The chemical composition of the brogiato/physun/ آ  The chemical composition of the Sun Martin

download The chemical composition of the brogiato/physun/ آ  The chemical composition of the Sun Martin

of 51

  • date post

    25-May-2020
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of The chemical composition of the brogiato/physun/ آ  The chemical composition of the Sun Martin

  • Nicolas Grevesse Centre Spatial de Liège and Institut d‘Astrophysiqu e et de

    Géophysique, Université de Liège, Belgium

    The chemical composition The chemical composition of the Sunof the Sun

    Géophysique, Université de Liège, Belgium

    Martin Asplund Max-Planck-Institut für Astrophysik (MPA)

    Garching, Germany

    Jacques Sauval Observatoire Royal de Belgique, Bruxelles, Belgium

  • Former Solar Abundance TablesFormer Solar Abundance Tables

    � Anders and Grevesse 1989

    � Grevesse and Noels 1993

    Grevesse and Sauval 1998� Grevesse and Sauval 1998

    Changes from 1980 to 2000 : mostly Atomic Data

  • Line formation in solar granulationLine formation in solar granulation [Fe,Si,C,N,O,Na[Fe,Si,C,N,O,Na--Ca,(FeCa,(Fe--Group),…]Group),…]

    * 1D models 3D model

    * LTE NLTE

    * All indicators (atoms + molecules) * Best lines +atomic & molecular data

    Abundances

    Solar abundances: Martin Asplund (MPA-Garching) Carlos Allende Prieto (MSSL-UK) Nicolas Grevesse (Liège) David Lambert (Austin) Jacques Sauval (Brussels) Patrick Scott (Stockholm)

    3D stellar modelling: Mats Carlsson (Oslo) Remo Collet (Uppsala) Åke Nordlund (Copenhagen) Bob Stein (Michigan State) Regner Trampedach (ANU)

  • New Results

    M. Asplund, N. Grevesse, A.J. Sauval, in Cosmic abundances as records of stellar evolution and nucleosynthesis, Eds T.G. BarnesIII & F.N. Bash, ASP Conf. Ser. 336, 2005, p.25-38 (65th birthday D.L. Lambert)

    N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard

    N. Grevesse, M. Asplund, A.J. Sauval, in Elements stratification in stars, 40 years of atomic diffusion, Eds G. Alecian, O. Richard & S. Vauclair, EAS Pub. Ser. 17, 2005, p.21-32 (65th birthday G. Michaud)

    N. Grevesse, M. Asplund, A.J. Sauval, in Space Science Reviews, 130, 105-114, 2007 (80th birthday J. Geiss)

  • 3D solar atmosphere models3D solar atmosphere models Ingredients:

    • Radiative-hydrodynamical • Time-dependent • 3-dimensional • Simplified radiative transfer • LTE

    Essentially parameter freeEssentially parameter free

  • 3D successes !

    • Topology and convective motions • …

    For the first time, line profilesFor the first time, line profiles are perfectly reproduced

    • But computing time !

  • Observations : All line profiles show …

    • Widths much larger than thermal widths

    MICROTURBULENCEMICROTURBULENCE

    • λλλλcenter blueshifted (2 mA ���� 100 m/s at 600 nm)

    • Asymmetries (C shapes : ~ 300 m/s i.e. 6 mA)

  • Averaged line profilesAveraged line profiles

    1D vs Sun

    3D vs Sun

    No micro- and macroturbulence needed in 3D!

    Shift!

  • Line asymmetriesLine asymmetries The asymmetries and shifts of spectral

    lines are very well reproduced

    Observations 3D model3D model

  • Balance 1DBalance 1D--3D3D Various ways to test models Q : Does the model reproduce …

    Test 1D 3D

    • Ic=F(λλλλ) ~Yes ~• Ic=F(λλλλ) ~Yes ~ • C/L var. ~Yes ~ • Granulation No Yes • Widths of lines Yes Yes • Shifts of lines No Yes • Asymmetries No Yes • ≠≠≠≠ indicators No Yes • Dependence I,EEx No Yes • High freq oscillations No Yes

  • Oxygen diagnosticsOxygen diagnostics Discordant results in 1D: log O~8.6-8.9 Excellent agreement in 3D: log O=8.66+/-0.05 O isotopic abundances: 16O/18O=480+/-30

    Lines Holweger-

    Müller 3D Difference

    [O I] 8.76+/-0.02 8.68+/-0.01 -0.08 [O I] 8.76+/-0.02 8.68+/-0.01 -0.08

    O I 8.64+/-0.08 8.64+/-0.02 0.00

    OH, dv=0 8.82+/-0.01 8.65+/-0.02 -0.17

    OH, dv=1 8.87+/-0.03 8.61+/-0.03 -0.26

    OH, dv=2 8.80+/-0.06 8.57+/-0.06 -0.23

    *If LTE (O I): log O=8.82+/-0.10 (Δ=-0.18 dex)!!!

