Weakly Coordinating Anions and Lewis Superacidity

181
Weakly Coordinating Anions and Lewis Superacidity Inaugural-Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) von der Fakultät für Chemie, Pharmazie und Geowissenschaften an der Albert-Ludwigs-Universität zu Freiburg Promotionsausschuss: Prof Dr. R. Schubert Referent: Prof. Dr. I. Krossing Koreferent: Prof. Dr. C. Janiak Drittprüfer: Prof. Dr. P. Gräber Datum der Kollegialprüfung: 06.03.2008 vorgelegt von Dipl.-Chem. Lutz O. Müller aus Marl / Nordrhein-Westfalen Januar 2008

Transcript of Weakly Coordinating Anions and Lewis Superacidity

Page 1: Weakly Coordinating Anions and Lewis Superacidity

Weakly Coordinating Anions and Lewis Superacidity

Inaugural-Dissertation

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr rer nat)

von der Fakultaumlt fuumlr Chemie Pharmazie und Geowissenschaften

an der Albert-Ludwigs-Universitaumlt zu Freiburg

Promotionsausschuss Prof Dr R Schubert

Referent Prof Dr I Krossing

Koreferent Prof Dr C Janiak

Drittpruumlfer Prof Dr P Graumlber

Datum der Kollegialpruumlfung 06032008

vorgelegt von

Dipl-Chem Lutz O Muumlller

aus Marl Nordrhein-Westfalen

Januar 2008

Die vorliegende Arbeit entstand in der Zeit von Februar 2004 bis Januar 2008 am Institut fuumlr

Anorganische und Analytische Chemie der Universitaumlt Karlsruhe (TH) am Institut des

Sciences et Ingeacutenierie Chimiques der Eidgenoumlssischen Technischen Hochschule Lausanne

(ETH) und am Institut fuumlr Anorganische und Analytische Chemie der Albert-Ludwigs-

Universitaumlt zu Freiburg i Br unter der Leitung von Prof Dr Ingo Krossing

Meinen Eltern gewidmet

An dieser Stelle moumlchte ich all denjenigen herzlich danken die zum Gelingen dieser Arbeit

beigetragen haben

meinem Doktorvater Prof Dr Ingo Krossing fuumlr die interessante Aufgabenstellung

seine Unterstuumltzung und Betreuung sowie die wissenschaftliche Diskussion der

Ergebnisse

den Mitgliedern der Pruumlfungskommission Prof Dr Christoph Janiak und

Prof Dr Peter Graumlber

meinen aktuellen und ehemaligen AK- und Laborkollegen Dr Andreas Reisinger

Boumahdi Benkmil Dr Carsten Knapp Dr Daniel Himmel Fadime Bitguumll

Dr Gunther Steinfeld Dr Gustavo Santiso Dr Ines Raabe Dr Jens Hartig

Dr John Slattery Katrin Wagner Kristin Guttsche Lucia Alvarez Dr Marcin Gonsior

Nils Trapp Petra Klose Philipp Eiden Şafak Bulut Tobias Koumlchner Ulrich Preiss und

Dr Werner Deck fuumlr die angenehme Arbeitsatmosphaumlre

insbesondere meinen Laborkollegen Dr Gustavo Santiso Philipp Eiden Tobias

Koumlchner und Ulrich Preiss fuumlr die Hilfeleistung bei vielen wissenschaftlichen Fragen

Tobias Koumlchner fuumlr das sorgfaumlltige Korrekturlesen der vorliegenden Arbeit

Vera Bruksch Monika Kayas Gerda Probst Sylvia Soldner und

Christina Zamanos Epremian fuumlr die notwendigen Sekretariatsarbeiten

Dr Rosario Scopelliti Dr Gustavo Santiso und Dr Gunther Steinfeld fuumlr die Hilfe bei der

Durchfuumlhrung und Auswertung von Roumlntgenstrukturanalysen

Helga Berberich Dr Eberhardt Matern Sibylle Schneider und Volker Brecht fuumlr die

Aufnahme von zahlreichen NMR-Spektren

Fabrice Ribelet fuumlr die hilfreiche Einarbeitung am NMR-Geraumlt in Lausanne

der Firma Iolitec fuumlr die Bereitstellung einiger ionischer Fluumlssigkeiten

Julia Stauffer fuumlr ihre experimentellen Beitraumlge zur Chemie der Lewis Superaciditaumlt sowie

ihre freundschaftliche Unterstuumltzung

Kalam Keilhauer Peter Neuenschwander und Tim Oelsner fuumlr die Anfertigung und

Reparatur von Glasgeraumlten

den Mitarbeitern der feinmechanischen Werkstaumltten in Lausanne insbesondere

Renato Bregonzi Roger Ith Christian Roll und Markus Melder in Freiburg fuumlr die

Anfertigung und Reparatur von Geraumlten und Apparaturen

den Mitarbeitern der Chemikalienshops Gabi Kuhne Gladys Pache Giovanni Petrucci

Monika Voumllker und Friedbert Jerg fuumlr die Beschaffung von Chemikalien

meinen Eltern meinem Bruder und meiner Oma die mich waumlhrend meines

Studiums und der Promotionszeit immer unterstuumltzt haben

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 2: Weakly Coordinating Anions and Lewis Superacidity

Die vorliegende Arbeit entstand in der Zeit von Februar 2004 bis Januar 2008 am Institut fuumlr

Anorganische und Analytische Chemie der Universitaumlt Karlsruhe (TH) am Institut des

Sciences et Ingeacutenierie Chimiques der Eidgenoumlssischen Technischen Hochschule Lausanne

(ETH) und am Institut fuumlr Anorganische und Analytische Chemie der Albert-Ludwigs-

Universitaumlt zu Freiburg i Br unter der Leitung von Prof Dr Ingo Krossing

Meinen Eltern gewidmet

An dieser Stelle moumlchte ich all denjenigen herzlich danken die zum Gelingen dieser Arbeit

beigetragen haben

meinem Doktorvater Prof Dr Ingo Krossing fuumlr die interessante Aufgabenstellung

seine Unterstuumltzung und Betreuung sowie die wissenschaftliche Diskussion der

Ergebnisse

den Mitgliedern der Pruumlfungskommission Prof Dr Christoph Janiak und

Prof Dr Peter Graumlber

meinen aktuellen und ehemaligen AK- und Laborkollegen Dr Andreas Reisinger

Boumahdi Benkmil Dr Carsten Knapp Dr Daniel Himmel Fadime Bitguumll

Dr Gunther Steinfeld Dr Gustavo Santiso Dr Ines Raabe Dr Jens Hartig

Dr John Slattery Katrin Wagner Kristin Guttsche Lucia Alvarez Dr Marcin Gonsior

Nils Trapp Petra Klose Philipp Eiden Şafak Bulut Tobias Koumlchner Ulrich Preiss und

Dr Werner Deck fuumlr die angenehme Arbeitsatmosphaumlre

insbesondere meinen Laborkollegen Dr Gustavo Santiso Philipp Eiden Tobias

Koumlchner und Ulrich Preiss fuumlr die Hilfeleistung bei vielen wissenschaftlichen Fragen

Tobias Koumlchner fuumlr das sorgfaumlltige Korrekturlesen der vorliegenden Arbeit

Vera Bruksch Monika Kayas Gerda Probst Sylvia Soldner und

Christina Zamanos Epremian fuumlr die notwendigen Sekretariatsarbeiten

Dr Rosario Scopelliti Dr Gustavo Santiso und Dr Gunther Steinfeld fuumlr die Hilfe bei der

Durchfuumlhrung und Auswertung von Roumlntgenstrukturanalysen

Helga Berberich Dr Eberhardt Matern Sibylle Schneider und Volker Brecht fuumlr die

Aufnahme von zahlreichen NMR-Spektren

Fabrice Ribelet fuumlr die hilfreiche Einarbeitung am NMR-Geraumlt in Lausanne

der Firma Iolitec fuumlr die Bereitstellung einiger ionischer Fluumlssigkeiten

Julia Stauffer fuumlr ihre experimentellen Beitraumlge zur Chemie der Lewis Superaciditaumlt sowie

ihre freundschaftliche Unterstuumltzung

Kalam Keilhauer Peter Neuenschwander und Tim Oelsner fuumlr die Anfertigung und

Reparatur von Glasgeraumlten

den Mitarbeitern der feinmechanischen Werkstaumltten in Lausanne insbesondere

Renato Bregonzi Roger Ith Christian Roll und Markus Melder in Freiburg fuumlr die

Anfertigung und Reparatur von Geraumlten und Apparaturen

den Mitarbeitern der Chemikalienshops Gabi Kuhne Gladys Pache Giovanni Petrucci

Monika Voumllker und Friedbert Jerg fuumlr die Beschaffung von Chemikalien

meinen Eltern meinem Bruder und meiner Oma die mich waumlhrend meines

Studiums und der Promotionszeit immer unterstuumltzt haben

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 3: Weakly Coordinating Anions and Lewis Superacidity

Meinen Eltern gewidmet

An dieser Stelle moumlchte ich all denjenigen herzlich danken die zum Gelingen dieser Arbeit

beigetragen haben

meinem Doktorvater Prof Dr Ingo Krossing fuumlr die interessante Aufgabenstellung

seine Unterstuumltzung und Betreuung sowie die wissenschaftliche Diskussion der

Ergebnisse

den Mitgliedern der Pruumlfungskommission Prof Dr Christoph Janiak und

Prof Dr Peter Graumlber

meinen aktuellen und ehemaligen AK- und Laborkollegen Dr Andreas Reisinger

Boumahdi Benkmil Dr Carsten Knapp Dr Daniel Himmel Fadime Bitguumll

Dr Gunther Steinfeld Dr Gustavo Santiso Dr Ines Raabe Dr Jens Hartig

Dr John Slattery Katrin Wagner Kristin Guttsche Lucia Alvarez Dr Marcin Gonsior

Nils Trapp Petra Klose Philipp Eiden Şafak Bulut Tobias Koumlchner Ulrich Preiss und

Dr Werner Deck fuumlr die angenehme Arbeitsatmosphaumlre

insbesondere meinen Laborkollegen Dr Gustavo Santiso Philipp Eiden Tobias

Koumlchner und Ulrich Preiss fuumlr die Hilfeleistung bei vielen wissenschaftlichen Fragen

Tobias Koumlchner fuumlr das sorgfaumlltige Korrekturlesen der vorliegenden Arbeit

Vera Bruksch Monika Kayas Gerda Probst Sylvia Soldner und

Christina Zamanos Epremian fuumlr die notwendigen Sekretariatsarbeiten

Dr Rosario Scopelliti Dr Gustavo Santiso und Dr Gunther Steinfeld fuumlr die Hilfe bei der

Durchfuumlhrung und Auswertung von Roumlntgenstrukturanalysen

Helga Berberich Dr Eberhardt Matern Sibylle Schneider und Volker Brecht fuumlr die

Aufnahme von zahlreichen NMR-Spektren

Fabrice Ribelet fuumlr die hilfreiche Einarbeitung am NMR-Geraumlt in Lausanne

der Firma Iolitec fuumlr die Bereitstellung einiger ionischer Fluumlssigkeiten

Julia Stauffer fuumlr ihre experimentellen Beitraumlge zur Chemie der Lewis Superaciditaumlt sowie

ihre freundschaftliche Unterstuumltzung

Kalam Keilhauer Peter Neuenschwander und Tim Oelsner fuumlr die Anfertigung und

Reparatur von Glasgeraumlten

den Mitarbeitern der feinmechanischen Werkstaumltten in Lausanne insbesondere

Renato Bregonzi Roger Ith Christian Roll und Markus Melder in Freiburg fuumlr die

Anfertigung und Reparatur von Geraumlten und Apparaturen

den Mitarbeitern der Chemikalienshops Gabi Kuhne Gladys Pache Giovanni Petrucci

Monika Voumllker und Friedbert Jerg fuumlr die Beschaffung von Chemikalien

meinen Eltern meinem Bruder und meiner Oma die mich waumlhrend meines

Studiums und der Promotionszeit immer unterstuumltzt haben

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 4: Weakly Coordinating Anions and Lewis Superacidity

An dieser Stelle moumlchte ich all denjenigen herzlich danken die zum Gelingen dieser Arbeit

beigetragen haben

meinem Doktorvater Prof Dr Ingo Krossing fuumlr die interessante Aufgabenstellung

seine Unterstuumltzung und Betreuung sowie die wissenschaftliche Diskussion der

Ergebnisse

den Mitgliedern der Pruumlfungskommission Prof Dr Christoph Janiak und

Prof Dr Peter Graumlber

meinen aktuellen und ehemaligen AK- und Laborkollegen Dr Andreas Reisinger

Boumahdi Benkmil Dr Carsten Knapp Dr Daniel Himmel Fadime Bitguumll

Dr Gunther Steinfeld Dr Gustavo Santiso Dr Ines Raabe Dr Jens Hartig

Dr John Slattery Katrin Wagner Kristin Guttsche Lucia Alvarez Dr Marcin Gonsior

Nils Trapp Petra Klose Philipp Eiden Şafak Bulut Tobias Koumlchner Ulrich Preiss und

Dr Werner Deck fuumlr die angenehme Arbeitsatmosphaumlre

insbesondere meinen Laborkollegen Dr Gustavo Santiso Philipp Eiden Tobias

Koumlchner und Ulrich Preiss fuumlr die Hilfeleistung bei vielen wissenschaftlichen Fragen

Tobias Koumlchner fuumlr das sorgfaumlltige Korrekturlesen der vorliegenden Arbeit

Vera Bruksch Monika Kayas Gerda Probst Sylvia Soldner und

Christina Zamanos Epremian fuumlr die notwendigen Sekretariatsarbeiten

Dr Rosario Scopelliti Dr Gustavo Santiso und Dr Gunther Steinfeld fuumlr die Hilfe bei der

Durchfuumlhrung und Auswertung von Roumlntgenstrukturanalysen

Helga Berberich Dr Eberhardt Matern Sibylle Schneider und Volker Brecht fuumlr die

Aufnahme von zahlreichen NMR-Spektren

Fabrice Ribelet fuumlr die hilfreiche Einarbeitung am NMR-Geraumlt in Lausanne

der Firma Iolitec fuumlr die Bereitstellung einiger ionischer Fluumlssigkeiten

Julia Stauffer fuumlr ihre experimentellen Beitraumlge zur Chemie der Lewis Superaciditaumlt sowie

ihre freundschaftliche Unterstuumltzung

Kalam Keilhauer Peter Neuenschwander und Tim Oelsner fuumlr die Anfertigung und

Reparatur von Glasgeraumlten

den Mitarbeitern der feinmechanischen Werkstaumltten in Lausanne insbesondere

Renato Bregonzi Roger Ith Christian Roll und Markus Melder in Freiburg fuumlr die

Anfertigung und Reparatur von Geraumlten und Apparaturen

den Mitarbeitern der Chemikalienshops Gabi Kuhne Gladys Pache Giovanni Petrucci

Monika Voumllker und Friedbert Jerg fuumlr die Beschaffung von Chemikalien

meinen Eltern meinem Bruder und meiner Oma die mich waumlhrend meines

Studiums und der Promotionszeit immer unterstuumltzt haben

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 5: Weakly Coordinating Anions and Lewis Superacidity

Kalam Keilhauer Peter Neuenschwander und Tim Oelsner fuumlr die Anfertigung und

Reparatur von Glasgeraumlten

den Mitarbeitern der feinmechanischen Werkstaumltten in Lausanne insbesondere

Renato Bregonzi Roger Ith Christian Roll und Markus Melder in Freiburg fuumlr die

Anfertigung und Reparatur von Geraumlten und Apparaturen

den Mitarbeitern der Chemikalienshops Gabi Kuhne Gladys Pache Giovanni Petrucci

Monika Voumllker und Friedbert Jerg fuumlr die Beschaffung von Chemikalien

meinen Eltern meinem Bruder und meiner Oma die mich waumlhrend meines

Studiums und der Promotionszeit immer unterstuumltzt haben

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 6: Weakly Coordinating Anions and Lewis Superacidity

List of Abbreviations -1- Abbreviation Meaning 12ndashF2Ph 12-difluorobenzene a unit cell dimension au arbitrary unit ArF fluorinated aryl ligand b unit cell dimension br broad Bu butyl C4H10 c unit cell dimension d distance dublet DFT density functional theory eq equivalent Et ethyl ndashCH2ndashCH3 FIA Fluoride Ion Affinity Gdeg standard Gibbs energy GOOF goodness of fit Hdeg standard enthalpy ie id est for instance IR infra red J coupling constant L ligand m multiplett m mw ms medium medium weak medium

strong Me methyl ndashCH3 NMR nuclear magnetic resonance Ph phenyl ndashC6H5 q quartett RF C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2

and others r t room temperature s strong singlet sep septet sh shoulder t triplet tBu 22 Dimethyl-ethyl ndashC(CH3)3 THF tetrahydrofurane C4H8O tol toluene V volume v vw vs very very weak very strong vs vide supra see above w weak

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 7: Weakly Coordinating Anions and Lewis Superacidity

List of Abbreviations -2- Abbreviation Meaning WCA weakly coordinating anion Z number of formula per unit cell ZPE zero point energy α unit cell angle β unit cell angle γ unit cell angle εr dielectric constant λ wavelength micro absorption coefficient ν wave number ρ density

TABLE OF CONTENTS

Abstract Zusammenfassung 1

A Introduction

Weakly Coordinating Anions (WCAs) ndash Definition and Properties 3

Aim of This Work 12

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu mesitylene) 17

B1 Lithium alkoxides as precursors for WCAs 17

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash 19

B12 Crystal Structures 21

B13 DFT calculations 23

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol RFOH and

attempts to usem them as precursors for new WCAs 24

B21 Syntheses and Crystal Structures 25

B211 Synthesis of LiMesOEt2 25

B212 Synthesis of [LiOC(CF3)2Mes]4 25

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 27

B214 Synthesis of HOC(CF3)2Mes 29

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] 31

B3 Conclusion 33

C A Highly Hexane Soluble Lithium Salt and other Starting Materials of the

Fluorinated Weakly Coordinating Anion [Al(OC(CF3)2(CH2SiMe3))4]ndash 35

C1 Syntheses 36

C11 Attempted further synthesis of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash 39

C2 Crystal Structure 39

C3 Conclusion 42

D A Simple Access to the non-oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) 44

D1 Conclusion 52

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3) 55

E1 Syntheses 56

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3 56

E111 Synthesis of Me3SindashFndashAl(ORF)3 56

E112 Fluoride ion abstraction from [BF4]ndash-salts 57

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 58

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 59

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash 60

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 60

E117 Representative NMR-Data of the Fluoroaluminates 61

E2 Crystal Structures 62

E21 Me3SindashFndashAl(ORF)3 63

E22 [Ag(arene)3]+[FAl(ORF)3]ndash 63

E23 [Ph3C]+[FAl(ORF)3]ndash 66

E231 Comparison of the [FAlORF)3]ndash Structures 67

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 68

E233 Bonding around Si in the ion-like compound 70

E24 Structures with AlndashFndashAl bridges 71

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 72

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 72

E2421 Comparison of the structural parameters of the fluoride bridged anions 74

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of

[Ag(arene)3]+-salts of [(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash74

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts76

E4 Conclusion 78

F Summary 82

G Experimental Section 89

G1 General Experimental Techniques 89

G11 General Procedures and Starting Materials 89

G12 NMR Spectroscopy 89

G13 IR and Raman Spectroscopy 90

G14 X-Ray Diffraction and Crystal Structure Determination 90

G15 Syntheses and Spectroscopic Analyses 92

G151 Preparation of [Li(OC(H)(CF3)2]42Et2O 92

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 93

G153 Preparation of (CF3)2(H)COMg2Et2O 94

G154 Preparation of MesndashLiOEt2 95

G155 Preparation of [LiOC(CF3)2Mes]4 97

G156 Preparation of HOC(CF3)2Mes 98

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 99

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 100

G159 Preparation of LiOC(CF3)2CH2SiMe3 101

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash 102

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash in one pot 103

G1512 NMR scale reactions 104

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash 105

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 106

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 108

G1516 First Preparation of Me3SindashFndashAl(ORF)3 109

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 110

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash 111

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash 112

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash 113

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash 114

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash 115

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash 116

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash 117

H Theoretical Section 119

H1 Frequency Calculations Thermal Corrections and Solvation Energies 119

H2 Lattice Energy Calculations 120

I Appendix 122

I1 Numbering of the compounds 122

J Appendix 123

J1 Appendix to Chapter C 123

J2 Appendix to Chapter D 125

J3 Appendix to Chapter E 129

K Computational data of all calculated species 133

L Crystal Structure Tables 139

M Atomic Coordinates 143

N Publications 167

O Lectures Conferences and Posters 169

1

Abstract Zusammenfassung

Abstract

During the last decades weakly coordinating anions (WCAs) became a field of great interest both in basic and applied chemistry Compared to ldquonormalrdquo common classical anions they have a lot of unique and unusual properties ie feature high solubility in low dielectric media (like CH2Cl2 or toluene) lead to ldquopseudo gas phase conditionsrdquo in condensed phases and are able to stabilize unusual cationic states as well as weakly bound and low charged cationic complexes In more applied chemistry they promote catalytic activity are the counterions for Ionic Liquids and many more The objectives of this thesis were the investigations of new WCAs and a thereof derived Lewis acid

To synthesize bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = tBu mesityl or CH2SiMe3 residues) the syntheses of the corresponding fluorinated lithium alkoxides LiORF or alcohols HORF were explored These alkoxidesalcohols were used as building blocks and precursors for novel weakly coordinating anions In this way the novel hexane soluble lithium alkoxide Li[Al(OC(CF3)2CH2SiMe3)4] could be synthesized which should be an excellent candidate for Li ion catalysis and for the coordination chemistry of Li+ with weak ligands

The basis of our [Al(ORF)4]ndash-WCA (RF = C(CF3)3) is the strong Lewis acid Al(ORF)3 In addition to the complete characterization of Al(ORF)3 the acid and its strength was compared to already known classical Lewis acids A reliable measure for the Lewis acidity of A(g) with the respect to the fluoride ion Fndash

(g) is the fluoride ion affinity (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

The enthalpy ∆H corresponds the negative of the FIA and the higher the FIA value the stronger is the Lewis acid Analogously to Broslashnstedt Superacids (those stronger than 100 H2SO4) the term Lewis Superacids was defined within this work

Molecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in the gas phase (FIA = ndash489 kJ molndash1) are Lewis Superacids

Due to the strong acidity of pure Al(ORF)3 (FIA = ndash537 kJ molndash1) the decomposition via internal CndashF bond activation to the Lewis acidic aluminium atom made it difficult to isolate it as such To overcome this problem the stabilized fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) has been developed to provide an easily accessible room temperature stable reagent With this compound the Lewis Superacidity was further experimentally supported by the reactions with suitable sources of [SbF6]ndash and [PF6]ndash eg the Ionic Liquids [BMIM]+[SbF6]ndash and [BMIM]+[PF6]ndash (BMIM = buthylmethylimidazolium) performed and proceeded successfully with fluoride abstraction from [SbF6]ndash Hence the Lewis Superacid PhndashFrarrAl(ORF)3 may widely be used in all applications that need high and hard Lewis acidity

Using the Lewis Superacid Al(ORF)3 a novel WCA type has been introduced in this thesis the robust [FAl(ORF)3]ndash-anion which by forming an ion-like compound is stable even in the presence of fierce electrophiles like [Me3Si]+ Moreover a simple and straight-forward access to many simple [FAl(ORF)3]ndash-salts has been developed and opened the straight one step access to several salts of the already earlier investigated [(RFO)3AlndashFndashAl(ORF)3]ndash-anion (RF = C(CF3)3)

Most of the subjects treated experimentally within this thesis have been accompanied and proven by quantum-chemical calculations

Keywords weakly coordinating anions (WCAs) lithium alkoxides lithium alkoxy aluminates Lewis Superacidity FIA quantum chemical calculations

2

Zusammenfassung

Im Laufe der letzten Jahrzehnte hat sich die Chemie der schwach koordinierenden Anionen (WCAs weakly coordinating anions) zu einem Gebiet entwickelt das sowohl in der Grundlagenforschung als auch in der angewandten Chemie von groszligem Interesse ist Im Vergleich zu den bdquonormalenldquo klassischen Anionen weisen einige WCAs einzigartige und ungewoumlhnliche Eigenschaften auf Sie sind beispielsweise gut in unpolaren Loumlsungsmitteln wie CH2Cl2 oder Toluol loumlslich fuumlhren zu bdquoPseudo-Gasphasen-Bedingungenldquo in kondensierter Phase und sind in der Lage ungewoumlhnliche Kationenzustaumlnde sowie schwach gebundene und niedrig geladene kationische Komplexe zu stabilisieren In der anwendungsbezogeneren Chemie verstaumlrken sie die katalytische Aktivitaumlt und dienen als Gegenionen fuumlr Ionische Fluumlssigkeiten und vieles mehr Die Ziele dieser Arbeit waren die Erforschung neuartiger WCAs sowie einer daraus abgeleiteten Lewis Saumlure

Um sperrige schwach koordinierende Anionen des Typs [Al(ORF)4]ndash (RF = C(R)(CF3)2 mit R = tBu Mesityl oder CH2SiMe3 Resten) zu synthetisieren wurden Synthesewege zu den korrespondierenden Lithiumalkoxiden LiORF oder Alkoholen HORF erarbeitet Diese AlkoxideAlkohole wurden als Bausteine und Ausgangsverbindungen fuumlr neuartige WCAs genutzt In dieser Art und Weise konnte die neuartige hexan loumlsliche Lithiumalkoxidverbindung Li[Al(OC(CF3)2CH2SiMe3)4] synthetisiert werden die ein exzellenter Kandidat fuumlr Lithium Ionen Katalyse und Koordinationschemie von Li+ mit schwachen Liganden sein sollte

Die Basis bildende Komponente des [Al(ORF)4]ndash-WCA (RF = C(CF3)3) ist die starke Lewis Saumlure Al(ORF)3 Neben der vollstaumlndigen Charakterisierung von Al(ORF)3 wurde die Saumlure und deren Staumlrke mit bekannten klassischen Lewis Saumluren verglichen Eine bewaumlhrte Meszliggroumlszlige fuumlr die Lewis Aziditaumlt von A(g) in Bezug auf das Fluoridion Fndash

(g) ist die Fluoridionenaffinitaumlt (FIA)

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+

Die Enthalpie ∆H korrespondiert mit dem negativen Wert der FIA Je groumlszliger die FIA desto staumlrker die Lewis Saumlure Analog zu den Broslashnstedt Supersaumluren (diejenigen die staumlrker als 100 H2SO4 sind) wurde in dieser Arbeit der Begriff Lewis Supersaumlure definiert

Molekulare Lewis Saumluren die staumlrker als monomeres SbF5 in der Gasphase sind (eine houmlhere FIA als ndash489 kJ molndash1 haben) sind Lewis Supersaumluren

Aufgrund der hohen Aziditaumlt und der leichten Zersetzbarkeit von reinem Al(ORF)3 (FIA = ndash537 kJ molndash1) durch interne CndashF Bindungsaktivierung zum Lewis aciden Aluminiumatom war es schwierig die Verbindung als solche zu isolieren Um dieser Problematik entgegenzuwirken wurde der stabilisierte Fluorbenzol-Addukt-Komplex PhndashFrarrAl(ORF)3 (FIA = ndash505 kJ molndash1) entwickelt der eine bei Raumtemperatur stabile Verbindung darstellt Des Weiteren konnte mit dieser Verbindung die Lewis Superaziditaumlt experimentell belegt werden Dazu wurden die Ionischen Fluumlssigkeiten [BMIM]+[SbF6]ndash und [BMIM]+[PF6]ndash (BMIM = Butylmethylimidazolium) welche als geeignete Quellen fuumlr [SbF6]ndash und [PF6]ndash dienten mit der Supersaumlure umgesetzt Die erfolgreiche FndashndashAbstraktion von [SbF6]ndash verdeutlicht die Staumlrke der Saumlure Demzufolge kann die Lewis Supersaumlure PhndashFrarrAl(ORF)3 fuumlr Anwendungen eingesetzt werden in denen starke und harte Lewis Aziditaumlt benoumltigt wird

Durch Verwendung dieser Lewis-Saumlure konnte ein neuartiger WCA-Typ in dieser Arbeit erhalten werden naumlmlich das robuste [FAl(ORF)3]ndash-Anion welches unter Bildung einer ionenartigen Verbindung sogar stabil in Gegenwart so starker Elektrophile wie zB dem [Me3Si]+ Kation ist Daruumlber hinaus ist ein einfacher direkter Zugang zu vielen [FAl(ORF)3]ndash-Salzen entwickelt worden damit konnte die direkte Einstufensynthese zu verschiedenen Salzen des bereits fruumlher synthetisierten Anions [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) eroumlffnet werden

Die meisten experimentellen Ergebnisse in dieser Arbeit wurden durch quantenmechanische Rechnungen bestaumltigt und ergaumlnzt

Schlagworte Schwach koordinierende Anionen Lithiumalkoxide Lithiumalkoxyaluminate Lewis-Superaciditaumlt FIA quantenmechanische Rechnungen

3

A Introduction

Weakly coordinating anions (WCAs) ndash Definition and Properties

About three decades ago the term ldquonon-coordinating anionrdquo was optimistically used when a

small anion ie halide Xndash was replaced by a bigger complex anion such as BF4ndash CF3SO3

ndash

ClO4ndash AlX4

ndash or MF6ndash (X = F-I M = P As Sb etc) However with the advances in X-ray

structure determination it became obvious that also these anions coordinate to suitable

counterions[1] In the last decade the term ldquoweakly coordinating anionsrdquo (WCAs) was created

which more accurately describes the interaction between anion and cation and already

underlines the potential of such complexes to serve as precursor of a ldquonon-coordinatingrdquo

cation Owing to the importance of such WCAs both in fundamental[2 3] and applied[4]

chemistry many efforts were undertaken to finally reach the ultimate goal of a truly ldquonon-

coordinatingrdquo anion However the existence of an anion that has no capacity for coordination

is impossible[5 6] Each anion in solution competes with the solvent for coordination to the

cation Thus an anion can in certain systems be classed as ldquonon-coordinatingrdquo when it

shows a weaker coordination than the solvent[5] Since SH Straussrsquo article on WCAs[3] has

been widely cited plenty of new so-called ldquosuperweak anionsrdquo[7] have been developed Some

of the most common examples of the new generation of large and chemically robust WCAs

are eg [B(C6F5)4]ndash[8] [Sb(OTeF5)6]ndash[9 10] [CB11Me6X6]ndash[2 11] or [Al(ORF)4]ndash[12 13]

For a basic approach to develop weakly coordinating anions it is essential that the negative

charge ndash apart from some special cases only singly charged anions are considered ndash should be

distributed and delocalized over a large number of ligand atoms to minimize the electrostatic

cation-anion interaction and approximate cationic states in condensed phase In addition the

peripherical atoms should be fluorine or hydrogen atoms and not oxygen or chlorine atoms

which coordinate more strongly Using bulky F-containing substituents as a strongly electron

withdrawing group a hardly polarizable periphery is created With respect to this bulkiness

4

the basic sites like the O-atoms in the [Al(ORF)4]ndash-anion (RF = (per-)fluorinated bulky rest)

may be hidden Therefore the accessibility for electrophilic attacks can be consequently

reduced which protects the anion from ligand abstraction the moderately strong coordinating

anions such as [BF4]ndash [PF6]ndash and [SbF6]ndash are unstable towards those electrophilic attacks and

loose Fndash Thus WCAs allow the stabilization of strongly acidic gas phase species highly

electrophilic metal and non metal cations or weakly bound Lewis acid-base complexes of

metal cations[2-4 14-17] Examples of this kind of unusual and fundamentally important cations

include [Au(Xe)4]2+[18] [Xe2]+[19] [Xe4]+[20] [HC60]+[21] [Mes3Si]+[22] [Ag(L)2]+ (L = CO[23]

C2H2[24 25] C2H4

[24-26] P4[27 28] S8

[29] P4S3[30]) [P5X2]+ (X = Br I)[17 31] [CX3]+ (X = Cl Br

I)[32-34] [N5]+[35] and many more Since WCAs are frequently used to stabilize very reactive

electrophiles they should only be chemically inert prepared to prevent from decomposition

Apart from being useful in fundamental chemistry WCAs are important for homogenous

catalysis[36-38] polymerizations[4 39-46] electrochemistry[47-54] ionic liquids[55-57]

photolithography[58-63] lithium ion batteries or super capacitors[64-67] However a variety of

different WCAs has been established in the literature especially throughout the last two

decades In the following section the most popular ones from literature are compared to those

used in our group The properties and applied qualities from each species differ since factors

such as coordination ability chemical robustness cost of synthesis and preparative

complexity vary with each anion Apart from the classical [BF4]ndash- and [MF6]ndash-anions larger

anions of the type [MnF5n+1]ndash (M = As Sb n = 2-4) are known in superacid solution (FigA-

1)

5

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

[Sb2F11]ndash [Sb3F16]ndash

[Sb4F21]ndash

Fig A-1 Structures of selected multinuclear fluorometallate-based WCAs as ball-and-stick models

A large problem associated with all fluorometallates is that mixtures with varying n-values

exit in solution which provides the free Lewis acid MF5 that may serve as an oxidizing agent

and thus may lead to unwanted side reactions Exchanging the fluorine atoms in a [BF4]ndash-

anion leads to polyfluorinated tetraaryl- or tetraalkylborates [B(RF)4]ndash (ie RF = ndashCF3[68] ndash

C6F5[8] or ndashC6H3-35-(CF3)2

[69 70]) (Fig A-2)

[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash[B(CF3)4]ndash [B(C6F5)4]ndash [B(C6H3-35-(CF3)2)4]ndash

Fig A-2 Structures of selected borate-based anions as ball-and-stick models

6

Salts of the latter two anions are commercially available and thus promote their use in many

applications eg homogenous catalysis[36] The systematic exchange of an F-atom in

[B(C6F5)4]ndash against other fluorinated and alkoxy rests gave several new anions of the type

[B(C6F4R)4]ndash eg R = CF3[71] Si(iPr)3

[72 73] or SiMe2tBu[72 73] Another anion modification

gave the reaction of two equivivalents of B(C6F5)3 with strong and hard nucleophiles Xndash such

as [CN]ndash[74 75] [C3N2H3]ndash[76] [NH2]ndash[77] etc The resulting dimeric [(F5C6)3B(micro-X)B(C6F5)3]ndash

borates are simple to prepare and may even stabilize strong electrophilic cations such as

H(OEt2)2+[77] (Fig A-3)

[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash[(C6F5)3B(micro-CN)B(C6F5)3]ndash [(C6F5)3B(micro-C3N2H3)B(C6F5)3]ndash

Fig A-3 Structures of selected bridged borate based anions as ball and stick models

In general borate based anions are commercially very interesting and gave very good results

as counterions for catalysts[69 70 74] However some borate anions (eg [CB11(CF3)12]ndash[78] see

also below) tend to explode and the phenyl rings might coordinate to metal cations which

lead to anion decomposition

Similarly to such alkyl borates the substitution of the fluorine atoms in [BF4]ndash and [MF6]ndash

anions by larger teflate groups OTeF5 led to the large and robust [B(OTeF5)4]ndash[79]- and

[M(OTeF5)6]ndash-anions (M = As[80] Sb[9 10 80] Bi[80] Nb[9 81]) (Fig A-4) These anions are a

structural altenative to the fluorinated alkyl- or arylborates

7

[B(OTeF5)4]ndash [As(OTeF5)6]ndash[B(OTeF5)4]ndash [As(OTeF5)6]ndash

Fig A-4 Structures of the teflate bases anions [B(OTeF5)4]ndash (left) and [As(OTeF5)6]ndash (right) as ball-and-stick

models

However all teflate based WCAs require the strict exclusion of moisture and decompose

rapidly in the presence of traces of moisture especially in glass equipment (SiO2) though

they might liberate HF very easily and initiate auto catalytic decomposition (Eq A-1)

[OTeF5]ndash + H2O HF + [OTeF4(OH)]ndash

4HF + SiO2 SiF4 + 2H2O (Eq A-1)

Alternatively another class of boron containing WCAs has been established the univalent

polyhedral carborates [CB9H10]ndash[82] or [CB11H12]ndash[83] Although the exohedral BndashH bonds in

these anions are very stable and only weakly coordinating oxidation may occur easily

Therefore a novel type of halogenated and (trifluoro)methylated carboranes [CB11XnH12-n]ndash (n

= 0-12 X = F Cl Br I CH3 CF3)[84-88] has been prepared by substituting successively the H-

atoms (Fig A-5)

8

[1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash [1-EtCB11F21]ndash[B11H6Cl6]ndash[HCB11Me5Cl6]ndash

Fig A-5 Structures of selected carboranates as ball-and-stick models

Although the carborane anions are the chemically most robust WCAs they are not widely

used due to enormous synthetic efforts and high costs

Obviously the development of new easy accessible and chemically robust WCAs without the

former mentioned disadvantages has been necessary Anions of the type [M(OArF)n]ndash (ArF =

poly-per-fluorinated ligand cf Fig A-6) satisfy the criteria of these requirements and are a

structural alternative to the fluorinated alkyl- or arylborates In principle they are built from a

central Lewis acidic atom MIII or MV (M = Al Nb Ta Y or La) and poly-per-fluorinated

