Yuri P. Kalmykov, and Serguey V. Titov3 -...
Embed Size (px)
Transcript of Yuri P. Kalmykov, and Serguey V. Titov3 -...

1
Yuri P. Kalmykov,1 William T. Coffey2, and Serguey V. Titov3
Nonlinear magnetic relaxation of quantumsuperparamagnets with arbitrary spin value S:
Phase-space method
1.Université de Perpignan, Lab. Mathématiques, Physique et Systèmes, Perpignan, France
2.Trinity College, Department of Electronic and Electrical Engineering, Dublin, Ireland
3.Russian Academy of Sciences, Institute of Radio Engineering and Electronics, Moscow, Russia

2
“You may try, if you want, to understand how a classical vector is equal to a matrix S, and maybe you will discover something – but don’t break your head on it. …”
R. Feynman The Feynman Lectures on Physics, Tome III, Quantum Mechanics
is the magnetic dipole vector, S is the spin matrix operator
dim 2 1 2 1 ,~ 0,
S SS
S
? S μ ,, ,1,
ˆ ( 1) S mS nm n
S S S C
Y
Y
Z
X
Z
X

3
Ruslan Leont'evich Stratonovich was an outstanding physicist, engineer, probabilist. Professor Stratonovich was born on May 31,
1930 in Moscow, Russia. He died on the 13th of January, 1997
http://en.wikipedia.org/wiki/Ruslan_L._Stratonovich

4
Main objective is to discuss an universal (phase space) formulation of the spin dynamics for arbitrary
value of S, i.e., a formulation applicable to both the quantum
(S20) and classical cases (S>>>1)
W. Wernsdorfer, Adv. Chem. Phys.,
2001

5
Dynamics of Uniaxial Superparamagnets (arbitrary S)
2ˆ ˆˆS Z ZH BS AS
2cos cosV B A
ˆ ˆˆ ˆ ˆ,Si H Q
t
Quantum Classical (S>>1)
m 0
V
V1
V2
E. Chudnovsky, D. Garanin, J. Villain, A. Würger, J. L. García-Palacios,et al.
L. Néel, W. F. Brown, A. Aharoni, et al.
12 sinsinN
W VW Wt

6
Introduction1. Wigner’s phase space distributions 2. Wigner functions for a quantum oscillator3. Wigner functions for spins4. Spins in phase space5. Phase space distributions for spins6. Spins in an external field7. Master and Langevin equations 8. Uniaxial superparamagnets9. Stochastic resonance 10. Conclusions
Summary

7
E. Schrödinger (1887-1961)
Wave and Matrix Mechanics Approaches
Quantum Mechanics
W. Heisenberg (1901-1976)
Path Integral Approach
R. Feynman(1918-1988)

8
E. P. Wigner (1902-1995)
Wigner (1932) formulation of quantum mechanics as quasi-probability distributions on phase space (x,p)
/1 11( )2
,2
ˆ ,2
ipyx y x yW x p e dy
1 2ˆ , )x x - density matrix
E. P. Wigner, Phys. Rev. 40, 749 (1932)
Evolution equation for W
1 02 2
W p W i iV x V x Wt m x i p p
Equation for the eigenvalues E21
2 2 2ip V x W EW
m i x p

9
Wigner (1932) formulation of quantum mechanics as quasi-probability distributions on phase space (x,p)
ˆ ˆTr ˆA t A
ˆ ( , )A AA x p - Weyl symbol of the operator
E. P. Wigner, Phys. Rev. 40, 749 (1932)
Thus observables can be calculated just as classical ones
Calculation of an observable A t
A
, ( , )ˆ ( )W x pA t dA x p x dp
Traditional approach
Phace space approach

10
Wigner functions for a quantum oscillator
0n n nW W Wp Vt m x x p
20
1 / 4/ 20
01( ) /
2 !m x
n nn
mx e H x m
n
* /1( , ) ( / 2) ( / 2)2
ipyn n nW x p x y x y e dy
0 ( 1/ 2)nE n
2 2 2 2
0 0/( ) 2 2 2 20 0
( 1) 2 /( )n
p m x mn nW e L p m x m
W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Berlin, 2001.
Phase space approach:
Evolution equation (Liouville equation)
2 2 2 20
22 2n
n n nm xE
m x
:nH x Hermite polynomials
:nL x Laguerre polynomials
Traditional approach:

11
Master equation for a quantum oscillator(weak coupling limit)
2 0 00 coth
2 2mW p W W Wm x pW
t m x p m p kT p
[G. S. Agarwal, Phys. Rev. A 4, 739 (1971)]
Similar to the Fokker-Planck equation for a classical oscillator
D. Kohen et al., Phase space approach to theories of quantum dissipation, J. Chem. Phys. 107, 5236 (1997)
20
W p W W Wm x pW mkTt m x p m p p
0
0
0 , 1 , ,2
/ 2 , ,1
i H e a a a at m
m a a a ae
Evolution equation for the density matrix

