The chemical composition of the brogiato/physun/ آ The chemical composition of the Sun Martin
date post
25-May-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of The chemical composition of the brogiato/physun/ آ The chemical composition of the Sun Martin
Nicolas Grevesse Centre Spatial de Liège and Institut d‘Astrophysiqu e et de
Géophysique, Université de Liège, Belgium
The chemical composition The chemical composition of the Sunof the Sun
Géophysique, Université de Liège, Belgium
Martin Asplund Max-Planck-Institut für Astrophysik (MPA)
Garching, Germany
Jacques Sauval Observatoire Royal de Belgique, Bruxelles, Belgium
Former Solar Abundance TablesFormer Solar Abundance Tables
� Anders and Grevesse 1989
� Grevesse and Noels 1993
Grevesse and Sauval 1998� Grevesse and Sauval 1998
Changes from 1980 to 2000 : mostly Atomic Data
Line formation in solar granulationLine formation in solar granulation [Fe,Si,C,N,O,Na[Fe,Si,C,N,O,Na--Ca,(FeCa,(Fe--Group),…]Group),…]
* 1D models 3D model
* LTE NLTE
* All indicators (atoms + molecules) * Best lines +atomic & molecular data
Abundances
Solar abundances: Martin Asplund (MPA-Garching) Carlos Allende Prieto (MSSL-UK) Nicolas Grevesse (Liège) David Lambert (Austin) Jacques Sauval (Brussels) Patrick Scott (Stockholm)
3D stellar modelling: Mats Carlsson (Oslo) Remo Collet (Uppsala) Åke Nordlund (Copenhagen) Bob Stein (Michigan State) Regner Trampedach (ANU)
New Results
M. Asplund, N. Grevesse, A.J. Sauval, in Cosmic abundances as records of stellar evolution and nucleosynthesis, Eds T.G. BarnesIII & F.N. Bash, ASP Conf. Ser. 336, 2005, p.25-38 (65th birthday D.L. Lambert)
N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard
N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard & S. Vauclair, EAS Pub. Ser. 17, 2005, p.21-32 (65th birthday G. Michaud)
N. Grevesse, M. Asplund, A.J. Sauval, in Space Science Reviews, 130, 105-114, 2007 (80th birthday J. Geiss)
3D solar atmosphere models3D solar atmosphere models Ingredients:
• Radiative-hydrodynamical • Time-dependent • 3-dimensional • Simplified radiative transfer • LTE
Essentially parameter freeEssentially parameter free
3D successes !
• Topology and convective motions • …
For the first time, line profilesFor the first time, line profiles are perfectly reproduced
• But computing time !
Observations : All line profiles show …
• Widths much larger than thermal widths
MICROTURBULENCEMICROTURBULENCE
• λλλλcenter blueshifted (2 mA ���� 100 m/s at 600 nm)
• Asymmetries (C shapes : ~ 300 m/s i.e. 6 mA)
Averaged line profilesAveraged line profiles
1D vs Sun
3D vs Sun
No micro- and macroturbulence needed in 3D!
Shift!
Line asymmetriesLine asymmetries The asymmetries and shifts of spectral
lines are very well reproduced
Observations 3D model3D model
Balance 1DBalance 1D--3D3D Various ways to test models Q : Does the model reproduce …
Test 1D 3D
• Ic=F(λλλλ) ~Yes ~• Ic=F(λλλλ) ~Yes ~ • C/L var. ~Yes ~ • Granulation No Yes • Widths of lines Yes Yes • Shifts of lines No Yes • Asymmetries No Yes • ≠≠≠≠ indicators No Yes • Dependence I,EEx No Yes • High freq oscillations No Yes
Oxygen diagnosticsOxygen diagnostics Discordant results in 1D: log O~8.6-8.9 Excellent agreement in 3D: log O=8.66+/-0.05 O isotopic abundances: 16O/18O=480+/-30
Lines Holweger-
Müller 3D Difference
[O I] 8.76+/-0.02 8.68+/-0.01 -0.08 [O I] 8.76+/-0.02 8.68+/-0.01 -0.08
O I 8.64+/-0.08 8.64+/-0.02 0.00
OH, dv=0 8.82+/-0.01 8.65+/-0.02 -0.17
OH, dv=1 8.87+/-0.03 8.61+/-0.03 -0.26
OH, dv=2 8.80+/-0.06 8.57+/-0.06 -0.23
*If LTE (O I): log O=8.82+/-0.10 (Δ=-0.18 dex)!!!
