Lec16[1]Integrales Linea

download Lec16[1]Integrales Linea

of 35

Transcript of Lec16[1]Integrales Linea

  • 8/13/2019 Lec16[1]Integrales Linea

    1/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    MATH 209Calculus, III

    Volker Runde

    University of Alberta

    Edmonton, Fall 2011

  • 8/13/2019 Lec16[1]Integrales Linea

    2/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals, I

    The settingLet Cbe a smooth curve in R2 given by the parametricequations

    x=x(t), y=y(t), t

    [a, b]

    or by the vector equation

    r(t) =x(t)i+y(t)j.

    We want to integrate a function f along Cand define the lineintegral

    C

    f(x, y) ds.

    Geometric interpretation

    Iff

    0, the C

    f(x, y) ds is the area of the curtain with baseCand whose height above (x, y) is f(x, y).

  • 8/13/2019 Lec16[1]Integrales Linea

    3/35

  • 8/13/2019 Lec16[1]Integrales Linea

    4/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals, III

    Theorem

    For continuous f :

    C

    f(x, y) ds= ba

    f(x(t), y(t))

    dxdt

    2+

    dydt

    2dt.

    Important

    The value of the integral does not depend on theparametrization ofCas long as C is traversed exactly once ast increases from a to b.

  • 8/13/2019 Lec16[1]Integrales Linea

    5/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals, IV

    To remember. . .

    Let s(t) be the length of the curve from r(a) to r(t). Then

    ds

    dt =s(t) =

    dx

    dt

    2+

    dy

    dt

    2,

    so that

    ds=

    dxdt

    2+

    dydt

    2dt.

  • 8/13/2019 Lec16[1]Integrales Linea

    6/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, I

    ExampleLet Cbe the right half of the circle x2 +y2 = 16.What is

    C

    xy4 ds?Set

    x= 4 cos t, y= 4 sin t, t

    2,

    2 .

    Then:

    C xy4 ds= 1024

    2

    2

    cos tsin4 t16 sin2 t+ 16 cos2 t dt

    = 4096

    2

    2

    cos tsin 4tdt= 4096

    11

    u4 du

    = 4046

    5

    u5u=1

    u=1

    =8192

    5

    .

  • 8/13/2019 Lec16[1]Integrales Linea

    7/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, II

    Example

    Let Cbe the line segment from (0, 0) to (1, 1).Evaluate

    C

    xy ds.Set

    x=t, y=t, t [0, 1].Then:

    C

    xy ds= 1

    0

    t21 + 1 dt= 2 10

    t2 dt= 23

    .

  • 8/13/2019 Lec16[1]Integrales Linea

    8/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, III

    Example

    Let Cbe the line segment from (a, 0) to (b, 0).

    EvaluateCf(x, y) ds for arbitrary continuous f.

    Setx=t, y= 0, t [a, b].

    Then: C

    f(x, y) ds= ba

    f(t, 0) dt.

  • 8/13/2019 Lec16[1]Integrales Linea

    9/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, IV

    Example

    Let Cconsist of the paraboloa y=x2 from (0, 0) to (1, 1)followed by the vertical line segment from (1, 1) to (1, 2).Find C2x ds.The curve C isnotsmooth, butpiecewise smooth, i.e., of theform C=C1 C2 with C1 and C2 smooth.C1: the parabola y=x

    2 from (0, 0) to (1, 1):

    x=t, y=t2, t [0, 1].

    C2: the line segment from (1, 1) to (1, 2):

    r(t) = 1, 1 +t(1, 2 1, 1) = 1, 1 +t

    fort [0

    ,

    1], i.e.,x

    = 1,y

    = 1 +t

    , andt [0

    ,

    1].

  • 8/13/2019 Lec16[1]Integrales Linea

    10/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, V

    Example (continued)

    Then:

    C

    2x ds=C1

    2x ds+C2

    2x ds

    =

    10

    2t

    1 + 4t2 dt+

    10

    dt

    =14

    5

    0

    u du+2 = u3

    2

    6

    u=5

    u=1

    +2 =55 16

    +2 =55 116

    .

  • 8/13/2019 Lec16[1]Integrales Linea

    11/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Types of line integrals, I

    More line integrals

    We callC

    f(x, y) ds the line integralwith respect to arclength.Suppose that C is given by the parametric equations

    x=x(t), y=y(t), t [a, b].

    Thendx

    dt =x(t) and

    dy

    dt =y(t),

    so that

    dx=x(t) dt and dy=y(t) dt.

  • 8/13/2019 Lec16[1]Integrales Linea

    12/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Types of line integrals, II

    DefinitionThe line integrals off swith respect to x andwith respect to y,respectively, are defined as

    C f(x, y) dx :=

    ba f(x(t), y(t))x

    (t) dt;

    and

    C

    f(x, y) dy :=

    ba

    f(x(t), y(t))y(t) dt.