12
.1 / 2S
Spin operators
0 1 0 1 01 1 1ˆ ˆ ˆ, ,1 0 0 0 12 2 2X Y Z
iS S S
i
,
,
1ˆ ˆ2
S σ σ Pauli matrices
Spherical components of the spin operators for any S
,, ,1,
ˆ ( 1) S mS nm n
S S S C
,, ,1
S mS nC Clebsch-Gordan coefficient

13
.
uY
u
Y
Z
uX
uZ
X
Phase space formulation of quantum mechanics for spins
( 1)ˆ ( 1)
Stratonovich Wigner transformation
S
S u
sin cossin sin
cos
X
Y
Z
uuu
u
Transformation of the spin matrices
ˆ ˆ ˆ,ˆ ,X Y ZS S SS
( 0)
( 1)
ˆ ( 1)
ˆ
Stratonovich Wigner transformation
Stratonovich Wigner transformation
S S
S
S u
S u
Weyl symbols of the spin operators
R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957)
J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.
ˆ ˆ ˆ, , 2 1 2 1X Y ZS S S S S

14
Phase space formulation of quantum mechanics for spins(Stratonovich, 1956)
representation (phase) space of the polar and
azimuthal angles
,
,
ˆ ˆ ˆ ˆT ˆr , ,
2 1 ˆ sin
( , )
( ,4
)ˆ
Direct Stratonovich Wigner transformation
Inverse Stratonovich Wigner transformation
X Y ZS S S w
S w d
W
dW
J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.
1,0
uY
u
Y
Z
uX
uZ
X
R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957)
ˆ ˆ ˆ,ˆ ,X Y ZS S S
Phase space representation of the
spin density matrix
( , , )(sin cos , sin sin ,cos )
X Y Zu u u
u

15
Generalized coherent state representation
J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.
1ˆ ( , ) , , , ,w S S
2,
1 , , 00
( ), , ,
4ˆ ( , )2 1
ˆ( , )S L
S SS S L
L M LL M
SL Mw C T
SY
Kernel of the Stratonovich Wigner transformation
:Stratonovich Wigner transformation Explicit equation
, ,S

16
.
Transformation of the spin Hamiltonians
( 1)
2 4 4 4ˆ ˆ ˆˆ2
Stratonovich Wignertrans
cubX Y Z
formation
SH S S S
( 1)
12ˆˆ
Stratonovich Wignertransfo
Z
run
mat on
S
i
SH
111 2
2( )cos2
unS
SH S S
32
2 31
2
2
2 4
2
(2 3 1) / 4
( 1)
sin 2 sin si
( )(
24
n
)
cubSH S S S
S S S S
Uniaxial
Cubic
Traditional representation Phase space representation

17
.
Switching field curves [A. Thiaville, Phys. Rev. B 61, 12221 (2000)]
2 111 2( )cos
2unS
SH S S
32
2 4 22 312 2
(2 3 1) / 4
( 1)( )( ) sin 2 sin sin 24
cubSH S S S
S S S S
Uniaxial
Cubic
5 02, ,10S
Quantum effects inStoner-Wohlfarth astroids
Yu. P. Kalmykov et al, Phys. Rev. B 2008, v. 77, No. 10, p. 104418
3/2 3/2 1X Zh h

18
Example: Spin in an external field
0ˆˆTrZ Z SS S SB S
0ˆˆ
S ZH S
is the Brillouin function (Langevin function, S -> )
ˆˆ SHSe Z
Density matrixapproach:
After W.E. Henry , Phys. Rev. 88, 559 (1952)
2 1 2 1 1coth coth2 2 2 2SS S xB x x
S S S S
H
µ

19
Example: Spin in an external field
Classical limit (S , )
SB x is the Brillouin function (Langevin function, S -> )
0ˆ ( 1)
ˆ Z
Stratonovich Wignertransfo
SS
rmation
e Z
2( 1) 1 1 10 02 2( ) cosh sinh cos
SSW Z
102 ( ) exp cos / clS S ZW
( 1)12 0
0
( 1)cos ( )sinZ
S
S S W d
SB S
S
Y. Takahashi and F. Shibata, J. Phys. Soc. Jpn. 38, 656 (1975)
0S const
Phase space approach:
______________________________
Boltzmann distribution
H
µ

20
Spin in an external field: Master equation for the longitudinal relaxation
Classical limit (S , )
0ˆˆ
S ZH S
Y. Takahashi and F. Shibata, J. Phys. Soc. Jpn. 38, 656 (1975)
0S const
______________________________Phase spaceapproach:
Density matrixapproach:
______________________________
ˆ ˆˆ ˆ ˆ,Si H Q
t
(2) (1)( ) ( )W D z W D z Wt z z
The Fokker-Planck equation for rotational diffusion of a classical spin in an external field
Master Equation (Quantum Fokker-Planck like equation)
cos( ) /eq clW e Z
21 1 10 02 2( ) cosh sinh cos
Seq SW Z
21 (1 )2 N
W z W Wt z z
Stationary solution:
Stationary solution:
H
µ