Carbon diagnosticsCarbon diagnostics Discordant results in 1D: log C~8.4-8.7 Excellent agreement in 3D: log O=8.39+/-0.05 C isotopic abundances: 12C/13C=87+/-4
Lines Holweger-
Müller 3D Difference
[C I] 8.45 8.39 -0.06[C I] 8.45 8.39 -0.06
C I 8.39+/-0.03 8.36+/-0.03 -0.03
CH, dv=1 8.53+/-0.04 8.38+/-0.04 -0.15
CH, A-X 8.59+/-0.04 8.45+/-0.03 -0.14
C2, Swan 8.53+/-0.03 8.44+/-0.03 -0.09
CO, dv=1 8.60+/-0.01 8.40+/-0.01 -0.20
CO, dv=2 8.69+/-0.02 8.37+/-0.01 -0.32
Element 1D 3D 3D-1D
Na I 6.27±±±±0.04 6.17±±±±0.04 -0.10 Mg I 7.64±±±±0.23 7.57±±±±0.23 -0.07 Mg II 7.56±±±±0.08 7.53±±±±0.08 -0.03 Al I 6.45±±±±0.06 6.37±±±±0.06 -0.08 Si I 7.55±±±±0.04 7.51±±±±0.04 -0.04 Si II 7.46 7.45 -0.01
Na – Ca and Fe
Si II 7.46 7.45 -0.01
P I 5.37±±±±0.04 5.36±±±±0.04 -0.01 S I 7.17±±±±0.05 7.14±±±±0.05 -0.03 K I 5.20±±±±0.07 5.08±±±±0.07 -0.12 Ca I 6.43±±±±0.04 6.30±±±±0.04 -0.13 Ca II 6.34±±±±0.08 6.32±±±±0.08 -0.02 Fe I 7.50±±±±0.05 7.44±±±±0.05 -0.06 Fe II 7.47±±±±0.10 7.45±±±±0.10 -0.02
Heavier elements : See older tables (but -0.03 dex for Kr and Xe)
SummarySummary
• 3D : Granulation and line profiles • NLTE • All indicators agree • No dependence on I or E exc
C,N,O
Other elements
ImplicationsImplications
ImplicationsImplications Significantly lower solar metallicity Z
– Z=0.0194 (Anders & Grevesse 1989) – Z=0.0122 (Asplund et al. 2005)
New solar metallicityNew solar metallicity Element Abundance Contribution
to Z (%)
O 8.66 43.7
C 8.39 17.6
Fe 7.45 9.4
Ne 7.84 8.3
Si 7.51 5.4
C+N+O ~ 2/3 Z
Si 7.51 5.4
N 7.80 5.3
Mg 7.55 5.2
S 7.14 2.6
X=0.7393 Y=0.2485 Z=0.0122 Z/X=0.0165
Anders, Grevesse 1989 Z=0.019 Z/X=0.027 Grevesse, Noels 1993 Z=0.017 Z/X=0.024 Grevesse, Sauval 1998
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surroundings – Young O,B stars in solar neighborhood – Local interstellar medium/Orion nebula
ImplicationsImplications
Turck-Chièze et al. (2004)
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surroundings
FIP
ImplicationsImplications
FIPFIP
Ar Ne
SWslow SWrapid SEP
Old Abund. 2.7 1.8 3.25
New Abund. 2.0 1.4 2.4
Quiet Cor.
1.25-1.66
0.8-1.1
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surroundings
FIP
ImplicationsImplications
Solar NEON ! High or Low? LOW!!!
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surrounding
FIP
ImplicationsImplications
Solar NEON ! High or Low?
Alters cosmic yardstick [X/H], [X/Fe]… WARNING!
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surroundings
Solar NEON ! High or Low?
ImplicationsImplications
FIP
Alters cosmic yardstick [X/H], [X/Fe], …
Agreement with meteorites !
Photospheric vs meteoriticPhotospheric vs meteoritic
Very good agreement with C1 carbonaceous chondrites in general
Volatiles
Exceptions: Cl, Ga, Rb, Ag, In, W, Au
Mean difference otherwise: -0.01+/-0.06 dex
Note: change in meteoritic scale by -0.04 dex due to 3D analysis of Si
Solar depletion
Significantly lower solar metallicity Z=0.0122
Makes Sun normal compared with surroundings
Solar NEON ! High or Low?
ImplicationsImplications
FIP
Alters cosmic yardstick [X/H], [X/Fe], …
Agreement with meteorites !
Diffusion ���� Protosolar abundances ∆∆∆∆ (Proto-Now) = 0.05 dex Z Proto =0.0132 (Z/X)Proto =0.0185
Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?
FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !
ImplicationsImplications
Agreement with meteorites ! Protosolar abundances ���� Diffusion !
Isotopes(exercise of futility-B.Gutafsson- 65th…)
13C, 18O, (17O) from IR CO
Sun ≡≡≡≡ Earth
Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?
FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !
ImplicationsImplications
Agreement with meteorites ! Protosolar abundances ���� Diffusion ! Isotopes
(Large) impacts in stellar structure and evolution
… (Giant planets, TTauri, Herbig Ae/Be, Gas/Dust rati o in dense clouds,Beat Cepheids, …)
Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?
FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !
ImplicationsImplications
Agreement with meteorites !
Recommended