    Shorthand

    C

    P(x, y) dx+Q(x, y) dy= C

    P(x, y) dx+ C

    Q(x, y) dy.

  • 8/13/2019 Lec16[1]Integrales Linea

    13/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, VI

    Example

    Evaluate

    Cy2 dx+x dy where C is the line segment from

    (

    5,

    3) to (0, 2).

    Parametrize the curve as

    r(t) = 5,3 +t(0, 2 5,3) = 5 + 5t,3 + 5t,

    so that

    x= 5 + 5t, y= 3 + 5t, t [0, 1].

  • 8/13/2019 Lec16[1]Integrales Linea

    14/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, VII

    Example (continued)

    Thus:

    C y

    2

    dx+x dy= 1

    0 (5t 3)2

    5 dt+ 1

    0 (5t 5)5 dt= 5

    10

    25t2 25t+ 4 dt dt

    = 5 25t3

    3 25t2

    2 + 4tt=1

    t=0

    = 56.

  • 8/13/2019 Lec16[1]Integrales Linea

    15/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, VIII

    Example

    EvaluateCy

    2

    dx+x dy where C is the arc of the parabolax= 4 y2 from (5,3) to (0, 2).The parametric equations are

    x= 4 t2, y=t, t [3, 2].

  • 8/13/2019 Lec16[1]Integrales Linea

    16/35

  • 8/13/2019 Lec16[1]Integrales Linea

    17/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, X

    Example

    Evaluate

    C

    y2 dx+x dy where C is the line segment fromfrom (0, 2) to (

    5,

    3).

    Parametrize the curve as

    r(t) = 0, 2 +t(5,3 0, 2) = 5t, 2 5t,

    so that

    x= 5t, y= 5t+ 2, t [0, 1].

  • 8/13/2019 Lec16[1]Integrales Linea

    18/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XI

    Example (continued)

    We obtain:

    C

    y2 dx+x dy 1

    0

    (5t+ 2)2(5) dt+ 1

    0

    25t dt

    = 5 1

    0

    25t2 25t+ 4 dt

    =5

    6.

    Note

    This is precisely the negative of

    Cy2 dx+x dy where C is the

    line segment from (

    5,

    3) to (0, 2).

  • 8/13/2019 Lec16[1]Integrales Linea

    19/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Properties of line integrals

    DefinitionIfC is any curve in R2, we writeCfor the curve withreversed orientation.

    Properties

    We have C

    f(x, y) dx= C

    f(x, y) dx

    and C

    f(x, y) dy= C

    f(x, y) dy,

    but C

    f(x, y) ds=

    C

    f(x, y) ds.

  • 8/13/2019 Lec16[1]Integrales Linea

    20/35

    MATH 209

    Calculus,III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals in R3, I

    As in R2. . .

    C

    f(x, y, z) ds

    = b

    a

    f(x(t), y(t), z(t))

    dx

    dt2

    + dy

    dt2

    + dz

    dt2

    dt

    and...

  • 8/13/2019 Lec16[1]Integrales Linea

    21/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals in R3, II

    As in R2. . . (continued)

    and...

    C P(x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz

    =

    ba

    P(x(t), y(t), z(t))x(t) dt

    + ba

    Q(x(t), y(t), z(t))y(t) dt

    +

    ba

    R(x(t), y(t), z(t))z(t) dt.

  • 8/13/2019 Lec16[1]Integrales Linea

    22/35

  • 8/13/2019 Lec16[1]Integrales Linea

    23/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XIII

    Example

    Let C=C1 C2 with:

    C1 = line segment from (2, 0, 0) to (3, 4, 5),

    C2 = line segment from (3, 4, 5) to (3, 4, 0).

    Evaluate

    C

    y dx+

    z dy+

    x dz

    =

    C1

    y dx+z dy+x dz+

    C2

    y dx+z dy+x dz.

  • 8/13/2019 Lec16[1]Integrales Linea

    24/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XIV

    Example (continued)

    Parametrize C1:

    r(t) = 2, 0, 0 +t(3, 4, 5 2, 0, 0) = 2 +t, 4t, 5t,

    i.e.,

    x= 2 +t, y= 4t, z= 5t, t [0, 1].

    Thus:

    C1

    y dx+ z dy+ x dz=

    10

    4t dt+4

    10

    5t dt+ 5

    10

    2 + t dt

    = 1

    0

    10 + 29t dt= 10t+29t2

    2 t=1

    t=0

    =49

    2 .

    E l XV

  • 8/13/2019 Lec16[1]Integrales Linea

    25/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XV

    Example (continued)

    Parametrize C2:

    x= 3, y= 4, z= 5 5t, t [0, 1].

    Thus: C2

    y dx+z dy+x dz= 15 1

    0

    dt= 15.

    All in all: C

    y dx+z dy+x dz=49

    2 15 =19

    2 .