21
Quantum Langevin equation for a spin in a uniform field
Classical limit (S )1,
( ) 0
( ) ( ) 2 ( )i
i j i j
h t
h t h t δ t t
u
Y
Z
X
H0
Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, EPL (2009).
0 0 = u u H h u u H h
0
0
ˆ
ˆ
= D
D A
u u H h
u u hqH

22
Spin in an external field continuedNonlinear Response: Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Phys. Rev. E (2007).
,
,
,
,
H
µ
1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq
d S t S t Sdt
IIˆZ eq
S
ˆ ( )ZS t
0 t
IˆZ eq
S
23
4
1
1: S = 12: S = 33: S = 4: S
cor /
N
0S
1/
quantum :
/ ( 1)
( 1)
SN S e
1
classical limit ( ) :
/( 1)
N
S
Linear Response: J. L. García-Palacios and D. Zueco, J. Phys. A: Math. Gen. (2006)

23
Uniaxial superparamagnet in an external field
,
,
,
,
D.A. Garanin, J. L. García-Palacios, D. Zueco, et al.
2 2ˆ ˆˆ / /S Z ZH S S S S
ClassicalQuantum
1
II II
II
II1
ˆ sgn( )2
[ ( 1) ( 1)]
S k
Z m b mSm k m SN
k S k
m S m m
S S k k
1
21 11
11 1
2
114
1ef
h zV zV z
V zN V z
h z
e e dz dzz
e e dz dzz
2( ) cos cosV
W.F. Brown, A. Aharoni, W.T. Coffey, et al.
2 23/2 11 1
2~ 1 1 ,1
/ 2
h hN h e h e
hh
( ) 1 , 11 i
0 t
H0
HII HI
IIˆZ eq
S
ˆ ( )ZS t
0 t
IˆZ eq
S
1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq
d S t S t Sdt
discrete sumContinuous integral

24
Uniaxial superparamagnet in an external field
Nonlinear Response: Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Phys. Rev. B (2010).
,
,
,
,
Linear Response: J. L. García-Palacios and D. Zueco, Phys. Rev. B (2006)
2 2ˆ ˆˆ / /S Z ZH S S S S
0 5 10 15
= 5
N 1: S = 3/2
2: S = 43: S = 104: S = 205: S = 806: S
15
0 10 20100
101
102
103
104
N
= 10
S
1: = 0 2: = 4 3: = 8
1
2
3 clas
sica
l lim
it
( ) 1 , 11 i
1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq
d S t S t Sdt

25
Uniaxial superparamagnet in an external field
,
,
,
,
J. L. García-Palacios, D. Zueco, et al.
2 2ˆ ˆˆ / /S Z ZH S S S S
Classical
Quantum
2( ) cos cosV
( ) 1 , 11 i
( ) 1~ 1N
efi
3
2
4
= 2 = 10
' (
)/
1: S = 42: S = 63: S = 84: S = 10
1
3
2 1
4
N
''(
)/
22
II II2 2
II
ˆ ˆ2
ˆ ˆ ˆZ Z
ef NZ Z
S S
S S
S
22IIII
2
II
cos cos2
1 cosef N

Stochastic resonance Archetypal model: a one-dimensional overdamped bistable oscillator
subjected to noise and excited by a weak periodic force Eexite (t)=A cos tof frequency close to the Kramers escape rate from the well so that the noise
induced hopping becomes synchronized with Eexite (t)
Stochastic Resonance has a bell-like shape of the curve SNR(T) ,i.e., a maximum at certain temperature (noise) level.
Stochastic Resonance increase, with increasing fluctuation intensity, of the periodic signal and of the signal-to-noise ratio.
U
U kT
excitU E
If the dynamic susceptibility () is known we may write the signal-to-noise ratio (SNR) at =
22( )
( ) .4 ( )
SNR T AkT
T
SNR
L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70 (1998) 223.

Magnetic Stochastic Resonance
Classical: Yu. Raikher, V. Stepanov, A. Grigorenko, P. Nikitin, Phys. Rev. E 56 (1997) 6400.Quantum: Yu. P. Kalmykov, S. V. Titov, W. T. Coffey, Phys. Rev. B 81 (2010) 172411;
5
4
3
2
1N = 1
1: S = 2 2: S = 43: S = 104: S = 205: S = 40 S
SNR
1/
V( )
n
–n
kTkT
kTkT V = –cos2 H(t) = Hcos t

28
Conclusions: The phase space formalism:
• provides a complementary method of study of static and dynamic properties of spin systems
• indicates that the powerful classical approaches (escape rate theory of multidimensional systems, methods of solution of classical diffusion equation, etc.) may be directly carried over to the quantum domain yielding quantum corrected dynamic susceptibilities, reversal times, hysteresis and switching curves, etc.
• may also be extended to describe the macroscopic quantum tunneling in spin systems such as magnetic nanoclusters and molecular magnets

29
Phase space (Wigner) approach: Further reading
S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics(North-Holland, Amsterdam, 1972).
W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).
R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001).
Quantum Mechanics in Phase Space, edited by C. K. Zachos, D. B. Fairlie, and T. L. Curtright (World Scientific, Singapore, 2005).
R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).