2012Spring-AIC-18-ET-Web

download 2012Spring-AIC-18-ET-Web

of 33

Transcript of 2012Spring-AIC-18-ET-Web

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    1/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    Yunho Lee, Ph.D.04/24-05/01/2012

    Department of Chemistry

    Korea Advanced Institute of Science and Technology

    Class 18-19Advanced Inorganic Chemistry

    Biology and Inorganic Chemistry ofElectron Transfer

    Principles of Bioinorganic ChemistryStephen J. Lippard and Jeremy M. Berg, 1994.

    1

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    2/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    2

    Outer-sphere Reactions Oxidant with bridging ligands undergoes inner-sphere mechanism.[CoII(CN)5]3- + [CoIII(NH3)5X]2+ [CoIII(CN)5X]3- + [CoII(NH3)5]2+

    Must be outer-sphere

    Substi-tution 2. ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    3/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    3

    Outer-sphere ReactionsTunneling

    ET

    According to Franck-

    Condon principleElectronic transitions

    are so fast taking placein a stationary nuclear

    framework. Reactant

    Product

    1. ET 2. Nuclearreorganization

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    4/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    4

    Outer-sphere ReactionsTunneling

    ET

    According to Marcus theoryThe movement of atoms ismuch slower than that ofelectrons, so the nucleimust move before, notduring, the electron

    transfer.

    Reactant

    Product

    Transition state;Two states are inthe same energy!

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    5/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    5

    Outer-sphere ReactionsET

    Entatic state where Cu(I)geometry is imposed on the Cu

    (II) site by the protein! Little geometric change onoxidation and a low Franck-

    Condon barrier to ET!

    TdTBP or SP

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    6/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    6

    Electron Transfer Proteins 1 electron transfer processes are generally preferred. Coupling of proton and electron transfer redox potential control Iron or copper metal ions are typically utilized Electron travels long distances > 10 Structural reorganization Oxidation states Electron transfer rate

    Acid-Base;Proton

    transfer

    Oxidation-Reduction;Electrontransfer

    2. Blue CopperProteins

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    7/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    7

    1. Iron-Sulfur Proteins Although ultimate proof of the existence of the nFe-nS clusters

    came from protein XRD data, values for the high-resolution

    metrical parameters of the clusters and, especially, their overallcharge have often relied heavily on the data of the replicativemodel systems.

    Protein Cluster OS EPR Mssbauer

    (mm/sec)

    max

    (nm)

    Rubredoxin 1Fe-0SFe3+

    Fe2+4.3, 9

    -0.250.65

    390, 490310, 335

    Ferredoxin 2Fe-2SFe3+/3+

    Fe2+/3+-

    1.89, 1.95, 2.050.26

    0.25, 0.55325, 420, 465

    Abs declines 50%

    Ferredoxin 3Fe-4S Fe3+/3+/3+Fe2+/3+/3+

    1.97, 2.00, 2.02-

    0.270.30, 0.46

    305, 415, 455425

    Ferredoxin 4Fe-4SFe2+/3+/3+/3+

    Fe2+/2+/3+/3+

    Fe2+/2+/2+/3+

    2.04, 2.04, 2.12-

    1.88, 1.92, 2.06

    0.310.420.57

    325, 385, 450305, 390

    Unfeatured

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    8/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    8

    1-a. Rubredoxin (Rb) [1Fe-0S] The protein C. pasteurianumrubredoxin (Rb) A single iron atom Tetrahedral geometry with four sulfur (Cys) atoms; Cys(6)-X-X-Cys(9)-Gly and Cys(39)-X-X-Cys(42)-Gly HS ferric by EPR and Mssbauer data Oxi form: red color, LMCT band at 490 nm. Redox potentials in the -50 ~ + 50 mV range at pH 7.

