878008822491 To link to this article: http://dx.doi.org/10.1080/00927878008822491 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Transcript of Anneau de fonctions polynömes d′un anneau commutatif unitaire

Page 1: Anneau de fonctions polynömes d′un anneau commutatif unitaire

This article was downloaded by: [University of North Carolina]On: 11 November 2014, At: 22:20Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office:Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in AlgebraPublication details, including instructions for authors and subscriptioninformation:http://www.tandfonline.com/loi/lagb20

Anneau de fonctions polynömes d′un anneaucommutatif unitaireGeneviève Jacob aa 121, avenue du Maine, Paris, 75014Published online: 27 Jun 2007.

To cite this article: Geneviève Jacob (1980) Anneau de fonctions polynömes d′un anneau commutatif unitaire,Communications in Algebra, 8:9, 793-811, DOI: 10.1080/00927878008822491

To link to this article: http://dx.doi.org/10.1080/00927878008822491

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)contained in the publications on our platform. However, Taylor & Francis, our agents, and ourlicensors make no representations or warranties whatsoever as to the accuracy, completeness, orsuitability for any purpose of the Content. Any opinions and views expressed in this publication arethe opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis.The accuracy of the Content should not be relied upon and should be independently verified withprimary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoevercaused arising directly or indirectly in connection with, in relation to or arising out of the use of theContent.

This article may be used for research, teaching, and private study purposes. Any substantialor systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, ordistribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use canbe found at http://www.tandfonline.com/page/terms-and-conditions

Page 2: Anneau de fonctions polynömes d′un anneau commutatif unitaire

COMMUNICATIONS IN ALGEBRA, 8(9), 793-811 (1980)

G e n e v i e v e J a c o b

1 2 1 , a v e n u e d u M a i n e 7 5 0 1 4 F A R I S

3 a n s c e t r a v a i l , A d e s i g n e r a t o u j o u r s u n a n n e a u c o r n r n u t a ~ i f u n i t a i r e ; n o u s v o u l c ~ s

B t u c i e r l ' a q n e a u d e s f o r c t i o n s p o l y n d m e s s u r A. En " u n e v a r i a b l e " , il s e p r e s e n t e c o m e

l e q u o t i e n t d e l ' s n n e a u d e s ? c l y n 8 m e s ACX] p a r l ' i d e a l P [ A l d e s p o l y r d r n e s d e ACXl q u i

s ' s n n u l e r t s u r ;.

O a n s l a s u i t e , nou; f l x o n s u n i d Q a l & d e A, e t , a f i n d ' 6 t u d i s r l ' a n n e a u d e s f o n c -

t i o r s p o l y n B n e s s u r A/U, d h s i g n o n s p a r Pa[Al l ' i J Q a l d e s p o l y n d m e s 5 e ACX? q u i p r e n n e n t

s d r A c e s v a l e w r s d a n s C Q [ r e s p . . p o u r t o u t e n t i e r m p o s i t i f , p a r F ' ~ ) ( A I l ' i d e a l d e s

p o l y n b m s ?e A I X 1 , . . . , X 1 q u i p r i n n e n t s d r qm d e s v a l e u r s d a n s & I .

N o t r e Q t u d e , is i , s ' o r i e n t e d e d e u x m a n i Q r e s . Aux I I , 11, 111. n o u s d o n n o n s u n c a l -

c w l L e c h n i q u e d ' u n s y s t Q m e g Q n B r a t e u r , e n t a n t q u e A m o d u l e , d e l ' i i e a l Fa(Al ( r e s p .

P:)(A!I, d a n s d e s c a s p a r t i s u l i e r s , r e c o u v r a n t u n e t r Q s l a r g e c l a s s e d ' a n n e a u x . Au I I V .

nous d o n n o n s d e s r Q s u l t 3 t s g B n 6 r a u x s u r P o [ A l , v a l a b l e s p o u r t o u t ' a n n s a u A.

L e t h e o r P m e l e p l u s i m p o r t a n t d e l a p r e m i e r e p a r t i e e s t l e t h e o r e r n e 5 ( d 1 I I l . Q L e s t

u n e i n t e r s e c t i o n q u e l c o n q u e d e p u i s s a n c e s e . d ' i d k a u x p r e m i e r s p. d ' u n a n n e a u q u e l c c n q u e

A [ a v o c d e s c o n d i t i o n s a s s e z f a i b l e s s u r l e g r a d u e d e A my, , r e a l i s e e s s i c e d e r n i e r

e s t i n t s g r e l . Ce r e s u l t a t e s t v a l a b l e d a n s d e nornbreux c a s , e n p a r t i c u l i e r p o u r t o u s l e s

i d i i a u x a d ' u n a n n e a u d e D e d e k i n d . D a n s l e t e x t e , Pd[Al e s t o b t e n u p a r i n t e r s e c t i o n d s s

P [ A ] , u n e d e s c r i p t i o n e x p l i c i t e d e P [Al p o u v a n t Q t r e c a l c u l e e 3 l ' a i d e d u lemme c h i - p ;i a

n o i s . En e f f e t , l e t h e o r e m e 5 d Q c o u l e i r n r n e d i a t e r n e n t d u t h Q o r 2 m e 4 ( 1 1 1 1 , q u i d o n n e u n

c a l c u l e x p l i c i t e d ' u n s y s t b r n e g O n Q r a t e u r d e % [ A ] ' [ r e s p . d e P;(A)I l o r s q u e a e s t u n e

p u i s s a n c e q u e l c o n q u e e d ' u n i d e a l p r e m i e r k / d ' u n a n n e a u A [ a v e c ' u n e c o n d i t i o n s u r l e

g r a d u B d e A e n p , r e a l i s h e s i c e d e r n i e r e s t i n t e g r e , e t t o u j o u r s r g a l i s e e s i e = 1 o u 2 ,

p a r e x e m p l e l . D a n s c e c a s , l e c a l c u l n e c e s s i t e l a c o n s t r u c t i o n d ' u n e s u i t e d ' Q l Q r n e n t s d e

A, d o n t l e ni*e t e r r n e e s t c a l c u l g g r a c e 2 u n e e c r i t u r e d e l ' e n t i e r n s o u s f o r m e d ' u n

d g v e l o p p e r n e n t g h n g r a l i s a n t l e d e v e l o p p e r n e n t p - a d i q u e . D a n s c e c a s . n o u s d o n n o n s d ' a i l l e u r s

d e u x e x p r e s s i o n s d e P e [ A l l ' u n e t o u j o u r s v a l a b l e , l ' a u t r e Q l u s s i m p l e 1 v a l a b l e s e u l e r n e n t P

p o u r d e s v a l e u r s f a i b l e s d e e .

Copyright O 1980 by Marcel Dckker, Inc

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 3: Anneau de fonctions polynömes d′un anneau commutatif unitaire

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 4: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES 795

P o u r s i m p l i f i e r , s u r l e s r e s u l t a t s c o n c e r n a n t l e s polyndrnes 2 un nornbre f i n i rn d e

v a r i a b l e s , non seu le rnen t nous ne c i t e r o n s q u e l e s p l u s i m p o r t a n t s [ l a " t r a n s c r i p t i o n "

d ' u n e v a r i a b l e a un nornbre f i n i d e v a r i a b l e s e s t d ' a i l l e u r s a i s g e l . rnais e n c o r e n o u s n e

d o n n e r o n s a u c u n e p r e u v e d a n s c e c a s [ i l s u f f i t d ' a i l l e u r s & c h a q u e f o i s d l " i s o l e r une

v a r i a b l e " e t d e p r o c 6 d e r p a r r g c u r r e n c e s u r rnl.