    Li i l f fi ld I

  • 8/13/2019 Lec16[1]Integrales Linea

    26/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, I

    Problem

    Let F=Pi + Qj + Rkbe a continuous vector field on R3 whichmoves a particle along a smooth curve C. What is the work W

    done?

    Easy case

    IfF is constant and moves the particle along a line segmentfrom P to Q,

    W =F D,where D=

    PQ is the displacement vector.

    Li i l f fi ld II

  • 8/13/2019 Lec16[1]Integrales Linea

    27/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, II

    The general case

    Divide C into n subarcs Pj1, Pjwith lengths sj by dividing

    the parameter interval [a, b] into n subintervals of equal length.Choose a point Pj(x

    j , y

    j , z

    j) on the j-th subarc, and lettj [tj1, tj] be the corresponding parameter.If sj is small: as the particle moves from Pj1 to Pj, itproceeds approximately in the direction ofT(tj), the unit

    tangent vector to C at Pj(xj , y

    j , z

    j).

    Li i t l f t fi ld III

  • 8/13/2019 Lec16[1]Integrales Linea

    28/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, III

    The general case (continued)

    IfWj is the work to move the particle from Pj1 to Pj, then

    Wj F(xj , yj , zj) sjT(tj).

    Hence,W

    nj=1

    F(xj , y

    j , z

    j) sjT(tj),

    and thus

    W = limn

    nj=1

    F(xj , y

    j , z

    j) sjT(tj)

    = F

    F(x, y, z)

    T(x, y, z) ds.

    Li i t l f t fi ld IV

  • 8/13/2019 Lec16[1]Integrales Linea

    29/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, IV

    The general case (continued)Let Cbe given by the vector equation

    r(t) =x(t)i+y(t)j+z(t)k, t [a, b].

    Then:T(t) =

    r(t)

    |r(t)| .

    Thus:

    C

    F T dx=

    b

    a

    F(r(t)) r(t)|r(t)| |r(t)| dt

    =

    ba

    F(r(t)) r(t) dt=

    Line integrals of vector fields V

  • 8/13/2019 Lec16[1]Integrales Linea

    30/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, V

    The general case (continued)

    = b

    a

    F(r(t)) r(t) dt

    =

    ba

    P(x(t), y(t), z(t))x(t) dt

    + b

    a

    Q(x(t), y(t), z(t))y(t) dt

    +

    b

    a

    R(x(t), y(t), z(t))z(t) dt

    =

    C

    P(x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz.

    Line integrals of vector fields VI

  • 8/13/2019 Lec16[1]Integrales Linea

    31/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Line integrals of vector fields, VI

    Definition

    Let F= Pi+Qj+Rk be a continuous vector field on R3, andlet Cbe a smooth curve given by the vector function r(t) for

    t [a, b]. Theline integral ofF along C isC

    F dr= ba

    F(r(t)) r(t) dt

    =C

    P(x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz.

    Examples XVI

  • 8/13/2019 Lec16[1]Integrales Linea

    32/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XVI

    ExampleA force field

    F(x, y) =xsin yi+yj

    moves a particle from (

    1, 1) to (2, 4) along the parabola

    y=x2. Compute the total work W.Parametrize C as

    r(t) =ti+t2j, t [1, 2].

    Then:r(t) =i+ 2tj

    andF(r(t)) =tsin(t2)i+t2j.

    Examples XVII

  • 8/13/2019 Lec16[1]Integrales Linea

    33/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XVII

    Example (continued)

    Thus:

    W =C

    F dr= 21

    (tsin(t2)i+t2j) (i+ 2tj) dt

    =

    21

    tsin(t2) + 2t3 dt=1

    2

    41

    sin u du+ t4

    2

    t=2

    t=1

    =cos u2

    u=4u=1

    +152

    =12

    (15 cos 4 + cos 1).

    Examples XVIII

  • 8/13/2019 Lec16[1]Integrales Linea

    34/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XVIII

    ExampleLet

    F(x, y, z) =xyi+yzj+zxk,

    and let Cbe given by

    x=t, y=t2, z=t3, t [0, 1].

    i.e., byr(t) =ti+t2j+t3k, t [0, 1].

    Thus:r(t) =i+ 2tj+ 3t2k

    andF(r(t)) =t3i+t5j+t4k.

    Examples XIX

  • 8/13/2019 Lec16[1]Integrales Linea

    35/35

    MATH 209

    Calculus,

    III

    Volker Runde

    Line integrals

    in R2

    Types of line

    integrals

    Line integrals

    in R3

    Line integrals

    of vector fields

    Examples, XIX

    Example (continued)

    Therefore:

    C

    F

    dr= 10

    t3 + 2t6 + 3t6 dt

    =

    10

    t3 + 5t6 dt

    = t4

    4 +

    5t7

    7t=1

    t=0

    =27

    28.