ORF-[12 13 38 89-92] or similar aromatic ligands (ArF)[71 93 94] Compared to [B(C6F5)4]ndash and

other related borates these metallates offer the advantage of being easily accessible on a

preparative scale The [M(OC6F5)n]ndash-anions were shown to generate very active cationic

polymerization catalysts of better quality to those partnered with the [B(C6F5)4]ndash-anion[71 93

94]

9

[Nb(OC6F5)6]ndash[Nb(OC6F5)6]ndash

Fig A-6 Structure of [Nb(OC6F5)6]ndash as a representative example of a perfluorinated aromatic alkoxy metallate

[M(OArF)n]ndash shown as ball-and-stick model

However the oxygen atoms as well as CndashF bonds of the aryloxides OArF in [M(OArF)n]ndash are

prone to coordination and may therefore decompose

Two other important classes of WCAs have been established triflimides [N(SO2F)2]ndash and

[N(SO2CF3)2]ndash (Fig A-7) ndash derived from bis(fluorosulfonyl) amine[95-97] and

bis(trifluoromethylsulfonyl) amine[95] ndash and the analogous triflides [C(SO2F)3]ndash and

[C(SO2CF3)3]ndash which are based on the corresponding methanes[98-100]

[N(SO2CF3)2]ndash[N(SO2CF3)2]ndash

Fig A-7 Structure of the [N(SO2CF3)2]ndash anion shown as ball-and-stick model

10

These very robust anions are stable in water[101 102] and generate highly active catalysts for

various reactions e g Diels-Alder reactions[103-105] Friedel-Crafts acylations[106 107] and

others[108 109] But the most successful fields of application of these WCAs are

electrochemistry (eg in Li-ion batteries[110] or as electrolytes[111]) and ionic liquids[111]

Another last variation to get at least the most weakly coordinating anion has been achieved by

the substitution of ORF (RF = C(CF3)3) against OArF in [M(OArF)n]ndash Thus the generated

perfluorinated alkoxy aluminate [Al(ORF)4]ndash (and RF-variations from C(H)(CF3)2 to

C(CH3)(CF3)2) has been the starting point for new WCA chemistry of this kind of compounds

With the large number of peripheral CndashF bonds (36 in total) the [Al(ORF)4]ndash-anion is

together with [CB11(CF3)12]ndash presumably one of the least coordinating anions known

However the carborane species is explosive These alkoxyaluminates are representatives of

[M(ORF)n]ndash and [M(OArF)n]ndash and have been applied in our group since 1999 but were first

reported by Strauss et al in 1996[89] Especially the perfluorinated aluminate [Al(ORF)4]ndash (RF

= C(CF3)3 cf Fig A-8) serves as a very resistant anion even stable against heterolytic ion

separation in H2O and 6N HNO3 The CF3 groups provide a smooth and non-adhesive

Teflon-surface on the anion This stability against electrophilic attacks as well as weakly

coordinating ability may be further improved with the even bulkier fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash-anion (see also[112] Fig A-8) which has been recently synthesized

(see below) One of the major advantages of the aluminates is that they are easily accessible

with little synthetic effort on a preparative scale in form of Li+- Cs+- or Ag+-salts 100 g

within two days in common laboratories with well yield over 95 [12 90 113]

11

[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash[Al(ORF)4]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash

Fig A-8 Structures of the WCAs [Al(ORF)4]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) shown as ball-and-

stick model

Finally summarizing all the aspects mentioned before the general idea over years was to

synthesize the most chemically robust and weakly coordinating anion The last criterion has

been definitely achieved by halogenated carborane anions which are more strongly

coordinating than other WCAs Owning to their exceptional stability they allow the

preparation of very electrophilic cations that decompose all other currently known WCAs

Thus when a maximum stability towards electrophiles is desired the halogenated carborane-

based WCAs are certainly the best choice Of these the fluorinated derivates such as [1-

EtCB11F11]ndash are the least coordinating However if the electrophile is compatible with other

less coordinating WCAs the choice definitely goes to the use of [Al(ORF)4]ndash and [(RFO)3Alndash

FndashAl(ORF)3]ndash (RF = C(CF3)3)

In order to estimate the relative stabilities and coordinating abilities of all types of WCAs

theoretical calculations on coordination strength and redox stability have been made[114]

These allow the forecast for use and application of each WCA The most suitable model to

investigate the stability of fluorinated anions in our chemistry is the calculation of the fluoride

12

ion affinities (FIAs) of their parent Lewis acids A (Eq A-2) which were estimated on

thermodynamic grounds[115 116]

A(gas) + Fndash(gas) AFndash

(gas)∆H = ndashFIA

(Eq A-2)

The higher the FIA of the parent Lewis acid A of a given WCA the more stable it is against

decomposition on thermodynamic grounds KO Christe and D Dixon chose a computational

approach to obtain a larger relative Lewis acidity scale based on the calculation of the FIA in

an isodesmic reaction (number and type of bonds are not changed) with [OCF3]- and the

experimental FIA of OCF2 of 209 kJmol[117] Others used the same methodology[12 92 118-121]

Within this work calculations on Lewis acids were limited to relatively small systems

Aim of This Work

Investigations from our group showed that the fluorinated alkoxy aluminate anions

[Al(ORF)4]ndash (RF = C(CF3)3 C(H)(CF3)2 C(CH3)(CF3)2) fulfil the requirements for modern

WCAs with ease[17] They may be easily prepared from Li+-salts in high yields from the

adequate alcohols and LiAlH4[12 113] Experiments with these various [Al(ORF)4]ndash-anions

formed salts of different stability and coordination ability[12 29 90 92 122 123] Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreased The aim of the first part of this thesis was the investigations of new

bulky WCAs of the type of [Al(ORF)4]ndash (RF = C(R)(CF3)2 with R = Nonfluorinated bulky

organic residue) from their corresponding fluorinated lithium alkoxides LiORF or alcohols

HORF These alkoxidesalcohols were anticipated to be good building blocks and precursors

for novel weakly coordinating anions

13

F3C CF3

O

MO C

CF3

CF3

R

RF

HO C

CF3

CF3

R14 Li[Al(ORF)4]

M R+

+ H+ H2O + 14 AlX3

14 M[Al(ORF)4]

ndash 34 MX

14 LiAlH4

ndash H2

aliphatic solvent

M = Li MgXR = organic residue

aliphatic solvent

hexafluoracetone

Scheme A-1 General synthetic methods to prepare new WCAs of the type [Al(ORF)4]ndash

In the second and main part of this work the chemistry of the classical [Al(ORF)4]ndash WCAs

should be widened to anions of the type of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash (RF =

C(CF3)3) The latter fluorine bridged anion has already been synthesized by Krossing et

al[112] though in this work a new method should be developed and both anions isolated as

suitable salts to make them accessible for further chemistry The to our standard [Al(ORF)4]ndash

WCAs underlying Lewis acid Al(ORF)3 should be completely characterized and its property

as a very strong acid compared to already known classical Lewis acids eg by reactions with

fluoride complexes of strong Lewis acids such as BF3 PF5 and SbF5 Most projects have been

accompanied with quantum mechanical calculations

14

References to Chapter A

[1] W Beck K Suenkel Chem Rev 1988 88 1405 [2] C A Reed Acc Chem Res 1998 31 133 [3] S H Strauss Chem Rev 1993 93 927 [4] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [5] K Seppelt Angew Chem 1993 105 1074 [6] M Bochmann Angew Chem 1992 104 1206 [7] A J Lupinetti S H Strauss Chemtracts 1998 11 565 [8] A G Massey A J Park J Organometal Chem 1964 2 461 [9] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453 [10] T S Cameron I Krossing J Passmore Inorg Chem 2001 40 4488 [11] D Stasko A Reed Christopher J Am Chem Soc 2002 124 1148 [12] I Krossing Chem Eur J 2001 7 490 [13] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [14] R E LaPointe G R Roof K A Abboud J Klosin J Am Chem Soc 2000 122 9560 [15] V C Williams G J Irvine W E Piers Z Li S Collins W Clegg M R J Elsegood T B Marder

Organometallics 2000 19 1619 [16] E Y X Chen K A Abboud Organometallics 2000 19 5541 [17] I Krossing I Raabe Angew Chem Int Ed 2004 43 2066 I Krossing I Raabe Angew Chem 2004 116 2116 [18] S Seidel K Seppelt Science 2000 290 117 [19] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [20] S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem Int Ed 2007 46 6717

S Seidel K Seppelt C van Wuellen X Y Sun Angew Chem 2007 119 6838 [21] C A Reed K-C Kim R D Bolskar L J Mueller Science 2000 289 101 [22] K-C Kim C A Reed D W Elliott L J Mueller F Tham L Lin J B Lambert Science 2002 297

825 [23] P K Hurlburt J J Rack J S Luck S F Dec J D Webb O P Anderson S H Strauss J Am

Chem Soc 1994 116 10003 [24] A Reisinger F Breher D V Deubel I Krossing Chem Eur J 2007 [25] A Reisinger W Scherer I Krossing Chem Eur J 2007 [26] I Krossing A Reisinger Angew Chem Int Ed 2003 42 5919 I Krossing A Reisinger Angew Chem 2003 115 6099 [27] I Krossing J Am Chem Soc 2001 123 4603 [28] I Krossing L Van Wuellen Chem Eur J 2002 8 700 [29] T S Cameron A Decken I Dionne M Fang I Krossing J Passmore

Chem Eur J 2002 8 3386 [30] A Adolf M Gonsior I Krossing J Am Chem Soc 2002 124 7111 [31] I Krossing J Chem Soc 2002 500 [32] I Krossing A Bihlmeier I Raabe N Trapp Angew Chem Int Ed 2003 42 1531 I Krossing A Bihlmeier I Raabe N Trapp Angew Chem 2003 115 1569 [33] H P A Mercier M D Moran G J Schrobilgen C Steinberg R J Suontamo

J Am Chem Soc 2004 126 5533 [34] I Krossing I Raabe S Muumlller M Kaupp Dalton Trans 2007 [35] A Vij W W Wilson V Vij F S Tham J A Sheehy K O Christe

J Am Chem Soc 2001 123 6308 [36] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [37] N J Patmore C Hague J H Cotgreave M F Mahon C G Frost A S Weller Chem Eur J 2002

8 2088 [38] T J Barbarich S M Miller O P Anderson S H Strauss J Mol Cat A 1998 128 289 [39] S D Ittel L K Johnson M Brookhart Chem Rev 2000 100 1169 [40] G J P Britovsek V C Gibson D F Wass Angew Chem Int Ed 1999 38 428 G J P Britovsek V C Gibson D F Wass Angew Chem 1999 111 448 [41] S Mecking Coord Chem Rev 2000 203 325 [42] H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem Int Ed 1995

34 1143 H H Brintzinger D Fischer R Muelhaupt B Rieger R M Waymouth Angew Chem 1995 107

1255

15

[43] W E Piers Chem Eur J 1998 4 13 [44] C Zuccaccia N G Stahl A Macchioni M-C Chen J A Roberts T J Marks J Am Chem Soc

2004 126 1448 [45] M-C Chen J A S Roberts T J Marks J Am Chem Soc 2004 126 4605 [46] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [47] R J LeSuer W E Geiger Angew Chem Int Ed 2000 39 248 [48] F Barriere N Camire W E Geiger U T Mueller-Westerhoff R Sanders J Am Chem Soc 2002

124 7262 [49] N Camire U T Mueller-Westerhoff W E Geiger J Organomet Chem 2001 637-639 823 [50] N Camire A Nafady W E Geiger J Am Chem Soc 2002 124 7260 [51] P G Gassman P A Deck Organometallics 1994 13 1934 [52] P G Gassman J R Sowa Jr M G Hill K R Mann Organometallics 1995 14 4879 [53] M G Hill W M Lamanna K R Mann Inorg Chem 1991 30 4687 [54] L Pospisil B T King J Michl Electrochim Acta 1998 44 103 [55] P Wasserscheid W Keim Angew Chem Int Ed 2000 39 3772 P Wasserscheid W Keim Angew Chem 2000 112 3926 [56] A Boesmann G Francio E Janssen M Solinas W Leitner P Wasserscheid Angew Chem Int Ed

2001 40 2697 [57] T Welton Chem Rev 1999 99 2071 [58] J V Crivello Radiation Curing in Polymer Science and Technology 1993 2 435 [59] F Castellanos J P Fouassier C Priou J Cavezzan J Appl Polymer Science 1996 60 705 [60] H Gu K Ren O Grinevich J H Malpert D C Neckers J Org Chem 2001 66 4161 [61] H Li K Ren W Zhang J H Malpert D C Neckers Macromolecules 2001 34 2019 [62] K Ren J H Malpert H Li H Gu D C Neckers Macromolecules 2002 35 1632 [63] K Ren A Mejiritski J H Malpert O Grinevich H Gu D C Neckers Tetrahedron Lett 2000 41

8669 [64] F Kita H Sakata A Kawakami H Kamizori T Sonoda H Nagashima N V Pavlenko Y L

Yagupolskii J Power Sources 2001 97-98 581 [65] F Kita H Sakata S Sinomoto A Kawakami H Kamizori T Sonoda H Nagashima J Nie N V

Pavlenko Y L Yagupolskii J Power Sources 2000 90 27 [66] L M Yagupolskii Y L Yagupolskii J Fluorine Chem 1995 72 225 [67] N Ignatev P Sartori J Fluorine Chem 2000 101 203 [68] E Bernhardt G Henkel H Willner G Pawelke H Burger Chem Eur J 2001 7 4696 [69] J H Golden P F Mutolo E B Lobkovsky F J DiSalvo Inorg Chem 1994 33 5374 [70] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [71] F A R Kaul G T Puchta H Schneider M Grosche D Mihalios W A Herrmann J Organomet

Chem 2001 621 177 [72] L Jia X Yang C L Stern T J Marks Organometallics 1997 16 842 [73] L Jia X Yang A Ishihara T J Marks Organometallics 1995 14 3135 [74] J Zhou S J Lancaster D A Walker S Beck M Thornton-Pett M Bochmann J Am Chem Soc

2001 123 223 [75] S J Lancaster D A Walker M Thornton-Pett M Bochmann Chem Comm 1999 1533 [76] D Vagedes G Erker R Frohlich J Organomet Chem 2002 651 157 [77] S J Lancaster A Rodriguez A Lara-Sanchez M D Hannant D A Walker D H Hughes M

Bochmann Organomeallics 2002 21 451 [78] B T King J Michl J Am Chem Soc 2000 122 10255 [79] D M Van Seggen P K Hurlburt M D Noirot O P Anderson S H Strauss Inorg Chem 1992 31

1423 [80] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [81] K Moock K Seppelt Z Anorg Allg Chem 1988 561 132 [82] I B Sivaev A Kayumov A B Yakushev K A Solntsev N T Kuznetsov Koord Khim 1989 15

1466 [83] A Franken B T King J Rudolph P Rao B C Noll J Michl Collect Czech Chem Comm 2001

66 1238 [84] T Jelinek J Plesek S Hermanek B Stibr Collect Czech Chem Comm 1986 51 819 [85] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [86] Z Xie C-W Tsang E T-P Sze Q Yang D T W Chan T C W Mak Inorg Chem 1998 37

6444 [87] Z Xie C-W Tsang F Xue T C W Mak J Organomet Chem 1999 577 197

16

[88] B T King Z Janousek B Gruener M Trammell B C Noll J Michl J Am Chem Soc 1996 118 3313

[89] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[90] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [91] M Gonsior I Krossing Chem Eur J 2004 10 5730 [92] M Gonsior I Krossing N Mitzel Z Anorg Allg Chem 2002 628 1821 [93] M V Metz Y Sun C L Stern T J Marks Organometallics 2002 21 3691 [94] Y Sun M V Metz C L Stern T J Marks Organometallics 2000 19 1625 [95] Z Zak A Ruzicka Z f Kristallogr 1998 213 [96] R Appel G Eisenhauer Chem Ber 1962 95 2468 [97] B Krumm A Vij R L Kirchmeier J n M Shreeve Inorg Chem 1998 37 6295 [98] L Turowsky K Seppelt Inorg Chem 1988 27 2135 [99] G Kloeter H Pritzkow K Seppelt Angew Chem 1980 92 954

G Kloeter H Pritzkow K Seppelt Angew Chem Int Ed 1980 19 942 [100] Y L Yagupolskii T I Savina Zh Organi Khim 1983 19 79 [101] A I Bhatt I May V A Volkovich D Collison M Helliwell I B Polovov R G Lewin Inorg

Chem 2005 44 4934 [102] F Croce A DAprano C Nanjundiah V R Koch C W Walker M Salomon J Electrochem Soc

1996 143 154 [103] Y L Yagupolskii T I Savina I I Gerus R K Orlova Zh Organi Khim 1990 26 2030 [104] K Takasu N Shindoh H Tokuyama M Ihara Tetrahedron 2006 62 11900 [105] A Sakakura K Suzuki K Nakano K Ishihara Org Lett 2006 8 2229 [106] M Kawamura D-M Cui S Shimada Tetrahedron 2006 62 9201 [107] A K Chakraborti Shivani J Org Chem 2006 71 5785 [108] K Takasu T Ishii K Inanaga M Ihara K Kowalczuk J A Ragan Org Synth 2006 83 193 [109] P Goodrich C Hardacre H Mehdi P Nancarrow D W Rooney J M Thompson Ind Eng Chem

Res 2006 45 6640 [110] S Seki Y Kobayashi H Miyashiro Y Ohno A Usami Y Mita N Kihira M Watanabe N Terada

J Phys Chem B 2006 110 10228 [111] Z Fei D Kuang D Zhao C Klein W H Ang S M Zakeeruddin M Graetzel P J Dyson Inorg

Chem 2006 45 10407 [112] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [113] I Krossing A Reisinger Coord Chem Rev 2006 250 2721 [114] I Krossing I Raabe Chem Eur J 2004 10 5017 [115] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [116] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [117] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [118] S Brownridge I Krossing J Passmore H D B Jenkins H K Roobottom Coord Chem Rev 2000

197 397 [119] T S Cameron R J Deeth I Dionne H Du H D B Jenkins I Krossing J Passmore H K

Roobottom Inorg Chem 2000 39 5614 [120] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [121] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [122] I Krossing A Reisinger Eur J Inorg Chem 2005 1979 [123] A Decken H D B Jenkins B Nikiforov Grigori J Passmore Dalton Trans 2004 2496 [124] D Lentz K Seppelt Z Anorg Allg Chem 1983 502 83 [125] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451

17

B Attempts to synthesize WCAs of the type [Al(ORF)4]ndash

(RF = OndashC(R)(CF3)2 R = tBu and Mes (mesitylene))

B1 Lithium Alkoxides as precursors for WCAs

Throughout the last century main group and transition metal alkoxides played an important

role in chemistry mainly due to their application in organometallic syntheses and as

precursors for electronic or ceramic materials[1-3] It has been reported that Li-containing

complexes aggregate yielding ~12 general structural types[4-6] The factors that determine the

final structure of these Li species have been attributed to the choice of solvent (Lewis

basicity) used during their synthesis the electron-donating ability of the α-atom of the ligand

(C N O or X) the bonding ability of the ligand (mono- bi- tri- or polydentate) or the steric

bulk and number of the ligands (ndashX ndashOR ndashNR2)[4-7] The motivation has been the syntheses

of new fluorinated metal alkoxides[8 9] as precursors to new weakly coordinating anions

(WCAs) in alkoxy metalates [M(ORF)4]ndash[10] to complement (per-)fluorinated alkoxy residues

ORF = C(CF3)3 C(CF3)2R (R = H Me) with the bulky R = tBu or Mes (= 246-Me3C6H2)

presently used in our group The desired [Al(ORF)4]ndash WCAs appeared valuable synthetic

goals since they should be very stable towards electrophilic attack due to the steric shielding

provided by the bulky OC(CF3)2Mes ligand Moreover WCAs such as those in the aluminate

Li+[Al(ORF)4]ndash[10] evoke easily accessible Li+ cations which tend to be ldquonakedrdquo Such weakly

coordinated Li+ ions may even soluble in toluene and n-hexane[11] and are therefore active as

catalyst in organic transformations as Diels-Alder reactions 14-conjungated additions and

pericyclic arrangement reactions[11 12] The related Li+[Al(OC(CF3)2Ph)4]ndash was shown to be a

good catalyst for this purposes[11]

18

The most widespread synthesis[6] of Li-alkoxides LiOR is the reaction of the alkaline metals

or alkaline metal hydrides with alcohols RndashOH (R = organic) Due to the small and polarizing

Li+ ion the structures tend to be aggregated Li+Xndash (X = halide OR NR2) Monomeric ion

pairs of Li+Xndash only exist in the gasphase (X = halide[13] NR2[14]) which associate in

condensed phases with formation of ring molecules (LiX)n (n = 2 3 rarely 4 (types I II III))

infinite chains (LiX)infin (type IV) heterocubanes (CNLi = 3) (see type V) aggregated

heterocubanes (type VI) ladders (type VII) or even hexagonal prisms (type VIII in Fig B-1)

Li

X

X

Li

X

Li

X

Li Li

X

X

Li X

Li

Li X

X Li

Structure Type I Structure Type II Structure Type III

Li

X

Li

X

Li

X

Li

X X

Li X

Li

X Li

XLi

Structure Type IV Structure Type VI

X

Li X

Li

X Li

XLi

X

Li X

Li

X Li

XLi

Structure Type V

Li

X

X

Li

Li

X

Structure Type VII

X LiXLi

X LiX Li

Li X

XLi

Structure Type VIII

Fig B-1 General structural types of [Li+Xndash]n (X = halide OR NR2 R = alkyl aryl)

19

B11 Chasing an elusive alkoxide Attempts to synthesize [OC(tBu)(CF3)2]ndash

Scheme B-1 shows the identified products of the different reactions of hexafluoroacetone with

tBuLi or tBuMgX (X = Cl I) as tBu source

C

O

F3C CF3

(THF)3LiO(CF3)2OC(H)(CF3)2 (B-2)

in THF

A

B

C

D Et2O Et2O

Et2O

[Li(OC(H)(CF3)2]42Et2O (B-1) MgI2

2Et2O (B-3) +

(CF3)2(H)COMgCl2Et2O (B-4)

+ tBuLindash (CH3)2CCH2

1 n-hexane2 Et2O

+ tBuLindash (CH3)2CCH2

+ tBuMgI

+ tBuMgClndash (CH3)2CCH2

+ tBuLi+ CuI

E

Mixture discarded

Scheme B-1 Attempted syntheses of the new MORF alkoxides with RF = CtBu(CF3)2 isolated products

All attempted syntheses of the new alkoxide MORF did not succeed as anticipated In route A

hexafluoroacetone was condensed to a frozen solution of tBuLi in n-hexane at 77 K After

warming to 195 K and stirring overnight at room temperature the solvent was removed at 298

K by vacuum distillation and a colorless oil was isolated The oil was recrystallized from Et2O

and was identified by spectroscopy and x-ray analysis as [Li(OC(H)(CF3)2]42Et2O (B-1) (δ1H

((CF3)2CndashH) = 441 (sep)) The second route B proceeded similar to A but the solvent was

changed from n-hexane to a n-hexaneTHF mixture After addition of (CF3)2CO and warming

first to 195 K (2h) than to 298 K (12 h) the solvent was removed by vacuum distillation at

298 K The resulting yellow oil was recrystallized from THF The colorless crystals were

identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (δ1H ((CF3)2CndashH) = 441 (sep)) In

structure B-2 the two C(CF3)2 groups are dissimilar (δ19F (O2C(CF3)2) = ndash762 (s) δ19F

(OC(H)(CF3)2) = ndash822 (s)) Thus it appears that the solid state structure remains intact in

20

solution Also the next route C with the Grignard tBuMgI did not proceed as hoped and the

only identified product was a large amount of MgI22Et2O (B-3)

Route D employed commercially available Grignard reagent tBuMgCl dissolved in Et2O was

frozen to 77 K Hexafluoroacetone was condensed onto the frozen liquid and allowed to

slowly warm with stirring to 298 K After removing the solvent a white precipitate was

formed On the basis of the NMR-data and the weight balance this white precipitate was

assigned as (CF3)2(H)COMgCl2Et2O (B-4) (δ1H ((CF3)2CndashH) = 538 (br sept) δ19F

C(CF3)2 = ndash751 (s)) In route E CuI was added to the tBuLi in order to use the gentler

organocuprates as alkylating agent[15] 1H NMR spectroscopic analyses of several reactions

revealed the presence of complex mixtures which were discarded (several broad singlets at

δ1H asymp 43 (CF3)2C-H ) several singlets at δ1H asymp 12 (tBu ))

In summary we demonstrated that neither the reagent tBuLi nor the Grignards tBuMgX add to

the electrophilic carbonyl atom of (CF3)2CO In general both rather act as Hndash donors Thus

unfortunately the preparation of [OCtBu(CF3)2]ndash proved impossible with all conditions tried

The solvent dependent formation of B-1 and B-2 may be understood by the initial addition of

Hndash to (CF3)2CO to give the [(CF3)2C(H)O]ndash-alkoxide which in THF may coordinate another

(CF3)2CO to give B-2 (Scheme B-2)

F3C C

O-

CF3

H

F3CC

CF3

OF3C CF3

O

H

F3C CF3

O-

+

Scheme B-2 Coordination of a hexafluoroacetone molecule by the alkoxide [(CF3)2C(H)O]ndash produces the anion

in B-2

21

The reason for this solvent selectivity may be due to the stronger donor capacity of THF that

breaks up the tetrameric structure B-1 and thus increases the nucleophilicity of the alkoxide

oxygen atom

B12 Crystal Structures

The crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) is shown in Fig B-2 Compound B-1

forms a slightly distorted (LindashO)4 heterocubane (lt(OndashLindashO)av 9434deg lt(LindashOndashLi)av 8532deg)

Two of the four Li atoms are coordinated by Et2O molecules Such a heterocubane structure is

a general structural feature of Li alkoxides and is due to the high electrophilicity of the small

lithium ion In this structure Li is either coordinated by four oxygen atoms (d(LindashO) = 187 Aring

to 201 Aring) or it additionally interacts with fluorine atoms (d(LindashF) = 215 Aring to 238 Aring)

Fig B-2 Section of the crystal structure of [Li(OC(H)(CF3)2]42Et2O (B-1) shown as Ortep model The atoms of

the structure are shown as thermal ellipsoids with a probability of 20 Only H atoms are shown as small circles

of an arbitrary scale

Some selected distances [Aring] and angles [deg] of B-1 Li(3A)ndashO(4A) 1962(9) Li(3A)ndashO(3A)

1965(10) Li(3A)ndashO(1A) 1984(10) Li(2A)ndashO(4A) 1976(9) Li(2A)ndashO(3A) 1962(9)

22

Li(2A)ndashO(2A) 2016(10) Li(1A)ndashO(4A) 1950(10) Li(1A)ndashO(2A) 1878(10) Li(1A)ndashO(1A)

1946(9) Li(3A)ndashO(6A) 1927(10) Li(2A)ndashO(5A) 1957(9) O(4A)ndashC(10A) 1380(6)

Li(4A)ndashF(7A) 2171(10) Li(1A)ndashF(6A) 2157(10) Li(1A)ndashF(22A) 2388(10) CndashC 1273(1)ndash

1525(9) (Oslash 1453(1)) CndashF 1306(9)ndash1374(8) (Oslash 1334(9))

In the related structure [Li(OCH2CF3)]4(THF)3[16] the LindashO distances range from 187 to 197

[Aring] The coordinated neutral Et2O molecules exhibit rather short LindashO distances (d(LindashO) =

192 195 Aring cf d(LindashOalkoxide) = 187 to 201 [Aring]) This demonstrates the weakly basic nature

of the alkoxide oxygen atoms that ndash although being negatively charged and thus expected to

interact more strongly with the Li atoms ndash exhibit similar LindashO bond lengths as the neutral

and therefore on first sight weaker oxygen donor Et2O Fig B-3 shows the molecular

structure of B-2 In contrast to B-1 B-2 exhibits a structure in which one hexafluoroacetone

molecule is coordinated to a [(CF3)2C(H)O]ndash alkoxide (see Fig B-3) It is the first known

structure of a fluorinated alkoxy-alkoxide

Fig B-3 Molecular structure of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) shown as Ortep model The atoms of the

structure are shown as thermal ellipsoids with a probability of 25 The H atoms are shown as small circles of

an arbitrary scale

23

Selected bond lengths [Aring] of B-2 Li(1)ndashO(1) 1810(7) Li(1)ndashO(4) 1950(7) Li(1)ndashO(5)

1968(8) Li(1)ndashO(3) 1938(8) O(1)ndashC(1) 1282(5) C(1)ndashO(2) 1507(5) O(2)ndashC(2) 1417(5)

C(1)ndashC(4) 1559(6) CndashF 1300(7)ndash1345(6) (Oslash 132(3)) Li(1)ndashO(1)ndashC(1) 1571(3) C(1)ndash

O(2)ndashC(2) 1144(3) O(1)ndashC(1)ndashO(2) 1149(3)

The LindashO distances to the coordinated THF donors are similar and average to 195 Aring The Li-

alkoxide distance Li(1)ndashO(1) is by 014 Aring shorter than the other LindashO separations The

distance between C(1)ndashO(1) (128 Aring) is much shorter than C(1)ndashO(2) (151 Aring) This may be

compared to the average C=O distance in acetone (121 Aring)[17] as well as the average CndashO

distance in B-1 of 138 Aring The unusual CndashO distances in B-2 may be rationalized by the

following resonance structures (Scheme B-4)

(THF)3Li

OC

O

F3CCF3

C

HCF3

CF3

(THF)3Li

O

CF3C CF3

O

C

H

F3C CF3

I II

Scheme B-4 Two important resonance structures to rationalize the structural parameters of B-2

In the resonance structure I all three CndashO bond lengths tend to be similar but according to structure II

significantly different CndashO bond lengths with bond orders gtgt 10 and ltlt 10 can be expected It appears that II

has more weight to describe compound B-2

B13 DFT Calculations

To understand if the observed Hndash addition of tBuLi to the carbonyl atom of

hexafluoroacetone is due to kinetics (9 equivalent H atoms for Hndash addition and isobutene

24

elimination) or thermodynamics we fully optimized[18 19] the structures of tetrameric (tBuLi)4

hexafluoroacetone as well as the Hndash and tBundash addition products and the eliminated isobutene

at the BP86SV(P) level of theory[20 21] with the program Turbomole Then the

thermodynamics of the two possible reactions with inclusion of zero point energy have been

analyzed thermal contributions to the enthalpyentropy and solvation effects with the

COSMO[22 23] model (Table B-1)

Table B-1 Thermodynamics of Hndash and tBundash addition to hexafluoroacetone (all values are given in kJ molndash1)

Reaction ∆rΗdeg ∆rGdeg ∆solvGdeg

(tBuLi)4 + (F3C)2CO rarr (F3C)2(tBu)COLi ndash294 ndash229 ndash211 (tBuLi)4 + (F3C)2CO rarr (F3C)2(H)COLi + C4H8 ndash235 ndash234 ndash227

The calculated thermodynamics as in Table B-1 show that the preference of Hndash over tBundash

addition to hexafluoroacetone is not only kinetic but also thermodynamic Thus it appears

that other routes than MtBu addition have to be used to induce [OCtBu(CF3)2]ndash formation

Summarizing the chemistry of the attempts to synthesize a new lithium alkoxide

Li+[OC(R)(CF3)2]ndash (R = tBu) very briefly one can gather that other routes have to be found

However the straight forward but unexpected synthesis of the first fluorinated alkoxy-

alkoxide B-2 may be of importance for further WCA syntheses if a weak oxygen donor is

desired in the periphery of the WCA

B2 The fluorinated lithiumalkoxide LiORF (RF = C(CF3)2Mes) the alcohol

RFOH and attempts to use them as precursors for new WCAs

In further attempts the preparation and structural characterization of compounds containing

the ORF residue (RF = C(CF3)2Mes) has been undertaken ie structural variations of LiORF

25

the alcohol HOndashRF and first attempts to use the alkoxidealcohol for the preparation of WCAs

of type [M(ORF)4]- (M = Al Ga) by reaction with MBr3LiMH4

B21 Syntheses and Crystal Structures

B211 Synthesis of LiMesOEt2 Initially the starting compound MesndashLiOEt2 was prepared

according to the literature[23b] by lithiation of bromomesitylene in Et2O as a white powder in

90 yield

Br

+ n-BuliEt2O

LiOEt2

+ n-BuBr

LiMesOEt2(Eq B-1)

B212 Synthesis of [LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4 (B-5) was formed by the

reaction of MesndashLiOEt2 and gaseous (CF3)2CO (Eq B-2) The latter was condensed onto the

frozen toluene solution of MesndashLiOEt2 After stirring for 4 hours at 213 K the mixture was

allowed to slowly reach room temperature The resulting light yellow solid product was

washed recrystallized from n-pentane isolated and spectroscopically characterized

LiOEt2

+ 4

F3C

O

CF3

toluene[LiOC(CF3)2Mes]4 (B-5) (Eq B-2)4

26

The lithium alkoxide 5 crystallizes in the rare structural type III (cf Fig B-1) the central

structural element is a puckered eight membered (LindashO)4 ring (Fig B-4)

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig B-4 Molecular structure of [LiOC(CF3)2Mes]4 (B-5) at 140 K with thermal displacement ellipsoids showing

50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashO(1) 1802(9)

Li(1)ndashO(2) 1821(9) Li(1)ndashC(1) 2744(10) Li(1)ndashC(13) 2681(10) Li(1)ndashC(16) 2791 Li(1)ndashC(21) 2597(9)

Li(2)ndashO(1)rsquo 1857(9) Li(2)ndashO(2) 1852(8) O(1)ndashC(1) 1364(5) C(1)ndashC(4) 1567(6) O(2)ndashC(13) 1361(5)

C(13)ndashC(14) 1561(7) C(13)ndashC(15) 1546(7) C(13)ndashC(16) 1562(6) Li(2)ndashF(2)rsquo 2123(9) Li(2)ndashF(4)rsquo

2261(10) Li(2)ndashF(10)rsquo 2787(1) Li(2)ndashF(8)rsquo 2155(10) (CndashF)av 1331(7) O(1)ndashLi(1)ndashO(2) 1382(5) Li(1)ndash

O(1)ndashLi(2)rsquo 1211(4) Li(1)ndashO(2)ndashLi(2) 1157(4) O(2)ndashLi(2)ndashO(1)rsquo 1273(5) C(1)ndashO(1)ndashLi(1) 1195(4) C(13)ndash

O(2)ndashLi(1) 1140(4) O(1)ndashC(1)ndashC(3) 1093(3) O(1)ndashC(1)ndashC(4) 1120(4) C(3)ndashC(1)ndashC(4) 1081(4) O(2)ndash

C(13)ndashC(14) 1042(3) O(2)ndashC(13)ndashC(16) 1108(4) C(15)ndashC(13)ndashC(16) 1102

Thin plate-shaped colorless crystals of [LiOC(CF3)2Mes]4 (B-5) (Fig B-4) were obtained by

crystallization of a n-pentane solution at 253 K The centrosymmetric eight-membered ring

consists of an alternating arrangement of Li and O atoms where two of the four electrophilic

and small Li atoms are six-coordinated (LiO2F4 2+4 coordination) and the other two approach

a linear arrangement with some weak residual LindashMes interactions (LindashC 2597 - 2791 Aring

2703 Aring(av)) The tetrameric structure of this lithium organyl is untypical since such lithium

27

alkoxides tend to crystallize in the heterocubane (LiOR)4 structure of type V Probably the

steric demand of the mesitylene residues forces the coordination of the four LindashO units into a

ring shape where the average LindashO bonds are 1854 Aring (1802 - 1857 Aring) The OndashLindashO bond

angles are on average larger than 120deg (1328deg (av)) and the LindashOndashLi bond angles tend to be

smaller on average than 120deg (1184deg (av)) The intramolecular contact of Li(2) to one F atom

of each CF3 group (2331 Aring (av) range 2123 Aring to 2787 Aring) elongates the corresponding CndashF

bond distances by 0026 Aring (av) in comparison to the other CndashF bonds (1323 Aring (av))

B213 Synthesis of [LiOC(CF3)2Mes]4[LiF]2 (B-6) [LiOC(CF3)2Mes]4[LiF]2 (B-6) was

formed by the reaction of [LiOC(CF3)2Mes]4 and AlBr3 in n-hexane at 273 K In an poorly

understood sequence an F-atom from the alkoxide is removed rather than that AlBr3 reacts by

metathesis to the lithium alkoxy aluminate Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) In the course

of the decomposition the [LiF]2 complex was formed (Eq B-3)

F3C CF3

OLi

+AlBr3

n-hexane

ndash3LiBr

Li[Al(OC(CF3)2Mes]4 (Eq B-3)

Li[OC(CF3)2Mes]4[LiF]2 (B-6)

yield 28

4

Further routes to Li+[Al(ORF)4]ndash (RF = C(CF3)2Mes) were investigated The reaction in

toluene led to an impure and decomposed non assignable red product mixture Several