  • Carbon diagnosticsCarbon diagnostics Discordant results in 1D: log C~8.4-8.7 Excellent agreement in 3D: log O=8.39+/-0.05 C isotopic abundances: 12C/13C=87+/-4

    Lines Holweger-

    Müller 3D Difference

    [C I] 8.45 8.39 -0.06[C I] 8.45 8.39 -0.06

    C I 8.39+/-0.03 8.36+/-0.03 -0.03

    CH, dv=1 8.53+/-0.04 8.38+/-0.04 -0.15

    CH, A-X 8.59+/-0.04 8.45+/-0.03 -0.14

    C2, Swan 8.53+/-0.03 8.44+/-0.03 -0.09

    CO, dv=1 8.60+/-0.01 8.40+/-0.01 -0.20

    CO, dv=2 8.69+/-0.02 8.37+/-0.01 -0.32

  • Element 1D 3D 3D-1D

    Na I 6.27±±±±0.04 6.17±±±±0.04 -0.10 Mg I 7.64±±±±0.23 7.57±±±±0.23 -0.07 Mg II 7.56±±±±0.08 7.53±±±±0.08 -0.03 Al I 6.45±±±±0.06 6.37±±±±0.06 -0.08 Si I 7.55±±±±0.04 7.51±±±±0.04 -0.04 Si II 7.46 7.45 -0.01

    Na – Ca and Fe

    Si II 7.46 7.45 -0.01

    P I 5.37±±±±0.04 5.36±±±±0.04 -0.01 S I 7.17±±±±0.05 7.14±±±±0.05 -0.03 K I 5.20±±±±0.07 5.08±±±±0.07 -0.12 Ca I 6.43±±±±0.04 6.30±±±±0.04 -0.13 Ca II 6.34±±±±0.08 6.32±±±±0.08 -0.02 Fe I 7.50±±±±0.05 7.44±±±±0.05 -0.06 Fe II 7.47±±±±0.10 7.45±±±±0.10 -0.02

    Heavier elements : See older tables (but -0.03 dex for Kr and Xe)

  • SummarySummary

    • 3D : Granulation and line profiles • NLTE • All indicators agree • No dependence on I or E exc

    C,N,O

    Other elements

  • ImplicationsImplications

  • ImplicationsImplications Significantly lower solar metallicity Z

    – Z=0.0194 (Anders & Grevesse 1989) – Z=0.0122 (Asplund et al. 2005)

  • New solar metallicityNew solar metallicity Element Abundance Contribution

    to Z (%)

    O 8.66 43.7

    C 8.39 17.6

    Fe 7.45 9.4

    Ne 7.84 8.3

    Si 7.51 5.4

    C+N+O ~ 2/3 Z

    Si 7.51 5.4

    N 7.80 5.3

    Mg 7.55 5.2

    S 7.14 2.6

    X=0.7393 Y=0.2485 Z=0.0122 Z/X=0.0165

    Anders, Grevesse 1989 Z=0.019 Z/X=0.027 Grevesse, Noels 1993 Z=0.017 Z/X=0.024 Grevesse, Sauval 1998

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surroundings – Young O,B stars in solar neighborhood – Local interstellar medium/Orion nebula

    ImplicationsImplications

  • Turck-Chièze et al. (2004)

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surroundings

    FIP

    ImplicationsImplications

  • FIPFIP

    Ar Ne

    SWslow SWrapid SEP

    Old Abund. 2.7 1.8 3.25

    New Abund. 2.0 1.4 2.4

    Quiet Cor.

    1.25-1.66

    0.8-1.1

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surroundings

    FIP

    ImplicationsImplications

    Solar NEON ! High or Low? LOW!!!

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surrounding

    FIP

    ImplicationsImplications

    Solar NEON ! High or Low?

    Alters cosmic yardstick [X/H], [X/Fe]… WARNING!

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surroundings

    Solar NEON ! High or Low?

    ImplicationsImplications

    FIP

    Alters cosmic yardstick [X/H], [X/Fe], …

    Agreement with meteorites !

  • Photospheric vs meteoriticPhotospheric vs meteoritic

    Very good agreement with C1 carbonaceous chondrites in general

    Volatiles

    Exceptions: Cl, Ga, Rb, Ag, In, W, Au

    Mean difference otherwise: -0.01+/-0.06 dex

    Note: change in meteoritic scale by -0.04 dex due to 3D analysis of Si

    Solar depletion

  • Significantly lower solar metallicity Z=0.0122

    Makes Sun normal compared with surroundings

    Solar NEON ! High or Low?

    ImplicationsImplications

    FIP

    Alters cosmic yardstick [X/H], [X/Fe], …

    Agreement with meteorites !

    Diffusion ���� Protosolar abundances ∆∆∆∆ (Proto-Now) = 0.05 dex Z Proto =0.0132 (Z/X)Proto =0.0185

  • Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?

    FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !

    ImplicationsImplications

    Agreement with meteorites ! Protosolar abundances ���� Diffusion !

    Isotopes(exercise of futility-B.Gutafsson- 65th…)

  • 13C, 18O, (17O) from IR CO

    Sun ≡≡≡≡ Earth

  • Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?

    FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !

    ImplicationsImplications

    Agreement with meteorites ! Protosolar abundances ���� Diffusion ! Isotopes

    (Large) impacts in stellar structure and evolution

    … (Giant planets, TTauri, Herbig Ae/Be, Gas/Dust rati o in dense clouds,Beat Cepheids, …)

  • Significantly lower solar metallicity Z=0.0122 Makes Sun normal compared with surroundings Solar NEON ! High or Low?

    FIP Alters cosmic yardstick [X/H], [X/Fe], … Agreement with meteorites !

    ImplicationsImplications

    Agreement with meteorites !