E n f i n , s i g n a l o n s que l a p l u p a r t d e c e s r e s u l t a t s o n t B t 6 a n n o n c e s d a n s 151 .

1 . 1 - PRELIVINAIRES.

S o i t A un anneau i n t s g r e , d e c o r p s d e f r a c t i o n s K , U = ( a 1 un i d e a l p r i n c i p a l d e A,

AIXISUb l ' a n n e a u d e s p o l y n h e s P[XI d e KCXI t e l s q u e P[A) c A C c f . ( 2 1 1 .

-- )ION I . - S ' i l e x i s t e d e s polyn6rnes f n I X l d e ALX1 d e d e g r 6 n, e t d e s s o u s I

a l o r s P !A1 = B, a n f n . 00 an e s t

l ' i d 6 a l b y n ] n A. n&

P r e u v e : S o i t E = {P[Xl E KCX] ; Va E A; P ( a 1 E aA). On a : E = Ca a 5'f e t - n a n n

Pa(AI = E n ACXI. Les f O t a n t d e s polyndrnes d e d e g r e t o u s d i f f e r e n t s , on a :

P o s o n s d ' a u t r e p a r t

NOTATIONS 1 : P o u r t o u t rn-uple d ' e n t i e r s p = ( n , ,.... n

A l o r s :

PROPOSITION.1 . b i s - Sous l e s h y p o t h & s e s d e l a p r o p o s i t i o n 1 , a l m s P ~ ( A I = a ca f

0 3 @n = [ a I n n A). naNm C 2 - - !.

1.2 - A FACTORIEL, OU OE DEDEKIND.

S i A e s t f a c t o r i e l ( r e s p . d e D e d e k i n d l , l e s c o n d i t i o n s d e l a p r o p o s i t i o n 1 s o n t

r g a l i s g e s ( c f . [31, 1 4 3 ) .

Dans l e p r e m i e r c a s s e u l a m e n t . an [ a i n s i q u a t o u s l e s d m l a s t monogine. - Dans l e s deux c a s , PoZIA) [ a i n s i q u e P$A)I e s t un A module l i b r e .

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 5: Anneau de fonctions polynömes d′un anneau commutatif unitaire

796 JACOB

A NOTATIONS 2 : A (,A= (TI i d i i a l p r e m i e r p r i n c i p a l d ' u n anneau A , oh N = Card - on a s s o c i e l a P s u i t e ( a . 1 . (oG a = 01, t e l l e q u e :

1 . 1 m

- S i N e s t i n f i n i , ( a i l e s t e x t r a i t d ' u n syst6rne d e r e p r h s e n t a n t s d e A/p.

- S i N e s t f i n i , a l o r s ( a i ) e s t un systPrne d e r e p r b s e n t a n t s d e A/p, e t o< i<N-I

p o u r i > N, a . = a l r j s i i = Z i N' e s t l e d6qe loppement N-adique d e i [ 0 < i . ~ N - 1 1 . i

l j j j j 3

P u i s , p o s o n s :

S i A e s t f a c t o r i e l :

V = { v a l u a t i o n s e s s e n t i s l l e s d e A ) .

V V E V : pv = (TV1 l ' i d i i a l p r e m i e r c o r r e s p o n d a n t ; ( a v . I s u i t e d a n s A r e l a t i v e 2 . ,1 i s N

S i A e s t d e Oedekind :

V = { v a l u a t i o n s d e s l o c a l l s i i s p a r r a p p o r t aux i d k a u x maximaux do A) .

V v s V : $5 l V i d i . a l maximal c o r r e s p o n d a n t ; ( a . 1 s u i t e d a n s A r e l a t i v e 2 y A i < N % V K'

E n f i n , posons . d a n s l e s deux c a s :

Rernarquons q u ' i l n ' y a q u ' u n nombre f i n i d e v a l u a t i o n s d a n s Vn, e t que c e s o n t b i e n r n -

t e n d u d e s v a l u a t i o n s 2 c o r p s r Q s i d u e l f i n i . On s a i t a l o r s q u ' o n p e u t t r o u v e r d a n s A d e s

BlBments [ b n , i I d e A t e l s que . p o u r t o u t v d a n s V : v ( b n t i - a v j i I > S N v [ n l . o < i < n - I

On p o s e a l o r s : f n ( X l = n [X - bnPiI p o u r n > 0 e t f [XI = 1 . De p l u s , s u i v a n t o s i s n - I

l e s n o t a t i o n s 1 , p o u r t o u t e n t i e r rn p o s i t i f e t t o u t rn-uple d ' e n t i e r s n = [ n l , . . . . n I rn

on p o s e : f n ( X l , . i . . X m l = l? f n , [ X i l . - 1 - 1 1

ANNEAU F A C T O I

THEOREME 1 - S i A e s t f a c t o r i e l , e t (57 = (a) p r i n c i p a l , P&(AI e s t un A-module l i b r e I

e t a v e c l e s n o t a t i o n s c i - d e s s u s :

De p l u s , p o u r t o u t e n t i e ? m ~ o s i t l f . o n a :

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 6: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES

Preuve : Nous ne l a donnons que pour rn = 1. --

La p r o p o s i t i o n 1 e s t r e a l i s & avec I p r i n c i p a l t e l que :

D'oir, s i a = u .r\ II:'~', 00 u e s t une u n i t 6 de A : vcv

Or, s i a E A, on a :

v(a1-s [ n ) a n r / nv N~ fl c.q . f . d .

v€Vn v&Vn +S ( n l

Donnons i c i une a u t r e express ion de ?&[A). S i l 1 o n pose y = n nV *V , on a : v€Vn

f3 .A = ---%- . A . D 'oD n pgcd(u .yn l

SN [ n ) COROLLAIRE I - sous l e s hypotheses e t n o t a t i o n s du thgorerne I. s i y n = (1 nv v , on a : V€Vn

pour n = ( n l,...,n I I-- Enfin, en des ignant pa r :

n . l e p l u s p e t i t e n t i e r sup&-ieur 2 ni-l t e l que pgcd[a,yn I Z pgcd(cr,yn 1 ( Z < i < r l , i i-1

[ resp. n, l e p l u s p e t i t e n t i e r t e l que pgcd[a,Y 1 # 1,

n l e p i u s ' p e t i t e n t i e r t e l que pgod(a,ynll = l a . oh E A), l a c o r o l l a i r e 1

s ' g c r i t : r

I COROLLAIRE 2 - Sous l e s hypotheses du th6orQme 1 e t l e s n o t a t i o n s pr6c6dentes. t o u t I polyndme P(X) de %(A) s 1 8 c r i t do manigre un ique :

P [ X l = E a f (X I Qi(X), OG Qi(X1 6 ACXI, degr8 Qi < nirl- ni

pgcd[%yn ) ni i

On a donc :

k(A&) = n1 I kl(A/d2J = nr.

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 7: Anneau de fonctions polynömes d′un anneau commutatif unitaire

798

1 . 3 - ANNEAU DE DEOEKINO.