28

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

F9

Li3C13C14

C16

F5lsquo C3lsquoC1lsquo

O1lsquo

Li1lsquoF13

O2

Li1

F13lsquoO2lsquo

Li3lsquo

O1C1C4

C3C2

F5 F9lsquo

Li2lsquo

Li2

C24

C12

C12lsquo

C24lsquo

C13lsquo

attempts with various conditions (order of adding the products temperature solvents) did not

lead to the desired product Li+[Al(ORF)4]ndash and the only clear result was formation of B-6

Thin plate-shaped colorless crystals of centrosymmetric [LiOC(CF3)2Mes]4[LiF]2 (B-6) (Fig

B-5) were obtained by crystallization from n-hexane solution at 253 K

Fig B-5 Molecular structure of [LiOC(CF3)2Mes]4[LiF]2 (B-6) at 140 K with thermal displacement ellipsoids

showing 50 probability Selected bond lengths and interactions are given in [Aring] and angles in [deg] Li(1)ndashF(13)rsquo

1940(9) Li(1)ndashF(13) 1947(9) Li(1)ndashO(1) 1974(9) Li(1)ndashO(2) 1998(9) Li(1)ndashC(24) 3273 Li(1)ndashC(12)

3340 Li(2)ndashC(24) 2837 Li(2)ndashC(12) 2809 Li(2)ndashC(1) 3133 Li(2)ndashC(13) Li(3)ndashC(14) 2845 Li(3)ndashC(1)

2894 Li(2)ndashF(13) 1841(9) Li(2)ndashO(1) 1919(10) Li(2)ndashO(2)rsquo 1928(10) Li(3)ndashF(13) 1843(9) Li(3)ndashO(1)rsquo

1976(10) Li(3)ndashF(5)rsquo 1979(9) Li(3)ndashF(9) 1982(9) Li(3)ndashO(2) 1986(9) F(13)ndashLi(1)rsquo 1940(9) O(1)ndashC(1)

1392(6) O(1)ndashLi(3)rsquo 1976(10) O(2)ndashC(13) 1373(6) O(2)ndashLi(2)rsquo 1928(10) C(1)ndashC(2) 1549(7) C(1)ndashC(3)

1568(7) C(1)ndashC(4) 1572(7) F(13)rsquondashLi(1)ndashF(13) 866(4) F(13)rsquondashLi(1)ndashO(1) 934(4) F(13)ndashLi(1)ndashO(1)

903(4) F(13)rsquondashLi(1)ndashO(2) 907(4) F(13)ndashLi(1)ndashO(2) 924(3) O(1)ndashLi(1)ndashO(2) 1751(5) F(13)ndashLi(2)ndashO(1)

954(4) F(13)ndashLi(2)ndashO(2)rsquo 961(4) O(1)ndashLi(2)ndashO(2)rsquo 1022(4) F(13)ndashLi(3)ndashO(1)rsquo 965(4) F(13)ndashLi(3)ndashF(5)rsquo

1069(4) O(1)rsquondashLi(3)ndashF(5)rsquo 790(4) F(13)ndashLi(3)ndashF(9) 1129(5) O(1)rsquondashLi(3)ndashF(9) 1506(5) F(5)rsquondashLi(3)ndashF(9)

928(3) F(13)ndashLi(3)ndashO(2) 960(4) O(1)rsquondashLi(3)ndashO(2) 981 (4) F(5)rsquondashLi(3)ndashO(2) 1571(5) F(9)ndashLi(3)ndashO(2)

785(3) Li(1)rsquondashF(13)ndashLi(1) 934(4) Li(2)rsquondashO(2)ndashLi(3) 790(4) Li(2)rsquondashO(2)ndashLi(1) 844(4) Li(3)ndashO(2)ndashLi(1)

830(4) O(1)ndash(1)ndashC(2) 1078(4) O(1)ndashC(1)ndashC(3) 1041(4) C(2)ndashC(1)ndashC(3) 1078(4) O(1)ndashC(1)ndashC(4) 1119(4)

29

C(2)ndashC(1)ndashC(4) 1107(4) C(3)ndashC(1)ndashC(4) 1141(4) O(2)ndashC(13)ndashC(16) 1119(4) O(2)ndashC(13)ndashC(14) 1039(4)

C(16)ndashC(13)ndashC(14) 1150(4)

The asymmetric unit consists of two lithium alkoxy- and one lithium fluoride formula units

where the twelve LindashO bonds and eight LindashF bonds of the symmetry generated complete

molecule form an almost ideal double heterocubane with an average LindashO bond distance of

1964 Aring (1919 - 1986 Aring) and two short LindashF distances at 1841 and 1843 Aring as well as two

longer at 1940 and 1947 Aring The OndashLindashO angles of each cube are larger (981 - 1022deg

1002deg av) than the LindashOndashLi angles (790 - 844deg 821deg av) Also the O(1)ndashLi(1)ndashO(2) angle

of 1751deg along the center-line proves the slight distortion of this double cage The two central

cubes are each shielded by two C(CF3)2Mes groups where one F atom of every second CF3

group forms an intramolecular LindashF contact (1979 Ǻ and 1982 Aring) Several weak residual Lindash

Mes interactions saturate the six times coordinated Li(1) (LindashC 3273 - 3340 Aring (3307 Aring(av))

and the seven times coordinated Li(2) and Li(3) (LindashC 2837 - 3178 Aring (2949 Aring(av)) The

numerous LindashF contacts are in very good agreement with other known structures of

fluorinated lithium[4] and the homologous sodium alkoxides[24-26] In the comparable

heterocubane structure of (LiORrsquo)4 (Rrsquo = C(CF3)3)[9] the analogous LindashF contacts are longer

and at 242 Aring (av)[9]

B214 Synthesis of HOC(CF3)2Mes The general idea of the preparation of the alcohol

HOC(CF3)2Mes was to achieve the synthesis of the lithium alkoxy aluminate Li+[Al(ORF)4]ndash

(RF = C(CF3)2Mes) by reaction with LiAlH4 in analogy to published procedures[10 11] The

alcohol was formed by the acidic hydrolysis (2M HCl) of the fluorinated lithium alkoxide

LiOC(CF3)2Mes under normal atmospheric conditions The alcohol was separated from the

aqueous phase by extraction with fluorobenzene Then the alcohol was distilled (bp = 393

K 001 mbar inert conditions) dried and isolated as a colorless liquid (yield 28 )

30

CF3F3C

OLi

+ 2M HClndashLiCl

CF3F3C

OH

4

4 (Eq B-4)

The spectroscopic analyses of HOndashC(CF3)2Mes are as expected Moreover

cyclovoltammograms of the alcohol and the redox-anchored lithium salt LiOC(CF3)2Mes in

the solvent mixture PCECDMCtoluene = 20205010 in 1M LiPF6 were recorded It was

observed that even at very low potentials during reduction no evolution of hydrogen

occurred (Eq B-5) This unusual behavior was ascribed to the bulkiness of RF and is in

agreement with the inertness towards reaction with LiAlH4 Therefore the proposed synthesis

of Li+[Al(ORF)4]ndash (Eq B-5) did not lead to success no reaction could be observed

CF3F3C

OH

4 + LiAlH4

various solvents including PhndashF and Et2O

ndash4H2

Li+[Al(ORF)4]ndash (Eq B-5)

ORF

Further attempts to prepare Li+[Al(ORF)4]ndash were also done in Et2O with dissolved LiAlH4 but

no reaction was observed Overall it appears that novel RF residue is too bulky to coordinate

31

four times to the (smaller) aluminum atom Even coordinating solvents like Et2O did not

support to the formation of Li+[Al(ORF)4]ndash from LiAlH4 and 4 RFndashOH

B215 Synthesis of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) It was tried to synthesize

the analogous lithium alkoxygallate as in equation B-3 but replacing AlBr3 for GaBr3

Gallium is a bit larger than aluminum and a somewhat weaker Lewis acid so it was hoped to

overcome the fluoride abstraction as found by reaction with AlBr3 However the synthesis

only led to the mixed bromo-alkoxy-gallate B-7 Although fluoride abstraction did not occur

it appears that the ORF residue is also too bulky for Gallium to form the tetrasubstituted

[Ga(ORF)4]- structure Colorless crystals of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) (Fig

B-6) were obtained by crystallization from a dichloroethane solution at 253 K in good yield

The solid-state structure contains half a molecule in the asymmetric unit The central

structural feature of B-7 is a centrosymmetric almost square planar LiO2Ga ring which

contains a lithium atom that is additionally coordinated by one solvent molecule

dichloroethane The LindashO distance is 1995 Aring the GandashO distance is 1883 Aring

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Fig B-6 Molecular structure of Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) at 140 K with thermal

displacement ellipsoids showing 50 probability Selected bond lengths and interactions are given in [Aring] and

angles in [deg] Li(1)ndashO(1) 1991(5) Br(1)ndashGa(1) 23088(4) Ga(1)ndashO(1) 18832(17) Cl(1)ndashC(13) 1782(3) Cl(1)ndash

Li(1) 2641(5) Li(1)ndashC(12) 2945 Ga(1)ndashF(2) 3189 Ga(1)ndashF(5) 3139 O(1)ndashC(1) 1406(3) O(1)rsquondashGa(1)ndashO(1)

32

8507(11) O(1)rsquondashGa(1)ndashBr(1)rsquo 11323(5) O(1)ndashGa(1)ndashBr(1)rsquo 11848(5) Br(1)rsquondashGa(1)ndashBr(1) 10752(2) C(13)ndash

Cl(1)ndashLi(1) 10567(14) Ga(1)ndashO(1)ndashLi(1) 9772(14) O(1)ndashLi(1)ndashO(1)rsquo 795(3) O(1)ndashLi(1)ndashCl(1) 11030(6)

O(1)rsquondashLi(1)ndashCl(1) 14905(6) Cl(1)ndashLi(1)ndashCl(1)rsquo 7688(18) C(1)ndashO(1)ndashLi(1) 1251(2) O(1)rsquondashGa(1)ndashLi(1)

4254(5) O(1)ndashLi(1)ndashGa(1) 3974(13)

The slightly distorted square exhibits an OndashGandashO angle that is larger (8507deg) than the OndashLindash

O angle (795deg) Both are smaller than the LindashOndashGa angle (9772deg) The two remaining free

coordination sites of the sixfold coordinated Li and eightfold coordinated Ga atoms are

occupied by a C2H4Cl2 molecule (coordinated via the Cl atoms) two Br atoms and two weak

LindashC contacts (LindashC 2945 Aring) as well as four weak GandashF contacts (GandashF 3139 - 3189 Aring

(3164 Aring av) The CndashCl bond lengths in the coordinated C2H4Cl2 molecule are with 1781 Aring

similar to the distance of 1791 in free C2H4Cl2[28] The GandashBr (2309 Aring) and the GandashO

distances are comparable and in good agreement to the GandashBr bond lengths in

[GaBr4]ndashPh2PPPh3+[29] (2322 Aring av) and to the GandashO distances (1883 Aring) in

[Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I) (1811 Aring av)[30] This also fits to the (LindashOndashGandashO) ring

in [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl] (=II) where the the LindashO (1983 Aring) and GandashO

(1872 Aring) bond lengths are nearly equivalent[31] In B-7 it appears that the small and hard Li+

cation coordinates more readily to the harder O-atoms (and not to the softer and much more

accessible Br-atoms)

GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)GaO

GaO

OCMe2Et

OCMe2Et

EtMe2CO

EtMe2CO

CMe2Et

CMe2Et

(=A)O

SiMe3

Ga LiO

THF

THF

Cl

(Me3Si)2N

SiMe3

(=B)(I) (II)

Fig B-9 Structures of [Ga(microndashOCMe2Et)(OCMe2ndashEt)2]2 (=I)[30] and [Li(THF)2][GaN(SiMe3)2(OSiMe3)2Cl]

(=II)[31] compared to B-7

33

B3 Conclusion

It was attempted to synthesize the alkoxide [OC(tBu)(CF3)2]ndash by the reaction of tBuM-

reagents (M=Li MgX) with hexafluoroacetone In all attempted syntheses ndash also supported

by theoretical DFT calculations ndash it was shown that [H]ndash addition is kinetically and

thermodynamically favored over [tBu]ndash addition Thus compounds like

[(Li(OC(H)(CF3)2]42Et2O (B-1) and (CF3)2(H)COMgClsdot(OEt2)2 (B-4) formed An

unexpected result was the formation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) an addition

compound built from [(CF3)2C(H)O]ndash and hexafluoroacetone which may be of importance for

further WCA syntheses Furthermore the complete structural characterizations of

[LiOC(CF3)2Mes]4 (B-5) [LiOC(CF3)2Mes]4[LiF]2 (B-6) and

Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] (B-7) were achieved B-5 could be prepared in large

scale and with excellent yields it is a rare example of a Li-alkoxide that does not adopt a

heterocubane structure As a side reaction with AlBr3 the LiF-complex B-6 with a double

heterocubane structure formed The alkoxide could be readily hydrolyzed to the respective

bulky alcohol which did not react with LiAlH4 and did not liberate H2 upon electrochemical

reduction All attempts to synthesize WCAs from these starting materials failed reactions to

prepare Li+[Al(ORF)4]ndash from AlBr3 or LiAlH4 did not lead to success Apparently the bulk of

the C(CF3)2Mes residue is to large to allow incorporation to the desired aluminate Similarly

the respective [Ga(ORF)4]ndash could not be prepared and only the disubstituted

dichloroethanecomplex B-7 could be isolated According to a search in the CSD database the

latter is the first account of a non-heterocubane Li-Chloroalkane complex Complex B-7

shows that the hard Li+ cation prefers coordination of the hard but poorly accessible oxygen

atom over the soft but easily accessible bromine atoms

34

References to Chapter B

[1] L G Hubert-Pfalzgraf Coord Chem Rev 1998 178-180 967 [2] L G Hubert-Pfalzgraf H Guillon Appl Organomet Chem 1998 12 221 [3] M Veith S Weidner K Kunze D Kaefer J Hans V Huch Coord Chem Rev 1994 137 297 [4] T J Boyle D M Pedrotty T M Alam S C Vick M A Rodriguez Inorg Chem 2000 39 5133 [5] F Pauer P P Power Lithium Chemistry 1995 295 [6] A-M Sapse D C Jain K Raghavachari Lithium Chemistry 1995 45 [7] E Weiss Angew Chem 1993 105 1565 [8] A Reisinger D Himmel I Krossing Angew Chem Int Ed 2006 45 6997

A Reisinger D Himmel I Krossing Angew Chem 2006 118 7153 [9] A Reisinger N Trapp I Krossing Organometallics 2007 26 2096 [10] I Krossing Chem Eur J 2001 7 490 [11] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss

Organometallics 1996 15 3776 [12] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Organic Lett 2001 3

2375 [13] J-G Gai Y Ren Int J Quantum Chem 2007 107 1487 [14] D B Grotjahn P M Sheridan I A Jihad L M Ziurys J Am Chem Soc 2001 123 5489 [15] J A Barth Organikum 20th Ed 1996 546 [16] T J Boyle T M Alam K P Peters M A Rodriguez Inorg Chem 2001 40 6281 [17] Typical interatomic distances International Tables of Crystallography Vol C 1999 797 [18] R Ahlrichs M Baer M Haeser H Horn C Koelmel Chem Phys Lett 1989 162 165 [19] M von Arnim R Ahlrichs J Chem Phys 1999 111 9183 [20] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [21] M Levy J P Perdew J Chem Phys 1986 84 4519 [22] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [23] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [23b] N Auner U Klingebiehl Synthetic Methods of Organometallic and Inorganic Chemistry Vol 2 1995 [24] R E A Dear W B Fox R J Fredericks E E Gilbert D K Huggins Inorg Chem 1970 9 2590 [25] J A Samuels K Folting J C Huffman K G Caulton Chem Mater 1995 7 929 [26] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Amer Chem Soc 1993 115 5093 [27] B Speiser Chemie in unserer Zeit 1981 15 62 [28] D R Lide CRC Handbook of Chemistry and Physics 76th ed 1995-1996 [29] M Sigl A Schier H Schmidbaur Z Naturforsch B Chem Sci 1998 53 1313 [30] M Valet D M Hoffman Chem Mater 2001 13 2135 [31] S T Barry D S Richeson Chem Mater 1994 6 2220

35

C A Highly Hexane Soluble Lithium Salt and other Starting

Materials of the Fluorinated Weakly Coordinating Anion

[Al(OC(CF3)2(CH2SiMe3))4]ndash

In this chapter the successful synthesis and characterization of a new lithium aluminate is

described This long-chained bulky lithium salt Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash is anticipated

to be a good candidate for Li ion catalysis Earlier it was shown[1 2 3] that given good WCAs

very low concentrations of the Li+[WCA]ndash catalyst (001 - 01M) are sufficient to promote

reactions Lithium salts of [Al(ORF)4]ndash (RF = C(Ph)(CF3)2)[1] [Nb(ORF)6]ndash (RF =

C(H)(CF3)2)[2] [CB12Me12]ndash[3] were used for such transformations Krossing and coworkers

have already shown that poly- or perfluorinated alkoxy aluminate anions [Al(ORF)4]ndash with RF

= C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 are useful reagents[4 5]

Problematic for anion coordinationdecomposition are the oxygen atoms of the aluminates

with smaller RF which represent the most basic sites of these aluminates Krossing et al

showed that with increasing bulk of the fluorinated alkyl residues the coordinative ability of

the anions decreases (Fig C-1)

RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3RF = C(H)(CF3)2 RF = C(CH3)(CF3)2 RF = C(CF3)3

Fig C-1 Space filling models of the three commonly in our group used alkoxy aluminate anions [Al(ORF)4]ndash

with RF = C(H)(CF3)2 C(CH3)(CF3)2 and C(CF3)3 The anions are taken from corresponding silver compounds[5]

Arrows mark the sites most likely to be attacked by small and polarizing cations

36

In this respect it was anticipated that an anion with ORF = OC(CF3)2(CH2SiMe3) should be

more stable as the bulky ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and protects them

from electrophilic attack Due to the absence of szligndashH atoms in the ndashCH2SiMe3 residue it is

known to be a good ligand in transition metal chemistry and thus should also be useful to

stabilize WCA salts of electrophilic cations Its aliphatic character was expected to induce

high solubility in non polar solvents which could be favorable for Li ion catalysis[1 2 3]

C1 Syntheses

The synthesis of the new lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

proceeds by three successive steps which are shown in equations C-1 to C-3 The first step is

the known preparation of LiCH2SiMe3 (sublimed twice) which was reacted with

hexafluoroacetone gas by condensing it onto a frozen solution of LiCH2SiMe3 in n-hexane

Four equivalents of the in quantitative yield resulting lithium alkoxide LiOC(CF3)2CH2SiMe3

(C-1) then react with AlBr3 giving the desired lithium alkoxy aluminate product

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) and lithium bromide This last step also proceeds in n-

hexane as solvent and revealed that the product C-2 is highly soluble in this aliphatic solvent

Thus C-2 may be isolated by simple filtration from insoluble LiBr

2Li + ClCH2SiMe3 LiCH2SiMe3ndashLiCl

LiCH2SiMe3 + (CF3)2CO LiOC(CF3)2CH2SiMe3 (C-1)

Li+[Al(OC(CF3)2CH2SiMe3)4]ndash (C-2)ndash3LiBr

Et2O

n-hexane

(Eq C-1)

(Eq C-2)

(Eq C-3) 4LiOC(CF3)2CH2SiMe3+AlBr3

37

The lithium aluminate C-2 may also be prepared by a one pot reaction whereby four

equivalents of the as prepared lithium alkoxide LiOC(CF3)2CH2SiMe3 (C-1) (Eq C-2)

directly react in situ with AlBr3 (Eq C-3) Both compounds LiOC(CF3)2CH2SiMe3 (C-1) and

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) are highly soluble in non-polar (eg aliphatic

hydrocarbons toluene) as well as in polar (eg acetonitrile) solvents The yield of C-2 is

better if synthesized by the one pot reaction (64 vs 53 )

Crystalline LiOC(CF3)2CH2SiMe3 (C-1) and Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) were

characterized by NMR IR and Raman spectroscopy Their NMR data are given below in

Table C-1 which also includes the [Ph3C]+ salt C-3 which was prepared by in situ NMR scale

reactions according to Eq C-4

[Li]+[A]ndash + Ph3CndashCl [Ph3C]+[A]ndashCD2Cl2

A = [Al(OC(CF3)2CH2SiMe3)4]

(Eq C-4)ndashLiCl

Compound C-3 is at least stable for several days at room temperature in CD2Cl2 solution but

decomposes after storage for several days at 333 K Visually it can be detected by color

change from yellow to dark brown

38

Table C-1 1H 13C and 27Al NMR data of crystalline C-1 C-2 compared to the data from the NMR scale

syntheses to [Ph3C]+[Al(OC(CF3)2CH2SiMe3]ndash (cf Eq C-4) for X = Cl (C-3) BF4 (C-4) taken in CD2Cl2 at

298 K

Nucleus Chemical shift Chemical shift Chemical shift Assignment δ [ppm] (C-1) δ [ppm] (C-2) δ [ppm] (C-3) 1H 001 s1) 002 sa) 001 sb) ndash(CH3)3 111 s1) 148 sa) 156 sb) ndashCH2 - - 775 db) ndashCH (ring o) - - 3JHH = 678 Hz - - 791 tb) ndashCH (ring m) - - 3JHH = 678 Hz - - 829 tb) ndashCH (ring p) - - 3JHH = 678 Hz 13C[1H] 000 s 013 s 000 s ndash(CH3)3 259 t 247 t 259 t ndashCH2 784 sept 785 sept 789 sept broad ndashC(CF3)2 2JCF = 31 Hz 2JCF = 32 Hz 2JCF = 325 Hz 1263 q 1249 q 1231 q ndashC(CF3)2 1JCF = 275 Hz 1JCF = 276 Hz 1JCF = 279 Hz - - 1322 s ndashCH (ring m) - - 1400 s ndashC (ring ipso) - - 1416 s ndashCH (ring p) - - 1439 s ndashCH (ring o) - - 2117 s ndashCPh3 19F ndash760 s ndash758 ndash756 s 27Al - 463 s 459 s AlndashOC - ∆12 = 1130 Hz ∆12 = 1110 Hz 7Li ndash04 s ndash05 s - a)250 MHz-1H NMR b)400 MHz-1H NMR

The 1H and 13C NMR data of C-1 and C-2 show typical chemical shifts the quaternary carbon

atom can be found at 785 ppm and the carbon atoms of the CF3 groups are similar to those of

the known fluorinated alkoxy aluminates[5] 1H and 13C NMR shifts and coupling constants of

C-3 are as expected for the trityl cation [Ph3C]+ and the intact anion After storage at 333 K

for several days compound C-3 decomposes (NMR) The CndashF coupling constants of C-1 and

C-2 are in good agreement with the literature[5] The 27Al signal at 46 ppm (∆12 = 1130 Hz) is

comparable to the normal aluminum shifts in the known fluorinated aluminate Li+[Al(ORF)4]ndash

(RF = C(H)(CF3)2)[5] Vibrational spectra (IR and Raman) of C-2 are as expected and a

39

complete table in which the bands are compared to Li+[Al(ORF)4]ndash (RF = C(CH3)(CF3)2)[5] is

deposited in Chapter J

C11 Attempted further synthesis

of [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4)

The reaction of C-2 with HCl(g) and Et2O was carried out to investigate the stability of the

new WCA towards cationic proton acids However the attempted synthesis to the [H(OEt2)2]+

complex failed Moreover the resulting residue was identified by mass balance and NMR to

be the decomposition product Al[OC(CF3)2(CH2)Si(CH3)3]3 together with LiCl probably

formed by Eq C-5

Li+[Al(ORF)4]ndash (C-2) + HCl + 2Et2O [H(OEt2)2]+[Al(ORF)4]ndash (C-4) + LiCl

Al(ORF)3 + LiCl + 2Et2O + RFOH

RF = C(CF3)2(CH2)SiMe3 (Eq C-5)

CH2Cl2

The mass of the precipitate (m = 059 g 92 ) fits very well to theoretical yield for both non

volatile components (Al(ORF)3 and LiCl) of 064 g (100 ) The theoretical yield for the

proposed product [H(OEt2)2]+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-4) should be 091 g NMR

measurements of the residue are in agreement with this proposal Thus the alkoxy aluminate

C-2 is not stable in the presence of strong acids like [H(OEt2)2]+

C2 Crystal Structure

Yellowish block shaped single crystals of C-2 are monoclinic space group P21c (Z = 8) The

solid state structure consists of a 1D polymer of (Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash)n (n = infin)

The seven coordinate Li(2)+-cation binds a [Al(OC(CF3)2(CH2SiMe3)]ndash-anion that serves as

40

hexadentate O2F4 ligand (see Fig C-2 right) and accepts one further intermolecular

coordination to the peripheral F(18) atom from a second anion Drawings of the extended

solid state structure are deposited in Chapter J

O13

O13

Fig C-2 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) at 150 K with

thermal displacement ellipsoids showing 50 probability F(18) stems from the CF3 groups of a second anion

in the lattice The H atoms are described as balls with a reduced radius of 01 Aring A section of one of the seven

coordinated Li cations is given on the right The most important atom labels are given in the figure bond lengths

are given in [Ǻ] and angles in [deg] (cf also Table C-2) Li(1)ndashO(1) 1973(10) Li(1)ndashO(14) 1973(10) O(1)ndash

C(101) 1400(6) O(4)ndashC(122) 1393(7) O(12)ndashC(108) 1382(7) O(13)ndashC(115) 1408(6) Oslash(C-C) 1527 Oslash(Cndash

F) 1339(3) Oslash(SindashC) 1862(5)

The LindashO coordination is found at 1950 Aring and 1945 Aring as a distorted tetrahedral and the

planar four membered (LindashOndashAlndashO) ring includes an AlndashOndashLi angle of 970deg which is

widened about 27deg in comparison to the [Al(OC(H)(CF3)2)4]2ndash-anion in

[Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash (699deg)[6] The coordination environment of the Li+ cation is

further saturated by four weak intramolecular LihellipF contacts at 2413 to 2789 Aring (average

2535 Aring) and the intermolecular distance to the fifth F(18) atom is short at 2042 Aring giving an

unusual sevenfold coordination environment of Li+

41

In gaseous LiF d(LiF) is 1564 Aring[7] while it is 2001 Aring in the [LiF]n solid state[8] hence only

four hundredthsrsquo of an angstrom shorter than Li(2)hellipF(18) The LihellipF distances for the

compound [(CMe3)2SiFLiNCMe3]2[9] from 1851 to 2087 Aring gave rise to a 1JLiF NMR

coupling of 33 Hz in solution However in this case LindashF coupling was absent Compared to

the dimeric structure in [Ph3C]+[Li[Al(OC(H)(CF3)2)4]2]ndash[6] the range of the LindashF distances

(2710 to 2928 Aring) is shortened by about 0383 Aring (av) (cf Table C-1) The four LindashF bonds

within the [Al(OC(CF3)2CH2SiMe3)4]ndash-anion (C-2) although clearly weaker than the two Lindash

O bonds are still significant as they are needed so that the sum of the lithium bond valences

(included in Table C-2) reaches nearly unity (found 0882 (Li+[Al(OC(Ph)(CF3)2)4]ndash[1] ΣLi

1041 Li+[Al(OC(H)(CF3)2)4]ndash[4] ΣLi 0786))[4 10 11] The sum of the bond valances in C-2

underlines the unsaturated bulky environment of Li The [Al(OC(CF3)2CH2SiMe3)4]ndash-anion

exhibits one set of AlndashO distances and AlndashOndashC bond angles to di-coordinated oxygen atoms

at 1712 Aring 1714 Aring 1429deg and 1407deg as well as a set of AlndashO distances and AlndashOndashC bond

angles to tri-coordinated oxygen atoms at 1771 Aring 1759 Aring 1353deg and 1418deg The short

AlndashO bonds are in a range as earlier observed for tricoordinated Al(OAryl)3 compounds and

suggested together with the wide AlndashOndashC bond angles a rather ionic nature of the AlndashO bonds

in the tetra-coordinated [Al(ORF)4]ndash anions Other structural parameters of the anion in C-2

are also in good agreement to the ones observed in the literature[1 4 6] and are compared in

Table C-2

42

Table C-2 Comparison between related bond lengths [Aring] and angles [deg] of compound C-2

Li+[Al(OC(Ph)(CF3)2)4]ndash[1] and Li+[Al(OC(H)(CF3)2)4]ndasha)[4]

bond distance C-2 Li+[Al(OC(Ph)(CF3)2)4]ndash Li+[Al(OC(H)(CF3)2)4]ndash

d(LindashOtri) 1950(1) [0270] 1978(8) [0251] 2089(5) [0186] 1945(10) [0274] 1966(8) [0259] 2016(5) [0226] - - 2166(6) [0151] d(LindashOtetra) - - 2533(6) [0056] d(AlndashOtri) 1771(3) [0665] 1773(2) [0661] 1758(2) [0689] 1759(4) [0687] 1755(3) [0694] 1766(2) [0674] d(AlndashOdi) 1715(4) [0774] 1706(3) [0793] 1690(2) [0828] 1711(4) [0782] 1687(3) [0834] 1771(2)b) [0665] d(LindashF) 2042(10) [0158] 1984(9) [0185] 2366(6) [0066] 2413(10) [0058] 2082(9) [0142] 2414(6) [0058] 2463(11) [0051] 2098(11) [0136] 2798(6) [0021] 2466(10) [0050] 2354(10) [0068] 3055(6) [0010] 2789(9) [0021] - 3181(6) [0007] - - 3327(6) [0005] lt(LindashOndashAl) 970(3) 946(2) 964(2) 979(3) 936(2) 934(2)b) lt(OtrindashLindashOtri) 776(4) 799(3) 750(1)b) lt(OtrindashAlndashOtri) 875(16) 918(1) 945(2)b) lt(OdindashAlndashOdi) 10910(19) 1054(1) 1121(4)c) lt(OtrindashAlndashOdi) 1172(2) 1125(1) 981(8)b) 1160(2) 1148(1) 1110(4)c) 11341(19) 1158(1) 1124(2)c) 11236(19) 1167(1) 1270(6)b)

a)The centrosymmetric [LiAl(OC(H)(CF3)2)4]2 dimer b)Otetra tetra-coordinated O-atoms c)Otri tri-coordinated O-atoms

C3 Conclusion

The lithium alkoxy aluminate Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (C-2) represents a new

weakly coordinating anion that may also be prepared in a one pot reaction The bulk of the

ndashCH2ndashSi(CH3)3 group shields the oxygen atoms and induces solubility in aliphatic solvents

like n-hexane The salt is apparently soluble in polar and non-polar solvents This confirms

that C-2 shoud be an excellent candidate for Li ion catalysis and for the coordination

chemistry of Li+ with weak ligands Its [Ph3C]+-salt is accessible and stable in solution over

days However attempts to prepare the cationic BrOslashnsted acid [H(OEt2)2]+ only led to anion

decomposition

43

References to Chapter C

[1] T J Barbarich S T Handy S M Miller O P Anderson P A Grieco S H Strauss Organometallics 1996 15 3776

[2] J J Rockwell G M Kloster W J DuBay P A Grieco D F Shriver S H Strauss Inorg Chim Acta 1997 263 195

[3] S Moss B T King A de Meijere S I Kozhushkov P E Eaton J Michl Org Lett 2001 3 2375 [4] S M Ivanova B G Nolan Y Kobayashi S M Miller O P Anderson S H Strauss Chem Eur J

2001 7 503 [5] I Krossing ChemEur J 2001 7 490 [6] I Krossing H Brands R Feuerhake S Koenig J Fluorine Chem 2001 112 83 [7] D R Lide CRC Handbook of Chemistry and Physics 1995-1996 76th Ed [8] I L Shamovskii L M Shamovskii A I Boldyrev V V Nefedova Russ Chem Bull 1989 38 10 [9] D Stalke U Klingebiel G M Sheldrick J Organomet Chem 1988 344 37 [10] I D Brown D Altermatt Acta Crystallogr B Struct Sci 1985 B41 244 [11] J A Samuels E B Lobkovsky W E Streib K Folting J C Huffman J W Zwanziger K G

Caulton J Am Chem Soc 1993 115 5093

44

D A Simple Access to the Non-Oxidizing Lewis Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Much recent work has been dedicated to the design of very strong molecular Lewis acids

which are commonly used in rearrangement reactions catalysis ionization- and bond

heterolysis reactions[1-5] Several schemes to evaluate the strengths of a Lewis acid were

developed[3 4 6] However it is known since the pioneering work of N Bartlett et al[7] that the

fluoride ion affinity (FIA) is as a reliable measure for the Lewis acidity of A(g) with respect to

the fluoride ion (Eq D-1)[7-9]

)g(AFFIAHFA )g()g(minusminus ⎯⎯⎯⎯⎯ rarr⎯ minus=∆+ (Eq D-1)

The enthalpy ∆H (Eq D-1) corresponds the negative of the FIA and the higher the FIA value

the stronger is the Lewis acid From recent work it became evident[9] that Lewis acids stronger

than SbF5 are now available as compounds in the bottle eg As(OTeF5)5[10 11] B(OTeF5)3[12]

F4C6(B(C6F5)2)2[13] and others (Table D-1) To account for the special properties of these very

strong Lewis acids it appears reasonable and useful to define the term ldquoLewis Superacidrdquo[14]

ldquoMolecular Lewis acids which are stronger (ie have a higher FIA) than monomeric SbF5 in

the gas phase are Lewis Superacidsrdquo

This definition may be seen in analogy to Broslashnsted acids Broslashnsted Superacids are stronger

than the strongest conventional Broslashnsted acid 100 H2SO4[15] Since SbF5 is commonly

viewed as the strongest conventional Lewis acid this definition appears only logic Let us

now turn to the measure for Lewis acidity the FIA it can be assessed by several means[7-9 16]

However the simplest and most general access to reliable FIA values now comprises the use

45

of quantum chemical calculations in an isodesmic reaction[8] Table D-1 shows the calculated

FIAs of a representative set of strong neutral Lewis acids[9]

Table D-1 Representative overview to known strong Lewis acids and their corresponding fluoride

complexes[17 18] Unstable and hitherto unknown Lewis acids that were only accessible on computational

grounds are shown in italics (stability refers to standard conditions 298 K 1013 mbar) the dashed line marks

the border between normal and Lewis Superacids If not otherwise stated FIA values are taken from reference[9]

or were calculated as part of this work using the same methodology as in[9]

Lewis acidanion FIA [kJ mol-1][9] Lewis acidanion FIA

[kJ molndash1][9]

Sb(OTeF5)5[19][FSb(OTeF5)5]ndash 633 AlCl3

b)[FAlCl3]ndash 457 [332]c)

[this work] As(OTeF5)5

[10 11][FAs(OTeF5)5]ndash[20] 593 GaI3b)[FGaI3]ndash 454[this work]

AuF5[21 22][AuF6]ndash[21 22] 556[23] BI3[FBI3]ndash 448[this work]

B(CF3)3[FB(CF3)3]ndash[24] 552 B(C12F9)3[25 26]

[FB(C12F9)3]ndashe) 447[this work]

B(OTeF5)3[12][FB(OTeF5)3]ndash 550 Ga(C6F5)3[FGa(C6F5)3]ndash 447[this work]

Al(ORF)3[FAl(ORF)3]ndasha) 537 B(C6F5)3[27][FB(C6F5)3]ndash[28] 444

Al(C6F5)3[29 30][FAl(C6F5)3]ndash[31] 530[this work] GaBr3

b)[FGaBr3]ndash 436[this work] F4C6(12ndash(B(C6F5)2)2)2

[13] [F4C6(12ndash(B(C6F5)2)2)F]ndashe) 510 BBr3[FBBr3]ndash 433[this work]

PhndashFrarrAl(ORF)3[FAl(ORF)3]ndash + PhndashFa) 505[this work] GaCl3b)[FGaCl3]ndash 432[this work]

AlI3b)[FAlI3]ndash 499 [393]c)[this work] GaF3

b)[FGaF3]ndash 431[this work AlBr3

b)[FAlBr3]ndash 494 [393]c)[this work] AsF5[AsF6]ndash 426 SbF5[SbF6]ndash 489 [434]c) BCl3[FBCl3]ndash 405[this work]

B2(C6F5)(C6F4)2[32][FB2(C6F5)(C6F4)2]ndashe) 471 OCndashB(CF3)3[FB(CF3)3]ndash + COc) 404[this work]

B(C6H3(CF3)2)3[FB(C6H3(CF3)2)3]ndash[33] 471 PF5[PF6]ndash 394 B(C10F7)3

[25][FB(C10F7)3]ndash[34]e) 469[this work] BF3[BF4]ndash 338 AlF3

b)[FAlF3]ndash 467 a)RF = C(CF3)3 b)monomeric EX3 (E = Al Ga) c)Values in brackets are with respect to the standard state of the Lewis acid ie solid for AlX3

[35] and liquid for SbF5[36] d)However OCndashB(CF3)3 reacts with Fndash by formation of [F(O)CndashB(CF3)3]ndash[37] e)Molecular structures F4C6(12-(B(C6F5)2)2)2