    PDB 1FHH, 1FHM

    Oxi form Fe-S 2.28 Good agreement with synthetic analog bis(o-

    xylyldithiolato)iron(III); Fe-S 2.267 Reduced form Fe-S 2.26~2.32 Good agreement with synthetic analog bis(o-

    xylyldithiolato)iron(II); Fe-S 2.36 The iron center does not change much uponreduction! No CN and Spin state.

    l h f E

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    9/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    9

    1-b. Ferredoxin (Fd) [2Fe-2S] [2Fe-2S] ferredoxin from S.platensis {Fe2S2(S-Cys)4}2- cluster with two sulfide ligands FeIII-FeIII 2.70 (FeIIFeIII 2.76 EXAFS);

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    10/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    10

    1-c. Ferredoxin (Fd) [3Fe-4S] [3Fe-4S] ferredoxin from A.vinelandii Originally the structure was known as 7-iron ferredoxin; [4Fe-4S]

    and [3Fe-3S] due to the wrong space group in XRD data. Latter found [3Fe-4S] cluster Fe4S4 cube missing one corner The same cluster was found from Fd from Desulfovibrio gigasand

    an inactive form of aconitase Fe-Fe 2.7 ,

    HS FeIII

    FeIII

    FeIII

    overall spin 1/2. HS Fe2.5Fe2.5FeIII overall spin 2.

    JBC1988, 263, 9256 Redox potentials: -110 mV

    Redox potentials: -400 mV

    Bi l & I i Ch i f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    11/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    11

    1-d. Ferredoxin (Fd) [4Fe-4S] The most ubiquitous iron-sulfur clusters in biology A distorted cube Distorted tetrahedral four iron atoms with four sulfide atoms Fe-Fe 2.75 ; S-S 3.55 It can exist in three oxidation states.

    PDB 1IRO, 1IUA

    P. aerogenesFd [4Fe-4S]2+: FeIIFeIIFeIIIFeIII" 4Fe2.5 fully delocalized Reduced form [4Fe-4S]+: FeIIFeIIFeIIFeIII

    " fully delocalized as well High-potential iron protein (HiPIP,

    ChromatiumFd) oxidized form[4Fe-4S]3+:FeIIFeIIIFeIIIFeIII

    Bi l & I i Ch i t f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    12/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET1-d. Ferredoxin (Fd) [4Fe-4S]

    The most ubiquitous iron-sulfur clusters in biology A distorted cube Distorted tetrahedral four iron atoms with four sulfide atoms Fe-Fe 2.75 ; S-S 3.55 It can exist in three oxidation states. P. aerogenesFd [4Fe-4S]2+: FeIIFeIIFeIIIFeIII" 4Fe2.5 fully delocalized Reduced form [4Fe-4S]+: FeIIFeIIFeIIFeIII

    " fully delocalized as well High-potential iron protein (HiPIP,

    ChromatiumFd) oxidized form[4Fe-4S]3+:FeIIFeIIIFeIIIFeIII

    2.31 2.28

    2.25

    Model complexes

    The structural changes ateach iron atom are very small.

    Only 1.3 % changes peradded electron!

    Very wide redox potential range: for[4Fe-4S]2+/+ -650 ~ -280 mVfor [4Fe-4S]3+/2+ + 350 mV

    ET rate constant: 10

    3

    104

    M-1

    s-1

    Minimal cluster reorganizational energy

    Bi l & I i Ch i t f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    13/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ETBiological N2 Reduction; FeMo-Nitrogenase

    Biological nitrogen reduction by Mo-containing Nitrogenasesis the first identified and well-studied.

    Mackay, B. A., et al. Chem. Rev. 2004, 104, 385; Einsle, O., et al. Science 2002, 297, 1696;Schindelin H., et al. Nature 1997, 387, 370, Rees, D. C. et al. Science 1992, 257, 1653.

    MoFe protein- 232 K protein with an 22

    subunit

    -P cluster; [8Fe-7S] cluster- FeMo-cofactor: N2 binding

    Fe protein- [4Fe-4S] cluster- MgATP binding site- Dissociated from MoFe

    Protein after delivering e

    Bi l & I i Ch i t f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    14/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    14

    Nitrate Reductase

    Structure1999, 7, 65

    Obtained from the sulphate reducing bacterium DesulfavibriodesulfuricansATCC 27774.