JACOB

--

THEOREME 2 - S i A e s t d e Dedek ind , e t 4 = [(a) p r i n c i p a l , a l o r s Pa[Al e s t un A module

l i b r e , e t a v e c l e s n o t a t i o n s c i - d e s s u s :

-S ( n P&(AI = o u2 f [XI , oir 6tn = ( a I n l n A e s t p r o j e c t i f , e t oG In = II klv Nv

n c l ~ n n v c v

S e p l u s , p o u r t o u t e n t i e r m p o s i t i f , on a :

P r e u v e : I1 s u f f i t e n c o r e d ' a p p l i q u e r l a p r o p o s i t i o n 1 , d o n t l e s h y p o t h e s e s s o n t r 6 a l i s B e s -S ( n l

a v e c In = II yv Nv [ c f . 131) . I n ' e s t p a s p r i n c i p a l m a i s e s t un A module vav

p r o j e c t i f , d e mPme q u e P&[AI : Ce d e r n i e r Q t a n t d e r a n g i n f i n i , c ' e s t meme un A module

l i b r e . d e meme q u e P ~ ( A I p o u r t o u t e n t i e r m p o s i t i f . a 0 . q . f . d .

1 . 4 - EXERPLES.

a 1 A e s t un anneau d e v a l u a t i o n d i s c r b t e .

S o i t n u n e u n i f o r m i s a n t e d e A. o ' e s t a d i r e un g B n 6 r a t e u r d e 1 1 i d 6 a l m a x i m a l p d e A.

On s u p p o s e N = c a r d A f i n i , s i n o n P (A1 = 0 . Aveo l e s n d t a t i o n s 1 , p o s o n s : P

n-I i fo[X1 = 1 , f (XI = II [X-ail , S [n l=C ["I e t s o i t e l a v a l u a t i o n d e a , d e

i - 0 N i.NN s o r t e q u e a = uTre, ob u e s t une u n i t 6 d e A. A l o r s

PROPOSITION 2 - S i A e s t d e v a l u a t i o n d i s c r b t e , a v e c l e s n o t a t i o n s p r b c B d e n t e s , P (Tre l [Al e -S ( i l

e s t un A module l i b r e , d e b a s e (V . f f I ob n d e s i g n e l e p l u s p e t i t e n t i e r i' j I s i s n

t e l q u e S [ n I > e . N i- j z n r

I Oe p l u s . t o u t polyndme PlXl d e P i r e l ( A l s 1 6 0 r i t d e m a n i b r e u n i q u e :

ni e s t l e p l u s p e t i t e n t i e r s u p B r i e u r B ni-? t e l q u e S [ n I # SN(n i - l l . c e c i pour N i 3 S i < r [ n l = 1 , e t n e s t l e p l u s p e t i t e n t i e r t e l q u e S [ n I # 1 1 .

2 N 2 On a ~ [ A / V ~ A I = n l , k l [ ~ / i T e ~ l = nr.

On p e u t meme v e r i f i e r q u e n e s t un m u l t i p l e d e N , st que l ' o n a e n f a i t n = N x r.

Oans 1s c a s od N e s t p r e m i e r , S ( n l e s t Bga l B l a p l u s h a u t e p u i s s a n c e d e N q u i d i v i s e N

n I

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 8: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES 799

C e s r B s u l t a t s r e s t e n t v a l a b l e s s i A e s t un a n n e a u l o c a l i n t b g r e d ' i d e a l maximal

p r i n c i p a l p , t e l q u e n ;hi = 0 [ c a r on p e u t a l o r s d e f i n i r u n e f o n c t i o n v d e A d a n s N, i

t e l l e q u e , p o u r 8 6 A , v ( a 1 d e s i g n s l ' e n t i e r tel q u e a E ~ ~ [ ~ ~ , a 4 k v ( a l + l ) .

b l Anneau Z.

PROPOSITION 3 - S o i t a un e n t i e r d e + ni l e s e n t i e r s s u i v a n t s : Pour 3 5 i 5 r, ni e s t l e p l u s p e t i t e n t i e r s u p &

r i e u r A niW1 t e l q u e pgcd(a ,n f i . I # pgcd[a,ni_l'. I [ a v e c nl = 0, e t n2 e t nr l e s p l u s

p e t i t s e n t i e r s r e s p e c t i f s t e l s q u e pgcd(a,?$l Z 1 , e t p g c d [ a , n T l 2 a ] .

T o u t p o l y n h e PC>] d e P c a Z l [ Z l s ' e c r i t d e m a n i b r e u n i q u e :

a X(X-I I . . [x -n i+? I P(X) = 1 Qi(X)gn (XI oG Qi[XI e X X 1 e t g (XI =

l-iisr i d e g r e Qi(Xl C ni+,,-ni ni pgcdca , ni! I

On a t o u j o u r s k (Z /aZ) = pl t o 3 pl e s t l e d i v i s e u r p r e m i e r l e p l u s p e t i t d e a ] ,

e t kl ( W a Z = nr.

COROLLAIRE 3 - S i a = pe. 0 3 p e s t un nornbre p r e m i e r e t e un e n t i e r p o s i t i f , t o u t

polyndme PIX1 d e P ( a Z l ( Z l s ' 8 c r i t d e m a n i s r e u n i q u e :

e -S [ n I P ( X I = 1 Q ~ ( x I ~ ~ , ( x I O D 0 ~ ~ x 1 e K X I , e t g n , [ X I = p X(X-11-(X-ni+l l

I s i S r I d e g r 6 Q i ( X ) < n i + l - n i

oG S p ( n 1 = 1 [<I , e t O D l e s n . s o n t l e s e n t i e r s s u i v a n t s : P o u r 3 S i S r, ni e s t i 2 o p

l e ~ l u s p e t i t e n t i e r s u p B r i e u r A ni-? t e l q u e S p [ n i l # S ~ [ n ~ - ~ l , e t nl = 0. n e t n 2 r

B t a n t l e s p l u s p e t i t s e n t i e r s r e s p e c t i f s t e l s q u e Sp(n21 # 0 , Sp[n r l 2 e .

On a d e p l u s i c i n = p r .

P r e u v e : On v o i t a i s e r n e n t q u a S p ( n ) sst Bgal A l a p l u s h a u t e p u i s s a n c e d e p q u i d i v i s e 1 n .

Oes r B s u l t a t s a n a l o g u e s o n t Q t B d8rnontrBs d a n s C 7 1.

I c i A d B s i g n e r a t o u j o u r s un anneau c o m m u t a t i f u n i t a i r e , 1 un i d e a l p r e m i e r d ' u n

anneau A, N l a c a r d i n a l d e A@, e un e n t i e r p o s i t i f . 6.

1

On p o s e :

2 I - L ' i d B a l pe e s t &A-primaire. s o i t ; Y ( a , b l E A , a b E pe, a 4 p + b E pe

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 9: Anneau de fonctions polynömes d′un anneau commutatif unitaire

800 JACOB

S i p e s t n i l p o t e n t , l e s p r o p o s i t i o n s 4 e t 5 d o n n e n t a l m s r e s p e c t i v e r n e n t l e s

e x p r e s s i o n s d o P [A1 d a n s l e c a s 00 N, e s t i n f i n i , p u i s f i n i . E l l e s s e t r a n s c r i v e n t a l o r s 0

a i s e m e n t p o u r l e c a l c u l d e P [A1 ( t h Q o r Q m e s 3 e t 41. E n f i n l a p r o p o s i t i o n 6 donne i n d e - kie pendamrnent une a u t r e expression p l u s s i m p l e d e P .(A], p o u r d e f a i b l e s v a l e u r s d e e . t

1 1 . 1 - SUPPOSONS D'ABORO N1 -.