FF

B

BF

F

FF

B

BF

FF

C6F5 F

F

FF

3

FF B

BF

F

FF

FF

FF

BF

FF

FF 3

B(C12F9)3 B(C10F7)3[F4C6(12-(B(C6F5)2)2)2F]-

C6F5

C6F5

B

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

C6F5

B2(C6F5)2(C6F4)2

Inspection of Table D-1 shows that according to its FIA value and apart from monomeric

AlBr3 and AlI3 SbF5 is the strongest conventional ie easily accessible under normal

conditions stable and in technical applications employed[38] Lewis acid However solid liquid

and gaseous AlX3 shows a strong tendency towards aggregation which diminishes the Lewis

46

acidity more effectively than the aggregation in SbF5 (see values in brackets) Thus the basis

for our definition above is reasonable Lewis Superacids like AuF5[22] or As(OTeF5)5

[10 11] are

stronger than SbF5 but are elusive entities that are scarcely used if at all Further entries like

B(CF3)3[39 40] or Sb(OTeF5)5

[19] are only available on computational grounds but not as a

compound in the bottle None of the Lewis Superacids collected in Table D-1 is accessible in

bulk quantities and is used in commercial applications Al(C6F5)3 even has a reputation of

being explosive[29 30 41] It is likely that the amorphous Lewis acids ACF (AlClxF3-x x = 005 -

03) and ABF (AlBrxF3-x x = 013) present an exception[42] however these extended solid

state compounds are impossible to compare to molecular Lewis acids as collected in Table

D-1 and thus are not considered Moreover all of the very strong Lewis acids collected in

Table D-1 have drawbacks in that they are either highly oxidizing (AsF5 SbF5 M(OTeF5)5

etc) andor often easily hydrolyze with formation of anhydrous HF (aHF) This does not hold

for the organometallic boron acids B(ArF)3 (ArF = C6F5 etc) however apart from the

chelating F4C6(12ndash(B(C6F5)2)2)2 those are all weaker and no Lewis Superacids Thus a

simple access to a non oxidizing Lewis Superacid that does not hydrolyze with formation of

hazardous chemicals like aHF would be desirable Herein we report on a simple and straight

forward synthesis of a compound that we classify on experimental and theoretical grounds as

a non oxidizing Lewis Superacid

The FIAs of small gaseous aluminum Lewis acids like monomeric AlX3 (X = F Cl Br I FIA

= 457 to 499 kJ molndash1)[9] are close to or even higher than that of monomeric SbF5

(489 kJ molndash1)[9] Table D-1 shows that the replacement of monoatomic ligands like F by

electronegative polyatomic ligands like OTeF5 CF3 or C6F5 leads to a large increase in Lewis

acidity Thus it appeared reasonable to postulate that an aluminum Lewis acid bearing the

bulky perfluorinated alkoxy ligand ORF (RF = C(CF3)3) - that prevents the alanes from

dimerization - should be a stronger acid than the parent AlX3 compounds This was verified

47

by quantum chemical calculations that gave the FIA of Al(ORF)3 as 537 kJ molndash1[9] and which

is in agreement with the assignment as a Lewis Superacid Thus the preparation of Al(ORF)3

from AlR3 (R = Me Et) according to equation D-2 was attempted

AlR3 + RFOH273K ndash3RH

Al(ORF)3Solvent

(Eq D-2)

Indeed aluminumtrialkyls react by solvolysis with the perfluorinated alcohol and form the

Lewis Superacid Al(ORF)3 with quantitative formation of RH (measured) However in

toluene impure and brown colored products which also contain a larger degree of unassigned

decomposition products were obtained If prepared in CH2Cl2 Al(ORF)3 is soluble but tends

to internal (C)ndashF abstraction and formation of decomposed products with AlndashFndashAl bridges at

273 K again in agreement with Al(ORF)3 being a Lewis Superacid Aliphatic solvents are

suited for the synthesis but the colorless precipitate of Al(ORF)3 is insoluble in those solvents

and Al(ORF)3 decomposes above 273 K At 273 K the pentanehexane suspension may be

used in situ for further reactions (=gt preparation of [FAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash salts cf Chapter E)[43] Isolation of solid Al(ORF)3 at ambient

conditions was very difficult because of decomposition with CndashF activation and formation of

fluoroaluminates Some insight for the reasons of the CndashF activation comes from the DFT

optimized structure of Al(ORF)3[9] Due to the high Lewis acidity of the tricoordinate

aluminum atom it also binds two fluorine atoms of the CF3 groups at 213 Aring (av Fig D-1)

48

O1O2

O3

AlF F

C1

C3

C2

2143Aring 2115Aring

Fig D-1 DFT optimized structure of Al(ORF)3 (RF = C(CF3)3) at the BP86SV(P) level

shown as ball-and-stick model

We interpret this as the first step towards CndashF bond cleavage and decomposition To avoid the

easy ambient temperature decomposition of Al(ORF)3 an alternative has been developed to

stabilize this Lewis superacid and to provide an easily accessible room temperature stable

reagent that may widely be used in all applications that need high and hard Lewis acidity

internal coordination of the weak Lewis base PhndashF Thus if reaction (Eq D-2) is performed

in fluorobenzene the adduct PhndashFrarrAl(ORF)3 D-1 forms in 98 isolated crystalline yield

The compound is highly soluble in PhndashF at 273 K (PhndashF stock solutions with concentrations

up to 828 g Lndash1 (= 10 mol Lndash1) were prepared) A PhndashF solution of D-1 is in contrast to free

Al(ORF)3 stable for days at rt Large single crystals of PhndashFrarrAl(ORF)3 form upon cooling

to 253 K may be isolated and are stable for weeks at 273 K but may also be handled at rt in

the atmosphere of a glove box (for at least an hour) The 19F NMR spectrum of

PhndashFrarrAl(ORF)3 in C6D5F shows the typical singlet of the equivalent CF3 groups at δ19F =

ndash752 ppm At ndash1440 ppm the signal of the coordinated PhndashFrarrAl is found (calc

ndash1386 ppm BP86SV(P)) In the 19F NMR spectrum the signals of deuterated and

nondeuterated PhndashF are visible and suggest facile exchange on the time scale of NMR The

27Al spectrum of D-1 shows one broad signal at 38 ppm (∆12 = 2350 Hz) and the IR spectrum

49

the expected bands that were completely assigned based on the calculated IR spectrum

(deposited in Chapter J) The crystal structure of D-1 is shown in Fig D-2

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig D-2 Molecular structure of [PhndashFrarrAl(ORF)3] (D-1) (RF = C(CF3)3) at 100 K with thermal displacement

ellipsoids showing 50 probability Selected bond lengths are given in [Aring] and angles in [deg] Al(1)ndashO(3)

1685(2) Al(1)ndashO(2) 1693(2) Al(1)ndashO(1) 1706(2) Al(1)ndashF(1) 1864(2) Al(1)ndashF(2) 2770(8) O(1)ndashC(7)

1369(3) O(2)ndashC(11) 1365(3) O(3)ndashC(15) 1364(3) F(1)ndashC(1) 1447(3) O(3)ndashAl(1)ndashO(2) 11583 (10) O(3)ndash

Al(1)ndash(O1) 12143(10) O(2)ndashAl(1)ndashO(1) 11322(10) O(3)ndashAl(1)ndashF(1) 10283(9) O(2)ndashAl(1)ndashF(1) 10301

O(1)ndashAl(1)ndashF(1) 9530(9) C(7)ndashO(1)ndashAl(1) 13808(18) C(11)ndashO(2)ndashAl(1) 15016(19) C(15)ndashO(3)ndashAl(1)

15156(19) C(1)ndashF(1)ndashAl(1) 12999(15)

The core of this molecule consists of a quite distorted FAlO3 tetrahedron (Σ(OndashAlndashO) =

3505deg cf 3285deg for an ideal tetrahedron) The three AlndashO bonds are at 1695 Aring (av) and

the coordinative AllarrFndashPh bond at 1864(2) Aring (Fig D-2 calculated (BP86SV(P)) d(Alndash

O)av 1728 d(AlndashF) 1975 Aring) Compared to the homoleptic [Al(ORF)4]ndash[44] anion the AlndashORF

bonds are further shortened by about 003 Aring while the average AlndashOndashC bond angle of 1509deg

of the two free (Alndash)ORF groups is almost unchanged[45] The Al(1)ndashF(1) bond of 186 Aring is

relatively long and may be compared to benchmark compounds like [CPh3]+[FndashAl(ORF)3]ndash[46]

with a clear bond order of 1 and an AlndashF distance of 166 Aring as well as to the fluoride bridged

[(RFO)3AlndashFndashAl(ORF)3]ndash anion with a clear bond order of 05 and an AlndashF distance of about

50

177 Aring (several salts[47 48]) This is in agreement with the observed weak PhndashF coordination in

solution (exchange with FndashC6D5) Although the C(CF3)3 ligand is rather bulky all AlndashO

distances are very short and indicate an electron deficient highly acidic aluminum center in D-

1 According to a CSD search D-1 comprises the first neutral Lewis acid that coordinates the

weak nucleophile PhndashF via the F-atom The only available example of a fluorine bound PhndashF

complex is cationic [(η5ndashC5H5)2TilarrFndashPh]+[49] Although the adduct D-1 is weak there is a

noticeable influence on the complexed C(1)ndashF(1) bond that is elongated by 006 Aring with

respect to free fluorobenzene at 136 Aring This might be useful for transformations of the PhndashF

moiety (coupling reactionshellip)

To verify the weakness of the PhndashF coordination to Al(ORF)3 the complexation enthalpy has

been calculated (BP86SV(P)) ∆rHdeggas (Eq D-3) is ndash32 kJ molndash1 and slightly favors

coordination of PhndashF by the Lewis acid however entropy is against coordination and in

agreement with this the Gibbs complexation energy in the gas phase is slightly unfavorable

both in the gas phase (∆rGdeggas (Eq D-3) = +8 kJ molndash1) and in PhndashF solution (∆rGdegsolv (Eq D-

3) = +9 kJ mol-1 COSMO solvation εr = 5841)[50] In PhndashF solution at 257 K we have shown

that dynamic exchange between deuterated and non deuterated PhndashF occurs ie the

coordination of PhndashF is reversible and provides access to free Al(ORF)3 in solution Further

experiments showed that the Lewis Superacid D-1 is stable in PhndashF but decomposes in

CH2Cl2 at 298 K An analysis of equilibrium (Eq D-3) shows how the stability of D-1 is

depending on the [PhndashF] concentration

PhndashF + Al(ORF)3

[PhndashF][Al(ORF)3]K =

D5ndashPh-FPhndashF Al(ORF)3 (Eq D-3)

PhndashF Al(ORF)3

51

In CH2Cl2 the concentration of [PhndashF] is equal to that of free Al(ORF)3 and large enough to

allow decomposition of the free Lewis acid by CndashF activation (see Fig D-1 and above) In

PhndashF solution the concentration of [PhndashF] is much larger since it is used as a solvent Thus

to keep K constant the Al(ORF)3 concentration has to be very small and thus

PhndashFrarrAl(ORF)3 is stable in this solvent over days at rt From the equilibrium (Eq D-3) and

its solvent dependence may also be followed that that ∆Gdegsolv must be close to 0 kJ molndash1

(K asymp 001-100) This conclusion is supported by the BP86SV(P) calculated value for ∆rGdegsolv

of 9 kJ molndash1 which would give Kcalc as 003

To further experimentally support the superacidity of PhndashFrarrAl(ORF)3 (cf Table D-1) the

reaction of D-1 with a suitable source of [SbF6]ndash eg the ionic liquid [BMIM]+[SbF6]ndash was

performed Eq D-4 proceeded successfully with fluoride abstraction from [SbF6]ndash by the

Lewis acid PhndashFrarrAl(ORF)3

+ 2[SbF6]ndash() [FAl(ORF)3]ndash

ndash1PhF+ PhndashF Al(ORF)3

[(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

+ [Sb2F11]ndash

fast furtherreaction∆solvGdeg = ndash177 kJ molndash1

gasGdeg = ndash299 kJ molndash1

gasHdeg = ndash300 kJ molndash1∆∆

()from [BMIM]+[SbF6]ndash

in PhF

ndash2 PhndashF

ndash1PhndashF

2PhndashF Al(ORF)3

(Eq D-4)

The formation of the [FAl(ORF)3]ndash-anion indicates the fluoride abstraction of the [SbF6]ndash

anion however the intermediately generated Lewis acid SbF5 further reacts with another

[SbF6]ndash anion to form [Sb2F11]ndash[51] which was reproducibly assigned in the NMR spectra of

several reactions (NMR scale and batch reactions) δ19F([Sb2F11]ndash) = ndash999 ndash1157 ndash1336

[ppm] Lit[52] δ19F = ndash904 ndash1167 ndash1387 [ppm] Similarly to SbF5 the Lewis acid Phndash

52

FrarrAl(ORF)3 reacts further with the fluoride complex [FAl(ORF)3]ndash giving the fluoride

bridged anion (NMR X-ray structure of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash[53]) The course of

reaction in equation D-4 is in agreement with calculations at the BP86SV(P) level where the

first half of the reaction is exergonic by ∆solvGdeg = ndash102 kJ molndash1 and the entire reaction (Eq

D-4) by ∆solvGdeg = ndash177 kJ molndash1

D1 Conclusion

In this thesis Lewis Superacids are defined as compounds with a higher Lewis acidity (FIA)

than the strongest conventional and commercially employed Lewis acid SbF5 (FIA = 489 kJ

molndash1) The nonoxidizing Al(ORF)3 has a FIA of 537 kJ molndash1 and thus qualifies as a Lewis

Superacid however is not very stable at ambient conditions By weak coordination of PhndashF

the Lewis acid is greatly stabilized stable at rt highly soluble in PhndashF and easily accessible

in a quantitative yield one step procedure starting from commercially available materials The

FIA of PhndashFrarrAl(ORF)3 is 505 kJ molndash1[54] ie higher than that of gaseous SbF5 and further

enhanced by entropy (liberation of PhndashF) The Lewis superacidity of PhndashFrarrAl(ORF)3 (D-1)

was experimentally proven by reaction with an [SbF6]ndash salt ([Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash formation) Thus it is anticipated that the non oxidizing Lewis

Superacid PhndashFrarrAl(ORF)3 may find wide spread applications in all areas where maximum

hard Lewis acidity is needed but oxidative conditions are not tolerated

53

References to Chapter D

[1] E Y-X Chen T J Marks Chem Rev 2000 100 1391 [2] M H Valkenberg C de Castro W F Hoelderich Stud Surf Sc Cat 2001 135 4629 [3] A Corma H Garcia Chem Rev 2002 102 3837 [4] A Corma H Garcia Chem Rev 2003 103 4307 [5] H Li T J Marks Proc Natl Acad Sci Chem 2006 103 15295 [6] A Haaland Angew Chem 1989 101 1017 [7] T E Mallouk G L Rosenthal G Mueller R Brusasco N Bartlett Inorg Chem 1984 23 3167 [8] K O Christe D A Dixon D McLemore W W Wilson J A Sheehy J A Boatz J Fluorine Chem

2000 101 151 [9] I Krossing I Raabe Chem Eur J 2004 10 5017 [10] M J Collins G J Schrobilgen Inorg Chem 1985 24 2608 [11] D Lentz K Seppelt ZAAC 1983 502 83 [12] F Sladky H Kropshofer O Leitzke J Chem Soc Chem Comm 1973 134 [13] V C Williams W E Piers W Clegg M R J Elsegood S Collins T B Marder

J Am Chem Soc 1999 121 3244 [14] The term ldquoLewis Superacid was occasionally usedrdquo[11 26] However no solid definition of this term has

been given [15] R J Gillespie Canad Chem Ed 1969 4 9 [16] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [17] (Me3SindashC(C6F5)(Ntf2)2) that was addressed as Lewis Superacid is difficult to compare since it reacts

with Fndash to Me3SiF and [C(C6F5)(Ntf2)2]ndash With respect to the latter reaction its FIA is 635 kJ molndash1 however it appears not wise to include the compound in Table D-1

[18] A Hasegawa K Ishihara H Yamamoto Angew Chem Int Ed 2003 42 5731 [19] H P A Mercier J C P Sanders G J Schrobilgen J Am Chem Soc 1994 116 2921 [20] M Gerken P Kolb A Wegner H P A Mercier H Borrmann D A Dixon G J Schrobilgen Inorg

Chem 2000 39 2813 [21] V B Sokolov V N Prusakov A V Ryzhkov Y V Drobyshevskii S S Khoroshev Dokl Akad

Nauk 1976 229 884 [22] I-C Hwang K Seppelt Angew Chem Int Ed 2001 40 3690 I-C Hwang K Seppelt Angew Chem 2001 113 3803 [23] L Muumlller calculation at the BP86SV(P) level to compare the calculated FIAs of the Lewis acids under

the same conditions See also for AuF5 Structure and Fluoride Affinity I-C- Hwang K Seppelt Angew Chem 2001 113 and Angew Chem Int Ed Engl 2001 40

[24] E Bernhardt M Finze H Willner C W Lehmann F Aubke Angew Chem Int Ed 2003 42 2077 [25] L Li T J Marks Organometallics 1998 17 3996 [26] Y-X Chen C L Stern S Yang T J Marks J Am Chem Soc 1996 118 12451 [27] A G Massey A J Park J Organomet Chem 1964 2 245 [28] D Naumann W Tyrra J Chem Soc Chem Comm 1989 47 [29] J Klosin G R Roof E Y X Chen K A Abboud Organometallics 2000 19 4684 [30] T Belgardt J Storre H W Roesky M Noltemeyer H-G Schmidt Inorg Chem 1995 34 3821 [31] M-C Chen J A S Roberts A M Seyam L Li C Zuccaccia N G Stahl T J Marks Organomet

2006 25 2833 [32] M V Metz D J Schwartz C L Stern T J Marks P N Nickias Organometallics

2002 21 4159 [33] K Fujiki S-Y Ikeda H Kobayashi A Mori A Nagira J Nie T Sonoda Y Yagupolskii Chem

Lett 2000 62 [34] M-C Chen J A S Roberts T J Marks Organometallics 2004 23 932 [35] The procedure for solid AlX3 is deposited in Chapter J [36] H D B Jenkins I Krossing J Passmore I Raabe J Fluorine Chem 2004 125 1585 [37] M Finze E Bernhardt H Willner C W Lehmann Angew Chem Int Ed 2003 42 1052 M Finze E Bernhardt H Willner C W Lehmann Angew Chem 2003 115 1082 [38] V M Allenger P S Yarlagadda R N Pandey Erdoel amp Kohle Erdgas Petrochemie 1991 44 244 [39] However the CO adduct OCndashB(CF3)3 may serve as a (weaker) equivalent to free B(CF3)3 [40] M Finze E Bernhardt M Zaehres H Willner Inorg Chem 2004 43 490 [41] N G Stahl M R Salata T J Marks J Am Chem Soc 2005 127 10898 [42] T Krahl E Kemnitz Angew Chem Int Ed 2004 43 6653 T Krahl E Kemnitz Angew Chem 2004 116 6822

54

[43] I Krossing M Gonsior L Mueller WO 2004-EP12220 2005054254 (Universitaumlt Karlsruhe TH Germany) 2005

[44] I Krossing Chem Eur J 2001 7 490 [45] However due to a weak internal Al(1)ndashF(2) interaction (2778 Aring) one of the ORF-ligands adopts a

smaller AlndashOndashC angle of 1381deg [46] to be published [47] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [48] M Gonsior L Mueller I Krossing Chem Eur J 2006 12 5815 [49] M W Bouwkamp P H M Budzelaar J Gercama I D H Morales J de Wolf A Meetsma S I

Troyanov J H Teuben B Hessen J Am Chem Soc 2005 127 14310 [50] A Klamt G Schuumluumlrmann J Chem Soc 1993 799 [51] This assignment is further supported by an reaction of SbF5 with PhndashF Liquid SbF5 was added to liquid

PhndashF at rt in a glove box an oxidation occurs and the solution turns intensely green In the reactions according to Eq D-4 we never observed the green coloration This suggests that the fluoride ion is removed from [SbF6]ndash in an associative process eg [(RFO)3AlndashFhellipSbF5hellipSbF6]2ndash rarr [(RFO)3AlndashFndashAl(ORF)3]ndash + [Sb2F11]ndash

[52] J-C Culmann M Fauconet R Jost J Sommer New J Chem 1999 23 863 [53] Unfortunately the quality of the structure is not good due to twinning and disorder Some details of the

refinement are given Space group P1 cell constant 113443 Aring 113787 Aring 128865 Aring 109202deg 97371deg 118639deg R1 = 261 39402 reflections completeness 98 2θ 28deg 11493 data 852 parameters

[54] L Muumlller unpublished results 2007 [55] D Himmel I Krossing unpublished results 2006

55

E The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated

fluorinated anion [FAl(ORF)3]ndash (RF = C(CF3)3)

As mentioned in Chapter D the compounds Al(ORF)3 (FIA 537 kJ molndash1) and its

corresponding adduct complex PhndashFrarrAl(ORF)3 (FIA 505 kJ molndash1) are Lewis Superacids

Superacids or Broslashnstedt Superacids (those stronger than 100 sulfuric acid)[1] have been of

great value to chemistry superacidity has been used to stabilize carbenium carbonium[2] and

other elemental onium ions[3] as well as to study acid-catalyzed processes[4] While the tert-

butyl cation is readily stabilized in classical superacid media and can be isolated as

[Me3C]+[Sb2F11]ndash[5] the corresponding silyl chemistry leads to species having covalent bonds

to oxy or fluoro anions eg [SbF6]ndash is too nucleophilic to stabilize a free [R3Si]+ silylium ion

and decomposes giving R3SiF and SbF5[6] (R = eg Me) By contrast the known R3SiX

compounds lie along a continuum between idealized sp3 and sp2 geometries ie an admixture

of covalent and ionic This ion-like[6] character of a [R3Si]+[X]ndash is already known in

compounds like i-Pr3Si(CB11H6Cl6) and others[7] The long search for a free silylium ion was

only recently met by success[8] In inorganic chemistry the oxidizing nature of classical

superacids has been widely exploited to stabilize unusual reactive cations such as [S8]2+

[Ir(CO)6]3+ [Xe2]+[9-11] and [Xe4]+[12]

The combination of oxidizing capacity together with Lewis acidity make classical Lewis and

Broslashnsted Superacids corrosive destructive and limit their academic and industrial application

By contrast the Lewis Superacid Al(ORF)3 is non oxidizing and reacts under fluoride ion

abstraction with [SbF6]ndash giving first [FAl(ORF)3]ndash and then [Sb2F11]ndash and

[(RFO)3AlndashFndashAl(ORF)3]ndash[13] The further motivation was the use of the Al(ORF)3 Lewis

Superacid in reactions with fluorinated compounds ie Me3SiF [NBu4]+[BF4]ndash and

56

Ag+[BF4]ndash yielding the ion-like Me3SindashFndashAl(ORF)3 as well as the [NBu4]+[FAl(ORF)3]ndash and

[Ag(solvent)3]+[FAl(ORF)3]ndash or [Ag(solvent)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash salts (solvent =

toluene PhndashF)

E1 Syntheses

E11 Syntheses with Al(ORF)3 PhndashFrarrAl(ORF)3

E111 Synthesis of Me3SindashFndashAl(ORF)3 (E-1) The ion-like compound Me3SindashFndashAl(ORF)3

(E-1) was first prepared by reacting Ag+[Al(ORF)4]ndash with Me3SiCl giving AgCl

quantitatively C4F8O (measured) and Me3SindashFndashAl(ORF)3 (E-1) (yield 070 g 85 ) (Eq E-1

a))

a) Ag+[Al(ORF)4]ndash + Me3SiCl

Me3SindashFndashAl(ORF)3 (E-1)

CH2Cl2243 K to 298 K

253 Kn-hexane

(Eq E-1)

ndashC4F8O

ndash3EtH

ndashAgCl

b) AlEt3 + 3 HORF + FSiMe3

∆H(0 K) = ndash88 kJ molndash1

More conveniently and without anion decomposition is the second route in which in situ

prepared Al(ORF)3 and gaseous FSiMe3 which was condensed onto the formed Lewis

Superacid Al(ORF)3 (cf Eq E-1) react giving Me3SindashFndashAl(ORF)3 (E-1) (373 g 80 ) (Eq

E-1 b)) Al(Et)3 and FndashSiMe3 likely form the known Me3SindashAlEt3 complex[14] which

undergoes further solvolysis with RFndashOH Compared to the 19F signal of the AlndashF moiety in

the almost ldquonakedrdquo [FAl(ORF)3]ndash (E-5) (see below) the analogous 19F signal of E-1 is high

field shifted (from ndash1468 ppm (E-5) to ndash1561 ppm (E-1)) This has also been supported by

57

quantum mechanical calculations (BP86SV(P) level) ndash153 ppm for [FAl(ORF)3]ndash and ndash166

ppm for Me3SindashFndashAl(ORF)3

E112 Fluoride ion abstraction from [BF4]ndash-salts Salts of the [FAl(ORF)3]ndash-anion may be

prepared with pure donor-free Al(ORF)3 and Cat+[BF4]ndash in n-pentane under fluoride

abstraction and formation of BF3 (cf Eq E-7) The availability of the fluoride delivering

compound is important Reactions with LiBF4 did not lead to success probably because the

solubility of the lithium salt was to low in the tested solvents Earlier preparations[15] clearly

demonstrated that reactions of Al(ORF)3 with less soluble metal mono fluorides MF (M = Cs

Tl or Ag) were not suited to deliver well defined products

Cat+[BF4]ndash + AlMe3 + RFOH n-pentane

Cat+[FAl(ORF)3]ndash + 3CH4 + BF3

(Eq E-2)

273 K

cat+ = cation (cationic complex) Ag+ [N(Bu)4]+ no Li+

The preparation of Ag+[FAl(ORF)3]ndash succeeded in n-pentane at 273 K using a gas cooler set to

ndash30degC to avoid releasing the extremely volatile alcohol from the system (bp RFOH = 318 K)

The solid fluorinated metal salt is added bit by bit to the white precipitated Al(ORF)3 During

the quantitative formation of gaseous BF3 (measured) Ag+[FAl(ORF)3]ndash forms as light beige

product Changing to the larger [N(Bu)4]+ cation (Eq E-2) the reaction succeeds analogously

and forms the compound [N(Bu)4]+[FAl(ORF)3]ndash in almost quantitative yield Unfortunately

the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (crystallized from n-pentane) is only

preliminary (cf Crystal Structure Section J)

58

If excess Lewis acid Al(ORF)3 is present larger fluoride bridged anions form as described in

Eq E-3[16] The synthesis to the double fluoride bridged anion is herewith reduced to one step

instead of three steps as described in[15 17] synthesis of Li+[Al(ORF)4]ndash (1 step[17]) which

reacts with AgF to Ag+[Al(ORF)4]ndash (2 step[17]) and then with PCl3 giving Ag+[(RFO)3AlndashFndash

Al(ORF)3]ndash (3 step[15]) in a yield of 84 ) In the new one pot procedure (Eq E-3) the yield

of Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash increased to 86 (Ag+) or 89 ([N(Bu)4]+)

Cat+BF4ndash + 2AlMe3 + 6RFOH

n-pentane

Cat+[(RFO)3AlndashFndashAl(ORF)3]ndash + 6CH4 + BF3 (Eq E-3)

273 K

Cat+ = Ag+ [N(Bu)4]+ no Li+

Due to the risk of decomposition of pure Al(ORF)3 (vs) its fluorobenzene adduct complex

PhndashFrarrAl(ORF)3 may be applied as alternative since it features a higher stability

Furthermore the complex is a considerable better starting material for the synthesis of the

silver salt due to less side reactions The formation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3)

succeeded in an one pot reaction adding AgBF4 to PhndashFrarrAl(ORF)3

PhndashF Al(ORF)3 + AgBF4

in PhndashF

[Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) (Eq E-4)

E113 Solvates of Ag+[FAl(ORF)3]ndash and Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash If the obtained silver

salt Ag+[FAl(ORF)3]ndash (cf Eq E-2) is recrystallized from aromatic solvents (arenes cf Eq E-

5) such as toluene or FndashPh at 278 K the silver cation saturates by a threefold coordination to

59

the aromatic rings In both reactions colorless crystals have been formed and

[Ag(tol)3]+[FAl(ORF)3]ndash (E-2) as well as [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) could be isolated

Ag+[A]ndash + 3arenerecryst

[Ag(arene)3]+[A]ndash

[A]ndash = [FAl(ORF)3]ndash arene = toluene fluorobenzene[A]ndash = [(FRO)3AlndashFndashAl(ORF)3]ndash arene = 12-difluorobenzene (Eq E-5)

Similarly recrystallization of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash from 12ndashF2C6H4 at 273 K (cf Eq

6) leads to [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-4)

E114 Solution behavior of Ag+[FAl(ORF)3]ndash in CH2Cl2 According to Eq E-6 the possible

dismutation of 2[FAl(ORF)3]ndash (a) in poorly solvating CH2Cl2 to give [Al(ORF)4]ndash and

[F2Al(ORF)2]ndash (c) (∆solvGdeg = 19 kJ molndash1) has also been supported by ESI-MS spectroscopy

which always includes signals to [Al(ORF)4]ndash (cf Chapter J) This dismutation is also evident

from the side reaction described in Eq E-8 below However a hypothetic dimerization of two

[FAl(ORF)3]ndash species to form [(FAl(ORF)3)2]2ndash (b) is unfavored by 154 kJ molndash1

2[FAl(ORF)3]ndash (a)

FAl(ORF)3]2ndash (b)[(ROF)3Al

F

[F2Al(ORF)2]ndash + [Al(ORF)4]ndash (c)

(Eq E-6)∆solvGdeg in kJ molndash1

∆solvGdeg = 19

∆solvGdeg = 154 ∆solvGdeg = ndash134

oligomerizationinsoluble

60

E115 Formation of [Ph3C]+[FAl(ORF)3]ndash (E-4) Now the synthetic potential of

Ag+[FAl(ORF)3]ndash will be investigated The metathesis of Ag+[FAl(ORF)3]ndash with Ph3CCl in

CH2Cl2 at room temperature gives [Ph3C]+[FAl(ORF)3]ndash (E-4) (Eq E-7) Crystals of E-4 have

been obtained by cooling the filtrate to 243 K (non optimized crystalline yield 016 g 14

however according to solution NMR the reaction is quantitative)

Ag+[FAl(ORF)3]ndash + CPh3ClCH2Cl2

[Ph3C]+[FAl(ORF)3]ndash (E-4) + AgCl (Eq E-7)

rt

In Fig E-6 below the crystal structure of E-4 is presented which proves as a compound with

an non coordinated [FAl(ORF)3]ndash-anion

E116 Side reactions Refluxing [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash Upon refluxing

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash in n-hexane the compound dismutates giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) Its hypothetic formation is detailed in

Eq E-8

2[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash 2[N(Bu)4]+ + 2Al(ORF)3 + 2[FAl(ORF)3]ndash (a)dissociation

dismutation

∆ n-hexane3 h

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)+ [N(Bu)4]+

+ [Al(ORF)4]ndash

2[N(Bu)4]+ + [F2Al(ORF)2]ndash + [Al(ORF)4]ndash + 2Al(ORF)3(b)

(c)

∆solvG343 K = 99∆solvGdeg = 60

∆solvG343 K = ndash206∆solvGdeg = ndash107

∆solvG343 K = 56∆solvGdeg = 42

∆solvG343 K = ndash48∆solvGdeg = ndash3

∆solvG in kJ molndash1 (Eq E-8)

Due to the size of the compounds the frequency calculations and thermal corrections to

enthalpy and free energy were only performed at the PM6 level[18] Total energies and

61

solvation energies stem from BP86SV(P) calculations According to the calculations included

with Eq E-8 the dissociation of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash into [N(Bu)4]+ Al(ORF)3

and 2[FAl(ORF)3]ndash in n-hexane may be possible by overcoming the free energy ∆solvG(343 K)

(99 kJ molndash1) (a) Also herein the formation of Al(ORF)4ndash as proposed in (c) and in Eq 6 (c)

was observed by ESI-MS spectroscopy However the trimerization of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash to give the doubly fluoride bridged anion

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) (b) proceeds by a gain of the energy of

ndash48 kJ molndash1 in boiling n-hexane Compound E-6 is stabilized by 206 kJ molndash1 amongst the

species in (c)

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash (E-6) may be described as a doubly bridged

Al(ORF)3-adduct complex of a central [F2Al(ORF)2]ndash-anion and features analogies to the very

strong Lewis acid SbF5 The known fluoro-anions of SbF5 are [SbF6]ndash [Sb2F11]ndash [Sb3F16]ndash and

[Sb4F21]ndash The analogous series of already known Fndash-adducts of Al(ORF)3 are [FAl(ORF)3]ndash

[(RFO)3AlndashFndashAl(ORF)3]ndash and now [(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash This comparison

demonstrates and underlines the inherent strength of the Lewis Superacid Al(ORF)3

E117 Representative NMR-Data of the Fluoroaluminates Table E-1 (see below) gives an

overview to relevant NMR-Data of compounds E-1 E-2 E-3 E-4 E-5 and E-6 as well as

[N(Bu)4]+[FAl(ORF)3]ndash and PhndashFrarrAl(ORF)3 that may be used for fast screening

62

Table E-1 19F and 27Al NMR data shifts of compounds E-1 to E-6 compared to PhndashFrarrAl(ORF)3[19]

[FAl(ORF)3]ndash

Compound δ 19F [ppm] AlndashF δ 19F [ppm] CF3 δ 27Al [ppm] Al PhndashFrarrAl(ORF)3

[19] ndash1440 s ndash755 s 365 s very broad ∆12 = 2350 Hz

[FAl(ORF)3]ndash (calc)a) ndash1529d) ndash659d) 362e)

Me3SindashFndashAl(ORF)3 (E-1) ndash1561 s ndash771 s 396 s very broad ∆12 = 960 Hz

Me3SindashFndashAl(ORF)3 (calc)a) ndash1661d) ndash669d) 465 [Ph3C]+[FAl(ORF)3]ndash (E-4) ndash1477 s ndash758 s 384 sc) ∆12 = 83 Hz [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) ndash1471 s ndash759 s 402 sc) ∆12 = 116 Hz [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) ndash1468 s ndash758 s 368 d 1JAlF = 470 Hz [N(Bu)4]+[FAl(ORF)3]ndashb) - - 420 sc) ∆12 = 2407 Hz [Ag(12ndashF2C6H4)3]+ [(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)g)

ndash1850 s ndash761 s 344 s broad

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6)

ndash1848 s ndash757 s 321 s broad ∆12 = 1740 Hz

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (calc)a)

ndash1890f) ndash765f) 345f)

a)calculated values at the BP86SV(P) level b)no 19F spectra have been measured c)instead of the expected doublet for [FAl(ORF)3]ndash a broad signal has been detected due to a dynamic sytem d)referred to CFCl3 as reference σ (19F) = 1956 ppm[20] e)referred to [Al(ORF)4]ndash (RF = C(CF3)3 as reference with δ (27Al) = 5692 ppm f)referred to [(RFO)3AlndashFndashAl(ORF)3]ndash as reference g)the compound E-5 was earlier synthesized its spectroscopic parameters are taken into account for comparison[21]

E2 Crystal Structures

Details of the crystallographic studies for compounds E-1 E-2 E-3 E-4 E-5 and E-6 are

listed at the end in Table E-2 Table E-3 Table E-4 Table E-5 The structure of Phndash

FrarrAl(ORF)3 will not be discussed independently[19] Details of the preliminary structure of

[N(Bu)4]+[FAl(ORF)3]ndash are given in Chapter J

Structures including the [FndashAl(ORF)3]ndash anion

The structural data of compounds PhndashFrarrAl(ORF)3 E-1 E-2 and E-4 are compared in Table

E-2 in which also the bonding situation around the central atoms Al F Ag and Si is analyzed

by I D Browns bond valence method[22]

63

E21 Me3SindashFndashAl(ORF)3 (E-1) The average lengths of the three AlndashO single bonds of 1708

Aring are about 1 pm longer than in the molecule PhndashFrarrAl(ORF)3 (1694 Aring) and indicates the

slightly stronger donor capacity of Me3SindashF vs PhndashF[19]

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig E-1 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (E-1) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths in [Aring] and angles in [deg] are included in Table E-2 The H-atoms are given as balls

The relatively large Si(1)ndashF(1)ndashAl(1) angle of 14644(8)deg is indicative for an rather ionic Alndash

F interaction Compared to Willnerrsquos compound [Me3Si]+[RCB11F11]ndash (with R = H C2H5)[30]

the corresponding SindashF bond length in E-1 is by 013 Aring shorter (1744 Aring cf

[Me3Si]+[RCB11F11]ndash 1878 Aring) This elongation and weaker coordination may be referred to

the less coordinating carboranate anion The AlndashF distance in E-1 is elongated by about 0025

