The chemical composition of the Sunbrogiato/physun/Grevesse.pdf · The chemical composition of the...

Post on 25-May-2020

8 views 0 download

Transcript of The chemical composition of the Sunbrogiato/physun/Grevesse.pdf · The chemical composition of the...

Nicolas GrevesseCentre Spatial de Liège and Institut d‘Astrophysiqu e et de

Géophysique, Université de Liège, Belgium

The chemical composition The chemical composition of the Sunof the Sun

Géophysique, Université de Liège, Belgium

Martin AsplundMax-Planck-Institut für Astrophysik (MPA)

Garching, Germany

Jacques SauvalObservatoire Royal de Belgique, Bruxelles, Belgium

Former Solar Abundance TablesFormer Solar Abundance Tables

� Anders and Grevesse 1989

� Grevesse and Noels 1993

Grevesse and Sauval 1998� Grevesse and Sauval 1998

Changes from 1980 to 2000 : mostly Atomic Data

Line formation in solar granulationLine formation in solar granulation[Fe,Si,C,N,O,Na[Fe,Si,C,N,O,Na--Ca,(FeCa,(Fe--Group),…]Group),…]

* 1D models 3D model

* LTE NLTE

* All indicators (atoms + molecules)* Best lines +atomic & molecular data

Abundances

Solar abundances:Martin Asplund (MPA-Garching)Carlos Allende Prieto (MSSL-UK)Nicolas Grevesse (Liège)David Lambert (Austin)Jacques Sauval (Brussels)Patrick Scott (Stockholm)

3D stellar modelling:Mats Carlsson (Oslo) Remo Collet (Uppsala)Åke Nordlund (Copenhagen)Bob Stein (Michigan State)Regner Trampedach (ANU)

New Results

M. Asplund, N. Grevesse, A.J. Sauval, in Cosmic abundancesas records of stellar evolution and nucleosynthesis, Eds T.G.BarnesIII & F.N. Bash, ASP Conf. Ser. 336, 2005, p.25-38(65th birthday D.L. Lambert)

N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard

N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard& S. Vauclair, EAS Pub. Ser. 17, 2005, p.21-32(65th birthday G. Michaud)

N. Grevesse, M. Asplund, A.J. Sauval, in Space Science Reviews, 130, 105-114, 2007(80th birthday J. Geiss)

3D solar atmosphere models3D solar atmosphere modelsIngredients:

• Radiative-hydrodynamical• Time-dependent• 3-dimensional• Simplified radiative transfer• LTE

Essentially parameter freeEssentially parameter free

3D successes !

• Topology and convective motions• …

For the first time, line profilesFor the first time, line profilesare perfectly reproduced

• But computing time !

Observations : All line profiles show …

• Widths much larger than thermal widths

MICROTURBULENCEMICROTURBULENCE

• λλλλcenter blueshifted (2 mA ���� 100 m/s at 600 nm)

• Asymmetries (C shapes : ~ 300 m/s i.e. 6 mA)

Averaged line profilesAveraged line profiles

1D vs Sun

3D vs Sun

No micro- and macroturbulence needed in 3D!

Shift!

Line asymmetriesLine asymmetriesThe asymmetries and shifts of spectral

lines are very well reproduced

Observations3D model3D model

Balance 1DBalance 1D--3D3DVarious ways to test modelsQ : Does the model reproduce …

Test 1D 3D

• Ic=F(λλλλ) ~Yes ~• Ic=F(λλλλ) ~Yes ~• C/L var. ~Yes ~• Granulation No Yes• Widths of lines Yes Yes• Shifts of lines No Yes• Asymmetries No Yes• ≠≠≠≠ indicators No Yes• Dependence I,EEx No Yes• High freq oscillations No Yes

Oxygen diagnosticsOxygen diagnosticsDiscordant results in 1D: log O~8.6-8.9Excellent agreement in 3D: log O=8.66+/-0.05O isotopic abundances: 16O/18O=480+/-30

LinesHolweger-

Müller3D Difference

[O I] 8.76+/-0.02 8.68+/-0.01 -0.08 [O I] 8.76+/-0.02 8.68+/-0.01 -0.08

O I 8.64+/-0.08 8.64+/-0.02 0.00

OH, dv=0 8.82+/-0.01 8.65+/-0.02 -0.17

OH, dv=1 8.87+/-0.03 8.61+/-0.03 -0.26

OH, dv=2 8.80+/-0.06 8.57+/-0.06 -0.23

*If LTE (O I): log O=8.82+/-0.10 (Δ=-0.18 dex)!!!