PROPOSITION 4 - S o i t A un anneau p o s s e d a n t un i d e a l p r e m i e r n i l p o t e n t & q u o t i e n t

i n f i n i , t e l que l e s e l e m e n t s d e A-jAne s o i e n t p a s d i v x s e u r s d e z e r o d a n s A. A l o r s r I A e s t 5 . t . p . I

P r e u v e : S o i t e l e p l u s p e t i t e n t i e r t e l q u e pe - 0 ; s o i t & u n e p a r t i e d ' u n systSrne d e

r e p r e s e n t a n t s d e A modulo a y a n t k + 1 QlBrnents , e t s o i t ?(XI E ACXI, d e d e g r e k, t e l

q u e P ( a 1 - 0 p o u r t o u t a E A ; s o i t a E & , a l o r s P [ X ) = ( x - a , ] Q [ X ) , 00 Q[X) E ACXI 1

e t s ' a n n u l e s u r & - { a 1 . On rnontre a l o r s p a r r e c u r r e n c e s u r k q u e P[Xl = 0. 1

On e n d Q d u i t a i se rnen t l e th6orBme s u i v a n t :

THEOREME 3 - S o i t kJ un i d e a l p r e m i e r d ' u n a n n e a u A 2 q u o t i e n t i n f i n i . Supposons [C I

s a t i s f a i t . A l o r s : P .[A1 = peCxI. P, P

Rernarquons q u e (C p , e l e s t au to rna t iquement s a t i s f a i t s i jA e s t un i d e a l maximal d e A,

oornrne nous l e v e r r o n s d a n s l a p r o p o s i t i o n 7 .

1 1 . 2 - SUPPOSONS MAINTENANT N, x. a 1 S o i t A un anneau p o s s k d a n t un i d e a l p r e m i e r n i l p o t e n t , 3 q u o t i e n t A f i n i . On

s u p p o s e q u e e e s t l e p l u s p e t i t e n t i e r t e l q u e pe = 0 . P o s o n s : P

V o s k i e - I : N k + l

= c a r d ( c a r d i n a l f i n i ou n n n l . k k + l

W o 5 k < e - I , V o < i 5 Nk+,-I : [ a . I s y s t h e d e r e p r e s e n t a n t s d e s c l a s s e s 1, k

d e dhk modulo k l k f l , On s u p p o s e d e p l u s a o , k = 0 p o u r t o u t k.

Snit K le plus petit entier tel que S (KBl 2 e. P V 0 S n S Kg , n ~'Bcrit de maniare unique : iO+flNl+..+i (N ..N l+..+ie(N1..

j l j Ne o h o S ij < Nj,l, pour o 5 j 5 e. On pose alors :

.. . fn(Xl= YI (Xsail pour n 2 1 ,.f0(X1 - 1.

i-0

Alors :

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 10: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES 801

PROPOSITION 5 - S o i t A un anneau possbdant un i d e a l premier J.4 n i l p o t e n t . q u o t i e n t

f i n i , s o i t e l e p lu s p e t i t e n t i e r t e l que Te - 0. Supposons 0 s a t i s f a i t . Alors , y ' e

en t a n t que A module. avec l e s n o t a t i o n s p rec6den te s :

1 On a a l o r s : k[A) = N l , kl(A) = Ke

Preuve : Suppcsons dans un premier temps l e s ca rd inaux Ni t ous f i n i s : l e s cardinaux Ni

s on t t ous supe r i eu r s a 1 [ S i pour ko 5 e. N - 1 , a l o r s to-' = rkO = . . = = 0, c d ko

q u i ne s e p e u t ) . La s u l t e des en t ix - s N1. N 1 N 2 , . . , N 1 . . N i , . . N , . . N e s t donc s t r i c t e m e n t

c r o i s s a n t e . e t l ' o n peut donc e c r i r e l ' e n t i e r n de maniere unique s u r c e t t e "base de

num6ration". de l a manisre indiquee .

Quelques remarques s u r l a s u i t e des e lements ( a 1 avant de con t inue r . E l l e e s t cons-

t r u i t e de t e l l s faqon que l e s N premiers termes s o n t systame de r e p r e s e n t a n t s de A 1

module ( r e s p . V 1 i i i 8, l e s N 1 . . . N premiers termes un s y s t h e de r e p r e s e n t a n t s de i

A modulo $'I, c e c i s e r ep rodu i san t de N, en N1 ( r e s p . V 1 s i i e , de [N1..NI) en

(N1..Ni)). Pour t o u t 1 5 i < e , l e s t e r m e s a N1. . N I S %zN?. .Ni,

e t c . . . son t d e s e lements d e

Ceci peut Otre r ep re sen t6 pa r l e schema s u i v a n t , oh l ' o n a e c r i t B l a s u i t e l e s 816-

ments (a,) IsnsK1

Oans l e c a s oh A = Z, e t y - [ p ) , il s ' a g i t t ou t , s imp lemen t , p a r exemple. de l a

s u i t e de s e n t i e r s 0 ,1 ,~ , . . . . Sy[nl

D 'aut re p a r t , l a d e f i n i t i o n de S (n ) v i e n t du f a i t que f n ( A l c P , c o m e on 61 peut l e v o i r d ' a p r s s l a s u i t e . Nous O tab l i rons l a preuve a l ' a i d e d e s t r o i s l e m e s

s u i v a n t s :

I J i

Preuve : En e f f e t , f i ( a i + j ) - il [ai+J - a 1. Pour t o u t e n t i e r q t e l que o S q 5 e k-I

k

ai+J e s t congru 3 au moins CAI 6?6ments parmi l e s i 416ments ( a k ) N 1 . . . N modulo

Q I S 6 1 pq, d'oh l e r e s u l t a t .

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 11: Anneau de fonctions polynömes d′un anneau commutatif unitaire

802 JACOB

LEMNE 2 - V o s i < K1, on a f . ( a 1 i + l l E k d S r [ i l - p S r ( i l + l

i Preuve : E n e f f e t . f i [ a i c j ) - JI ( a i r l - a k ) . Pour t o u t e n t i e r q t e l que o 5 q < e

I k-1

a i + l e s t congru a exac tement C--L N 1 , , , N I BlQments parmi l e s i 618rnents ( a I 9 15k5i

modulo p q , d ' o b 1 e r e s u l t a t .

Ces p r 6 l i m i n a i r e s b t a b l l s , rnontrons l e r e s u l t a t oherchb . Les polynBmes f n ( X l s o n t

u n i t a i r e s d e d e g r 6 n ; i l s forrnent une base du A module l i b r e ACXI e t t o u t polyndrne

P(X1 E ACXI s ' Q c r i t d e rnanihre un inue :

P(X) = Z bn f n ( X l , od b E A . n5o

Le l e m e s u i v a n t 6 t a b l i t l e r e s u l t a t .