Aring in comparison to E-5[21] (range 1768 to 1782 Aring av 1775 Aring) In the fluoride bridged

anion of E-5 the two Lewis acidic Al centers share the F-atom thus a stronger and therefore

shorter AlndashF contact in E-5 results Further comments on the structure will be given in a later

section

E22 [Ag(arene)3]+[FAl(ORF)3]ndash (E-2 arene= toluene E-3 arene = fluorobenzene) The

core of these structures consist of an FAlO3 unit The three AlndashO bond lengths (1733(2)(av) Aring)

64

and the AlndashF distance (16814(19) Aring) of E-2 are in good agreement to those found in the

preliminary structure of E-3 (17291(1)(av) Aring 1656(6) Aring) (cf also Fig E-2 Fig E-3 and

Table E-2)

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

O3

O1O2

F1Ag1

C5

C1

C9

C23

C22

C30

C16

C15Al1

Fig E-2 Section of the crystal structure of [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) at 150 K with thermal displacement

ellipsoids showing 50 probability The H-atoms are given as balls The most important atom labels are given

in the figure Selected bond lengths are included in Table E-2

The weak coordination of Ag+ to [FAl(ORF)3]ndash in E-2 and E-3 is balanced by the coordination

of three arene rings (E-2 toluene E-3 fluorobenzene) to the silver atom In E-2 two of them

are η2 and one is η1 carbon coordinated by contrast in E-3 all rings are η2 coordinated Due to

the preliminary nature of structure E-3 the herein further discussed parameters are reduced to

the most important central atoms Ag1 F1 and Al2 The aromatic rings in E-2 and E-3 are

nearly all in a right angle position to the F(1) atom In E-2 the angles are C(15)ndashAg(1)ndashF(1)

8084(9)deg C(30)ndashAg(1)ndashF(1) 9108(10)deg and C(23)ndashAg(1)ndashF(1) 8614(10)deg which the most

appropriate position between intra- and inter-molecular repulsion of the rings

65

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

F1

Al2

O2

O3

O1

C41C46

C63

C64C54C53

Fig E-3 Section of the preliminary crystal structure of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (E-3) at 150 K Due to

disorder in the anion and inherent bad crystal quality the atoms are described as balls The cationic parameters

are described in Table E-5 The most important atom labels are given in the figure Selected bond lengths in [Aring]

and angle in [deg] Ag(1)ndashF(1) 2468 (bond valance 0094 cf Table E-5)[22] F(1)ndashAl(2) 1652 (bond valance

0749 cf Table 5)[22] Ag(1)ndashF(1)ndashAl(2) 151747

Compared to the former structure E-2 the AgndashF contact in E-3 is shortened by 008 Aring (2544

Aring (E-2) 2468 Aring (E-3)) which is consistent with toluene being a stronger donor than

fluorobenzene As consequence Ag+ in [Ag(FndashPh)3]+ becomes more electrophilic and the

distance between AgndashF decreases compared to E-2 The long AgndashF bond in E-2 and the

slightly smaller one in E-3 demonstrate the very weak coordinating force of the [FAl(ORF)3]ndash-

anion A comparable shorter AgndashF contact with 2487 Aring has already been reported in the

literature[23] Therein the smaller distance may be referred to the sterical less demanding BF3

rest of the coordinated BF4ndash-anion compared to the bigger Al(ORF)3 grouping of the

[FAl(ORF)3]ndash-anion in E-2 and E-3

However apart from those aspects [FAl(ORF)3]ndash features being a very good candidate for

weak coordination and chemical robustness of highly electrophilic cationic complexes and

their stabilization (cf E-1) If referred to Ag+-species Reed et al as well as Xie et al reported

66

on other [Ag(arene)x]+ (arene = xylol x = 1 2) complexes coordinated to carboranate anions

[CB11H6Cl6]ndash[24] and [1-HndashCB11Cl5Br5]ndash[25] known to be a very robust and stable anion In the

corresponding anion[24] the AgndashCl distances are with 2679 Aring (bond valance AgndashCl 0185[22])

and 2926 Aring (bond valence AgndashCl 0095[22]) indeed much longer than the AgndashF bonds in E-2

but the larger bond valence of 0185 demonstrates the stronger coordination ability of Ag+ to

Cl than Ag+ to F in E-3 The analogue bond lengths in Xiersquos carboranate anion[25] are 2708 Aring

(bond valence AgndashCl 0171[22]) and 2871 Aring (bond valence AgndashCl 0110[22]) Certainly the

bond elongations of AgndashCl compared to AgndashF may be referred to the sterical demand of the

carboranate anions their larger Cl-atoms and to the electron donating xylol groups in Reedrsquos

and Xiersquos compounds Evidently the valence bond analyses of ID Brown[22] demonstrates

clearly the weaker coordination ability of [FAl(ORF)3]ndash to Ag+ than those carboranates to the

silver cation

E23 [Ph3C]+[FAl(ORF)3]ndash (E-4) The core of this molecule (Fig E-4) also consists of an

FAlO3 unit as in E-2 and E-3 but in this case completely uncoordinated The average lengths

of the three AlndashO single bonds at 1730(3) Aring is similar to the ones in the homoleptic

[Al(ORF)4]ndash anion (1725 Aring)[26] Compared to the other AlndashF distances reported in here the

Al(1)ndashF(1) bond is further shortened to 1660(3) Aring which is comparable with the analogue

distance in E-3 (1656(6) Aring)

67

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig E-4 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (E-4) at 100 K with thermal displacement

ellipsoids showing 50 probability The most important atom labels are given in the figure Selected bond

lengths are given in Table E-2

For comparison in slightly silver coordinated E-2 d(AlndashF) is 1681(2) Aring in ion-like E-1 it

rises to 1803(1) Aring and in the weak complex PhndashFrarrAl(ORF)3 it reaches its maximum in this

series at 1864(2) Aring Thus the AlndashF distance in E-4 (1660(3) Aring) is the shortest in this series

and is in agreement with an undisturbed almost ldquonakedrdquo [FAl(ORF)3]ndash anion

E231 Comparison of the [FAl(ORF)3]ndash Structures The details of structures of E-1 E-2

E-4 and PhndashFrarrAl(ORF)3 are compared in Table E-2 For a more quantitative investigation of

the bonding situation around the central atoms of structures E-1 E-2 E-4 and Phndash

FrarrAl(ORF)3 I D Brownrsquos[22] bond valence analysis was performed (cf Table E-2)

AlndashO bonds In the compounds E-1 E-2 and E-4 the AlndashO bond valences are appreciable

smaller than in PhndashFrarrAl(ORF)3 due to the lower electron density around the central Al-atom

in the weakly bounded fluorobenzene adduct complex

68

AlndashF bonds Due to the longer AlndashF bond distances in PhndashFrarrAl(ORF)3 and E-1 the bond

valences are smaller than in E-2 and E-4 The highest value of 0733 of E-4 is in agreement

with [FAl(ORF)3]ndash being an unhindered anion

Table E-2 Most important bond lengths and angles as well as the bond valences of Al(ORF)3-compounds E-1

E-2 and E-4 compared to literature values of PhndashFrarrAl(ORF)3[19]

Param PhndashFrarrAl(ORF)3

bond length [Aring] angle [deg][19]

bond valence

Σ(bond valences)

Me3SindashFndashAl(ORF)3 (E-1) bond length [Aring] angle [deg]

bond valance

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1706(2) 0971 Al 3426 Al(1)ndashO(1) 17112(14) 0966 Al 3421 Al(1)ndashO(2) 1693(2) 1005 Al(1)ndashO(2) 17064(16) 0978 Al(1)ndashO(3) 1685(2) 1027 Al(1)ndashO(3) 17062(15) 0979

AlndashF Al(1)ndashF(1) 18636(18) 0423 Al(1)ndashF(1) 18031(13) 0498 SindashF - - - Si(1)ndashF(1) 17439(13) 0702 Si 4101SindashC - - - Si(1)ndashC(2) 1836(2) 1135

- - - Si(1)ndashC(3) 1838(2) 1129 - - - Si(1)ndashC(1) 1836(2) 1135

lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1158(1) - - O(3)ndashAl(1)ndashO(2) 11408(8) - - O(3)ndashAl(1)ndashO(1) 1214(1) - - O(3)ndashAl(1)ndashO(1) 12099(8) - - O(2)ndashAl(1)ndashO(1) 1132(1) - - O(2)ndashAl(1)ndashO(1) 11031(7) - -

lt(OndashAlndashF) O(1)ndashAl(1)ndashF(1) 9530(9) - - O(1)ndashAl(1)ndashF(1) 9894(7) - - O(2)ndashAl(1)ndashF(1) 1030(1) - - O(3)ndashAl(1)ndashF(1) 10383(7) - - O(3)ndashAl(1)ndashF(1) 10283(9) - - O(2)ndashAl(1)ndashF(1) 10615(7) - -

Param [Ag(tol)3]+[FAl(ORF)3]ndash (E-2) bond length [Aring]

angle [deg]

bond valence

Σ(bond valences)

[Ph3C]+[FAl(ORF)3]ndash (E-4) bond length [Aring] angle [deg]

bond valence

Σ(bond valences)

AlndashO Al(1)ndashO(1) 1732(2) 0913 Al 3423 Al(1)ndashO(1) 1738(3) 0890 Al 3473 Al(1)ndashO(2) 1735(2) 0905 Al(1)ndashO(2) 1728(3) 0915 Al(1)ndashO(3) 1732(2) 0913 Al(1)ndashO(3) 1720(3) 0935

AlndashF Al(1)ndashF(1) 16814(19) 0692 Al(1)ndashF(1) 1660(3) 0733 - lt(OndashAlndashO) O(3)ndashAl(1)ndashO(2) 1140(1) - - O(3)ndashAl(1)ndashO(2) 1108(2) - -

O(3)ndashAl(1)ndashO(1) 1078(1) - - O(3)ndashAl(1)ndashO(1) 1079(2) - - O(2)ndashAl(1)ndashO(1) 1082(1) - - O(2)ndashAl(1)ndashO(1) 1079(2) - -

lt(OndashAlndashF) O(3)ndashAl(1)ndashF(1) 1058(1) - - O(3)ndashAl(1)ndashF(1) 1082(2) - - O(1)ndashAl(1)ndashF(1) 1118(1) - - O(1)ndashAl(1)ndashF(1) 1100(2) - - O(2)ndashAl(1)ndashF(1) 1102(1) - - O(2)ndashAl(1)ndashF(1) 1121(2) - -

E232 Establishing the ion-like character of Me3SindashFndashAl(ORF)3 (E-1)

Considering the fact that the SindashF bond is very elongated E-1 can be seen not only as an

adduct of Me3SiF to Al(ORF)3 but also as a silylated WCA The strongest commonly used

silylaing agent is trimetylsilyl triflate and to give a benchmark for the silyl donor capability

of E-1 we calculated the thermodynamic functions of the silyl group exchange between the

69

[FndashAl(ORF)3]- and the triflate anion using the BP86 functional in combination with the SV(P)

basis set for all atoms In the gas phase the reaction enthalpy between E-1 and [SO3CF3]ndash is

strongly exothermic with ∆rHdeg of ndash160 kJ molndash1 at 298 K Since the sum of particles is

constant in the reaction and thus the entropy change is low the calculated free reaction

enthalpy differs just slightly giving ∆rGdeg of ndash170 kJ molndash1 at 298 K In solution these values

should be less negative because of the stronger solvation of the smaller triflate anion

compared to the [FndashAl(ORF)3]ndash The free solvation enthalpies in dichloromethane (εr = 893)

using the COSMO[27] model have been calculated a Born-Haber cycle to evaluate the

reaction thermodynamics in CH2Cl2 solution quantumchemically has been constructed An

overview of the calculated free enthalpies is shown in the below sketched Scheme E-1

Me3SindashFndashAl(ORF)3(solv) + [SO3CF3]ndash(solv) [FndashAl(ORF)3]ndash

(solv) + Me3SindashSO2CF3(solv)CH2Cl2

∆Gdeg = ndash88 kJmol

Me3SindashFndashAl(ORF)3(g) + [SO3CF3]ndash(g) [FndashAl(ORF)3]ndash

(g) + Me3SindashSO2CF3(g)

ndash∆solvGdeg

+9 kJmolndash∆solvGdeg

+195 kJmol

∆solvGdeg

ndash113 kJmol∆solvGdeg

ndash9 kJmol

gas phase∆rGdeg = ndash170 kJmol

(Scheme E-1)

Since the triflate anion is by 82 kJ molndash1 stronger solvated than the aluminate the reaction is

less exergonic in dichloromethane than in the gas phase but E-1 is a much stronger silyl

donor than trimethylsilyl triflate

Overall E-1 can be considered to be an ion-like compound an electronic and structural

hybrid of covalent Me3SindashFndashAl(ORF)3 and ionic [Me3Si]+[FAl(ORF)3]ndash species[6] To the

knowledge this moiety is the first example of the [FAl(ORF)3]ndash anion in an ion-like species

(cf Scheme E-2) In contrast to the related complex AlEt3FSiMe3[14] which is a liquid the

70

novel material can be crystallized Since two decades silylium ions have been of current

interest in many spectroscopic and structural characterizations[6 8 28] As one reference for

cationic character the sum of the CndashSindashC bond angles is considered to be adequate for this

classification The below sketched Scheme E-2 illustrates the difference between covalent

ion-like and ionic species In E-2 the sum of the CndashSindashC bond angles is 346deg and may

therefore classified as an ion-like compound

Si Y109deg Si Y117deg Si Y120deg

Σ (CndashSindashC) = 337deg Σ (CndashSindashC) = 345deg - 354deg Σ (CndashSindashC) = 360deg

covalent ion-like ionic

δ+ δminus minus+

Scheme E-2 Illustration of the three different bond types in an R3Si+Yndash compound (R = eg Me Et i-Pr Y =

eg [CB11H6X6]ndash (X = Cl Br)[6] [FAl(ORF)3]ndash)

The sum of the CndashSindashC angles (346deg) in E-1 is much smaller than in eg Willnerrsquos almost

ionic [Me3Si][RCB11F11] (with R = H C2H5)[29] with 354deg due to the larger and less

coordinating carboranate anion Table E-3 compares the bonding situations between the

compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[26] and Me3SiF[30] analyzed with I

D Brownrsquos program[22]

E233 Bonding around Si in the ion-like E-1 The bond valence analysis clearly

demonstrates that the F-atom in E-1 is a bit stronger bound to the Si-atom (0702) than to the

Al-atom of the [FAl(ORF)3]ndash-anion (0498) and to Willnerrsquos [Me3Si]+[C2H5CB11F11]ndash[29]

(0459) (cf Table E-3) which confirms the ion-like[6] character of E-1 The silylium group

[Et3Si]+ of Reedrsquos Et3Si(CHB11Cl11)[31] is in analogy to Willnerrsquos compound weakly

71

coordinated to carborantes (via F[29]) If referred to F the silylium group is even weaker

coordinated than to Cl (0491) (cf Table E-3)

Table E-3 Comparison between the compounds [Me3Si][C2H5CB11F11][29] Et3Si(CHB11Cl11)[31] Me3SiF[30] Me3SindashFndash

AlEt3[14]

their bond situation and 1H NMR data

Compound (SindashC)av [Aring] (bond valanceav)

SindashX [Aring] (X = Cl F) (bond valence)

Σ(Si bond valencesav)

Σ(CndashSindashC) [deg]

δ1H(Me3Si) [ppm] (3JSiH [Hz])

[Me3Si]+[C2H5CB11F11]ndash[29] 1823 (1176) 1901 (0459) (X = F) 3987 354 not comparable1) Et3Si(CHB11Cl11)[31] 1845 (1108) 2334 (0491) (X = Cl) 3815 350 not comparable Me3SindashFndashAl(ORF)3 1836 (1135) 1744 (0702) (X = F) 4210 346 044 d2) (1321)3) Me3SindashFndashAlEt3

[14]4) - - - - ndash018 d (705)5) Me3SiF[30] 1848 (1131) 1600 (1036) (X = F) 4333 335 033 d2) (740)6)

1)[Me3Si]+[C2H5CB11F11]ndash was measured in CD3CN at 298 K which may form [Me3SindashNCndashMe]+ in solution 2)taken in CD2Cl2 at 298 K 3)no 1JSiF coupling could be detected due to a singlet in the 19F NMR spectrum at ndash1561 ppm 4)no crystal structure was given 5)no 1JSiF coupling was given 6)1JSiF = 274 Hz

Summarizing all the ideas the weakly coordinating anion [FAl(ORF)3]ndash proves as a very

stable and chemically robust anion which may even undecomposed coordinate highly

electrophilic compounds such as [Me3Si]+ The silylium group is stronger coordinated to the

[FAl(ORF)3]ndash in E-1 than in Willnerrsquos or Reedrsquos compounds however the compound is still

very stable and as the Me3Si-exchange with CF3SO3SiMe3 above has shown should prove as

a valuable ion-like ldquo[Me3Si]+rdquo agent

E24 Structures with AlndashFndashAl bridges The structures with fluoride bridged anions

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] and [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndash

FndashAl(ORF)3]ndash (E-6) are shown in the below sketched Fig E-5 and Fig E-6 The core

structural parameters of both anions are discussed in context below near Table E-4 those of

the [Ag(12ndashF2C6H4)3]+-cation of E-5 are compared together with the other [Ag(arene)3]+

structures in a later section

72

E241 [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] The anion may be considered

to be an Al(ORF)3 adduct complex of the [FAl(ORF)3]ndash-anion (Fig E-5) which also has been

earlier synthesized and published[15]

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig E-5 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] at 100 K with

thermal displacement ellipsoids showing 50 probability The most important atom labels are given in the

figure The structure of the anion [(RFO)3AlndashFndashAl(ORF)3]ndash was solved with disorder in three different

independent CF3 groups with the ratio of 6832 6337 8812 [] Selected bond lengths are given in Table E-4

(anion) and Table E-5 (cation)

E242 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) The anion [(RFO)3AlndashFndash

Al(ORF)2ndashFndashAl(ORF)3]ndash (Fig E-6) may be described as a doubly bridged Al(ORF)3-adduct

complex of a central [F2Al(ORF)2]ndash-anion

73

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

F100 F101

Al2

O4

C13

C17

C9 C5

C1

O1

C29

O8

C21

O6 O8

Al3 Al1

C25

Fig E-6 Section of the crystal structure of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) at 150 K with

thermal displacement ellipsoids showing 50 probability For a better overview the [N(Bu)4]+ cation is omitted

The most important atom labels of the center of the anion are given in the figure Selected bond lengths are given

in Table E-4 (anion)

Table E-4 Most important bond lengths in the anions and angles as well as the bond valences of E-5[21] and E-6

Parameter E-5[21] bond length [Aring] angle [deg]

bond valence

Σ bond valences

E-6 bond length [Aring] angle [deg]

bond valence

Σ bond valences

AlndashO Al(3)ndashO(7) 1710(4) 0969 Al(3) Al(1)ndashO(2) 1695(5) 1009 Al(1) Al(3)ndashO(9) 1712(4) 0963 3442 Al(1)ndashO(3) 1698(5) 1001 3475 Al(3)ndashO(8) 1712(4) 0963 Al(1)ndashO(1) 1705(4) 0982 Al(4)ndashO(10) 1706(4) 0979 Al(4) Al(2)ndashO(4) 1693(4) 1014 Al(2) Al(4)ndashO(11) 1708(4) 0974 3438 Al(2)ndashO(5) 1698(4) 1001 3186 Al(4)ndashO(12) 1714(4) 0958 Al(3)ndashO(6) 1699(5) 0998 Al(3) - - Al(3)ndashO(8) 1700(4) 0995 3486 - - Al(3)ndashO(7) 1702(4) 0990

AlndashF Al(3)ndashF(203) 1768(4) 0547 Al(1)ndashF(101) 1814(4) 0483 Al(4)ndashF(203) 1782(4) 0527 Al(2)ndashF(100) 1739(4) 0592 - - - Al(2)ndashF(101) 1747(4) 0579 - - - Al(3)ndashF(100) 1799(4) 0503

lt(AlndashOndashC) Al(3)ndashO(7)ndashC(25) 1500(4) - - Al(1)ndashO(1)ndashC(1) 1456(5) - - Al(3)ndashO(8)ndashC(29) 1468(4) - - Al(1)ndashO(2)ndashC(5) 1471(4) - - Al(3)ndashO(9)ndashC(33) 1496(4) - - Al(1)ndashO(3)ndashC(9) 1496(5) - - Al(4)ndashO(10)ndashC(37) 1524(4) - - Al(2)ndashO(4)ndashC(13) 1446(5) - - Al(4)ndashO(11)ndashC(41) 1492(4) - - Al(2)ndashO(5)ndashC(17) 1452(4) - - Al(4)ndashO(12)ndashC(45) 1450(4) - - Al(3)ndashO(6)ndashC(21) 1489(4) - - - - - Al(3)ndashO(7)ndashC(25) 1480(4) - - - - - Al(3)ndashO(8)ndashC(29) 1504(4) - -

lt(AlndashFndashAl) Al(3)ndashF(203)ndashAl(4) 1783(2) - - Al(2)ndashF(100)ndashAl(3) 1672(2) - - - - - Al(2)ndashF(101)ndashAl(1) 1703(2) - -

74

E2421 Comparison of the structural parameters of the fluoride bridged anions The

structural parameters of the anion in E-5 are in good agreement with those found in

[Ag(CH2Cl2)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash[15] The AlndashF and AlndashO bonds (OndashAlndashO) and (Alndash

OndashC) bond angles are with 1775(av) Aring (d(AlndashF)range 1768(4) - 1782(4) Aring) 1710(av) Aring (d(Alndash

O)range 1708(4) - 1714(4) Aring) 11347deg(av) (lt(OndashAlndashO)range 1102 - 1181deg) and 14883deg

(lt(AlndashOndashC)range 1450 - 1524deg) similar to those in[15] Compared to the corresponding bond

lengths in E-6 the average AlndashO distances (1699 Aring) are herein relatively short and closer to

the situation of those in the Lewis acid PhndashFrarrAl(ORF)3 (1695 Aring) or the ion-like compound

E-1 (1708 Aring) The two AlndashF bonds to the Al(ORF)3 moieties (d(AlndashF)(av) = 1807 Aring) are by

0064 Aring(av) longer than those around the central [F2Al(ORF)2]ndash-anion (d(AlndashF)(av) 1743 Aring)

The bond situation around the Al-atom in the Al(ORF)3 units of both anions is in good

agreement and similar to those found in PhndashFrarrAl(ORF)3[19] E-1 E-2 and E-4 (cf Table E-

2) Hence the coordinated F-atom to the acidic Al central atom remains with a very small

bond valence By contrast the F2Al(ORF)2 unit indicates that the two F-atoms are stronger

coordinated to the Al(2)-atom than to the others (Al(1) and Al(3)) and share their bond

valence by 1171 (ΣAl 3186) The bulky ORF-groups have very wide AlndashOndashC bond angles

of 1474deg(av) indicative for a very polar and almost ionic bonding For the same reason the two

AlndashFndashAl angles (1688deg(av)) are almost linear It appears that the steric requirements of the

bulky Al(ORF)3 moieties induce the small deviation from linearity

E2422 [FAl(ORF)3]- as an WCA Comparison of the structures of [Ag(arene)3]+-salts of

[(RFO)3AlndashFndashAl(ORF)3]ndash and [FAl(ORF)3]ndash (Table E-5) The local coordination of the silver

cation stabilized by arene rings as in [Ag(arene)3]+ (E-2 and E-3) demonstrates the weakly

coordinating nature of the [FAl(ORF)3]ndash-anion via the F-atom Compared to the ldquonakedrdquo

[Ag(arene)3]+ in E-5 the sum of the bond valances in E-2 (0988) is almost unchanged (E-5

0982) and the AgndashF valence is very low at 0076

75

Table E-5 Comparison of the bond paramenters in the [Ag(arene)3]+-cations of E-2 (arene= toluene)

E-3 (arene = fluorobenzene) and E-5 (arene = difluorobenzene)

Param [Ag(tol)3]+[FAl(ORF)3]ndash

(E-2) bond length [Aring] bond valence

[Ag(PhF)3]+[FAl(ORF)3]ndash

(E-3) bond length [Aring] bond valence

[Ag(F2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5)[21] bond length [Aring]

bond valence

AgndashF Ag(1)ndashF(100) 2544(2) 0076 Ag(1)ndashF(1) 2468(2) 0094 - - AgndashC Ag(1)ndashC(16) 2502(4) 0189 Ag(1)ndashC(53) 2683(3) 0116 Ag(2)ndashC(202) 2470(7) 0206 Ag(1)ndashC(15) 2508(4) 0186 Ag(1)ndashC(54) 2718(4) 0106 Ag(2)ndashC(215) 2494(6) 0193 Ag(1)ndashC(22) 2513(4) 0184 Ag(1)ndashC(46) 2804(5) 0084 Ag(2)ndashC(208) 2547(6) 0168 Ag(1)ndashC(23) 2529(4) 0176 Ag(1)ndashC(41) 2582(4) 0153 Ag(2)ndashC(203) 2584(7) 0152 Ag(1)ndashC(30) 2527(4) 0177 Ag(1)ndashC(64) 2533(3) 0174 Ag(2)ndashC(214) 2594(8) 0148 - - Ag(1)ndashC(63) 2599(4) 0146 Ag(2)ndashC(207) 2688(7) 0115 Σ(bond valences) Ag 0988 Σ(bond valences) Ag 0873 Σ(bond valences) Ag 0982

Analogously to E-2 and E-3 the silver atom in E-5[21] is coordinated by three arene rings All

of the latter in E-3 and E-4 are η2 coordinated This is in contrast to E-2 where two toluene

rings are η2 and one is η1 coordinated The AgndashC bond lengths are a function of the donor

capacity of the arene Hence the AgndashC bonds are shortest for the most electron rich arene

toluene (range 2502 - 2529 Aring) and elongated in E-5 for the most electrondeficient arene

difluorobenzene by 004 Aring (2563 Aring(av) range 2470 - 2689 Aring) In E-3 the corresponding

AgndashC bond lengths are elongated up to 2804 Aring (range 2533 - 2804 Aring 2563 Aring(av)) but the

AgndashF bond is shortened to 2468 Aring while the sum of the bond valences around the silver

atom remains nearly constant This AgndashC lengthening occurs despite the fact that the Ag+

cation in E-2 and E-3 is further saturated by a weak AgndashF contact The small valence bonds

for this contact (E-2 0076 E-3 0094) prove the weakly coordinating property of the F

coordination to the cationic silver complex According to a search in the CSD database

compound E-4 includes the first example for a naked homoleptic [Ag(arene)3]+ complex

Even the more bulky weakly coordinating carboranate anions are not able to stabilize such

[Ag(arene)3]+ complexes (for [Ag(arene)]x-structures (x = 1) stabilized with carboranates cf

ie PhAg[B11CH12][32] or MesAg(NCCH3)[B11CBr12][25] for x = 2 ie

Mes2Ag[B11CBr7Cl5][25]) This is in agreement with [FAl(ORF)3]ndash being a weaker

76

coordinating anion than the carboranate The coordinating ability of both anions is supported

by the resultant equilibration between Ag(arene)x[WCA] Ag(arene)x-1[WCA] + arene

(x = 1-3) For WCA = [FAl(ORF)3]ndash the position is on the left side and for WCA =

carboranate on the right side

E3 IR-Spectroscopy of the [FAl(ORF)3]ndash-salts E-1 to E-4 In Table E-6 (see below) the spectroscopical IR data of all salts containing the [FAl(ORF)3]ndash-

anion in this chapter are demonstrated

77

Table E-6 IR spectroscopic analyses of compound PhndashFrarrAl(ORF)3 = A[19] E-1 to E-4 compared to calculated

IR bands of [FAl(ORF)3]ndash and Me3SindashFndashAl(ORF)3 (E-1)

A [cmndash1] exp

A [cmndash1] calc1)

E-1 [cmndash1] exp

E-1 [cmndash1]calc1)

E-2 [cmndash1] exp

E-3 [cmndash1] exp

E-4 [cmndash1] exp

[FAl(ORF)3]ndash

[cmndash1] calca) - - - 444 (w) 453 (w) - 448 (w) 439 (w)

455 (w) 466 (w) 453 (w) 455 (w) 458 (sh) 465 (w) 468 (w) - - - - - 518 (mw) - - 520 (mw)

537 (w) 528 (w) 537 (w) - 538 (w) 539 (w) 537 (w) 547 (mw) 574 (w) 578 (w) 576 (w) 567 (w) - - - - 583 (w) 594 (w) - 595 (w) 609 (w) 609 (w) 609 (w) -

- - - 633 (m)b) - - 623 (w)b) - - - - - - - 641 (vw) -

668 (w) 676 (w) 661 (w) - 668 (w) 663 (w) 660 (sh) 709 (m) - - 703 (w) 708 (w) - 690 (w) 701 (s) - - - - 711 (w) - 710 (w) - -

726 (vs) 727 (vs) 728 (vs) - 729 (vs) 725 (s) 727 (vs) 735 (w) - - - - - 756 (w) - -

746 (s) 743 (s) 770 (w) 762 (w) - 769 (w) 766 (s) - - - - - 795 (vw) 778 (w) 807 (w) 808 (w) - - - - - 809 (w) 826 (ms) -

846 (ms) 865 (ms) 857 (ms) 855 (m) 846 (vw) 838 (w) 840 (ms) 841 (w) 889 (w) 894 (w) - 876 (m) - - - - 913 (w) 903 (w) - 878 (m) - 907 (w) 916 (vw) - 971 (vs) 969 (vs) 976 (vs) 966 (s) 976 (vs) 967 (vs) 972 (vs) 961 (s)

1017 (ms) 1015 (ms) - - - 999 (w) 997 (ms) - - - - - - 1015 (w) 1029 (ms) -

1074 (ms) 1062 (ms) - - - 1065 (w) 1060 (ms) - - - 1100 (w) - - - 1099 (ms) 1111 (w)

1153 (s) 1158 (s) 1165 (s) 1158 (w) - 1158 (w) 1167 (s) 1132 (w) 1183 (s) 1180 (s) 1180 (s) 1220 (w) 1183 (s) 1172 (m) 1186 (s) - 1212 (s) 1213 (s) 1220 (s) 1202 (m) 1217 (s) 1212 (vs) 1214 (s) 1213 (vs)

- - - 1234 (s) - 1239 (vs) - - - - 1252 (vs) 1244 (vs) 1259 (vs) 1261 (s) 1263 (s) 1231 (vs) - - - 1265 (vs) - - 1280 (s) -

1301 (s) 1308 (s) - 1333 (w) 1299 (s) 1297 (m) 1298 (s) 1295 (vs) - - - - 1357 (s) 1350 (w) - 1333 (ms)

1358 (s) 1354 (s) 1356 (s) 1341 (w) 1370 (s sh) - 1363 (s) 1360 (w) - - - - - - 1375 (s) -

1456 (vw) - - - 1457 (s) 1454 (w) 1453 (vs) - - - 1468 (s) - - - 1466 (s sh) -

1481 (vw) 1474 (w) 1480 (s) - 1489 (vw) 1487 (m) 1486 (s) - 1505 (vw) 1593 (vw) 1511 (w) - 1508 (vw) 1498 (w sh) 1507 (w) - 1540 (vw) - 1548 (w) - 1520 (vw) 1545 (vw) 1541 (w) - 1559 (vw) - - - 1590 (vw) 1589 (m) 1587 (s) - 1616 (vw) - - - 1623 (vw) 1612 (vw) 1623 (vw) - 1634 (vw) - - - 1630 (vw) - 1645 (vw) - 1653 (vw) - - 1661 (vw) - - 1684 (vw) - - - 1674 (vw) - - - to weak - - - 2960 (vw) 2962 (vw) 2959 (vw) - to weak 3152 (vw) - - 3013 (vw) 3014 (vw) 3012 (vw) -

w weak m medium s strong v very sh shoulder a)calculated at the BP86SV(P) level b)proposed AlndashF band

78

Table E-6 includes the IR spectroscopic bands of the compounds E-1 to E-4 which are

compared to experimental and calculated values of PhndashFrarrAl(ORF)3[19] The referential wave

numbers of the almost ldquonakedrdquo [FAl(ORF)3]ndash-anion in E-4 are in good agreement to the other

compounds in the range from around 440 to 1360 cmndash1 According to the calculated bands of

Me3SindashFndashAl(ORF)3 (E-1) it was possible to assign the central AlndashF vibration which occurs at

633 and 623 cmndash1 for E-4 Unfortunately the corresponding vibrations in the other compounds

have been too weak to determine The further strong AlndashO band has been found for all

structures at 727 plusmn 2 cmndash1 which is in agreement to those found in the [Al(ORF)4]ndash-anion in

ie[33] The very intense CndashC vibrations of the C(CF3)3 groups occur at around 970 cmndash1

plusmn 2 cmndash1 For those compounds containing arene rings the CndashC and CndashH vibrations are in a

range of 890 to 1074 cmndash1 The CndashO and CndashF bands are typically for those perfluorinated

anions (cf [Al(ORF)4]ndash[33]) at 1150 to 1370 cmndash1 The band around 1252 plusmn 10 cmndash1 is an

explicit indication for a strong CndashF vibration Beyond 1370 cmndash1 it has been able to assign the

bands to current CndashC and CndashH vibrations[34] (latter 2960 and 3012 plusmn 2 cmndash1) of compounds

E-2 E-3 and E-4 Summarizing all the facts it has been possible to compare all [FAl(ORF)3]ndash

-compounds directly Most of the vibrations of comparable compounds are in good agreement

and confirm the structural properties in all salts

E4 Conclusion

Five structures containing one unity of the Lewis base anion [FAl(ORF)3]ndash as well as two

structures with fluoride bridged anions [(RFO)3AlndashFndashAl(ORF)3]ndash and

[(RFO)3AlndashFndashAl(ORF)2ndashAl(ORF)3]ndash have been characterized Useful starting materials (Ag+

[CPh3]+ and [N(Bu)4]+) and the ion-like Me3SindashFndashAl(ORF)3 (E-1) have been introduced The

free [Me3Si]+ silylium ion is a fierce electrophile making chemical stability of the counterion

a critical factor for the stabilization of compounds including the [Me3Si]δ+ moiety For

comparison the 35-bis(trifluoromethyl)-tetraphenylborate ion [B(ArF)4]ndash (ArF = 35-(RF)2-

79

C6H3 RF = n-C4F9[35] 2-C3F7

[35]) is unstable with the respect to fluoride ion abstraction in the

presence of incipient silylium ions and all anions which are themselves Lewis acidbase

adducts ([BF4]ndash [SbF6]ndash [B(OTeF5)4]ndash[36] [Sb(OTeF6)6]ndash[36] etc) are susceptible to fluoride

or oxyanion abstraction by [Me3Si]+ Based on the SindashF bond valence and compared to

Willners (as a liquid truly ionic) compound [Me3Si]+[C2H5CB11F11]ndash[29] an ionization of about

58 has been reached accounted for by the formula [Me3Si]δ+[FAl(ORF)3]δndash Hence this ion-

like compound may be considered as an electronic and structural hybrid of covalent non

interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+[FAl(ORF)3]ndash (see Scheme E-2)[6]

Me3SindashFndashAl(ORF)3 (E-1) thus is the first ion-like structure of the [FAl(ORF)3]ndash-anion This is

in agreement with the fact that [FAl(ORF)3]ndash is more stable against [SiMe3]+ than [SbF6]ndash and

that Al(ORF)3 is a stronger Lewis acid than SbF5[19] In contrast to the ion-like silylium-

carborane compounds which require a difficult multi step synthesis Me3SindashFndashAl(ORF)3 (E-

1) can be prepared in a 30 g scale per day and thus opens new synthetic possibilities The

structures of E-2 and E-3 show that the (Al)ndashF tooth is available for coordination but

depending on the nature of the counterion is a rather weak donor This is in agreement with

the notion that the Ag+ cation in E-2 and E-3 is still very electron deficient and coordinates

three arene molecules This should be contrasted by the weak capacity of the halogenated

carborane anions to stabilize Ag(arene) complexes Comparison to compound E-5[21] with a

truly ldquonakedrdquo [Ag(arene)3]+ cation and the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the [FAl(ORF)3]ndash

WCA is a good candidate to stabilize highly electrophilic cations ie as ion-like compounds

It is interesting to note many compounds that are addressed in text books as salts qualify with

respect to the bond valence to the coordinated counterion as ion-like Prominent examples

include Seppeltrsquos AuIIndashXe complexes with coordinated [SbnF5n+1]ndash anions (eg

(Xe)2Au[FSbF5]2 d(AundashFAsF5) = 216 Aring or 0651 vu) as well as many fluoroxenonium

cations (eg FndashXe[FAsF5] d(XendashFAsF5) = 214 Aring or 0685 vu) Here a large potential to

80

open new chemistry on the basis of the Lewis acids Al(ORF)3 and PhndashFrarrAl(ORF)3 as well as

the WCA [FAl(ORF)3]ndash can be seen

The reaction in Eq E-3 provides a simple one pot procedure to silver and ammonium salts of

the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash The new preparation is superior to the

older three step procedure[15 17]

Compound E-6 may be described as a doubly bridged Al(ORF)3-adduct complex of a central