    A single polypeptide chain of 723 amino acid residues Folded into four domains Molybdenum-containing enzyme bis-molybdopterin guanine dinucleotide (MGD) cofactor One Cys 140 and a water/hydroxo ligand

    One [4Fe-4S] clusterNO3 + 2e + 2H+ NO2 + H2O

    Bi l & I i Ch i t f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    15/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    15

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Chem. Rev. 2004, 104, 527

    Bi l & I i Ch i t f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    16/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    16

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Chem. Rev. 2004, 104, 527

    Protein Cluster OS EPR Mssbauer

    (mm/sec)

    max

    (nm)

    Rubredoxin 1Fe-0SFe3+

    Fe2+4.3, 9

    -0.250.65

    390, 490310, 335

    Ferredoxin 2Fe-2SFe3+/3+

    Fe2+/3+-

    1.89, 1.95, 2.050.26

    0.25, 0.55325, 420, 465

    Abs declines 50%

    Ferredoxin 3Fe-4S Fe3+/3+/3+Fe2+/3+/3+

    1.97, 2.00, 2.02-

    0.270.30, 0.46

    305, 415, 455425

    Ferredoxin 4Fe-4SFe2+/3+/3+/3+

    Fe2+/2+/3+/3+

    Fe2+/2+/2+/3+

    2.04, 2.04, 2.12-

    1.88, 1.92, 2.06

    0.310.420.57

    325, 385, 450305, 390

    Unfeatured

    Bi l & In nic Ch mist f ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    17/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    17

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Holm, PNAS1975, 72, 2868 PNAS1973, 70, 2429

    O-xylyldithiolato ligand

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    18/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    18

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Chem. Rev. 2004, 104, 527

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    19/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    19

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Holm, JACS1982, 104, 5497

    Linear Cluster

    Cuboidal Cluster

    JACS1996, 118, 1966

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    20/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    20

    Synthetic Analogues of the Active Sites of Fe-S Proteines

    Holm, JACS1982, 104, 5497

    Cuboidal Cluster

    JACS1996, 118, 1966

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    21/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    21

    2. Blue Copper Proteins

    Chem. Rev. 2004, 104, 419

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    22/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    22

    2. Blue Copper Proteins

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    23/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    23

    2. Blue Copper Proteins

    PlastocyaninPDB code: 1PLC

    Cu

    SMet

    SCys

    Electron Transfer Protein- Blue mono (Type 1) cupredoxins; plastocyanin (plants), Azurin (bacteria)- Two His, Met, Cys distorted Td- LMCT ~ 600 nm (>3,000 M1cm1)- Very small All value (~ 60 X104 cm1) Very short Cu-S distance ~ 2.1 with very long Met distance.- Eo = + 250 ~ 350 mV, vs. NHE

    Cu(II) () Cu(I) ()

    Cu-SCys 2.13 2.17

    Cu-SMet 2.90 2.87Cu-NHis 2.04 2.13

    Cu-NHis 2.10 2.39

    The site is near the surfaceof the protein

    Entatic state!

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    24/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    24

    2. Blue Copper Proteins

    Both subject to Jahn-Teller

    distortion upon oxidation

    Entatic state!

    No J-T distortion

    ElongatedCu-S

    Strongcovalent Cu-S

    Thus, Geometries of Cu(I) andCu(II) are nearly identical!

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    25/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    25

    Cu

    SMet

    SCys

    SCys

    Cu

    O=CTrp

    2. Blue Copper ProteinsCuA: Electron Transfer Site- Purple binuclear center; also

    found in CcO- Two bridging Cys, two His, Met,

    CarbonlyTrp- 480 nm (~5000 M1cm1), 530 nm

    (~4000 M1cm1)- Eo = ~ + 240 mV, vs. NHE

    PlastocyaninPDB code: 1PLC

    Cu

    SMet

    SCys

    Electron Transfer Protein- Blue mono (T1) cupredoxins;

    plastocyanin, Azurin- Two His, Met, Cys- ~ 600 nm (5000 M1cm1)- very small All value (~ 60 X104

    cm1)- Eo = + 250 ~ 350 mV, vs. NHE

    N

    N

    SS

    OS

    N

    N

    Cu Cu

    N

    Trp

    2.47 - Cu-His: ~ 2 - Cu-Cys: ~ 2.3 - Cu-Met: 2.47 -

    Cu-Ocarbonyl: 2.6

    CuICuI Cu

    1.5Cu

    1.5

    e

    e

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    26/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    26