LEMNE 3 - Avec c e s n o t a t i o n s , on a : I- e-Sy[n) P(A1 - 0 e=> V o 5 n s K e ,

bn 'Y

Preuve : Pour n 0, on a b i e n bo = P(a.,l ' 0. Supposons que, pour n < i < e on a i t

bn E k(e-Sb'[nl ; A l o r s , p u i s q u e f n ( a i i l ) = 0 pour i < n < K1, on a :

Or ~ ( a ~ + ~ l = 0. st pour m < i, bn E pe-Sp(n) f ( a , i + l l ~p d 1 a p r 8 s l e l e m e 3

prbc6dent . donc b f ( a i c l ) = 0. Donc b i f i ( a i + l l = 0. Or d ' a p r h s l e lemrne 2 p r e c g d e n t , n n

Sp'il Sb( i lc ' , oa S ( i l 5 e . D S a p r 6 s l e s hypotheses v e r i f i b e s p a r p , on

a donc bi E p P . L ' i r n p l i c a t i o n r b c i p r o q u e e s t imrngdiate.

S i N e s t f i n i e t s ' i l e x i s t e un s n t i e r k i n f Q r i e u r a e t e l que N s u i t i n f i n i 1 k

K C X n 3 n e ~ [ p a r exernpla. A = - , oh K e s t un c o r p s f i n i l , d 6 s i g n o n s p a r ko l e p l u s p e t i t

\xn12

s n t i a r t e l que N s o i t i n f i n i i ra i sonnement e t r b s u l t a t s s e p o u r s u i v e n t d e r n h e , l e s ko

blbrnents u t i l i s b s ne f a i s a n t i n t 6 r v e n i r que d e s e n t i e r s i n f g r i e u r s a ko. A i n s i t o u t e n t i e r

n p o s i t i f s ' g c r i t d e m a n i s r e un ique :

n = io + i l N , + .. + i N1. .N . oh pour t o u t o 5 J 5 ko - 2 , on a : ko-l ko- l

ij < N,+l , st oh i c W . On d g f i n i t a l o r s S ( n l . a f n ( X l , e t re-Sb(i) d e l a mBme & o - ~ n.

rnani8rs. La p r o p o s i t i o n s s t donc dbrnontr6e.

Donnons e n i c i une a u t r e e x p r e s s i o n , e n d b i g n a n t , p o u r chaque e n t i e r i i n f b r i e u r

B Kg. p a r l e p l u s p e t i t e n t i e r a u p b r i s u r ni t e l que Sp(nil l1 Z S ( n I [ a v e c no = 0 1 ,

A l m s : r i

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 12: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES 803

COROLLAIRE 4 - Sous l e s hypotheses de l a p ropos i t i on 5 , t o u t polyndme P(X1 de Po[Al

s ' e c r i t de manisre unique :

I , egrb Qi[Xl < ni+l-n . pour o s i s K e . e t ob QK (XI E A C X l 0a Qi[xl E v e - s y [ n i l ~ ~ ~ d e

Remarquons d ' a i l l e u r s que dans l e cas de l a p ropos i t i on 5 e t de ce c o r o l l a i r e , A

e s t un anneau l o c a l e t 1 un i d e a l maximal. Enfin, l e c a s e = 2 e s t s i g n a l e r ; En e f f e t k CAS e = 2 :

O'une p a r t , 0 e s t t ou jou r s v 6 r i f i e pour t o u t i d e a l p r e m i e r p . O ' au t r e p a r t , on b.2

v o i t aisement que, dans ce ca s , S (N1l = 1 , S [ZN l = 2, donc que K = 2N1. D'ob l e : P k 1

COROLLAIRE 5 - S o i t A un anneau possgdant un i d e a l r nax ima ly A corps r e s idue1 f i n i , 2

t e l q u e m = 0 .

I S o i t a un 616ment non nu1 de W,

I Tout polyn6me P[Xl de Po(AJ s ' Q c r i t de maniare unique :

La p ropos i t i on 5 s e t r a n s m i t pour c a l c u l e r P ( A ) , l o r sque A posshde un idBal P

premier p a corps r e s idue1 f i n i . Avec l e s no t a t i ons r e l a t i v e s b c e t t e p ropos i t i on , nous

Bnonqons :

THEOREME 4 - S o i t y un i d e a l premier d 'un anneau A 5 corps r e s i d u e 1 f i n i . Supposons

[D I s a t i s f a i t . Alors , en t a n t que A-module : .!Ase

e -Sp(nl n-1 P etA) = e I f ( X I O Q In - k( Y

st fntX) - TI (x-ail . neN i - 0

La p ropos i t i on 7 i nd ique ra de nombreux c a s oh C a t D son t s a t i s f a i t s . Pa r p , e p , e

exemple, D e s t s a t i s f a i t sip e s t un i d e a l premier de hauteur 1, ou maximal d 'un PI

anneau r e g u l i e r . en p a r t i c u l i e r s i p e s t un i d e a l premier non nu1 d 'un anneau de Dedekind.

P lu s gBn6ralement D e s t s a t i s f a i t pdur t o u t e s i Grad A e s t i n t h g r e . k'se k'

Remarquons q u ' i l s e ron t a i s 6 de t r a n s c r i r e ce s r g s u l t a t s dans l e c a s d ' un nornbre

f i n i de v a r i a b l e s ; pour s i m p l i f i e r , nous n18noncerons l e s r e s u l t a t s qua dans l e cad re

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 13: Anneau de fonctions polynömes d′un anneau commutatif unitaire

804 JACOB

du p a r a g r a p h e s u i v a n t [oG c e s d e r n i e r s r e c o u v r e n t o ' a i l l e u r s l e s r e s u l t a t s d e c e p a r a -

g r a p h e l .

E n f i n , i l s e r a i t p o s s i b l e d e r econc ju i re c e s r d s u l t a t s d a n s l e c a s oh A e s t non commu- P1 A

t e t i f , , e n c o n s i d d r a n t l e s A modules -i-;? e t - . P P"

11.3 - P o u r l e s p e t i t e s v a l e u r s do e . l a p r o p o s i t i o n s u i v a n t e i n d e p e n d a n t e d e s p r 6 c 6 -

d e n t e s , donne une e x p r e s s i o n p l u s s i m p l e d e P (A1 en t a n t qu '& d e ACXI. E l l e e s t P e t o u j o u r s v a l a h l e p o u r e = 2 , ou p o u r t o u t e s i N 2 e s t i n f i n i :

PROPOSITION 6 - S o i e n t p u n i d e a l maximal d ' u n anneau A c o r p s r L s i d u e l f i n i , N

( a i ) un s y s t h e d e r e p r e s e n t a n t s d e A / t , e t P[X) = 11 (X-a*) . 1SiSN i - I

) Supposons D s a t i s f a i t e t s u p p o s o n s d e p l u s Ke-? S N [N - 1 ) C c f . n o t a t i o n s 1 2 I s i - d e s s u s , ~a ni(':st l e p l u s p e t i t e n t i e r t e l q u e i ( X I 2 i]. k l i

k" P r e u v e : Notons ( a j , * ) un s y s t h e d e r e p r e s e n t a n t s d e - ( a v e c a = 0 ) . Nous s u p p o s o n s - P 0 , 2

connu l e r e s u l t a t s u i v a n t : [ c f . C61) K el

P o u r t o u t e n t i e r e l , s i A d e s i g n e u n e p a r t i e d e A f o r m e e d e - sys tk rnes d e 1 N.