[F2Al(ORF)2]ndash-anion and features analogies to the very strong Lewis acid SbF5 The

advancement from [FAl(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)3]ndash to [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash provides structural analogues to the [SbF6]ndash [Sb2F11]ndash and [Sb3F16]ndash series of

anions again highlighting the Lewis acidity of Al(ORF)3

81

References to Chapter E [1] R J Gillespie Canad Chem Ed 1969 4 9 [2] G A Olah Angew Chem Int Ed 1995 34 1393 G A Olah Angew Chem 1995 107 1519 [3] G A Olah Laali Kenneth K Wang Qi Prakash G K Surya Onium Chem

1 ed Wiley 1998 [4] P J F de Rege J A Gladysz I T Horvath Science 1997 276 776 [5] S Hollenstein T Laube J Am Chem Soc 1993 115 7240 [6] C A Reed Acc Chem Res 1998 31 325 [7] Z Xie J Manning R W Reed R Mathur P D W Boyd A Benesi C A Reed J Am Chem Soc

1996 118 2922 [8] K-C Kim A Reed Christopher W Elliott Douglas J Mueller Leonard F Tham L Lin B Lambert

Joseph Science 2002 297 825 [9] R J Gillespie J Passmore Ad Inorg Chem Radiochem 1975 17 49 [10] H Willner F Aubke Angew Chem Int Ed 1997 36 2402 H Willner F Aubke Angew Chem 1997 109 2506 [11] T Drews K Seppelt Angew Chem Int Ed 1997 36 273 T Drews K Seppelt Angew Chem 1997 109 264 [12] S Seidel C van Wuellen K Seppelt Angew Chem 2007 38 S Seidel C van Wuellen K Seppelt Angew Chem Int Ed 2007 46 6717 [13] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem 2008 in progress [14] H Schmidbaur H F Klein Angew Chem Int Ed 1966 5 726 H Schmidbaur H F Klein Angew Chem 1966 78 750 [15] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chemistry 2004 10 5041 [16] P Politzer M Levy J Chem Phys 1988 89 2590 [17] I Krossing Chem Eur J 2001 7 490 [18] J P Stewart J Mol Model 2007 13 1173 [19] L O Muumlller D Himmel J Stauffer G Steinfeld J Slattery V Brecht I Krossing Angew Chem

2008 in progress [20] J Mason Multinuclear NMR 1987 [21] L O Muumlller J Stauffer D Himmel G Santiso-Quintildeones R Scopelitti I Krossing J Am Chem

Soc 2008 submitted the compound was characterized and synthesized by G Santiso-Quintildeones and was taken into account for the comparison in this work

[22] I D Brown J Appl Crystall 1996 29 479 [23] A S Batsanov S P Crabtree J A K Howard C W Lehmann M Kilner J Organom Chem 1998

550 59 [24] Z Xie B-M Wu T C W Mak J Manning C A Reed Inorg Chem 1997 1213 [25] C-W Tsang Q Yang E T-P Sze T C W Mak D T W Chan Z Xie Inorg Chem 2000 39

5851 [26] I Krossing Chem Eur J 2001 7 490 [27] A Klamt G Schuumluumlrmann J Chem Perkin Trans 2 1993 799 [28] J B Lambert L Kania S Zhang Chem Rev 1995 95 1191 [29] H Willner Angew Chemistry 2007 119 6462 [30] B Rempfer H Oberhammer N Auner J Am Chem Soc 1986 108 3893 [31] S P Hoffmann T Kato F S Tham C A Reed Chem Comm 2006 767 [32] K Shelly D C Finster Y J Lee W R Scheidt C A Reed J Am Chem Soc 1985 107 5955 [33] I Krossing I Raabe Chem Eur J 2004 10 5017 [34] M Hesse H Meier B Zeeh Spektroskopische Methoden in der organischen Chemie 2002 [35] K Fujiki J Ichikawa H Kobayashi A Sonoda T Sonoda J Fluorine Chem 2000 102 293 [36] D M Van Seggen P K Hurlburt O P Anderson S H Strauss Inorg Chem 1995 34 3453

82

F Summary

In the first part of this thesis one of the obvious aim was the preparation of new Lithium

alkoxides of the type LiORF (RF = C(R)(CF3)2 R = tBu or mesitylene (Mes)) These alkoxides

should be applicable as precursors for the corresponding weakly coordinating aluminates

[Al(ORF)4]ndash to stabilize strongly electrophilic cations In the new WCAs the oxygen atoms

were anticipated to be better shielded than in the current [Al(ORF)4]ndash species (RF = C(CF3)3

C(H)(CF3)2 C(CH3)(CF3)2) However the chosen synthetic routes based on the reactions of

hexafluoroacetone with tBuLi or tBuMgX (X = Cl I) as suitable tBu sources did not lead to

the presumed compound LiOC(tBu)(CF3)2 The routes rather resulted in Hndash- abstraction of the

tBu unit and formation of isobutene instead of adding the tBu group to the electrophilic

carbonyl atom of (CF3)2CO The initial solvent dependant addition of Hndash to hexafluoroacetone

led to the different Lithium alkoxide [Li(OC(H)(CF3)2)]4Et2O (Fig F-1) which in THF was

able to coordinate another (CF3)2CO giving the new alkoxy-alkoxide

(THF)3LiO(CF3)2OC(H)(CF3)2 (Fig F-2)

Fig F-1 and F-2 Section of the crystal structure of [LiOC(H)(CF3)2]42Et2O (left) and molecular structure of

(THF)3LiO(CF3)2OC(H)(CF3)2 (right)

83

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

Li1

Cl1lsquo

Cl1

O1 O1lsquo

Ga1

Br1lsquoBr1 F5lsquoF4lsquo

F6lsquo

F3lsquoC1lsquo

C8lsquo

F1lsquo

F5

F2

C12

C12lsquo

DFT calculations showed that this Hndash addition was kinetically and thermodynamically

favoured However the straight forward but unexpected synthesis of

(THF)3LiO(CF3)2OC(H)(CF3)2 might be of importance for further WCA chemistry if a weak

oxygen donor is desired in the periphery of such an anion Instead of choosing the tBu-group

it was possible to fulfil the requirement for a bulky Lithium alkoxide by the synthesis with

hexafluoroacetone and Lithium mesitylene In contrast to the former mentioned

[Li(OC(H)(CF3)2)]4Et2O which crystallized in a heterocubane structure the central structure

in this Lithium mesitylene complex [LiOC(CF3)2Mes]4 was a rare puckered eight membered

ring (Fig F-3) Unfortunately the further attempted synthesis to the desired aluminate

[Al(ORF)4]ndash (RF = C(CF3)2Mes) did not lead to success The only result was the

doubleheterocubane crystal structure of Li[OC(CF3)2Mes]4[LiF]2 Another attempted route via

the congruent synthesized alcohol HOC(CF3)2Mes and LiAlH4 with various solvents did not

lead to any reaction Apparently the bulk of the C(CF3)2Mes-group is too large to allow

incorporation to the desired aluminate Similarly the respective [Ga(ORF)4]ndash could not be

prepared by the synthesis of LiOC(CF3)2Mes with GaBr3 Instead of the gallate the

disubstituted dichloroethancomplex Li(C2H4Cl2)[Ga(OC(CF3)2Mes)2(Br)2] could be isolated

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

F10lsquo F4C3

F3

C2

F1O1Li2lsquoF8lsquo

O2lsquoC13lsquo

Li1lsquo

O1lsquo

C1

Li1

Li2F2lsquo O2 C13 C16

F8

F8lsquo

C1lsquo

C3lsquoF4lsquo

C15F10lsquo

C16lsquo

C21lsquo

C21

Fig F-3 and F-4 Molecular structures of [LiOC(CF3)2Mes]4 (left) and Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2

(right)

84

The dichloroethancomplex (Fig F-4) describes the first account of a non-heterocubane Li-

Chloroalkane complex and demonstrates that the hard Li+ cation prefers coordination towards

the hard and poorly accessible oxygen atom over the soft but easily accessible bromine atoms

Summarizing all the ideas mentioned before the fluorinated alkoxy rests were to bulky to

coordinate four times the small Al-atom Even the larger Ga as central atom did not fulfil this

requirement The consequential idea was to vary the RF rest to a less bulky long-chained

Lithium alkoxid unit with RF = C(CF3)2CH2SiMe3 which was able to give the new

corresponding aluminate [Al(OC(CF3)2CH2SiMe3)4]ndash In this respect the alkoxy unit was

anticipated to be more stable than the bulky CH2SiMe3-group which shields the oxygen

atoms protects them from electrophilic attack and even induces solubility in aliphatic solvents

like n-hexane This Lithium aluminate even was able to stabilize [Ph3C]+ which may be seen

as a representative example for a strong electrophile Due to the absence of β-H atoms in the

CH2SiMe3-group it is known to be a good ligand in transition metal chemistry and Li ion

catalysis and also proves as salt with application in WCA chemistry

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Al2

O13O1

O4O12

Li2

F18

F113F118

F101F104

C117C115

Si7

Si6

Si5

Si8

F108 F122

Fig F-5 Section of the polymeric crystal structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash

85

From the first part of this thesis it is obvious that the main principle of WCAs are complex

anions which contain bulky and preferably strong Lewis acidic species In this case the

WCA [Al(ORF)4]ndash contains as the principle component the very strong Lewis acid Al(ORF)3

(RF = C(CF3)3) which is the acidic centre of the corresponding weakly coordinating

aluminate Therefore the second and main part of this thesis was focussed on the parent

Lewis acid Al(ORF)3 as its conjugated base anion [FAl(ORF)3]ndash As known from literature the

strength of a Lewis acid is defined by the fluoride ion affinity (FIA) From this point of view

Al(ORF)3 may even be seen as Lewis Superacid in comparison to classical Lewis acids

Further reactions with this acid revealed the problem of the instability of pure Al(ORF)3 due to

internal (C)ndashF activation above 273 K However a pentanehexane suspension could be used

in further reactions for the preparation of [FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash salts To

avoid this decomposition a room temperature stable alternative of this acid the

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 (Fig F-6) was synthesized which now may

be handled as stable stock solution at 298 K

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Al1O3

O1

O2

F1C1

C7

F2

C15

C11

Fig F-6 Molecular structure of PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

Proving this superacidity of PhndashFrarrAl(ORF)3 experimentally the reaction with a suitable

[SbF6]ndash source was performed and proceeded successfully with fluoride abstraction giving the

86

conjugated [FAl(ORF)3]ndash-anion Forward-looking the fluorobenzene adduct complex Phndash

FrarrAl(ORF)3 may be widely used in all applications that need high and hard Lewis acidity

In the last chapter the chemistry of the conjugated WCA [FAl(ORF)3]ndash and its increased

fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash is described The synthesis useful materials

such as Ag+ [N(Bu)4]+ and [Ph3C]+ succeeded with the WCA [FAl(ORF)3]ndash Due to the

smaller size of the Ag it tends to coordinate three aromatic solvent molecules to be

energetically saturated [Ag(arene)3]+[A]ndash (arene = toluene fluorobenzene [A]ndash =

[FAl(ORF)3]ndash and [(RFO)3AlndashFndashAl(ORF)3]ndash) The comparison of [FAl(ORF)3]ndash with a truly

ldquonakedrdquo [Ag(arene)3]+ cation to the least coordinating WCA [(RFO)3AlndashFndashAl(ORF)3]ndash

(Fig F-7) support the view that [FAl(ORF)3]ndash itself is already a good WCA Thus the

[FAl(ORF)3]ndash WCA constitutes a good candidate to stabilize highly electrophilic cations The

compound [Ph3C]+[FAl(ORF)3]ndash was a prime example for an almost ldquonakedrdquo cation weakly

coordinated by an unhindered [FAl(ORF)3]ndash-anion (Fig F-8)

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Ag2

C203C204 C214

C215

C208C207

Al3

Al4

F203

O8

O7 O9

O11

O12

O10C29

C25

C33

C41

C37

Fig F-7 Section of the crystal structure of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3)

87

Al1

O3

O1

O2

C9

C1

C5

F1Al1

O3

O1

O2

C9

C1

C5

F1

Fig F-8 Section of the crystal structure of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

All salts led to room temperature stable compounds of the weakly coordinating anion

[FAl(ORF)3]ndash which may be used for further chemistry Furthermore the synthesis of the first

ion-like structure of the [FAl(ORF)3]ndash-anion succeeded Thus the formation of

Me3SindashFndashAl(ORF)3 (Fig F-9) is in agreement with the fact that [FAl(ORF)3]ndash is more stable

against [SiMe3]+ than [SbF6]ndash and that Al(ORF)3 is a stronger Lewis acid than SbF5

O3

O2

O1Al1

F1Si1

C4C8

C12

O3

O2

O1Al1

F1Si1

C4C8

C12

Fig F-9 Section of the crystal structure of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

The free SiMe3+ silylium ion states an extraordinary strong electrophile making chemical

stability of the counterion a critical factor for the stabilization of compounds including the

88

[Me3Si]δ+ moiety Hence this ion-like compound may be considered as an electronic and

structural hybrid of covalent non interacting Me3SiFAl(ORF)3 as well as ionic [Me3Si]+

[FAl(ORF)3]ndash Similarly herein the [FAl(ORF)3]ndash WCA proves as good candidate to stabilize

the highly electrophilic compound [Me3Si]+

In brief several syntheses to new bulky Lithium alkoxides have been developed however the

synthesis of a new Lithium aluminate succeeded only by the sterical less demanding ndash

C(CF3)2CH2SiMe3 residue Furthermore the new Lewis Superacid Al(ORF)3 its corresponding

conjugated base [FAl(ORF)3]ndash and the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash could

be synthesized as Ag+ [N(Bu)4]+ salts via a new developed route Al(ORF)3 and its

fluorobenzene adduct complex PhndashFrarrAl(ORF)3 serve as potential candidates where Lewis

acidic properties are needed and [FAl(ORF)3]ndash as a counterion that tolerates maximum

electrophilicity

89

G Experimental Section

G1 General Experimental Techniques

G11 General Procedures and Starting Materials

Due to air- and moisture sensitivity of most materials all manipulations (if not mentioned

otherwise) were undertaken using standard vacuum and Schlenk techniques as well as a glove

box with an argon or nitrogen atmosphere (H2O and O2 lt 1 ppm) All solvents were dried by

conventional drying agents and distilled afterwards For some syntheses two bulbed Schlenk

vessels fitted with two Young valves and a G4 frit plate were used (see Fig G-1)

Fig G-1 Two bulbed Schlenk vessel with Young valves and G4 frit plate Measures are given in mm however

the values may differ depending on the size of the syntheses approach

G12 NMR Spectroscopy If not otherwise specified all solution NMR spectra were recorded in CD2Cl2 or [D5]PhndashF at

the temperatures given in the text on a Bruker AC 250 on a Bruker AVANCE II+ 400 and on

90

a Varian Unity 300 spectrometer data are given in ppm relative to the internal solvent signals

(1H 13C) or external FCCl3 (19F) SiMe4 (29Si) Al(H2O)63+ (27Al) and 85 H3PO4 (31P)

G13 IR and Raman Spectroscopy IR spectra were recorded at rt on a Bruker VERTEX 70 and a Bruker IFS 66v spectrometer

in Nujol mull between CsI or AgBr plates or on a Nicolet Magna 760 spectrometer using a

diamond Orbit ATR unit (extended ATR correction with refraction index 15 was used)

Raman spectra were recorded at rt on a Bruker IFS 66v and a Bruker RAM II FT-Raman

spectrometer (using a liquid nitrogen cooled highly sensitive Ge detector) in sealed NMR

tubes or melting point capillaries (1064 nm radiation 2 cmndash1 resolution)

G14 X-Ray Diffraction and Crystal Structure Determination

Data collection for X-ray structure determinations were performed on a STOE IPDS II or a

BRUKER APEX II diffractometer all using graphite-monochromated Mo-Kα (071073 Aring)

radiation Single crystals were mounted in perfluoroether oil on top of a glass fiber and then

brought into the cold stream of a low temperature device so that the oil solidified When the

crystals were grown at very low temperature or were very sensitive to temperature they were

mounted between ndash40 and ndash20degC with a cooling device All structural calculations were

performed on PCacutes using the SHELX97[1] software package The structures were solved by

the Patterson heavy atom method or direct methods and successive interpretation of the

difference Fourier maps followed by least-squares refinement All non-hydrogen atoms were

refined anisotropically The hydrogen atoms were included in the refinement in calculated

positions by a riding model using fixed isotropic parameters Occasionally the movement of

the anionic parts was restricted using SADI commands Relevant data concerning

crystallographic data data collection and refinement details are compiled in Chapter L

Crystallographic data of most compounds excluding structure factors have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) The respective CCDC numbers are

91

included in Chapter X Copies of the data can be obtained free of charge on application to

CCDC 12 Union Road Cambridge CB21EZ UK (fax (+44)1223-336-033 email

depositccdccamacuk)

92

G15 Syntheses and Spectroscopic Analyses G151 Preparation of [Li(OC(H)(CF3)2]42Et2O (B-1) Approximately 30 ml n-hexane were

added to a solution of 92 ml (1562 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) Upon the

frozen mixture 311 g (1874 mmol 12 eq) hexafluoroacetone was condensed at 77 K It was

warmed up to 195 K and - with stirring over night - to room temperature Then the solvent

was removed by vacuum distillation and the resulting colorless oil (403 g) isolated and

crystallized from Et2O The structure of the colorless crystals was identified as

[Li(OC(H)(CF3)2]42Et2O (B-1) (mcrystals 125 g 48 vs hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-1) 1H NMR (400 MHz) δ = 11 (t 12H) 34 (q 8H) 441

(sep 4H) 19F NMR (376 MHz) δ = ndash75 (s 6F) 13C[1H] (100 MHz) δ = 299 (s) 533 (s)

739 (broad) 1244 (q 1JCF = 2912 Hz) 7Li NMR (155 MHz) 57 (s 1Li)

IR (CsI plates nujol) ν = 470 (w) 553 (w) 558 (w) 636 (w) 689 (s) 707 (s) 740 (s) 795

(vw) 852 (s) 890 (s) 920 (s) 959 (s) 973 (s) 1009 (w) 1087 (vs) 1199 (vs) 1260 (vs)

1289 (vs) 1374 (vs) 1450 (w) 1475 (w) 1488 (vw) cm-1

93

G152 Preparation of (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) Approximately 30 ml THF

were added to a solution of 12 ml (2045 mmol) tBuLi (c = 17 mol Lndash1 in n-hexane) The

mixture forms a yellow solution which was frozen to 77 K After condensing 408 g

(2458 mmol 12 eq) hexafluoroacetone onto the frozen mixture and warming to 195 K with

stirring the yellow color of the mixture disappeared The stirred mixture was allowed to

slowly reach room temperature After 24 hours the solvent was removed by vacuum

distillation at 298 K The resulting yellow oil (33 g) was crystallized from THF at 233 K The

structure was identified as (THF)3LiO(CF3)2OC(H)(CF3)2 (B-2) (mcrystals 135 g 40 vs

hexafluoroacetone)

The NMR spectra of these crystals and the supernatant solution are similar and indicate

complete transformation to (B-2) 1H NMR (400 MHz) δ = 185 (m 4H) 371 (m 4H) 441

(sep 1H) 19F NMR (376 MHz) δ =-762 (s 6F) ndash822 (s 6F) 7Li NMR (155 MHz) ndash38 (s

1Li) 13C[1H] (100 MHz) δ = 249 (s) 684 (s) 1226 (q 1JCF = 2922 Hz) 1229 (q 1JCF =

2918 Hz)

IR (CsI plates nujol) ν = 460 (vw) 530 (vw) 688 (w) 722 (w) 807 (vw) 878 (w) 895 (w)

920 (w) 959 (s) 1053 (s) 1103 (w) 1195 (vs) 1211 (vs) 1284 (s) 1381 (w) 1421 (w) 1459

(w) 1508 (vw) cm-1

94

G153 Preparation of (CF3)2(H)COMg2Et2O (B-4) 20 ml (40 mmol) of colorless tBuMgCl

(c = 2 mol Lndash1 in Et2O) were frozen to 77 K then 731 g (44 mmol 11 eq) hexafluoroacetone

were condensed onto the solid The mixture was allowed to slowly reach room temperature

with stirring After removal of the solvent by vacuum distillation a white precipitate formed

On the basis of the NMR-data and the mass balance the substance was assigned as

(CF3)2(H)COMgCl2Et2O (B-4) (mprecipitate 1086 g 96 )

1H NMR (400 MHz) δ = 141 (t 12H) 369 (q 8H) 538 (sept 1H) 19F NMR (376 MHz) δ

= ndash751 (s 6F) 13C[1H] (100 MHz) δ = 670 (s) 153 (s) 729 (broad) 1242 (q 1JCF = 2911

Hz)

IR (CsI plates nujol) ν = 529 (w) 645 (vw) 690 (w) 722 (w) 745 (w) 782 (w) 857 (w)

894 (w) 968 (vw) 1001 (vw) 1042 (w) 1099 (s) 1152 (s) 1188 (s) 1234 (s) 1297 (s) 1377

(vs) 1458 (vs) cm-1

95

G154 Preparation of MesndashLiOEt2 In a 500 ml two necked flask with vessel connected

with a dropping funnel and condenser 200ml of light yellow n-BuLi (0320 mmol 13 eq

16 M in n-hexane) were mixed with approximately 120 ml Et2O and stirred at 273 K Then

37 ml (0246 mmol ρ = 1301 gm Lndash1) of MesndashBr were dropped under stirring to the solution

after half of the addition the mixture turned cloudy and was allowed to reach room

temperature Then the mixture began to reflux because of its high exothermic reaction

Afterwards it was heated to the boiling point for 3 hours whereon the white precipitate

accumulated and the yellow color of the solution disappeared The flask was stored at 280 K

over night and then the white product filtered from the colorless solution The precipitate was

washed three times with n-hexane to remove excessive n-BuLi and then three times with

Et2O to remove eventually formed LiBr The resulting white product could be assigned by

NMR spectroscopic analysis to MesndashLiOEt2 (yield 3782 g 90 )

1H NMR (400 MHz [D8]toluene 298K) δ = 171 (s 3H ndashCH3 (ortho)) 183 (s toluene)

222 (s 3H ndashCH3 (para)) 239 (s 3H ndashCH3 (ortho)) 631 (s 1H) 633 (s 1H) 672 (s

toluene) 675 (s toluene) 683 (s toluene) 7Li NMR (156 MHz [D8]toluene 298K) ndash23 (s

1Li)

IR (CsI Nujol 298K) ν = 656 w 668 s 687 w 696 w sh 720 vw 727 vw 748 w 776 w

787 w sh 835 ms 857 vs 891 m 930 s 948 m sh 990 m 1007 m 1020 m 1027 m sh

1061 m 1091 m 1105 m 1119 m 1154 m 1204 s 1245 m 1304 m 1370 s 1377 s sh 1386

s sh 1347 s 1449 s 1456 s 1497 m 1507 m 1521 m 1539 m 1559 m 1578 s 1606 m

1626 m 1647 m 1653 m 1670 m 1675 m 1684 m 1700 m 1717 m 1734 m 1740 m

[cmndash1]

96

Raman (298K) 523 (40) 578 (94) 990 (41) 1158 (14) 1202 (6) 1279 (46) 1371 (31) 1381

(33) 1445 (19) 1454 (19) 1534 (12) 1580 (31) 2711 (10) 2729 (8) 2759 (6) 2857 (36

sh) 2916 (100) 2939 (63) 2964 (37 sh) 2996 (60) [()]

97

G155 Preparation of [LiOC(CF3)2Mes]4 (B-5) In a 500 ml two necked round bottom flask

connected to a dropping funnel and a gas cooler 30 g (0150 mol) colorless MesndashLiOEt2 were

dissolved in approximately 80 ml of toluene Then 3237 g (0195 mol 13 eq excess)

(CF3)2CO were condensed onto the frozen solution at 77 K The mixture was allowed to reach

213 K whereby the gas cooler was set with a cryostat to a temperature of 203 K After

stirring for 4 hours at 213 K the mixture was allowed to reach room temperature Then the

overlaying solution was decanted from the light yellow solid product This was isolated

washed with pentane recrystallized from toluene at 253 K isolated and dried by vacuum

distillation The resulting colorless product (yield 4310 g 98 ) was assigned by X-ray

diffraction and spectroscopy as [LiOC(CF3)2Mes]4

1H NMR (400 MHz [D8]toluene 298 K) δ = 174 (s 3H ndashCH3 (ortho)) 229 (s 3H ndashCH3

(para)) 250 (s 3H ndashCH3 (ortho)) 644 (s 1H) 651 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash680 (s 6F 2x ndashCF3) 7Li NMR (156 MHz [D8]toluene 298 K)

ndash79 (s 1Li)

IR (CsI plates Nujol 298 K) ν = 668 s 678 w 711 s 743 w 747 w 851 m 858 w 898 s

931 s 951 vs 968 m 1041 m 1100 s 1119 s 1142 vs 1156 vs 1175 s 1196 s 1205 s 1224

vs 1265 s 1286 s 1362 m 1375 m 1387 m 1395 m 1419 m 1436 m 1457 m 1465 m

1473 m 1489 m 1497 m 1507 m 1521 m 1540 s 1559 s 1570 m 1576 m 1616 m 1624 m

647 m 1653 s 1663 m 1670 m 1684 m 1700 m 1717 m 1734 m 1740 m sh 1751 m

1772 m 1792 m 2964 s [cmndash1]

Raman (298 K) 521 (33) 541 (55) 572 (62) 595 (29) 748 (64) 975 (19) 1103 (31) 1170

(16) 1282 (24) 1376 (36) 1385 (40) 1445 (19) 1465 (19) 1566 (14) 1613 (43) 2868 (27)

2923 (100) 2982 (52) 2995 (45) 3009 (36) 3022 (43) cmndash1 [()]

98

G156 Preparation of HOC(CF3)2Mes For the hydrolysis (no inert conditions) of 10 g

(3423 mmol) LiOC(CF3)2Mes approximately 20 ml of 2M HCl were given to the salt Then

the mixture was stirred for half an hour and afterwards the resulting alcohol separated from

the aqueous phase by adding three times about 40 ml fluorobenzene to the liquid The organic

phase turned light yellow and was then dried for three hours over about 50 g CaCl2 After

filtration and distillation (bp of HOC(CF3)2Mes 393 K 01 mbar) drying over P2O5 and

condensation the alcohol HOC(CF3)2Mes was isolated as a colorless liquid (yield 270 g

28 ) and then spectroscopically analyzed

1H NMR (400 MHz [D8]toluene 298 K) δ = 207 (3H ndashCH3 (ortho)) 247 (s 3H ndashCH3

(para)) 264 (s 3H ndashCH3 (ortho)) 277 (s 1H OndashH) 668 (s 1H) 678 (s 1H) 19F NMR

(376 MHz [D8]toluene 298 K) δ = ndash773 (s 6F 2x ndashCF3)

IR (CsI plates nujol 298 K) ν = 485 w 513 w 548 w 590 w 635 w 707 s 741 m 752 m

853 m 890 s 926 m 955 s 983 m sh 1098 m 1127 vs 1169 m 1198 vs 1238 vs 1386 w

1459 m 1486 m 1570 w 1613 m 2929 w 3537 m 3610 m [cm-1]

99

G157 Preparation of [LiOC(CF3)2Mes]4(LiF)2 (B-6) 3947 g (13510 mmol) of

[LiOC(CF3)2Mes]4 were given into a 250 ml round bottom flask connected to a dropping

funnel Then under stirring approximately 30 ml n-hexane was given to the powder at 273 K

Only half of the lithium alkoxide was soluble in the solvent Afterwards 090 g (3378 mmol)

AlBr3 was given at once to the mixture whereby it turned dark red It was refluxed for two

hours and then the dark solid decanted from the colorless solution which was isolated

concentrated and crystallized at 253 K The precipitated crystals were spectrocopically and

structurally assigned to [LiOC(CF3)2Mes]4(LiF)2 (yieldcrystals 0871 g 21 )

1H NMR (400 MHz [D8]toluene 298 K) δ = 189 (3H ndashCH3 (ortho)) 226 (s 3H CH3

(para)) 234 (s 3H CH3 (ortho)) 651 (s 1H) 658 (s 1H) 19F NMR (376 MHz

[D8]toluene 298 K) δ = ndash734 (s 24F 4x ndashCF3) (a signal for LindashF could not be detected) 7Li

(156 MHz [D8]toluene 298 K) ndash21 (s br 6Li)

IR (CsI plates Nujol 298 K) ν = 473 w 538 w 589 w 616 w 670 w 708 m 720 m 741 m

750 m 850 m 897 s 930 m 953 s 1038 m 1097 m 1128 m 1158 m 1198 s 1236 s 1263 s

1284 m sh 1329 m sh 1377 vs 1461 vvs 2975 w [cmndash1]

100

G158 Preparation of Li(C2H4Cl2)Ga(OC(CF3)2Mes)2(Br)2 (B-7) In a 250 ml two necked

round bottom flask connected to a dropping funnel 040 g (1283 mmol) GaBr3 dissolved in

approximately 1 ml toluene and were added to a solution of 150 g (5134 mmol)

LiO(CF3)2Mes in approximately 15 ml toluene at 213 K Then the mixture was slowly

warmed up to room temperature over night The solution was decanted from the precipitate

(probably LiBr 010 g 1151 mmol) concentrated and crystallized from C2H4Cl2 at 253 K

The resulting crystals were spectroscopically and structurally assigned as

Li(12Cl2C2H4)[(Mes(CF3)2CO)2GaBr2] (yieldcrystals 072 g 46 )

1H NMR (400 MHz CDCl3 298 K) δ = 222 (s 6H 2x MesndashCH3) 240 (s 6H 2x Mesndash

CH3) 260 (s 2H ndashCH2CH3) 271 (s 3H ndashCH2CH3) 337 (s 2H H2O (trace)) 372 (s 6H

2x MesndashCH3) 691 (s 2H MesndashH) 19F NMR (377 MHz CDCl3 298 K) δ = ndash695 (s 12F

2x ndashC(CF3)2Mes 7Li NMR (156 MHz 298 K) δ = ndash32 (s 1Li)

IR (CsI plates Nujol) ν = 417 w 485 w 498 w 536 m 543 m 581 m 597 w 645 w 660 w

679 m 702 s 714 s 745 m 755 m 867 s 903 s 935 s 959 s 976 w sh 1038 m 1087 vs

1130 vs 1200 vs 1217 vs 1238 vs 1251 vs 1381 w 1429 w 1485 m 1497 s 1569 w 1613

s 2973 s [cmndash1]

Raman (298 K) ν = 174 (100) 191 (96) 218 (35) 229 (29) 240 (sh 19) 283 (31) 325 (23)

315 (19) 336 (18) 347 (12) 377 (9) 400 (12) 411 (10) 545 (30) 555 (30) 575 (24) 598

(13) 649 (13) 662 (18) 703 (10) 722 (5) 755 (19) 763 (20) 980 (16) 1108 (12) 1137 (7)

1148 (12) 1210 (11) 1287 (13) 1383 (24) 1433 (9) 1470 (20) 1573 (8) 1616 (32) 2741

(5) 2761 (5) 2925 (60) 2960 (79) 2999 (40) 3008 (38) 3047 (36) cmndash1 [()]

101

G159 Preparation of LiOC(CF3)2CH2SiMe3 (C-1) 778 g (82625 mmol) of white

crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane The mixture was frozen to

77 K Afterwards 1651 g (99446 mmol 12 eq) of (CF3)2CO was condensed onto the white

solid and then warmed up slowly to 195 K with stirring using a cryostat The stirred mixture

was allowed to slowly reach room temperature After 24 hours the solvent was removed by

vacuum distillation at 298 K and a white solid product resulted and could be assigned to

LiOC(CF3)2CH2SiMe3 (isolated yield 1732 g 80 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 442 s 498 s 521 s 533 s 582 w 630 s 648 w 666 m 693

s 714 s 723 m 783 m 790 m 844 vs 941 vs 1020 vs 1067 vs 1110 s 1146 vs 1197 vs

1255 vs 1291 s 1308 s 1331 s 1375 s 1418 m 1458 w 2904 vw 2954 vw [cmndash1]

102

G1510 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) 1732 g (66569 mmol) of

LiOC(CF3)2CH2SiMe3 were under stirring at rt completely solved in about 60 ml n-hexane

Then 444 g (16649 mmol) freshly synthesized and sublimed AlBr3 was dissolved in about

30 ml of n-hexane and dropped to the lithium alkoxide solution at 273 K LiBr began

immediately to precipitate as white solid The mixture was stirred over night and allowed to

warm to rt To complete the formation of LiBr quantitatively the mixture was heated up to

313 K under reflux After filtration two thirds of the solvent were removed by vacuum

distillation and the resulting solution cooled to 253 K A light beige crystalline product

precipitated and could be assigned to the new lithium aluminate alkoxide salt

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (2) (yield 911 g 53 )

NMR data are collected in Table C-1 of Chapter C

IR (CsI plates Nujol 298 K) ν = 406 m 452 m 499 m 535 w 551 w 570 w 594 w 631 m

652 w 696 m 721 m 727 m 763 m 767 s 797 s 792 s 832 s 844 vs 852 s 865 s 873 s

940 s 945 s 1056 s 1068 s 1077 s 1083 s 1138 s 1140 s 1188 s 119 s 1252 vs 1255 vs

1316 s 1324 s 1336 s 1343 s 1375 w 1427 m 1459 vw 2903 vw 2958 vw [cmndash1] Raman

(298 K) ν = 231 (4) 336 (2) 499 (2) 586 (2) 632 (5) 694 (2) 726 (2) 767 (2) 1198 (4)

1320 (10) 1422 (15) 2061 (2) 2185 (1) 2907 (100) 2962 (57) [cm-1] ()

103

G1511 Preparation of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) in an one pot reaction The

procedure of the first step to LiOC(CF3)2CH2SiMe3 (C-1) was done analogous to the former

2 g (21240 mmol) of white crystalline LiCH2SiMe3 was dissolved in about 100 ml n-hexane

The mixture was frozen to 77 K Afterwards 427 g (25720 mmol 12 eq) of (CF3)2CO was

condensed onto the white solid and then warmed up slowly to 195 K with stirring The stirred

mixture was allowed to slowly reach room temperature After 24 hours a solution of 114 g

(4275 mmol) of freshly synthesized AlBr3 in about 15 ml n-hexane was added to the

dissolved lithium alkoxide at 273 K Spontaneously LiBr began to precipitate as white solid

The mixture was stirred over night and then warmed up to rt the further procedure was as

delineated above (yield 721 g 64 )

NMR and IR indicated a pure material

104

G1512 NMR scale reactions The NMR scale reaction of the lithium aluminate

Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) with Ph3CCl (according to Eq 4) was carried out in

07 ml CD2Cl2 at 298 K 01 g (0096 mmol) of C-2 were given to 0027 g (0096 mmol) of

Ph3CCl The formation of white insoluble LiCl salt could be observed The typical yellow

color of the dissolved trityl compound was obtained and NMR indicated complete

transformation

NMR data are collected in Table C-1 of Chapter C

105

G1513 Synthesis attempt of [H(Et2O)2]+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-4) 080 g (0767

mmol) of C-2 were dissolved in about 25 ml CH2Cl2 Then 025 ml Et2O (ex) were added and

0029 g (0805 mmol 105 eq) of HCl(g) condensed onto the mixture The mixture was

allowed to reach slowly room temperature the resulting residue was turbid liberated from

solvent and weighted (mresidue = 059 g equiv mtheoretical = 66 ) Apparently the expected

protonated diethylether adduct complex decomposed to Al(OC(CF3)2(CH2SiMe3)3 and LiCl

The obtained yield (mtheoretical = 92 ) and the observed NMR chemical shifts are in good

agreement with comparable compounds

106

G1514 Preparation of a 1-molar solution of PhndashFrarrAl(ORF)3 (RF = C(CF3)3) (D-1) From

a dropping funnel 418 ml (030 mol) HOC(CF3)3 were added dropwise under stirring at

268 K to a colorless solution of 137 ml (010 mol) of pure AlEt3 in approximately 15 ml

fluorobenzene in a 250 ml two necked Schlenk flask A reflux condenser connected to the

flask was cooled by a cryostat to 243 K to avoid leaking of the alcohol from the system

(HOndashC(CF3)3 bp 45degC is very volatile) After complete formation of ethane (measured

030 mol 660 L) the colorless mixture was canuled into a Schlenk tube at 273 K and filled up

with fluorobenzene to exactly 100 ml and stored at 253 K Already at 263 K the formation of

a crystalline product can be observed The structure of one of the colorless crystalline needles

was identified as PhndashFrarrAl(ORF)3 The NMR spectra of these crystals and the supernatant

solution are similar and indicate complete transformation to D-1 (yield of crystalline

PhndashFrarrAl(ORF)3 (D-1) 81 g 98 )

The NMR spectroscopic analysis of the crystals leads to the following results 1H NMR (300

MHz [D5]PhndashF 257 K) δ = 727 (m 5H ndashC6H5F) 19F NMR (282 MHz [D5]PhndashF 257 K) δ

= ndash755 (s 27F 3x ndashC(CF3)3) ndash1115 (s 1F free C6H5F) ndash1130 (s 1F free C6D5F) ndash144