Carbon diagnosticsCarbon diagnosticsDiscordant results in 1D: log C~8.4-8.7Excellent agreement in 3D: log O=8.39+/-0.05C isotopic abundances: 12C/13C=87+/-4

LinesHolweger-

Müller3D Difference

[C I] 8.45 8.39 -0.06[C I] 8.45 8.39 -0.06

C I 8.39+/-0.03 8.36+/-0.03 -0.03

CH, dv=1 8.53+/-0.04 8.38+/-0.04 -0.15

CH, A-X 8.59+/-0.04 8.45+/-0.03 -0.14

C2, Swan 8.53+/-0.03 8.44+/-0.03 -0.09

CO, dv=1 8.60+/-0.01 8.40+/-0.01 -0.20

CO, dv=2 8.69+/-0.02 8.37+/-0.01 -0.32

Element 1D 3D 3D-1D

Na I 6.27±±±±0.04 6.17±±±±0.04 -0.10

Mg I 7.64±±±±0.23 7.57±±±±0.23 -0.07

Mg II 7.56±±±±0.08 7.53±±±±0.08 -0.03

Al I 6.45±±±±0.06 6.37±±±±0.06 -0.08

Si I 7.55±±±±0.04 7.51±±±±0.04 -0.04

Si II 7.46 7.45 -0.01

Na – Ca and Fe

Si II 7.46 7.45 -0.01

P I 5.37±±±±0.04 5.36±±±±0.04 -0.01

S I 7.17±±±±0.05 7.14±±±±0.05 -0.03

K I 5.20±±±±0.07 5.08±±±±0.07 -0.12

Ca I 6.43±±±±0.04 6.30±±±±0.04 -0.13

Ca II 6.34±±±±0.08 6.32±±±±0.08 -0.02

Fe I 7.50±±±±0.05 7.44±±±±0.05 -0.06

Fe II 7.47±±±±0.10 7.45±±±±0.10 -0.02

Heavier elements : See older tables (but -0.03 dex for Kr and Xe)

SummarySummary

• 3D : Granulation and line profiles• NLTE• All indicators agree• No dependence on I or E exc

C,N,O

Other elements

ImplicationsImplications

ImplicationsImplicationsSignificantly lower solar metallicity Z

– Z=0.0194 (Anders & Grevesse 1989)– Z=0.0122 (Asplund et al. 2005)

New solar metallicityNew solar metallicityElement Abundance Contribution

to Z (%)

O 8.66 43.7

C 8.39 17.6

Fe 7.45 9.4

Ne 7.84 8.3

Si 7.51 5.4

C+N+O ~ 2/3 Z

Si 7.51 5.4

N 7.80 5.3

Mg 7.55 5.2

S 7.14 2.6

X=0.7393 Y=0.2485 Z=0.0122 Z/X=0.0165

Anders, Grevesse 1989 Z=0.019 Z/X=0.027Grevesse, Noels 1993 Z=0.017 Z/X=0.024Grevesse, Sauval 1998

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surroundings– Young O,B stars in solar neighborhood– Local interstellar medium/Orion nebula

ImplicationsImplications

Turck-Chièze et al. (2004)

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surroundings

FIP

ImplicationsImplications

FIPFIP

Ar Ne

SWslow SWrapid SEP

Old Abund. 2.7 1.8 3.25

New Abund. 2.0 1.4 2.4

Quiet Cor.

1.25-1.66

0.8-1.1

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surroundings

FIP

ImplicationsImplications

Solar NEON ! High or Low? LOW!!!

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surrounding

FIP

ImplicationsImplications

Solar NEON ! High or Low?

Alters cosmic yardstick [X/H], [X/Fe]… WARNING!

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surroundings

Solar NEON ! High or Low?

ImplicationsImplications

FIP

Alters cosmic yardstick [X/H], [X/Fe], …

Agreement with meteorites !

Photospheric vs meteoriticPhotospheric vs meteoritic

Very good agreement with C1 carbonaceous chondrites in general

Volatiles

Exceptions: Cl, Ga, Rb, Ag, In, W, Au

Mean difference otherwise: -0.01+/-0.06 dex

Note: change in meteoritic scale by -0.04 dex due to 3D analysis of Si

Solar depletion

Significantly lower solar metallicity Z=0.0122

Makes Sun normal compared with surroundings

Solar NEON ! High or Low?