A I

r e p r e s e n t a n t s d e - , u n e c o n d i t i o n s u f f i s a n t e p o u r q u ' u n polyndme d e ACX] a p p a r t i e n n e - P

a P [A) e s t q u e : V a E A1, P ( a l E

klel

P r o u v o n s c e t t e p r o p o s i t i o n p a r r e c u r r e n c e s u r e . E l l e e s t v r a i e p o u r e - I , suppo-

s o n s donc e > 1, e t s u p p o s o n s l a v r a i e p o u r t o u t e n t i e r i n f 6 r i e u r A e .

S o i t QCXI E P (A] , e t s o i t s l a s u r j e c t i o n c a n o n i q u e : ACXl - - f i e [ ~ l . Les d i v i s e u r s

Pe A r d e 161-0 d e l l a n n e a u l o c a l - s o n t l e s d l h e n t s d e 2 e t l a s u i t e ( s ( a i ) e s t u n e

kPe te' 1 S i s N s u i t e d e l o n g u e u r rnaxirnale t e l l e q u e , p o u r t o u t i i n f 6 r i e u r a j i n f 6 r i e u r a N1.

A A s ( a I - s < a I n e s o i t p a s d i v i s e u r d e z e r o d a n s - ( a u t r e r n e n t d i t m(- 1 - N l , cf 2 I V ) .

i 3 Y e Pe D'oh s ( Q ( X I I e s t d i v i s i b l e p a r s ( P ( X I 1 . On a d o n c :

S o i m t l e s N N 61Bments ( a i + a 1 2

O n a :

... - S o i t a P 11 + a '-a 1 : P o u r k f I. a -a & f, e t a j n 2 y, d o n c l a s o m e

k a 2 k 1 k f i

a a k - ai ( y . il s ' e n s u i t q u e a & p. .

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 14: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES 805

D ' a u t r e p a r t , p o u r j # 0, a

Donc. p o u r j Z 0, P ( a i + a j , Z l E jd - p2, donc S ( a i + a . J , 2 1 e pe-:,-;r il s ' a g i t d e

N2-I s y s t Q m e s d e r e p r e s e n t a n t s d o A m c d u l o p . S i l ' o n a : N -1 t -, c e l A e n t r a i n e r a 2 N .

S [ A I c p e - I , s o i t S [ X I e P y e - I [A) - [jAe-l-i P i ~ X l l o 5 ~ s e ~ l d ' a p r k s l " h y -

p o t h k s e d e r e c u r r e n c e . D1oO f i n a l e m e n t P(X1 e (koe-i p i ( x ) )05i5e, c . q . f . d .

Remarquons q u e c e t t e e x p r e s s i o n t r B s s i m p l e d e l ' i d 6 a l P CAI, q u i n e f a i t i n t e r -

v e n i r q u e l a polynlime P(X1 q u i s e d 6 d u i t d ' u n s y s t k m e d e r e p & : e n t a i t s d e A p , e s t

t o u j o u r s v a l a b l e p o u r e - 2 , a u t r e m e n t d i t P 2 (Al = ( j 4 2 , p P(X1. P ~ [ X I I . E l l e e s t a u s s i

t o u j o u r s v a l a b l e p o u r t o u t e , s i N2 = c a r d hP2 e s t i n f i n i . P l u s g 6 n l r a l e r n e n t e l l s e s t

v a l a b l e p o u r t o u s l e s e n t i e r s e t e l s q u e Ke-l 5 N (N -11 , c ' e s t B d i r e t c u s l e s e n t i e r s 1 2

e p o u r l e s q u e l s K = e N1 cod l a d i s t o r s i o n c r 6 B e p a r l a f c n c t i o n S ( n l n ' i n t e r v i e n t p a s l . P

Ce r e s u l t a t e s t v a l a b l e a u s s i p o u r d e s p o l y n h e s 3 un nombre f i n i d e v a r i a b l e s .

Nous donnons i c i l e thBorBme l e p l u s i m p o r t a n t d e c e t r a v a i l , l e th6orBrne 5 . I1

d e c o u l e d i r e c t e m e n t d e s t h e o r Q m e s 3 e t 4, q u i e n s o n t d ' a i l l e u r s d e s c a s p a r t i c u l i e r s .

La p r o p o s i t i o n 7 p r e c i s e l e s c a s l e s p l u s c o u r a n t s d ' u t i l i s a t i o n d e c e th6orQme. l e s

t h e o r h m e s 7 st 8 e n d o n n e n t s a v e r s i o n l o r s q u ' i n t e r v i e n t p l u s i e u r s v a r i a b l e s . E n f i n ,

n o u s donnons une e x p r e s s i o n d i f f g r e n t e e t p l u s s i m p l e d e l ' i d e a l c h e r c h 6 . d a n s un

c a s p a r t i c u l i e r c o u r a m e n t r e n c o n t r 6 .

THEOREME 5 - S o i t a= n j4yi un i d e a l i n t e r s e c t i o n d e p u i s s a n c e s d r i d 6 a u x p r e m i e r s i e I

d ' u n a n n e a u A. S o i t :

1, = i e I ; i f ; 1 = i 1 ; i n ; "yi . Pi E i", - . On s u p p o s e : V i e 11, C e s t s a t i s f a i t , i . e . pi1 e s t p i - p r i m a i r e ;

p i p e i - -

' d i <I2, 0 , e s t s a t i s f a i t , a l o r s P ( 4 1 = [@,,[XI] fl r? \ PA)) o a ? .[A1 e s t Pi* ei ca i a 5 Pii

d o n n e p a r l a th6orBme 4. Pii

P r e u v e : E l l e r e s u l t e du f a i t imrned ia t q u a s i & = n (Pi, 00 l e s % s o n t d e s i d 6 a u x d e A, i e I

a l m s P ( A 1 - n P CAI. i a I a i

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 15: Anneau de fonctions polynömes d′un anneau commutatif unitaire

806 JACOB

e . pi1 = 8 pii [ c e q u i e s t r e a l i s 6 s i i - I

l e s p;i s o n t g t r o n g r e r s d e u x 2 d e u x l .

A l o r s P (A1 " ll P [A).

'ROPOSITION 7 - Les c o n d i t i o n s C s o n t s a t i s f a i t e s sipi e s t max imal , e t l e s c o n d i - /di.ei

t i o n s C e t 0 s o n t s a t i s f a i t e s s i : pidi.ei p i . e i

1') l e s p i s o n t d e s i d e a u x p r e m i e r s d e h a u t e u r 1 c u maxirnaux,d'Un a n n e a u r g g u l i e r

2') l e s pi s o n t d e s idOaux p r e m i e r s d e h a u t e u r 1 d ' u n anneau d e K r u l l ;

3') p l u s g6nBra le rnen t , l e s pi s o n t d e s i d b a u x p r e m i e r s t e l s q u e Grad A s o i t i n t 8 -

g r e . 4

L e s h y p o t h e s e s du thOorkme 6 s o n t r Q a l i s 6 e s s i :

1 ' ) a e s t un i d e a l q u e l c o n q u e d ' u n anneau d e Oedekind ;

2') M e s t un i d e a l p r i n c i p a l d ' u n anneau f a c t o r i e l .

Le thQorBmc s u i v a n t g b n e r a l i s e l e s t h e o r h m e s 3.4. a t 5 d a n s l e c a s d e p l u s i e u r s

v a r i a b l e s .