(s 1F PhndashFrarrAl(ORF)3) 27Al NMR (78 MHz) 365 (s broad) ∆12 = 2350 Hz

107

FT-IR In the below sketched table experimental and calculated bands at the BP86SV(P)

level and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1) are given

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[55]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

108

G1515 Reaction of [BMIM]+[SbF6]ndash with PhndashFrarrAl(ORF)3 (RF = C(CF3)3) In a 100 ml

two necked Schlenk flask 05 ml (063 g 2205 mmol) of yellowish [BMIM]+[SbF6]ndash were

added to 365 g (4405 mmol) of frozen crystalline PhndashFrarrAl(ORF)3 After defrosting a beige

liquid was formed and could be partially crystallized at 275 K The obtained crystals could be

assigned to [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash by X-ray diffraction NMR IR and Raman

spectroscopy Unfortunately the quality of the structure is not good due to twinning and

disorder Spectroscopic analysis of the [BMIM]+[(RFO)3AlndashFndashAl(ORF)3]ndash-crystals (non

optimized yield 071 g 21 )

1H NMR (300 MHz [D5]PhndashF 298 K) δ = 115 (t 3H ndashCH3) 3J(H H) = 736 Hz 145 (qt

2H ndashCH2) 3J(H H) = 738 Hz 183 (tt 2H ndashCH2) 3J(H H) = 764 Hz 375 (s 1H NndashCH3)

400 (t 2H NndashCH2) 3JH H = 750 Hz 702 (s 1H BuNCndashH) 705 (s 1H MeNCndashH) 785 (s

1H NCndashHN) 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash741 (s 27F 3x C(CF3)3) ndash1129

(s 1F C6D5F) ndash1824 (s 1F (RFO)3AlndashFndashAl(ORF)3) 27Al NMR (78 MHz [D5]PhndashF

298 K) δ = 339 (s 1Al broad ∆ 12 = 3118 Hz) 424 (s 1Al small amount of [FAl(ORF)3]ndash)

IR (ATR 298 K) 451 (w) 537 (w) 568 (vw) 624 (vw) 640 (vw) 668 (vw) 726 (s) 830

(vw) 861 (vw) 969 (vs) 1179 (s) 1209 (s) 1237 (s) 1266 (w) 1300 (vw) 1353 (vw) [cmndash1]

Raman 231 (30) 279 (42) 327 (85) 374 (52) 522 (70) 574 (67) 645 (42) 778 (100) 816

(58) 910 (12) 1021 (12) 1058 (27) 1418 (24) [()]

The supernatant solution was also NMR spectroscopically characterized and could be

assigned to the by product [Sb2F11]ndash in FndashPh 19F NMR (282 MHz [D5]PhndashF 298 K) δ = ndash

741 (s 27F 3x ndashC(CF3)3) -999 (s [Sb2F11]ndash[52] weak) ndash1126 (s 1F C6H5F) ndash1131 (s 1F

C6D5F) ndash1157 (s broad [Sb2F11]ndash[52] weak) ndash1336 (s broad [Sb2F11]ndash[52] weak)

109

G1516 First Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a 100 mL flask

05 mL (394 mmol) Me3SiCl were dropped into a dry-ice cooled solution of 1075 g

(1000 mmol) Ag+[Al(ORF)4]ndash in about 15 mL CH2Cl2 The solution was stirred while

warming up to room temperature within one hour Evolution of gas (C4F8O) started around

263 K After stirring at room temperature for one hour all volatile products were removed

(001 mbar) The residue was recrystallized from CH2Cl2 to obtain colorless crystals of the

pure product (yieldprecipitate = 070 g 85 ) which were assigned to Me3SindashFndashAl(ORF)3 (E-1)

and spectroscopically analyzed The analyses were identical to those of the 2nd preparation

110

G1517 Second Preparation of Me3SindashFndashAl(ORF)3 (RF = C(CF3)3) (E-1) In a two necked

flask with reflux condenser 925 mL AlMe3 (537 mmol 2M in n-heptane) were given and

cooled to 263 K Afterwards 236 mL (1690 mmol) RFOH were dropped under stirring and

cooling to the solution Formation of white Al(ORF)3 and a complete evolution of CH4

(1690 mmol 038 L 100 ) after 3 h could be observed Then FSiMe3 (537 mmol 052 g)

was condensed onto the Lewis acid Afterwards the yellowish mixture was allowed to reach

room temperature This solution was washed with CH2Cl2 and recrystallized from it giving

Me3SindashFndashAl(ORF)3 (yieldprecipitate = 373 g 80 )

1H NMR (400 MHz CD2Cl2 298 K) δ = 044 (d (CH3)2(CH3)SindashFAl(ORF)3 1JHF = 127 Hz)

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash771 (s ndashC(CF3)3) ndash1561 (s broad AlndashFndashSi)

27Al (104 MHz CD2Cl2 298 K) δ = 396 (s Al ∆12 = 960 Hz) 13C[1H] (100 MHz CD2Cl2

298 K) 804 (sept ndashC(CF3)3 broad) 1220 (q ndashCF3 1JCF = 289 Hz) 05 (s ndashMe3Si)

The IR data is given in Chapter E3 Table E-6

111

G1518 Preparation of Ag+[FAl(ORF)3]ndash (recrystallized from toluene to

[Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-2)) In a two necked flask connected with a

condenser (cooled with a cryostat to 253 K) 851 mL AlMe3 (1695 mmol 2M in n-heptane)

were given in approximately 20 mL n-pentane and then cooled to 263 K Afterwards 708 mL

(5084 mmol) RFOH were dropped under stirring to the solution Formation of white

Al(ORF)3 and a complete evolution of CH4 (5084 mmol 114 L 100 ) could be observed

Finally 330 g (1695 mmol) AgBF4 were added at once to the mixture at 263 K The

formation of gaseous BF3 was quantitative (1695 mmol 038 L 100 ) Then the solvent

was removed and the slightly beige precipitate was isolated (yieldprecipitate 1353 g 93 ) It

has been recrystallized from toluene at 280 K and the resulting crystals were assigned as

Ag(tol)3+[FAl(ORF)3]ndash (2) 1H NMR (400 MHz CD2Cl2 298 K) δ = 209 (s ndashCH3) 698 (s 5x

CndashH broad) 19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1468 (s broad

AlndashF) ndash1855 (s broad AlndashFndashAl) (contaminated with lt 1 Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash)

27Al (104 MHz CD2Cl2 298 K) δ = 368 (d AlndashF 1JAlF = 470 Hz) 27Al (104 MHz CD2Cl2

243 K) 411 13C (100 MHz CD2Cl2 298 K) δ = 301 (s CH3) 804 (sept ndashC(CF3)3 broad)

1213 (s ndashCH) 1232 (s ndashCH) 1222 (q ndashCF3 1JCF = 290 Hz) 1266 (s ndashCH) 1342

(s ndashCndashCH3)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 230 (58) 247 (54) 298 (50) 329 (100) 303 (46) 372 (38) 540 (29) 572

(16) 748 (54) 753 (92) 773 (46) [()] (The vibrational bands beyond 800 cmndash1 up to 3200

cmndash1 have been to weak to assign)

112

G1519 Preparation of [Ag(FndashPh)3]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-3) In a two necked

flask with condenser (cooled with a cryostat to 253 K) 019 mL (141 mmol) AlEt3 were

given to about 15 mL of FndashPh and then cooled to 253 K Afterwards 060 mL (424 mmol)

RFOH were dropped under stirring to the solution The formation of CH4 was quantitative

(424 mmol 009 L 100 ) Finally 022 g (141 mmol) AgBF4 were added to the mixture at

once The resulting formation of BF3 was quantitative as well (019 mmol 421 mL 100 )

Then the solution was concentrated to about 60 colorless crystals formed at 253 K and

were isolated (yieldcrystals 135 g 90 )

1H NMR (400 MHz CD2Cl2 257 K) δ = 707 (m 6H ndashC6H5F) 716 (m 6H ndashC6H5F) 738

(m 3H ndashC6H5F) 19F NMR (376 MHz CD2Cl2 257 K) δ = ndash759 (s 27F 3x ndashC(CF3)3) ndash

1136 (s 3F C6H5F) ndash1471 (s 1F AlndashF) 13C NMR (100 MHz CD2Cl2 257 K) δ = 877

(m br ndashC(CF3)3) 1155 (PhndashF) 1227 q (3C ndashC(CF3)3 1JCF = 2923 Hz) 1234 (PhndashF)

1299 (PhndashF) 1628 (PhndashF) 27Al (104 MHz 257K) δ = 402 (s broad AlndashF)

The IR data is given in Chapter E3 Table E-6

FTndashRaman υ = 519 (13) 538 (16) 565 (13) 570 (13) 612 (21) 712 (16) 756 (46) 810 (76)

843 (23) 859 (27) 906 (20) 968 (19) 984 (15) 1001 (100) 1016 (27) 1034 (19) 1083 (20)

1140 (19) 1158 (30) 1237 (26) 1389 (16) 1598 (29) 1611 (24) 3083 (16) [()] (The

vibrational bands between 1600 and 3083 cmndash1 have been to weak to assign)

113

G1520 Preparation of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) About 20 mL n-pentane was

given into a two necked flask Then 140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol

Lndash1) were added to the solvent under stirring The solution was cooled to 273 K and 118 mL

(847 mmol) perfluorinated alcohol RFOH was added dropwise Al(ORF)3 begun to form and

after a complete evolution of CH4 (190 mL 100 ) 093 g (282 mmol) of [N(Bu)4]+[BF4]ndash

were given to the mixture at once Then BF3 formed quantitatively (62 mL 100 ) the

solvent was removed by vacuum distillation (10ndash2 mbar 298 K) and the remaining solid

product was isolated and assigned to [N(Bu)4]+[FAl(ORF)3]ndash (yieldprecipitate 239 g 85 ) The

product also was recrystallized from n-pentane but unfortunately the x-ray structure

[N(Bu)4]+[FAl(ORF)3]ndash (yieldcrystals 113 g 40 ) is only preliminary and the structure is only

deposited in Chapter J

1H NMR (400 MHz CD2Cl2 273 K) δ = 012 (m (ndashC4H9)4+ 095 (m (ndashC4H9)4

+) 146 (m (ndash

C4H9)4+) 305 (m (ndashC4H9)4

+) 13C (100 MHz CD2Cl2 273 K) δ = 132 (s (ndashC4H9)4+) 196

(s (ndashC4H9)4+) 239 (s (ndashC4H9)4

+) 589 (s (ndashC4H9)4+) 709 (m br ndashOC(CF3)3)) 1216 (q ndash

OC(CF3)3 1JCF = 2916 Hz) 27Al (104 MHz CD2Cl2 273 K) δ = 420 (s broad AlndashF ∆12 =

38 Hz)

The FTndashIR spectrum led to the following wave numbers 445 (ms) 489 (vw) 522 (w) 537

(ms) 562 (ms) 571 (w) 668 (ms) 726 (vs) 755 (w) 767 (ms) 798 (vw) 820 (ms) 830 (ms)

896 (w) 975 (vs) 1027 (s) 1061 (ms) 1099 (ms) 1155 (vs) 1163 (vs) 1170 (vs) 1191 (vs)

1207 (vs) 1248 (vs) 1264 (vs) 1351 (vs) 1363 (vs) 1371 (vs) 1383 (vs) 1452 (vs sh)

1456 (vs) 1471 (vs) 1538 (vs) 2881 (w) 2931 (w) 2973 (w) [cm-1]

114

G1521 Preparation of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) In a two necked flask

140 mL (282 mmol) AlMe3 (in n-heptane c = 2 mol Lndash1) were added to about 20 mL

n-pentane Afterwards 118 mL (847 mmol) RFOH were added dropwise Al(ORF)3 begun to

form and after a quantitative formation of CH4 (190 mL 100 ) 028 g (141 mmol) of

Ag+[BF4]ndash were given to the mixture at once BF3 formed quantitatively (31 mL 100 )

Then the solvent was completely removed and the resulting beige precipitate was assigned to

Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash (yield 194 g 86 )

Since the structure of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash is known from the literature[2] no

spectroscopic analyses have been undertaken

115

G1522 Preparation of [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3) (E-4) 032 g (116 mmol)

[Ph3C]+Clndash and 100 g (116 mmol) of Ag+[FAl(ORF)3]ndash were put into one side of a two

bulbed Schlenk vessel 6 mL of CH2Cl2 were put into the other side and cooled down to

243 K Then the solvent was given at once to the substances whereon the reaction was

initialized Under stirring the brownyellow mixture was held at 243 K for 25 h Afterwards

the CH2Cl2 was condensed onto the other side in order to precipitate AgCl quantitatively

Then the pure solvent was filled back to the reaction side afterwards transferred back as

brown solution onto the product side and concentrated for crystallization The crystals (yield

091 g (79 )) were identified as [Ph3C]+[FAl(ORF)3]ndash NMR of the solution shows the

reaction to be quantitative with no visible side products

1H NMR (400 MHz CD2Cl2 298 K) δ = 752 (d 3x (2x ndashCH (ring o))) 3JHH = 677 Hz δ =

782 (t 3x (2x ndashCH (ring m))) 3JHH = 677 Hz δ = 819 (t 3x ndashCH (ring p)) 3JHH = 677 Hz

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash758 (s ndashC(CF3)3) ndash1477 (s broad AlndashF) 27Al

(104 MHz CD2Cl2 298 K) δ = 384 (s broad AlndashF) 13C (100 MHz CD2Cl2 298 K) 804

(sept ndashC(CF3)3 broad) 1233 (q ndashCF3 1JCF = 290 Hz) 1324 (s Ph) 1417 (s Ph) 1444 (s

Ph) 1452 (s Ph) 2119 (Ph3C+) FTndashRaman υ = 3071 (7) 1603 (6) 1598 (45) 1588 (100)

1487 (17) 1361 (31) 1310 (8) 1307 (8) 1187 (22) 1169 (9) 1028 (14) 1000 (23) 954 (6)

918 (14) 844 (6) 770 (6) 711 (9) 625 (11) 470 (9) 404 (17) 285 (20) 235 (5) 133 (9)

[()]

116

G1523 Preparation of [Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-5)

In a 50 mL flask about 1 g (054 mmol) of Ag+[(RFO)3AlndashFndashAl(ORF)3]ndash was dissolved in

approximately 5 mL 12ndashF2Ph Then the light brown solution was concentrated and slowly

cooled down to 253 K The resulting colorless platelet crystals were assigned to

[Ag(12ndashF2C6H4)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (E-5) (yieldcrystals 091 g 87 )

19F NMR (376 MHz [D8]toluene 298 K) δ = ndash761 (s 2x (ndashC(CF3)3)3) 54F) ndash1399 (s 12ndash

F2Ph 2F) ndash1850 (s AlndashFndashAl 1F) 27Al (104 MHz [D8]toluene 298 K) δ = 344

(s AlndashFndashAl 2Al broad)

FTndashIR ν = 449 (m) 537 (m) 567 (w) 637 (w) 725 (vs) 763 (w) 802 (m) 851 (w) 866 (w)

969 (vs) 1010 (vw) 1097 (w) 1177 (s) 1209 (s) 1266 (s) 1300 (m) 1356 (w) 1460 (vw)

1508 (w) 1551 (vw) 1588 (vw) 2963 (vw) 3014 (vw) [cm-1]

No qualitatively good enough Raman spectrum could be observed

Then the flask with the material was evacuated for 5 days a small amount of the remaining

light brown powder was dissolved in CD2Cl2 for 19F NMR spectroscopic analysis to

determine the quantity of coordinated solvent molecules

19F NMR (376 MHz CD2Cl2 298 K) δ = ndash739 ppm (s 2x (ndashC(CF3)3)3) 54F) ndash1375 ppm (s

12ndashF2Ph 2F) ndash1829 ppm (s AlndashFndashAl 1F) 27Al (104 MHz CD2Cl2 298 K) δ = 370 (s

AlndashFndashAl 2Al broad) The integration led to a 19F ratio of 54408 which shows that two

solvent molecules remain coordinated

117

G1524 Synthesis attempt of [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)3]ndash giving

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) (E-6) In a two necked

flask connected with a condenser (cooled with a cryostat to 253 K) 14 mL AlMe3 (282

mmol 2M in n-heptane) were given to approximately 30 mL n-heptane and then cooled to

273 K 118 mL (847 mmol) RFOH were dropped to the mixture under stirring After the

complete evolution of CH4 (006 l 100 ) 0464 g (1141 mmol) of white [N(Bu)4]+[BF4]ndash

(dissolved in about 5 mL CH2Cl2) were added to the solution Immediately a yellow

suspension over white precipitate formed After the quantitative evolution of BF3 (31 mL 100

) the mixture was stirred for a further hour and refluxed for several hours Then the solvent

was totally removed by vacuum distillation (001 mbar) and the resulting yellowish oily solid

recrystallized from CH2Cl2 At 253 K light brown crystals of

[N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (E-6) formed (yieldcrystals 1891g 60 )

1H NMR (250 MHz CD2Cl2 298 K) δ = 013 (m N(C4H9+)) 136 (m N(C4H9

+)) 149 (m

N(C4H9+)) δ = 303 (m N(C4H9

+)) 13C NMR (63 MHz CD2Cl2 298 K) δ = 133 (s

N(C4H9+)) 199 (s N(C4H9

+)) 241 (s N(C4H9+)) 594 (s N(C4H9

+)) 1209 (q ndashOC(CF3)3

1JCF = 291 Hz1)) 1219 (q ndashOC(CF3)3 1JCF = 290 Hz2)) 1208 (q ndashOC(CF3)3

1JCF = 290 Hz3))

(1)-3) are explained by the different types of ndashC(CF3)3 groups cf the below sketched Fig X-1)

Al

RFO

RFO

RFOF

Al

RFO ORF

FAl

ORF

ORF

ORF

1 type

2 type2 type

3 type 3 type

Fig G-1 Different types1)-3) of 13C resonances of the RF = C(CF3)3 groups in [(RFO)3AlndashFndashAl(ORF)2ndashFndash

Al(ORF)3]- with intensity ratio of 242

118

IR (CsI plates nujol) υ = 451 (m) 512 (w) 537 (m) 568 (m) 647 (w) 725 (s) 740 (vw)

760 (vw) 831 (vw) 865 (w) 897 (vw) 970 (vs) 1024 (vw) 1063 (vw) 1111 (vw) 1176 (m)

1213 (vs) 1240 (s) 1300 (m sh) 1355 (w) 1462 (vw) 1484 (vw) 2885 (vw) 2939 (vw)

2978 (vw) [cm-1]

119

H Theoretical Section

H1 Frequency Calculations Thermal Corrections and Solvation Energies

Vibrational frequencies were calculated with AOFORCE[3] at the (RI-)BP86SV(P) level[4 5]

(if not specified otherwise) They were used to verify if the obtained geometry represents a

true minimum on the potential energy surface (PES) as well as to determine the zero point

vibrational energy (ZPE) Based on these frequency analyses the thermal contributions to the

enthalpy and Gibbs free energy have been calculated using the module FREEH implemented

in TURBOMOLE Calculations of solvation energies (solvents CH2Cl2 with εr(298K) = 893

and n-hexane εr(298 K and 343 K) = 19) have been done with the COSMO[6 7] module as

(RI-)BP86SV(P) single points Non-relativistic NMR shifts have been performed with the

MPSHIFT[8 9] module included in TURBOMOLE as single point calculations on converged

geometries

120

H2 Lattice Energy Calculations

Gibbs lattice energies for the Born Haber Fajans cycle have been calculated using a molecular

volume based modified Kapustinskii equation as introduced by Jenkins and Glasser[10-13]

⎟⎟⎠

⎞⎜⎜⎝

⎛β+

α= minus+

31

mpot V

zzU

α = 1173 kJ nm mol-1 β = 519 kJ mol-1

Similarly the entropy was calculated according to Jenkins and Glasser[14]

ckVS m +=

k = 1360 J (nm3 K mol)-1 s = 15 J (K mol)-1

However the calculated S are absolute entropies Thus the entropies of the gaseous

compounds have to be subtracted

LattGas SSdS minus=

In the last step the Gibbs lattice energy was calculated according to standard thermodynamic

equations

TdSRT2UTdSdHdG pot minus+=minus=

121

References to Chapter H

[1] G M Sheldrick 1997 [2] A Bihlmeier M Gonsior I Raabe N Trapp I Krossing Chem Eur J 2004 10 5041 [3] P Deglmann F Furche R Ahlrichs Chem Phys Lett 2002 362 511 [4] M Levy J P Perdew J Chem Phys 1986 84 4519 [5] A D Becke Phys Rev A At Mol Opt Phys 1988 38 3098 [6] A Klamt G Schueuermann J Chem Soc Perkin Trans 2 Phys Org Chem 1993 799 [7] A Schafer A Klamt D Sattel J C W Lohrenz F Eckert Phys Chem Chem Phys 2000 2 2187 [8] M Haeser R Ahlrichs H P Baron P Weis H Horn Theo Chim Acta 1992 83 455 [9] G Schreckenbach T Ziegler J Phys Chem 1995 99 606 [10] H D B Jenkins H K Roobottom J Passmore L Glasser Inorg Chem 1999 38 3609 [11] L Glasser H D B Jenkins Chem Soc Rev 2005 34 866 [12] H D B Jenkins J F Liebman Inorg Chem 2005 44 6359 [13] H D B Jenkins L Glasser Inorg Chem 2006 45 1754 [14] H D B Jenkins L Glasser Inorg Chem 2003 42 8702

122

I Appendix I1 Numbering of the compounds Number Compound B-1 [Li(OC(H)(CF3)2]42Et2O B-2 (THF)3LiO(CF3)2OC(H)(CF3)2 B-3 MgI22Et2O B-4 (CF3)2(H)COMgCl2Et2O B-5 [LiOC(CF3)2Mes]4 B-6 [LiOC(CF3)2Mes]4[LiF]2 B-7 Li(C2H4Cl2)[Ga(OC(CF3)2Mes(Br)2] C-1 Li[Al(OC(CF3)2(CH2SiMe3))4]

D-1 PhndashFrarrAl(ORF)3 (RF = C(CF3)3)

E-1 Me3SindashFndashAl(ORF)3 (RF = C(CF3)3)

E-2 [Ag(tol)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-3 [Ag(PhndashF)3]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-4 [Ph3C]+[FAl(ORF)3]ndash (RF = C(CF3)3)

E-5 [Ag(12ndashF2Ph)3]+[(RFO)3AlndashFndashAl(ORF)3]ndash (RF = C(CF3)3) E-6 [N(Bu)4]+[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash (RF = C(CF3)3) Fig J-AE6 [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3)

123

J Appendix

J1 Appendix to Chapter C

Table AC-1 Comparison between the wavelengths of Li+[Al(OC(CF3)2(CH2)Si(CH3)3)4]ndash (2) and

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] vibrational assignment and Raman data of C-2 values are given in [cmndash1]

Li+[Al(OC(CH3)(CF3)2)4]ndash[1] wave n [cmndash1] (intensity)

IR of C-2 wave n [cmndash1] (intensity) Assignment Raman of C-2 [cmndash1]

(intensity in ) - 231 (4) - - 336 (2)

406 vw 406 m - 443 vw 452 vw sh 452 m CndashC CndashO -

- 499 m 499 (2) - 535 w CndashC CndashO -

552 w sh 551 w CndashC AlndashO - 571 w 570 w CndashC CndashO -

- 594 w 586 (2) 622 w sh 632 w 631 m 632 (5)

- 652 w - 702 m 696 m 694 (2) 722 w 721 m - 738 w 727 m CndashC CndashO 726 (2) 773 w 763 m CndashC CndashO -

- 767 s 767 (2) 791 w 792 s -

- 832 s CndashC AlndashO - - 844 vs - - 852 s -

869 w 865 s - - 873 s - - 940 s CndashC CndashF -

980 w 993 w 1005 w 945 s CndashC CndashF - - 1056 s - - 1068 s - - 1077 s -

1088 vs 1083 s - 1121 s 1138 s -

- 1140 s - 1174 s 1188 s -

1196 vs sh 1194 s 1198 (4) 1223 vs 1252 vs CndashC CndashF - 1257 ms 1255 vs CndashC CndashF - 1312 s 1316 s -

- 1324 s 1320 (10) - 1336 s - - 1343 s -

1378 m 1375 w CndashC CndashF - - 1427 m δ(CndashH) 1422 (15)

1450 s 1458 s 1463 s 1459 vw δ(CndashH) - 1624 w - δ(CndashH) - 1781 w - δ(CndashH) -

2724 vw - δ(CndashH) - 2854 vs - δ(CndashH) - 2922 vs 2903 vw δ(CndashH) 2907 (100) 2960 vs 2958 vw δ(CndashH) 2962 (57)

wave n wave number vw very weak w weak m medium ms medium strong s strong vs very strong sh shoulder

124

Al

F

C

OLi

Si

Al

F

C

OLi

Si

Fig AC-1 Section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2)

Fig AC-2 Enlarged section of the polymeric structure of Li+[Al(OC(CF3)2(CH2SiMe3))4]ndash (C-2) arrows mark the coordinating F-atoms to the next structural unit

125

J2 Appendix to Chapter D

05 Al2X6 (g) AlX3 (s)

AlX3 (g)

∆dissH63 (Cl)59 (Br)50 (I)

∆sublH

62 (Cl)42 (Br)56 (I)

KZ(Al) = 6KZ(Al) = 4KZ(Al) = 4

[in kJ molndash1]

=gt FIA(AlX3(s)) = FIA(AlX3(g)) ndash ∆sublH ndash ∆dissH

Scheme AD-1 to derive the FIA of solid AlX3

All enthalpies were taken from the NIST webbook at httpwebbooknistgovchemistry

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

-20120 100 80 60 40 20 0 ppm

Al-signal from probehead

Fig AD-1 27Al NMR spectrum of product D-1 taken at 298 K in [D5]PhndashF

126

Fig AD-2 19F-NMR spectrum of product D-1 recorded at 298 K in [D5]PhndashF

Fig AD-3 IR spectrum of PhndashFrarrAl(ORF)3 (D-1) the most important wavelengths are assigned to the different

atom vibrations in the attached S-Table 1 which were calculated at the BP86SV(P) level

127

Table AD-1 Experimental and calculated bands at the BP86SV(P) level

and the assigned vibrations of PhndashFrarrAl(ORF)3 (D-1)

Wavelength [cmndash1] (exp)

Wavelength [cmndash1] (calc)

Vibration[2]

455 466 δas(AlndashOndashC) 537 528 δas(CndashF) 574 578 νs(OndashC) 583 594 νs(CndashC) 668 676 γs(CndashC) 726 727 νs(OndashAl) 746 743 γs(CndashF)ring 846 865 νas(OndashC)

889 894 νas(CndashOndashAl) + γas(CndashH)ring

913 903 γas(CndashH)ring 971 969 δas(CndashC)

1017 1015 νs(CndashC)ring 1074 1062 νas(CndashC)ring 1153 1158 νas(CndashF) 1183 1180 νas(CndashF) 1212 1213 δs(CndashC) 1301 1308 νas(OndashC) 1358 1354 νs(OndashC)

Explanation of the abbreviations in Table 1 ν = vibrational δ = deformation γ = out of plane s = symmetric as = antisymmetric

-50 -100 -150 ppm-50 -100 -150 ppm

Fig AD-4 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF

128

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

-100 -110 -120 -130 -140 -150 ppm

-1157-999 -1336

ppm Fig AD-5 Representative enlarged section of the 19F NMR spectrum of the reaction of PhndashFrarrAl(ORF)3 and

[BMIM]+[SbF6]ndash taken at 298 K in [D5]PhndashF Arrows indicate the position of the [Sb2F11]ndash lines

129

J3 Appendix to Chapter E

-7444

-11348 -11407 -18388

Fig AE-1 19F NMR spectrum of [BMIM]+[(RFO)3AlndashFndashAl(ORF)3] (cf Chapter E Eq E-5) taken in [D5]PhndashF

at 298 K The most important peaks are given in the figure It demonstrates the typical signal at about ndash74 ppm

which belongs to the equivalent CF3 groups in the [FAl(ORF)3]ndashndashanion The signals at ndash113 ppm and ndash114 ppm

are significant for PhndashF and (C6D5F) The most important peak appears at about ndash184 ppm which proves the

formation of the fluoride bridged anion [(RFO)3AlndashFndashAl(ORF)3]ndash

130

Fig AE-3 and Fig AE-4 HindashResESI spectra of Ag+[FAl(ORF)3]ndash (left) and [N(Bu)4]+[FAl(ORF)3]ndash

(right) showing the dismutation and formation of the homoleptic [Al(ORF)4]ndash anion over time

131

Fig AE-5 Section of the structure of the trimeric (FAl(ORF)2)3 (the core with the most important atom labels is

given on the right)[3]

N Al

OC

F

C

N Al

OC

F

C

Fig AE-6 Section of the crystal structure of [N(Bu)4]+[FAl(ORF)3]ndash (RF = C(CF3)3) (3) at 150 K with thermal

displacement ellipsoids showing 50 probability

132

References to Chapter J3

[1] I Krossing Chem Eur J 2001 7 490 [2] According to the calculated vibrational frequencies at the BP86SV(P) level the vibrations of B-1 could

be directly assigned [3] N Trapp diploma thesis 2004 unpublished

133

K Computational data of all calculated species Table K-1 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 189 for n-hexane) at the BP86SVP level of all calculated structures in Chapter B

Compound U ZPE Hdeg Gdeg COSMO

(tBuLi)4 ndash15763944 010865 29996 21094 029781 (F3C)2CO ndash78803268 003739 12199 057 040745

(F3C)2(tBu)COLi ndash94580034 015423 44304 29746 048853 (F3C)2(H)COLi ndash78867642 004569 14406 2271 040722 (CH3)2CCH2 ndash15709294 010425 28794 19919 029781

134

Table K-2 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

at 298 K as well as COSMO solvation enthalpies (εr = 548 for PhndashF) at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO PhndashF ndash33124682 008998 25002 15954 ndash000296

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497

[FAl(ORF)3]ndash ndash371887769 016590 54969 21300 ndash004150

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 033091 109621 49434 ndash003186

Al(ORF)3 ndash361891753 016446 54066 22470 ndash000244 SbF5 ndash50434073 001035 4707 ndash5870 ndash000875

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081

OCF3ndash ndash41263728 - - - -

OCF2 ndash31280302 - - - - AuF5 ndash63446968 - - - -

AuF6ndash ndash73443545 - - - -

Al(C6F5)3 ndash242431623 - - - -

[FAl(C6F5)3]ndash ndash252427283 - - - - AlI3 ndash27693301 - - - -

[FAlI3]ndash ndash37689046 - - - - AlBr3 ndash796498011 - - - -

[FAlBr3]ndash ndash806492787 - - - -

135

Table K-3 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO B2(C6F5)(C6F4)2 ndash275939542 - - - -

[FB2(C6F5(C6F4)2]ndash ndash285932942 - - - - B(C10F7)3 ndash408936603 - - - -

[FB(C10F7)3]ndash ndash418931234 - - - - AlF3 ndash54188983 - - - -

[FAlF3]ndash ndash64182254 - - - - AlCl3 ndash162290465 - - - -

[FAlCl3]ndash ndash172284767 - - - - GaI3 ndash195942418 - - - -

[FGaI3]ndash ndash205935145 - - - - BI3 ndash5927797 - - - -

[FBI3]ndash ndash15921957 - - - - B(C12F9)3 ndash408936603 - - - -

[FB(C12F9)3]ndash ndash418931234 - - - - Ga(C6F5)3 ndash410680716 - - - -

[FGa(C6F5)3]- ndash420673237 - - - - B(C6F5)3 ndash220675297 - - - -

[FB(C6F5)3]ndash ndash230667671 - - - - GaBr3 ndash964745623 - - - -

[FGaBr3]ndash ndash974737654 - - - -

136

Table K-4 Total energies U [au] at the BP86SVP level of all calculated structures in Chapter D

Compound U ZPE Hdeg Gdeg COSMO BBr3 ndash774733631 - - - -

[FBBr3]ndash ndash784725801 - - - - GaCl3 ndash330536839 - - - -

[FGaCl3]- ndash340528714 - - - - GaF3 ndash222430029 - - - -

[FGaF3]ndash ndash232421882 - - - - BCl3 ndash140527457 - - - -

[FBCl3]ndash ndash150518222 - - - - OCndashB(CF3)3 ndash115029660 - - - -

[FB(CF3)3]ndash ndash113697515 - - - -

137

Table K-5 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

PhndashF ndash33124682 008998 25002 15954 ndash000296i)

PhndashFrarrAl(ORF)3 ndash395017753 025560 79949 42918 ndash000497i)

[SbF6]ndash ndash60428148 001246 5312 ndash5631 ndash006269i)

[Sb2F11]ndash ndash110868393 002389 10766 ndash6344 ndash005081i)

[FAl(ORF)3]ndash ndash371887769 017179 54969 21300 ndash004150i)ndash005074ii)

[FAl(ORF)3]ndash ndash371887769 017179 9111iv) 6996iv) ndash001966iii)

[FAl(ORF)3]ndash ndash371887769 017179 7081v) 4990v) ndash001966iii)

PF5 ndash84024920 001603 5458 ndash3680 ndash006780i)

PF6ndash ndash94015393 001887 6588 ndash2466 ndash006780i)

[(FAl(ORF)3)2]2ndash ndash743768485 033201 110142 51490 ndash013876ii)

[Al(ORF)4]ndash ndash474455051 022593 71955 31518 ndash004041ii)

[Al(ORF)4]ndash ndash474455051 022593 11700iv) 9000iv) ndash001330iii)

[Al(ORF)4]ndash ndash474455051 022593 9189v) 6427v) ndash001330iii)

[F2Al(ORF)2]ndash ndash269319805 017022 37951 11933 ndash005590ii)

[F2Al(ORF)2]ndash ndash269319805 017022 6061iv) 4642iv) ndash001227iii)

[F2Al(ORF)2]ndash ndash269319805 017022 4712v) 3296v) ndash001227iii)

138

Table K-6 Total energies U [au] ZPE (= zero point energy) [au] thermal contributions to enthalpy and gibbs free energy [kJ molndash1]

as well as COSMO solvation enthalpies at the BP86SVP level of all calculated structures in Chapter E

Compound U ZPE Hdeg Gdeg COSMO

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 17793iv) 13396iv) ndash001001iii)

[(RFO)3AlndashFndashAl(ORF)3]ndash ndash733785243 034247 13846v) 9539v) ndash001001iii)

Al(ORF)3 ndash361891753 011802 8362iv) 5834iv) ndash000954iii)

Al(ORF)3 ndash361891753 011802 6490v) 4503v) ndash000954iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 24704iv) 13515iv) ndash00238iii)

[(RFO)3AlndashFndashAl(ORF)2ndashFndashAl(ORF)3]ndash ndash993111593 046322 14024v) 9618v) ndash00238iii) FSiMe3 ndash50892757 011011 - - -

Me3SindashFndashAl(ORF)3 ndash41278800 027593 - ndash901 ndash00065ii)

[SO3CF3]ndash ndash96104280 002598 - ndash19459 ndash007712ii) Me3SindashOndashSO2CF3 ndash137010623 013575 - ndash884 ndash000638ii) Footnotes for Table J-5 and J-6 i)εr = 548 (for PhndashF) at 298 K ii)εr = 893 (for CH2Cl2) at 298 K iii)εr = 1850 (for nndashhexane) iv)calculated at the PM6 level at 343 K v)calculated at the PM6 level at 298 K

139

L Crystal Structure Tables Table L-1

Compound [Li(ORF)]42Et2O (THF)3LiO(CF3)2ORF [LiORF]4

RF = helliphellip C(H)(CF3)2 (B-1) C(H)(CF3)2 (B-2) C(CF3)2Mes (B-5) CCDC-Number 293664 293665 655229

Empirical Formula C20H24F24Li4O6 C18H25F12LiO5 C48H44F24Li4O4 Crystal Size [mm3] 033 x 019 x 011 017 x 015 x 010 029 x 022 x 015

Crystal System Monoclinic Monoclinic Orthorombic Space Group P21n P21n Pbcn

a [Aring] 107940(12) 96874(15) 111781(8) b [Aring] 33443(4) 168076(19) 153994(7) c [Aring] 190211(16) 150706(17) 284597(13) α [deg] 90 90 90 β [deg] 10639(3) 90477(11) 90 γ [deg] 90 90 90

V [Aring3] 67306(12) 24537(6) 48989(5) Z 8 4 4

ρ(calc) [Mg mndash3] 1666 1506 1584 micro [mmndash1] 0200 0164 0160

Absorption Correction 07809 08122 Tmin Tmax 12050 12294

F(000) 3360 1136 2368 ndash12 le H le 12 ndash10 le H le 11 ndash12 le H le 11

Index Ranges ndash39 le K le 39 ndash19 le K le 20 ndash18 le K le 18 ndash21 le L le 19 ndash17 le L le 17 ndash33 le L le 33

2θrange [deg] 272 to 2503 321 to 2503 301 to 2503 Temperature [K] 140 140 140

Reflections Collected 38871 13843 28669 Reflections Unique 11239 4207 4216

Parameters 973 326 361 GOOF 1124 1114 1124

Final R wR2 (2σ) 01064 03207 00815 02451 00835 01954 Final R wR2 (all) 01648 03658 01243 02718 01130 02178