ImplicationsImplications

FIP

Alters cosmic yardstick [X/H], [X/Fe], …

Agreement with meteorites !

Diffusion ���� Protosolar abundances ∆∆∆∆ (Proto-Now) = 0.05 dex Z Proto =0.0132 (Z/X)Proto =0.0185

Significantly lower solar metallicity Z=0.0122Makes Sun normal compared with surroundingsSolar NEON ! High or Low?

FIPAlters cosmic yardstick [X/H], [X/Fe], …Agreement with meteorites !

ImplicationsImplications

Agreement with meteorites !Protosolar abundances ���� Diffusion !

Isotopes(exercise of futility-B.Gutafsson- 65th…)

13C, 18O, (17O) from IR CO

Sun ≡≡≡≡ Earth

Significantly lower solar metallicity Z=0.0122Makes Sun normal compared with surroundingsSolar NEON ! High or Low?

FIPAlters cosmic yardstick [X/H], [X/Fe], …Agreement with meteorites !

ImplicationsImplications

Agreement with meteorites !Protosolar abundances ���� Diffusion !Isotopes

(Large) impacts in stellar structure and evolution

… (Giant planets, TTauri, Herbig Ae/Be, Gas/Dust rati o in dense clouds,Beat Cepheids, …)

Significantly lower solar metallicity Z=0.0122Makes Sun normal compared with surroundingsSolar NEON ! High or Low?

FIPAlters cosmic yardstick [X/H], [X/Fe], …Agreement with meteorites !

ImplicationsImplications

Agreement with meteorites !Protosolar abundances ���� Diffusion !Isotopes

Changes stellar structure and evolution

… (Giant planets, TTauri, Herbig Ae/Be, Gas/Dust rati o in dense clouds, …)

But Problems Standard Models - Helioseismology

Rcz/R =0.713±0.001

Helioseismology

Rcz/R����=0.713±0.001

Y = 0.248±0.005

Sound speed – Precision 10-4

(He depends on EOS)

The Paradise ...Rcz/R����

=0.713±0.001

Ys = 0.248±0.005

YYss=0.246=0.246RRczcz/R=0.714/R=0.714

A. Miglio, J. Montalban, A. Noels

Troubles in Paradise ...

YY =0.243=0.243

Rcz/R����=0.713±0.001

Ys = 0.248±0.005

with new abundances

YYss=0.246=0.246RRczcz/R=0.714/R=0.714

YYss=0.243=0.243RRczcz/R=0.727/R=0.727

YYss=0.246=0.246RRczcz/R=0.714/R=0.714

A. Miglio, J. Montalban, A. Noels

C

O

cz

Opacity inside the Sun

NeFe

N

Solutions?Solutions?

Erroneous solar CNO abundances?− Hopefully not (see O here after)

Missing opacity?− Apparently not

J. Bahcall, A. Antia, S. Basu, M. Pinsonneault, J. Guzik, S. Turck-Chièze,S. Vauclair, A. Miglio, J. Montalban, A. Noels, …

− Apparently notUnderestimated element diffusion?

− UnlikelyInternal gravity waves?

− PossiblyUnderestimated solar Ne abundance?

− NO

�The terrible tragedy of Science is the murder ofbeautiful theories by ugly facts. (W. Fowler?)

*The most interesting topics are the ones where Theory and Observations disagree.

*Thanks to these challenges Progress ismade in both fields*

*«The*«The mattermatter raisedraised byby AsplundAsplund etet alal..((20042004)) thereforethereforechallengeschallenges eithereither thethe opacityopacity calculations,calculations, thethe nuclearnuclearreactionreaction rates,rates, oror thethe basicbasic physicsphysics ofof stellarstellar evolution,evolution,NOTNOT HELIOSEISMOLOGY,HELIOSEISMOLOGY, asas somesome spectatorsspectators havehave

surmisedsurmised..

FromFrom seismologicalseismological structurestructure inversions,inversions, wewe knowknow thatthatthethe solarsolar modelsmodels areare notnot accurateaccurate bybythethe solarsolar modelsmodels areare notnot accurateaccurate bybyhelioseismologicalhelioseismological standardsstandards.. ThereforeTherefore thethe propertiesproperties(i(i..ee.. forfor exampleexample thethe chemicalchemical composition)composition) inferredinferredfromfrom thesethese calibrationscalibrations couldcould bebe moremore contaminatedcontaminated bybysystematicsystematic errorserrors thanthan byby errorserrors inin thethe observedobservedfrequencies»frequencies»

GG.. HoudekHoudek andand DD..OO.. GoughGough 200720076565thth birthdaybirthday DD.. GoughGough

HH��������T TT T☺☺☺☺☺☺☺☺PICS PICS ��������

Solar O��������Solar O��������(4 recent papers …)

Solar Neon?