'HEOREME 7 - S o i t $ u n i d e a l p r e m i e r d ' u n a n n e a u A, e t s o i t N1 = c a r d A/p. A l o r s , p o u r

:ous e n t i e r s m e t e p o s i t i f s , o n a :

- S i N e s t i n f i n i , e t C h a t i s f a i t : 1 P."

- S i N e s t f i n i , e t D s a t i s f a i t : 1 Y e e

s i , V n - l n ,,..., n E !Nmlm' o n p o s e : fn(X, ...., x n 1 - Il [ x - a ) - ,*ism ' l i j 5 n i

s v e c l a s n o t a t i o n s du th6orbrne 4 .

THEOREME 8 - S o u s l e s h y p o t h b s e s du theorbme 5 , o n a . p o u r t o u s e n t i e r s e l e t m p o s i -

t i f s :

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 16: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOPIES 8 0 7

"m Pa(AI = (jZICX1,. . . , X m l n [ n P" [ A l l ,

ic12 r,"l o h Pm (A1 est d o n n e p a r l e t h h o r 5 m e p r h c g d e n t .

P,'

111.2 - La p r o p o s i t i o n s u i v a n t e d o n n e u n e e x p r e s s i o n p l x s i m p l e d e l ' i d e a l F (A1 d a n s PL

l a c a s 3 b l e s p i s o n t p r i n c i p a u x , l e s e . Q g a u x d 1 . e t o h I a I e s t f i n i . S i / d i = [ p i ) , 2

a l o r s r a p p e l o n s q u e G r a d i p i l A e s t i n t P g r e s i p i n ' e s t p a s d l v i s e u r d e z e r o d a n s A.

n PROPOSITION 8 - S o i t q u n i d Q a l e n g e n d r e p a r 1 ' 6 1 0 r n e n t n pi d ' u n a n n e a u A, oO p i e s t

i.1 n o n d i v i s e u r d e z e r o t e l q u e A/p s o i t i n t s g r e f i n i . On p o s e

i n n

i n q = II p j e t P i [ X l - II ( X - a . 1

j - 1 3.1 J

j # i

,G [ a I e s t u n s y s t h e d e r e p r e s e n t e n t s d ~ c o r p s A/p . 1 1 '

n

P r e u v e : R a i s o n r o n s p a r r h c u r r e n c e s u r n . i e s i d h a u x I p . : s a n t rnaximaux ; i l s son: d o n c - 1

Q t r a n g e r s d e u x A d e u x , a i n s i q u e i e s i d e a u x l q i l , p o d r I p o s i t i f . A ; o r t i o r $ , o n 3 :

( s ~ ] ~ ~ ~ ~ ~ = A, e t i i e x i s t e n Q l t r n e n t s ' X : d e A t e l s q u e : 1 = 2 X i q i , s o L t p o u r t o l d t i E,

;olynBrne '(XI d e A 7 x I : P [ X l = 1 X i q i DIX1. En d l v i s a n t PIXI p a r i e s p o i y n b r n e s u n i t s i r e s i = l

r s s p e c t i f s ? . [ X I . o n a :

n o b Q i ( X 1 . R . ( X l , R:XI = Z A . q i Ri(XI s o n t d e s p o i y n d m s s d e ArX1. e t oh l o d e g r P d e

i - 1

RIXI e s t i n f e r i e u r 2 n i = s u ? n . . S i P [ X l E PQ(AI, a l o r s : V a E 4, q i D i ( a l E a d o n c - 0 l s i s n

E ( a 1 €a. e t e s t e n p a r t i c u l l e r m u l t i p l e d e 7 . , d o n - 9 1 x 1 = p i R ' i X l , 02 R ' ( X 1 E X X ' . 0 o

Cornme ?+ n ' e s t ? a s 5 i v i s s e r d e z e r o d a n s A , R ' I X I c P l q i ) [ A ] . F a r h y p o t h P s e d e r 6 c u r r e n z e o

P ( q i ] [ A ) = [ q i P i l X l ) o < i s n . o h q ' . = T I P . . F i n a l e r n e n r : PIX1 E l ~ i P 1 [ X I ; , s i s n . C ' a u t r e = j ; l J

o i # io j # { i , i o }

art, l ' a s s e r t i o n p o u r n = 1 e s t i m m e d i a t e .

R e r n a r q u o n s q u e ? a p r o p o s i t i o n r e s t e v a l a b l e s i I e s t f i n i . w a i s d i f f 6 r e n t d e 12. S o i t

e n e f f e t d = [ T[ P i ) un i d Q a l p r i n c i p a l d ' u n a n n e a u A, oh p . n ' e s t p a s d i v i s e u r d e z e r o i E I

d a n s A, - A i n t 5 g r e e t oh i ' e n s e m b l e f i n i I e s t Q g a l B I u 12, a v e c : 'i

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 17: Anneau de fonctions polynömes d′un anneau commutatif unitaire

808 JACOB

i = t i E I ; - i n ' i r i } , I2 = {i E I ; f i n i } . Com11e l e s p , ne s o l t p a s d i v i s e u r 3 e - 1 P i

3:

z e r o e t q u a , pour i E I? : DiXl E " [PI =/ p i 1 1 = p; ' ;2iX:, s: L i : i l c "IX1 c n a : (31) -

XI ; P ! A ] ==+ p i x 1 = 3 ; . ; !XI r> 4iXl E T; m i c T - I - Pi I 2 i c i - 2

oh q . = Ti- p . . I J

; Zi

C e t t e p r o p o s i t i o n e s r en p a r t i c u l i e r v a l a b l e pobr un norrbrc i i n i d ' 6 l Q m e n t s i r re-

d u c t i b l s s p . d ' u n anneau f a c t o r i e l A

I c i , A d & s i g r , e un anneau cornmutat if u n i t a i r e ; l e t h e o r h e p r i n c i p a l d e c e p a r a g r a p h s ,

l e t h b o r h o 9. e n c a d r s l e s e n t i e r s k(A1 e t k (A1 p a r d e s e n t i e r s l i Q s 2 l ' a n n e a u A , en- 1

t i e r s d e f i n i s c i - d e s s o u s , e t c a i c u l a S l e s au e n c a d r a b l e s d a n s d c nombreus c a s . On d B s i

g n e r a p a r : U f A ) 1 c s u n i t 5 5 d c A

O I A I l e s c i v i s e u r s d e z Q r o d e A

V t c IN , V [ a i l E A~ : D(ai! - IT [a:a . I , l e d 6 t e r r n i n a n t d e I S i S t 1 5 i g j S t

Vandermcnde fo rm& s u r l e s QlQrnen t s a . d e h .

E n f i n : Spec A , ?lax A, Assf A . Ass A s o n t l e s n o t a t i o n s h a b i t u e l i e n e t d 6 s i g r e n t

r e s p e c t i v e r n e n t l ' e n s e n b l e d e s i d 6 a u x : remiers d e A , d e s i d Q a u x maxirnaux d e P,, d e s

i d Q a u x p r e m i e r s nlinimaux au d e s s u s d e s a n n u l a t a u r s d 'Ql8i ien:s d e A, d e s i d Q a u x p r e m i e r s

a n n u l a t o u r s d ' Q 1 h e n t s d e A . ( z f . [ I ] ) .