    Nitrite Reductase; T1 Copper Homotrimer with 36 kDa monomer Three identical subunits are tightly associated around a 3-fold

    axis to form a trimer around a central channel of 5-6 . Each monomer contains type 1 copper (2 His, 1 Met and 1 Cys)

    and type 2 copper (3 His and solvent) Intense 593 nm absorption band (3,800 M-1 cm-1) due to LMCT in

    type 1 copper. can be classified into two group green or blue.

    12.6 Acc. Chem. Res. 2000, 33, 728-735

    Cu-Scys: 2.08-2.18 Cu-Smet: 2.62-2.64

    NO2 + e + 2H+ NO + H2O

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    27/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    27

    PHM (Peptidylglycine -Hydroxylating Monooxygenase) catalyzesstereo-specific hydroxylation of a glycine -carbon in peptide

    amidation of many neuropeptides and peptide hormones.

    Mono Copper Center in PHM

    Crystal structure of PHM

    Prigge S. T. et al., Science1997, 278, 1300-1305; Prigge S. T. et al., Cell. Mol. Life Sci. 2000, 57, 1236-1259

    N

    O

    H O

    N

    H

    COOH

    R

    HH

    N

    O

    H O

    N

    H

    COOH

    R

    OHHPHM

    O2

    Ascorbate

    Prigge S. T. et al.,Science, 2004, 304, 864.

    N

    O

    H O

    N

    H

    COOH

    R

    H

    H atom

    abstraction

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    28/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    28

    Electron Transfer; CuA site

    Head-to-tail homodimer

    Cu

    SMet

    SCys

    SCys

    Cu

    O=CTrp

    Haltia et al., Biochem. J. 2003, 369, 77-88

    Cu+1.5Cu+1.5 S = , 7 lines in EPR

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    29/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    29

    Utilizing the same Triphenylmethylthiolate ligand Axial ligand exists in complex 1 but not in complex 2.

    Tris(pyrazolyl)borate

    -diketiminate

    Modeling the Blue Copper Proteins

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    30/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    30

    3. Cytochromes The final class of ET proteins utilizing iron porphyrins Most cytochromes have two axial ligands, affording coordinately saturated

    octahedral complexes. Eukaryotic cytochrome cuses His and Met. In addition, the prosthetic group is bound to covalently via two thioether

    linkages. Two propionic acid substituents is exposed to solvent.

    Propionic acid

    LS Fe(II/III)

    Why?

    Nonbonding T2g

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    31/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    31

    Nitrite Reductase; Iron Multi-heme NIR 120 kDa homodimer Each monomer contains one heme cand oneheme d1. Heme cis a ET center with His51 and

    Met88 axial ligands. Heme d1 is a catalytic center.

    Structure1997, 5, 1157

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    32/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of ET

    32

    Nitric Oxide Reductase TM domain: 13 helices span the transmembrane region

    Two heme band b3 and one none-heme iron, FeB Globular hydrophilic domain: heme c. NOR is an evolutionary progenitor of cytochrome oxidases.

    Science2010, 330, 1666-1670

    The topology of the TMregion and the arrangement ofthe metal centers in cNOR

    are similar to those ofcytochrome oxidases, a

    superfamily of enzymes thatact as the terminal oxidases

    in aerobic respiratorytransport chains.

    Biology & Inorganic Chemistry of ET

  • 8/2/2019 2012Spring-AIC-18-ET-Web

    33/33

    Inorganic Chemistry

    Biology & Inorganic Chemistry of E Bovine Heart Cytochrome cOxidase Crystal Structure

    Heme a3Heme

    a

    CuA

    CuB

    CuACuA

    H161

    H204 E198

    C196C200

    M207

    H61

    H378

    H376

    H291

    H290

    H240

    CuB

    Heme a3Heme a!