Solar Ne abundanceSolar Ne abundance

We used Ne/O=0.15 (SEP, SW, Corona at ≠ T)

ANe = 7.84

0.24 dex (1.74x) smaller than older values

Such ‘low’ Ne/O solar values have been confirmed by

• Young (2005) Quiet Sun (EUV, CDS, Soho)

• Schmelz et al. (2005) Active regions (X rays)

Solar Ne abundanceSolar Ne abundanceNew studies of solar neighborhood suggested that solar Ne is underestimated

B stars

Cunha et al. (2006):Drake & Testa (2005):

New solar

Orion

log O

Ne/

O

X-ray luminosity(see also Liefke and Schmitt (2006))

*The <solar model problem> solved by the abundance of Neon in nearby stars

Drake & Testa (2005):

Solar Ne abundanceSolar Ne abundanceVery recent studies of solar neighborhood show

that solar Ne is NOT underestimated !

Robrade, Schmitt & Favata (2008)

Ne/

O

X-ray luminosity

(see also Liefke and Schmitt (2006))

• Landi et al. 2007 High Ne from solar flares … but possible IFIP (Ne: 21.6, O: 13.6eV)

• Bochsler 2007 Ne and O from solar wind by comparing • Bochsler 2007 Ne and O from solar wind by comparing to He

He very variable in SW. Depending on the adopted He, Ne and O can be high or low

ISM and OB stars: O and NeISM and OB stars: O and NeGood agreement with low solar O abundance

OB stars

Cunha et al. (2006), Esteban et al. (2004)

Asplund et al.Old solarOrion

Neon? Morel

O I: 3D semiO I: 3D semi--empirical modelempirical modelSocas-Navarro & Norton 2007: Observations of Fe I lines to map T(x,y,z) over surf ace

⇒⇒⇒⇒ 3D semi-empirical model

O I 777nm non-LTE calculations without H collisions :log O ≈ 8.63 ± 0.08 dex

[O I]: 630nm in Sunspots[O I]: 630nm in Sunspots

Centeno & Socas-Navarro 2008: Ratio atomic O/Ni in small sunspot log O = 8.86 ± 0.07

BUT

•Correction for wrong gf - 0.06 dex•Corr. for Ni abundance - 0.06 dex•Corr. for CO - 0.08 d ex

• log O = 8.66 (very uncertain!!!)

[O I]: another 3D model[O I]: another 3D modelAyres 2008: New wavelength calibration of solar atlas and one snapshot of a different 3D model (CO5BOLD)

log O = 8.81 ± 0.02log O = 8.81 ± 0.02If Ni I blend treated as free parameter

Ni contribution much too low

If Ni correct, log O = 8.74but less good fit

O I+[O I]: another 3D analysis(1)O I+[O I]: another 3D analysis(1)Caffau,Ludwig,Steffen,Ayres,Bonifacio,Cayrel,Freyta g,Plez 2008O I lines with CO5BOLD: log O = 8.77 ± 0.05- Choice of H collisions: ∆∆∆∆log O ≈ +0.02 dex- Equivalent widths: ∆∆∆∆log O ≈ +0.09 dex!

777.1nm777.1nm

777.4nm

777.5nm

O I+[O I]: another 3D analysis(2)O I+[O I]: another 3D analysis(2)

777.1nm

New equivalent widths New abundances

8.70 (Caffau) 8.69 (us)

777.1nm

777.4nm

777.5nmNew

New

New

Oxygen: status reportOxygen: status report

LinesHolweger-

MuellerAsplund et al. (2004)

Real Sun?

[O I] 8.76+/-0.02 8.68+/-0.01 ~8.7

No clear consensus what the real solar O abundance isPersonal guess: log O ≈ 8.70-8.72?

O I 8.64+/-0.08 8.64+/-0.02 ~8.7

OH, dv=0 8.82+/-0.01 8.65+/-0.02

~8.7?OH, dv=1 8.87+/-0.03 8.61+/-0.03

OH, dv=2 8.80+/-0.06 8.57+/-0.06

Stay tuned for a complete re-analysis of ALL elements with NEW 3D solar model