OEFINITICPIS

Naus a s s o z i o n s 5 A l e s

n(A1 : l a p l u s g r a n d e n t i e r

miA) : l e p l c s g r a n d e n t i e r

n ( A ) : l e ?lus petit e n c i e r

e n t L s r s i f i n i s nu i n f i n i s l :

PREMIERES PEOPPIETZS :

2 ) S i A = 11 Al, oii l e s A , son: 5 2 s znn2aux i o 1 ~ : ' u t a i i i s ~ ~ i i z 8 1 r e s :

i c I

n iA) = i l f n M . 1 ; m[4) = i n f m i 1 i iE 1

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 18: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE FONCTIONS POLYNOMES

41 SL 4 e s t in :&gre m[Al = - 3 r d i

S i A e s t d r c o r p s : nLAl = c a r a 4

THECREPE 9 - Pour t o u t a n n e a u A , o n a lzs i n e e z l i t e s s u i v a n t e s : I

( 3 1 s u p c a r d A S n !A) - 1. p c S p s c A O

P r o u v e : N o n t r o n s c z s i n Q g a l i t Q s l o r s q u e t o u s c e s n o i l b e s s o n t f i n i s [Si l ' u n d ' e n t r e

oux e s t i n f i n i , on ,mont?e a i s 6 n e n t que ? s s s u l v a n t a s o n t i n f i n i s ! .

m [ A l S kLA1 : 6 v l ~ e n t c - r s i [ a , ) e s t t e l q u e D i a . 1 c 4 - O[Al a l o r s - o u t polynBme

i n i a 1 : 5 I = 1 pixi E ? (4; 3 1 3 r s p, . '3K,1;ai l = 0 e n t r a i n e j i t i s s f A

j: A , . <, ,> l -6 .

1 i+ , , ;3 t1 c a u q l , c e q u l es : i , ~ ~ o s s i o l e ? o u r u n e s u i t e a . d e A

<+I r c p r & 5 ~ ; , 3 - : s c r r l s s e ; 2 i t t i r : c c e s 3 3 -, s i s n n p . c 51 e t P czr? fi ;. A ,

3 , I: i ;.>-a - . .->- - - ( I = z r r . i. zt s i ( 3 ; ' e c t L. s,,s:>;,e d z r e i ; r Q s z n z a r ~ t s d e p

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 19: Anneau de fonctions polynömes d′un anneau commutatif unitaire

810 JACOB

COROLLAIRE 1 - P o u r t o u t a n n e a u A :

A, $ s e t i n f i n i a l o r s A e s t 5 . t . p .

En p a r t i c u l i ~ r , s i A e s t n o e t h e r i e n a l c r s A e s t s . t . p , s i e t s a u l e m e r i t s i , p o u r t o u t A

i d e a l p r e m i e r 14 d e l o e s s a s s i n d e A , l$ q u o t i e n t - c s c i n f i n i . 4 iv

P r e u v s : A e s t 3 . t . p . p a r d 6 f i n i z l o n s i k(A1 e s t i n f i n i , e t s i 4 e s t n o e t h e r i e n , o n a : - A s s f A = A s s A.

COROiLAIRE 2 - ? o u r t o u t a n n e a u A, o n a :

A A e s t q . e . t . 7 . +> V " q e Max A, i n f i n i .

P r e u v o : S i A e s t q . s . t . p . , p o u r t o u t i d d a l i . i j m a x i m a i d e A, l e c o r p s A e s t 5 . t . p . d u n c - */y i n f i n i . H B c i p r o q u e m e n t , t o u t a n n e a u q u o t i e n t a y a n t t o u s s c s i d e a u x m a x i m a u x 2 q u s i i c n t s

i n f i n i s , e s t s . t . p . d ' a p r i s !:I.

E x e m p i e s :

1 ) P o u r A = 2 : n [ A ) = m(A1 = k!Al - n o ( A 1 ~ l = k l ( A ) = p P 2

T e . A=-!- d P o b d = p;' : n [ A l = m!Al = k [ A l = i n ? p . ; l e s c a l c u l s d e no(A! e t

i = q - i

k , [ A l s o n t m o l n s i r n m e d i a t s .

2 1 P o u r A = - @ , o b yi E S p e c 6 : m(Al = m[Al = k [ A l = i n f c a r d &-- . r e .

,( 1 i pi

Oi i- 1

S i Grad B - s t int+~re, l e ca:;>l d e n [,<I e s t p o s s i a l e , m a i s s o n e x p r e s s i o n e s t Pdi

t r i j s t e c h ~ i q i l e d 5 5 q u s : e s B s o n t g r i l i i d s . B a n s c e c a s , l a p l . a p a s i t i o n 5 , e t la t h 6 o r e r n e 5 ,

-- 3ROPOSITICP.I 9 - ---

/ n [ A I i n f i n i , Pour tout o n n e a u A. a n a : n l A 1 l n f i n i %

.4 s . t . p . . %A q . s . t . p . ' "

Oe p l u s :

S i A s s t s e m i l o c a l , o n a : n ! A i i n f i n i C - > P q . s . t . p .

S i P. = U[Al u D!AI o n a : n [ A ) = rc[A!

ij a n n 0 [ 4 3 # D o n s : m(A1 i n f i n i C-i A 5 . t . p .

S i V 4 . 1 5 q u o t i e n t f i n i , a n n by i ' 3 , o n a : A s . t . p . :=> A q . s . t . p .

-

P r e u v s : M o n t r o r s sc l !ernont : Si a n n 3:AI # O a l o r s A s . t . p . =$ n!Al i n f i n i , l e ; a u t r s s -- a s s e r t i n r s 6 t e r t s i q - p i n s . C~:;;pos>r,s m!nI + i n i , e t ~ ~ i t ( 3 . 1 u n e s ~ t i t e d t Q l 6 n i n c s

I : m : > j d e A d.2 l o n c u n ~ r ~ d x i r : a l e z e l l e q u e 7:2 1 4 ? : > I . A l o r s l e c o l y n 5 v e x fi [ X . - 3 . 1 ,

i l l

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014

Page 20: Anneau de fonctions polynömes d′un anneau commutatif unitaire

ANNEAU DE F O N C T I O N S POLYNOMES

L 2 1 P . J . CAfiEN r t J.L. CHAOERT - 3 1 1 1 . S c . m a t h . 9 5 , Ze r h r i e , 1971. 7 , 295-324

[ 3 ] P . J . CAIIEN - i n b s e d ' E t a t , Z r s a y , : 9 7 5 .

[ S ] G . JACSB - P o i y n 6 m e s r e p r 6 s e n t e n t l a f o n c t i o n n i l l ? e s u ? un a n r ! e i u , :'?AS, 1975,

s Q r i e A, t . 283, p. 421-474.

[ 6 1 G. JAC38 - F a r t i e s d e i i s e s a u s e n s d e Z a r i s h i d ' u n a n n e a u , C z A 5 . 137s. S t r i c ,A,

t. 283.

C71 0 . SI? IGPIASTtR - J o u r r f a l o.^ Nurnaei- i t i e o r j i , 6 , 1 9 7 4 , 9 . 3 4 5 - 3 5 2 .

Received: March 1979

Dow

nloa

ded

by [

Uni

vers

ity o

f N

orth

Car

olin

a] a

t 22:

20 1

1 N

ovem

ber

2014