Large Res Peak [e Aringndash3] 1011 0515 0489

140

Table L-2

Compound [LiORF]4(LiF)2 Li(EtCl2)Ga(ORF)(Br)2 Li[Al(ORF)4]

RF = helliphellip C(CF3)2Mes (B-6) C(CF3)2Mes (B-7) (CF3)2(CH2SiMe3) (C-1) CCDC-Number 655228 655230 661685

Empirical Formula C48H44F26Li6O4 C26H26Br2Cl2F12GaLiO2 C31H44AlF24LiO4Si4 Crystal Size [mm3] 030 x 026 x 022 026 x 022 x 020 01 x 01 x 02

Crystal System Monoclinic Tetragonal Monoclinic Space Group P21c P41212 P21c

a [Aring] 147855(10) 111582(10) 25079(5) b [Aring] 118441(7) 111582(10) 14115(3) c [Aring] 146062(10) 261495(16) 29622(6) α [deg] 90 90 90 β [deg] 99535(7) 90 101410(9) γ [deg] 90 90 90

V [Aring3] 25225(3) 32558(5) 10060(1) Z 2 4 8

ρ(calc) [Mg mndash3] 1607 1848 1430 micro [mmndash1] 0163 3558 0807

Absorption Correction 035396 065857 Tmin Tmax 10000 10000

F(000) 1232 1776 4400 ndash17 le H le 17 ndash14 le H le 14 ndash27 le H le 27

Index Ranges ndash14 le K le 13 ndash14 le K le 14 ndash15 le K le 15 ndash17 le L le 17 ndash33 le L le 33 ndash32 le L le 32

2θrange [deg] 275 to 2503 302 to 2751 143 to 2309 Temperature [K] 140 100 150

Reflections Collected 15376 125178 58750 Reflections Unique 4371 3741 14111

Parameters 379 210 1171 GOOF 1053 1213 0946

Final R wR2 (2σ) 0075 01551 00290 00533 00610 01180 Final R wR2 (all) 01535 01994 00352 00559 01259 01387

Large Res Peak [e Aringndash3] 0387 0365 0563

141

Table L-3

Compound PhndashFrarrAl(ORF)3 Me3SindashFndashAl(ORF)3 [Ag(tol)3]+[FAl(ORF)3]ndash

RF = helliphellip C(CF3)3 (D-1) C(CF3)3 (E-1) C(CF3)3 (E-2) CCDC-Number 662085 671129 671130

Empirical Formula AlC18F28H5O3 C15H9AlF28O3Si C33H24AgAlF28O3 Crystal Size [mm3] 027 x 011 x 008 04 x 03 x 02 024 x 021 x 017

Crystal System Monoclinic Orthorombic Monoclinic Space Group P21n P21212 P21c

a [Aring] 106289(4) 10037(2) 206944(19) b [Aring] 213339(8) 13519(3) 16945(2) c [Aring] 118219(5) 20367(4) 23785(3) α [deg] 90 90 90 β [deg] 96733(2) 90 103244(8) γ [deg] 90 90 90

V [Aring3] 266220(18) 27636(10) 81096(15) Z 4 4 8

ρ(calc) [Mg mndash3] 2066 1981 1860 micro [mmndash1] 0297 0327 0683

Absorption Correction 09240 08513 07951 Tmin Tmax 09766 09423 08917

F(000) 1608 1608 4464 ndash13 le H le 13 ndash13 le H le 13 ndash26 le H le 26

Index Ranges ndash26 le K le 25 ndash17 le K le 17 ndash22 le K le 22 ndash14 le L le 14 ndash26 le L le 26 ndash30 le L le 30

2θrange [deg] 191 to 2661 336 to 2752 336 to 2748 Temperature [K] 173 100 100

Reflections Collected 72201 49815 210376 Reflections Unique 5486 6282 18530

Parameters 471 434 1250 GOOF 1064 1058 1174

Final R wR2 (2σ) 00445 00844 00295 00655 00511 00682 Final R wR2 (all) 00735 01016 00382 00716 00969 00809

Large Res Peak [e Aringndash3] 0671 0377 0625

142

Table L-4

Compound [Ag(12-F2Ph)3]+ [Ph3C]+[FAl(ORF)3]ndash [N(Bu)4]+

[(ORF)3AlndashFndash

Al(ORF)3]ndash [(RFO)3AlndashFndashAl(ORF)2ndash

Al(ORF)3]ndash

RF = helliphellip C(CF3)3 (E-5) C(CF3)3 (E-4) C(CF3)3 (E-6) CCDC-Number 671162 671131 671673

Empirical Formula C168H48Ag4Al8F244O24 C31H15AlF28O3 C48H36Al3F74NO8 Crystal Size [mm3] 02 x 02 x 02 021 x 017 x 014 05 x 02 x 02

Crystal System Triclinic Monoclinic Triclinic Space Group Pndash1 P21n P21m

a [Aring] 15562(3) 104637(10) 11122(2) b [Aring] 17773(2) 172641(14) 17431(4) c [Aring] 22668(3) 20736(3) 20190(4) α [deg] 76166(9) 90 90 β [deg] 83981(10) 98664(11) 10368(3) γ [deg] 81674(11) 90 90

V [Aring3] 60074(16) 37031(7) 38033(13) Z 1 4 2

ρ(calc) [Mg mndash3] 2138 1784 1958 micro [mmndash1] 0602 0231 0281

Absorption Correction semi empirical 0631 none Tmin Tmax 0940 0970 none

F(000) 3736 1960 2200 ndash20 le H le 20 ndash8 le H le 12 ndash13 le H le 13

Index Ranges ndash23 le K le 23 ndash20 le K le 15 ndash18 le K le 20 ndash29 le L le 29 ndash24 le L le 24 ndash23 le L le 23

2θrange [deg] 119 to 2750 256 to 2503 156 to 2468 Temperature [K] 100 100 150

Reflections Collected 99039 19570 34237 Reflections Unique 26375 6361 12803

Parameters 2167 568 1237 GOOF 1079 1063 1051

Final R wR2 (2σ) 00735 01285 00705 01364 00614 01577 Final R wR2 (all) 01533 01662 01230 01650 00923 01878

Large Res Peak [e Aringndash3] 1383 1343 0686

143

M Atomic Coordinates Table M-1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1A) 5453(5) 205(2) 4279(3) 113(2) F(2A) 5969(4) 785(2) 3931(3) 102(2) F(3A) 5157(4) 338(1) 3161(3) 94(2) F(4A) 2963(5) 166(1) 4485(2) 105(2) F(5A) 2876(5) 42(1) 3383(3) 99(2) F(6A) 1670(4) 494(1) 3698(2) 83(1) F(7A) 3046(4) 404(1) 1531(3) 95(2) F(8A) 1708(4) 33(1) 1920(3) 85(1) F(9A) 1579(5) 101(1) 788(3) 102(2) F(10A) ndash821(4) 258(1) 1043(3) 87(1) F(11A) ndash380(4) 429(1) 2149(2) 79(1) F(12A) ndash1098(3) 865(1) 1361(2) 83(1) F(13A) 3726(5) 1244(2) 791(3) 106(2) F(14A) 3207(4) 1841(2) 813(2) 110(2) F(15A) 5065(4) 1699(2) 690(2) 101(2) F(16A) 6595(4) 1365(2) 1725(3) 130(2) F(17A) 6114(4) 1381(2) 2761(3) 141(3) F(18A) 5278(4) 941(2) 2010(3) 111(2) F(19A) 363(5) 1806(2) 4521(2) 100(2) F(20A) 1277(5) 1271(2) 4300(3) 109(2) F(21A) 2286(5) 1815(2) 4392(2) 107(2) F(22A) ndash501(4) 1162(1) 3042(3) 92(1) F(23A) ndash1413(4) 1675(2) 3395(3) 99(2) F(24A) ndash891(4) 1673(2) 2367(3) 100(2) O(1A) 3405(3) 911(1) 3246(2) 44(1) O(2A) 1534(3) 927(1) 1944(2) 40(1) O(3A) 3574(3) 1494(1) 2165(2) 38(1) O(4A) 1635(3) 1556(1) 2985(2) 38(1) O(5A) 742(4) 1881(1) 1236(2) 55(1) O(6A) 4606(4) 1863(1) 3795(3) 70(1) C(1A) 3828(5) 668(2) 3825(3) 52(2) C(2A) 5096(7) 491(2) 3785(5) 76(2) C(3A) 2868(7) 336(2) 3851(4) 68(2) C(4A) 1002(5) 665(2) 1405(3) 46(1) C(5A) 1794(7) 297(2) 1406(4) 68(2) C(6A) ndash317(6) 548(2) 1501(4) 57(2) C(7A) 4545(5) 1605(2) 1829(3) 45(1) C(8A) 4149(7) 1592(3) 1040(4) 68(2) C(9A) 5637(6) 1331(3) 2080(5) 82(2) C(10A) 778(5) 1728(2) 3345(3) 45(1) C(11A) 1141(7) 1657(3) 4132(4) 73(2) C(12A) ndash526(6) 1565(2) 3042(5) 67(2) C(13A) 162(7) 1712(2) 554(4) 75(2) C(14A) ndash1269(8) 1743(3) 378(5) 101(3) C(15A) 801(9) 2308(2) 1213(6) 117(4) C(16A) 1506(10) 2482(3) 1747(7) 159(6) C(17A) 4674(10) 2263(3) 3584(8) 150(5) C(18A) 3868(12) 2531(3) 3654(9) 177(7) C(19A) 5145(9) 1743(3) 4546(5) 108(3) C(20A) 6524(9) 1747(3) 4703(5) 124(4) Li(1A) 1587(8) 974(3) 2934(5) 43(2) Li(2A) 1723(8) 1527(3) 1958(5) 38(2) Li(3A) 3482(8) 1502(3) 3187(5) 42(2)

144

Li(4A) 3349(8) 920(3) 2236(5) 46(2) F(1B) 6235(3) 1631(1) 8898(3) 86(1) F(2B) 5904(4) 2221(1) 9255(3) 102(2) F(3B) 5490(4) 2083(2) 8132(3) 93(1) F(4B) 2052(4) 2043(1) 8762(2) 80(1) F(5B) 3326(5) 2440(1) 8367(2) 91(1) F(6B) 3506(5) 2358(1) 9496(2) 94(2) F(7B) 1977(6) 2417(2) 5829(3) 133(2) F(8B) 3340(4) 2112(2) 6635(3) 119(2) F(9B) 1973(5) 2498(1) 6949(3) 114(2) F(10B) ndash474(5) 2275(1) 5976(3) 115(2) F(11B) ndash206(4) 2116(2) 7086(3) 100(2) F(12B) ndash833(4) 1677(1) 6286(3) 101(2) F(13B) 3013(5) 814(3) 5736(3) 176(3) F(14B) 4016(7) 1344(2) 5947(4) 175(3) F(15B) 4945(5) 831(2) 5636(2) 122(2) F(16B) 6060(4) 800(3) 7792(3) 170(3) F(17B) 6629(4) 839(2) 6767(3) 153(3) F(18B) 5835(5) 1340(2) 7232(4) 146(2) F(19B) ndash876(4) 1030(2) 7405(3) 124(2) F(20B) ndash1378(4) 997(2) 8446(3) 120(2) F(21B) ndash171(4) 1468(2) 8195(3) 98(2) F(22B) 1536(4) 1204(1) 9384(2) 85(1) F(23B) 255(4) 733(2) 9502(2) 92(2) F(24B) 2108(4) 599(1) 9349(2) 87(1) O(1B) 3619(3) 1562(1) 8288(2) 39(1) O(2B) 1730(3) 1608(1) 6984(2) 42(1) O(3B) 3598(3) 986(1) 7180(2) 39(1) O(4B) 1668(3) 970(1) 8000(2) 35(1) O(5B) 694(4) 661(1) 6315(2) 53(1) O(6B) 4509(4) 598(1) 8889(2) 56(1) C(1B) 4115(5) 1810(2) 8836(3) 46(1) C(2B) 5453(6) 1942(2) 8786(4) 66(2) C(3B) 3279(7) 2172(2) 8873(4) 65(2) C(4B) 1282(6) 1865(2) 6434(4) 58(2) C(5B) 2130(8) 2218(3) 6448(5) 88(2) C(6B) ndash71(7) 1987(2) 6445(5) 76(2) C(7B) 4440(5) 834(2) 6795(3) 51(1) C(8B) 4140(7) 950(3) 6031(4) 87(2) C(9B) 5720(7) 950(3) 7113(5) 92(3) C(10B) 740(5) 827(2) 8341(3) 43(1) C(11B) ndash443(6) 1070(3) 8090(4) 76(2) C(12B) 1139(6) 842(2) 9136(3) 55(2) C(13B) 550(7) 264(2) 6528(5) 81(2) C(14B) 1281(10) -36(3) 6237(6) 112(3) C(15B) 119(7) 775(2) 5578(4) 73(2) C(16B) ndash1269(8) 767(3) 5441(5) 99(3) C(17B) 4418(8) 172(2) 8866(5) 89(3) C(18B) 3595(7) 38(2) 8210(4) 75(2) C(19B) 5146(7) 746(2) 9584(4) 68(2) C(20B) 6561(7) 686(3) 9712(4) 92(3) Li(1B) 1787(8) 1561(3) 7978(5) 43(2) Li(2B) 1741(8) 1007(3) 6980(5) 40(2) Li(3B) 3514(8) 963(3) 8193(5) 37(2) Li(4B) 3568(9) 1570(3) 7282(5) 49(2)

145

Table M-2 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) F(1) 793(3) 2211(2) 1634(2) 69(1) F(2) 2837(3) 1764(2) 1846(3) 83(1) F(3) 1536(5) 2007(2) 2948(2) 95(1) F(4) 690(5) 950(2) 551(2) 96(1) F(5) 2507(4) 337(3) 1020(3) 105(1) F(6) 535(4) -209(2) 1121(2) 93(1) F(7) 1101(5) ndash1132(2) 2548(3) 106(1) F(8) 2781(4) ndash1100(2) 3443(4) 112(2) F(9) 755(5) ndash1264(2) 3962(3) 111(2) F(10) 1460(5) 1079(2) 4430(2) 90(1) F(11) 3269(3) 339(3) 4291(2) 91(1) F(12) 1511(3) -66(2) 5006(2) 80(1) O(1) -337(3) 839(2) 2357(2) 50(1) O(2) 1916(3) 410(2) 2708(2) 41(1) O(3) ndash3030(3) 1253(2) 1126(2) 59(1) O(4) ndash2940(3) 1713(2) 3105(2) 44(1) O(5) ndash3082(3) -61(2) 2517(2) 58(1) C(1) 930(4) 866(3) 2120(3) 39(1) C(2) 1284(5) 22(3) 3434(3) 47(1) C(3) 1548(5) 1719(3) 2140(3) 51(1) C(4) 1171(6) 489(3) 1189(3) 61(1) C(5) 1509(6) ndash870(3) 3335(5) 72(2) C(6) 1901(5) 342(3) 4282(3) 57(1) C(7) ndash2563(10) 1810(6) 522(6) 140(4) C(8) ndash3487(11) 1883(6) ndash178(7) 161(5) C(9) ndash4561(9) 1363(6) ndash50(6) 119(3) C(10) ndash4113(7) 832(4) 688(4) 87(2) C(11) ndash4381(5) 1965(4) 3125(4) 68(2) C(12) ndash4629(8) 2283(6) 4039(6) 118(3) C(13) ndash3421(13) 2151(8) 4503(5) 183(6) C(14) ndash2259(6) 1901(4) 3926(3) 68(2) C(15) ndash4021(6) ndash216(3) 3211(4) 74(2) C(16) ndash3853(8) ndash1106(3) 3418(4) 81(2) C(17) ndash3273(14) ndash1414(5) 2689(8) 190(7) C(18) ndash2613(6) ndash811(3) 2143(4) 67(2) Li(1) ndash2187(7) 961(4) 2250(4) 39(1)

146

Table M-3 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-5 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 59(8) 2840(6) 3239(3) 39(2) Li(2) ndash1873(8) 2187(6) 2549(3) 41(2) F(1) 2209(3) 1890(2) 3748(1) 36(1) F(2) 2646(3) 1555(2) 3040(1) 37(1) F(3) 4012(3) 2003(2) 3488(1) 39(1) F(4) 3680(3) 2826(2) 2539(1) 45(1) F(5) 4538(2) 3520(2) 3101(1) 43(1) F(6) 3203(3) 4143(2) 2690(1) 50(1) F(7) 89(3) 741(2) 3229(1) 44(1) F(8) ndash1336(3) 887(2) 2734(1) 45(1) F(9) ndash1555(3) 41(2) 3314(1) 48(1) F(10) ndash3467(3) 1303(2) 3130(1) 50(1) F(11) ndash3191(3) 876(2) 3839(1) 55(1) F(12) ndash3436(3) 2217(2) 3690(1) 45(1) O(1) 1493(3) 2909(2) 2952(1) 27(1) O(2) ndash1364(3) 2285(2) 3156(1) 27(1) C(1) 2494(4) 3058(3) 3214(1) 26(1) C(2) 2876(4) 2138(3) 3386(2) 29(1) C(3) 3499(4) 3400(3) 2891(2) 32(1) C(4) 2271(4) 3750(3) 3608(1) 25(1) C(5) 2869(4) 3767(3) 4047(2) 27(1) C(6) 2536(5) 4377(3) 4382(2) 34(1) C(7) 1648(5) 4975(3) 4309(2) 34(1) C(8) 1114(4) 4981(3) 3878(2) 33(1) C(9) 1403(4) 4396(3) 3522(2) 29(1) C(10) 3905(5) 3205(4) 4190(2) 38(1) C(11) 1325(6) 5619(4) 4685(2) 50(2) C(12) 754(5) 4576(3) 3063(2) 35(1) C(13) ndash1558(4) 1623(3) 3463(2) 28(1) C(14) ndash1091(5) 801(3) 3200(2) 35(1) C(15) ndash2920(5) 1507(3) 3534(2) 35(1) C(16) ndash937(4) 1809(3) 3944(1) 24(1) C(17) ndash422(5) 1173(3) 4238(2) 33(1) C(18) 322(4) 1442(3) 4603(2) 33(1) C(19) 552(4) 2294(3) 4706(1) 32(1) C(20) ndash58(4) 2904(3) 4449(2) 31(1) C(21) ndash831(4) 2688(3) 4078(1) 28(1) C(22) ndash615(6) 217(3) 4204(2) 44(1) C(23) 1397(5) 2555(4) 5091(2) 44(1) C(24) ndash1521(5) 3459(3) 3890(2) 34(1) ________________________________________________________________________________

147

Table M-4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Li(1) 912(6) ndash187(7) 444(6) 27(2) Li(2) ndash518(6) ndash994(7) 1102(6) 31(2) Li(3) 121(6) 1818(7) 349(6) 27(2) F(1) 1124(2) ndash4394(2) 1951(2) 38(1) F(2) 53(2) ndash3986(3) 817(2) 42(1) F(3) 91(2) ndash3175(2) 2137(2) 43(1) F(4) 1795(2) ndash4077(2) 311(2) 34(1) F(5) 898(2) ndash2873(2) ndash440(2) 33(1) F(6) 2260(2) ndash2366(2) 151(2) 33(1) F(7) 1866(2) 1411(3) 2037(2) 35(1) F(8) 2366(2) 3099(3) 1848(2) 42(1) F(9) 991(2) 2664(2) 1280(2) 36(1) F(10) 3198(2) 3305(3) 339(2) 46(1) F(11) 1763(2) 3679(3) ndash61(2) 47(1) F(12) 2446(2) 2628(3) ndash926(2) 46(1) F(13) ndash205(2) 440(2) 781(2) 23(1) O(1) 610(2) ndash1683(3) 908(2) 24(1) O(2) 1320(2) 1318(3) 48(2) 21(1) C(1) 1199(3) ndash2570(4) 1220(4) 23(1) C(2) 617(4) ndash3532(4) 1545(4) 30(1) C(3) 1555(4) ndash2987(4) 324(4) 24(1) C(4) 1979(3) ndash2195(4) 2028(3) 23(1) C(5) 2863(4) ndash2679(4) 2199(4) 25(1) C(6) 3544(4) ndash2188(4) 2855(4) 28(1) C(7) 3403(4) ndash1238(5) 3374(4) 32(1) C(8) 2501(4) ndash831(4) 3247(4) 29(1) C(9) 1794(3) ndash1301(4) 2608(4) 23(1) C(10) 3183(4) ndash3752(5) 1774(4) 38(2) C(11) 4159(4) ndash690(5) 4057(5) 51(2) C(12) 857(4) ndash783(4) 2669(4) 29(1) C(13) 2120(3) 1798(4) 490(4) 22(1) C(14) 1869(4) 2242(4) 1436(4) 31(1) C(15) 2389(4) 2857(4) ndash33(4) 31(1) C(16) 2948(3) 941(4) 591(3) 19(1) C(17) 3682(4) 888(4) 1355(4) 28(1) C(18) 4345(4) 42(5) 1381(4) 31(1) C(19) 4341(4) ndash763(4) 694(4) 30(1) C(20) 3655(3) ndash651(4) ndash69(4) 26(1) C(21) 2971(3) 163(4) ndash142(4) 24(1) C(22) 3875(4) 1719(5) 2161(4) 37(2) C(23) 5053(4) ndash1669(5) 762(4) 40(2) C(24) 2308(4) 111(5) ndash1060(4) 31(1)

148

Table M-5 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for B-7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Br(1) 363(1) 190(1) ndash710(1) 36(1) Ga(1) 1141(1) 1141(1) 0 22(1) Cl(1) 3522(1) 5081(1) 416(1) 37(1) F(1) 1022(2) 4826(2) 645(1) 30(1) F(2) 128(2) 3143(2) 755(1) 36(1) F(3) ndash901(2) 4676(2) 543(1) 35(1) F(4) ndash634(1) 2953(2) ndash835(1) 27(1) F(5) ndash1315(2) 2498(2) ndash89(1) 36(1) F(6) ndash1578(2) 4277(2) ndash397(1) 33(1) O(1) 1223(2) 2818(2) ndash72(1) 18(1) C(1) 407(2) 3774(2) ndash115(1) 19(1) C(2) 986(2) 4769(2) ndash458(1) 16(1) C(3) 759(2) 6017(3) ndash404(1) 20(1) C(4) 1379(3) 6822(2) ndash716(1) 25(1) C(5) 2198(3) 6479(3) ndash1080(1) 26(1) C(6) 2374(2) 5263(3) ndash1146(1) 23(1) C(7) 1775(2) 4391(2) ndash857(1) 18(1) C(8) 147(3) 4128(3) 460(1) 26(1) C(9) ndash792(2) 3370(3) ndash362(1) 25(1) C(10) ndash134(3) 6610(3) ndash47(1) 29(1) C(11) 2856(3) 7381(3) ndash1415(1) 41(1) C(12) 2018(2) 3118(2) ndash1045(1) 22(1) C(13) 5066(3) 5328(3) 278(1) 41(1) Li(1) 2991(4) 2991(4) 0 25(1)

149

Table M-6 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for C-1 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Li(1) 2423(4) 5312(7) 2366(3) 42(2) Li(2) 2556(4) 10326(8) 2550(3) 43(2) SiA 2908(7) 4151(13) 610(5) 3(6) Si(1) 522(1) 3688(1) 2963(1) 46(1) Si(2) 1164(1) 7494(1) 1146(1) 40(1) Si(3) 796(1) 1673(1) 434(1) 40(1) Si(4) 3128(1) 3487(2) 792(1) 53(1) Si(5) 1697(1) 9179(2) 4162(1) 66(1) Si(6) 4744(1) 8726(2) 2421(1) 58(1) Si(7) 4571(1) 6464(1) 4126(1) 46(1) Si(8) 3937(1) 12575(1) 3919(1) 47(1) Al(1) 1661(1) 4140(1) 1725(1) 29(1) Al(2) 3246(1) 9252(1) 3272(1) 30(1) F(1) 2101(1) 3332(3) 2985(1) 51(1) F(2) 2455(1) 4725(2) 3064(1) 42(1) F(3) 1933(1) 4292(3) 3486(1) 55(1) F(4) 1745(1) 6221(2) 2759(1) 46(1) F(5) 1238(1) 5694(3) 3183(1) 52(1) F(6) 886(1) 5899(2) 2438(1) 46(1) F(7) 253(1) 5313(3) 1512(1) 55(1) F(8) -13(1) 6070(3) 860(1) 55(1) F(9) 2(1) 4552(3) 861(1) 53(1) F(10) 696(1) 4508(3) 318(1) 53(1) F(11) 631(1) 6022(3) 285(1) 54(1) F(12) 1435(1) 5356(3) 528(1) 52(1) F(13) 1079(1) 1674(2) 2105(1) 43(1) F(14) 566(1) 2564(2) 1560(1) 44(1) F(15) 681(1) 1093(2) 1421(1) 46(1) F(16) 1693(1) 526(2) 1417(1) 49(1) F(17) 2308(1) 1584(2) 1419(1) 45(1) F(18) 2109(1) 1252(2) 2058(1) 43(1) F(19) 3037(1) 3209(3) 2034(1) 49(1) F(20) 3691(1) 4002(3) 1877(1) 55(1) F(21) 3281(1) 4554(2) 2372(1) 47(1) F(23) 2584(1) 5996(2) 1122(1) 51(1) F(24) 3443(1) 5644(3) 1427(1) 57(1) F(25) 2950(1) 6142(2) 1863(1) 47(1) F(101) 1647(2) 9705(3) 2511(1) 65(1) F(102) 1776(2) 8417(3) 2912(1) 62(1) F(103) 1161(1) 9420(3) 2994(2) 87(1) F(104) 2042(2) 11341(2) 2962(1) 55(1) F(105) 2333(2) 11294(3) 3715(1) 63(1) F(106) 1469(2) 11060(3) 3359(1) 73(1) F(107) 3138(1) 7520(2) 4148(1) 45(1) F(108) 2536(1) 6905(2) 3557(1) 46(1) F(109) 3196(1) 6048(3) 3974(1) 52(1) F(110) 2880(1) 6409(2) 2788(1) 37(1) F(111) 3550(1) 5614(2) 3250(1) 43(1) F(112) 3731(1) 6719(2) 2819(1) 43(1) F(113) 3334(1) 11175(2) 2169(1) 46(1) F(114) 4144(1) 11004(2) 2658(1) 47(1) F(115) 4000(1) 10580(2) 1933(1) 48(1) F(116) 3105(1) 8241(2) 2108(1) 45(1)

150

F(117) 3420(1) 9049(3) 1629(1) 57(1) F(118) 2734(1) 9577(2) 1855(1) 49(1) F(119) 4058(2) 9574(3) 4721(1) 83(1) F(120) 4193(2) 11069(3) 4766(1) 65(1) F(121) 3377(2) 10519(3) 4444(1) 70(1) F(122) 4819(2) 9405(3) 4236(2) 92(2) F(123) 4742(1) 10277(3) 3637(1) 75(1) F(124) 4966(1) 10877(3) 4323(1) 62(1) O(1) 2593(1) 9803(3) 3166(1) 35(1) O(2) 1115(1) 4487(3) 1261(1) 34(1) O(3) 1694(1) 2927(3) 1745(1) 31(1) O(4) 3750(2) 9576(3) 3771(1) 40(1) O(11) 1698(1) 4679(3) 2269(1) 35(1) O(12) 3209(1) 8042(3) 3242(1) 34(1) O(13) 3295(1) 9767(3) 2740(1) 32(1) O(14) 2302(1) 4691(3) 1747(1) 33(1) C(1) 1491(2) 4595(4) 2660(2) 34(1) C(2) 1991(2) 4231(5) 3055(2) 39(2) C(3) 1339(2) 5594(5) 2764(2) 40(2) C(4) 992(2) 3920(4) 2573(2) 38(1) C(5) 96(3) 2668(6) 2668(2) 71(2) C(6) 913(3) 3337(6) 3572(2) 70(2) C(7) 59(2) 4708(6) 2966(3) 71(2) C(8) 880(2) 5334(4) 1055(2) 32(1) C(9) 274(2) 5318(4) 1067(2) 38(1) C(10) 906(2) 5304(5) 544(2) 41(2) C(11) 1193(2) 6201(4) 1309(2) 36(1) C(12) 1631(3) 8027(5) 1691(3) 75(2) C(13) 1457(3) 7738(5) 646(2) 64(2) C(14) 468(2) 8025(5) 1042(2) 52(2) C(15) 1439(2) 2158(4) 1473(2) 31(1) C(16) 1263(2) 2367(4) 938(2) 35(1) C(17) 937(2) 1863(4) 1641(2) 35(1) C(18) 1883(2) 1367(4) 1586(2) 36(1) C(19) 56(2) 1943(5) 394(2) 57(2) C(20) 915(3) 376(5) 441(2) 64(2) C(21) 978(2) 2178(5) ndash86(2) 48(2) C(22) 2757(2) 4574(4) 1565(2) 35(1) C(23) 2622(2) 3993(4) 1113(2) 36(1) C(24) 2937(2) 5575(4) 1492(2) 39(1) C(25) 3194(2) 4074(5) 1958(2) 41(2) C(26) 3683(3) 4272(6) 744(2) 64(2) C(27) 3447(3) 2374(5) 1079(2) 58(2) C(27A) 2870(30) 5260(50) 350(20) 17(17) C(28) 2648(3) 3201(6) 208(2) 69(2) C(102) 1670(2) 9325(5) 2935(2) 52(2) C(103) 1985(3) 10875(5) 3343(2) 48(2) C(104) 2202(2) 9331(5) 3798(2) 46(2) C(105) 2181(4) 8765(8) 4740(3) 114(4) C(106) 1167(5) 8308(7) 3898(4) 134(4) C(107) 1372(3) 10268(6) 4283(2) 69(2) C(108) 3437(2) 7226(4) 3475(2) 32(1) C(109) 3079(2) 6908(4) 3792(2) 35(1) C(110) 3405(2) 6486(4) 3092(2) 37(1) C(111) 4050(2) 7342(4) 3770(2) 35(1) C(112) 5177(2) 7210(5) 4407(2) 55(2) C(113) 4814(3) 5614(5) 3738(3) 74(2) C(114) 4346(3) 5832(6) 4577(3) 80(2) C(115) 3619(2) 9599(4) 2430(2) 33(1) C(116) 4128(2) 8996(4) 2648(2) 33(1) C(117) 3777(2) 10587(4) 2296(2) 37(1) C(118) 3227(2) 9115(5) 2000(2) 38(1)

151

C(119) 5126(2) 7835(5) 2856(2) 59(2) C(120) 5191(3) 9823(7) 2474(4) 116(4) C(121) 4562(4) 8240(11) 1825(3) 175(7) C(122) 4018(2) 10379(4) 4000(2) 38(1) C(123) 3807(2) 11294(4) 3735(2) 37(1) C(124) 4632(3) 10239(5) 4053(2) 50(2) C(125) 3921(3) 10376(5) 4489(2) 57(2) C(126) 4674(3) 12905(5) 4198(2) 65(2) C(127) 3683(3) 13183(5) 3341(2) 71(2) C(128) 3509(3) 12942(5) 4307(3) 74(2) C(301) 2630(30) 5720(50) 5250(20) 340(30) C(302) 2791(12) 5270(30) 5049(10) 149(9) C(303) 3149(10) 6070(20) 5301(8) 131(8) C(304) 3267(14) 6820(30) 5519(11) 209(14) C(305) 3642(11) 7560(20) 5507(9) 171(10) C(306) 2033(10) 5360(20) 4716(8) 264(10) C(311) 1265(11) 5670(20) 4371(9) 132(10) C(313) 2304(19) 4610(40) 4711(16) 206(17) C(314) 2600(15) 4620(30) 5148(13) 162(12) C(315) 3180(20) 5030(30) 5432(16) 206(16) C(316) 3718(9) 5222(17) 5572(7) 100(7) C(404) 2118(2) 9816(4) 3324(2) 38(1)

152

Table M-7 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for D-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1775(1) 738(1) 2130(1) 20(1) O(1) 1847(2) 1061(1) 818(2) 24(1) O(2) 1879(2) 1276(1) 3191(2) 25(1) O(3) 2418(2) 32(1) 2477(2) 25(1) F(1) 46(2) 564(1) 1892(1) 27(1) C(1) ndash1018(3) 919(1) 2209(2) 23(1) C(2) ndash1081(3) 1537(1) 1920(3) 28(1) C(3) ndash2102(3) 1866(2) 2257(3) 33(1) C(4) ndash2980(3) 1565(2) 2836(3) 36(1) C(5) ndash2863(3) 933(2) 3088(3) 35(1) C(6) ndash1850(3) 591(1) 2771(3) 29(1) C(7) 2679(3) 1407(1) 276(2) 25(1) C(8) 4041(3) 1152(2) 570(3) 36(1) C(9) 2628(3) 2104(2) 653(3) 36(1) C(10) 2283(3) 1355(2) ndash1021(3) 34(1) C(11) 2090(3) 1420(1) 4322(2) 25(1) C(12) 1023(3) 1878(2) 4595(3) 36(1) C(13) 3404(3) 1734(1) 4576(3) 32(1) C(14) 2034(3) 819(2) 5055(2) 32(1) C(15) 2500(3) ndash599(1) 2315(2) 26(1) C(16) 1602(3) ndash937(1) 3064(3) 36(1) C(17) 2119(3) ndash767(1) 1043(3) 34(1) C(18) 3889(3) ndash800(2) 2680(3) 40(1) F(2) 4225(2) 1017(1) 1690(2) 44(1) F(3) 4931(2) 1558(1) 353(2) 50(1) F(4) 4220(2) 625(1) 18(2) 47(1) F(5) 3135(2) 2490(1) ndash56(2) 45(1) F(6) 3253(2) 2176(1) 1687(2) 53(1) F(7) 1438(2) 2283(1) 699(2) 53(1) F(8) 2006(2) 765(1) ndash1315(2) 45(1) F(9) 3198(2) 1550(1) ndash1622(2) 46(1) F(10) 1255(2) 1697(1) ndash1336(2) 47(1) F(11) 1317(2) 2159(1) 5604(2) 51(1) F(12) ndash61(2) 1570(1) 4630(2) 43(1) F(13) 839(2) 2319(1) 3804(2) 46(1) F(14) 3784(2) 1765(1) 5694(2) 41(1) F(15) 4274(2) 1413(1) 4098(2) 41(1) F(16) 3380(2) 2316(1) 4165(2) 45(1) F(17) 3087(2) 482(1) 5048(2) 40(1) F(18) 1061(2) 460(1) 4650(2) 41(1) F(19) 1906(2) 951(1) 6140(2) 49(1) F(20) 1953(2) ndash841(1) 4149(2) 67(1) F(21) 448(2) ndash711(1) 2857(2) 66(1) F(22) 1529(3) ndash1541(1) 2882(2) 91(1) F(23) 2811(3) ndash469(1) 379(2) 69(1) F(24) 2220(3) ndash1361(1) 829(2) 86(1) F(25) 952(2) ndash602(2) 723(2) 97(1) F(26) 4041(3) ndash1405(1) 2614(3) 113(1) F(27) 4258(2) ndash635(1) 3730(2) 73(1) F(28) 4664(2) ndash531(2) 2060(2) 91(1)

153

Table M-8 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-1 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 2980(1) 4868(1) 1724(1) 18(1) Si(1) 6261(1) 4701(1) 1333(1) 20(1) F(1) 4577(1) 5019(1) 1332(1) 31(1) F(2) 4493(1) 6057(1) 3452(1) 35(1) F(3) 5282(1) 4595(1) 3604(1) 36(1) F(4) 3745(2) 5158(1) 4248(1) 39(1) F(5) 4041(1) 3119(1) 2940(1) 34(1) F(6) 3061(2) 3288(1) 3876(1) 36(1) F(7) 1901(1) 3198(1) 2985(1) 34(1) F(8) 1826(1) 6147(1) 3400(1) 39(1) F(9) 1143(1) 4780(1) 3837(1) 40(1) F(10) 899(1) 5039(1) 2793(1) 39(1) F(11) 2882(1) 1796(1) 1693(1) 37(1) F(12) 823(1) 2026(1) 1932(1) 36(1) F(13) 1345(2) 1348(1) 1009(1) 43(1) F(14) ndash157(1) 3852(1) 1579(1) 42(1) F(15) ndash502(1) 2799(1) 804(1) 41(1) F(16) 328(2) 4233(1) 583(1) 43(1) F(17) 1736(2) 2662(1) ndash21(1) 44(1) F(18) 2931(2) 3917(1) 268(1) 42(1) F(19) 3582(1) 2440(1) 505(1) 43(1) F(20) ndash408(1) 6456(1) 1233(1) 38(1) F(21) 443(1) 6394(1) 264(1) 39(1) F(22) 203(1) 7804(1) 753(1) 41(1) F(23) 3122(1) 6127(1) 220(1) 36(1) F(24) 2715(1) 7698(1) 239(1) 40(1) F(25) 4204(1) 7068(1) 883(1) 37(1) F(26) 2347(2) 8390(1) 1512(1) 44(1) F(27) 3171(2) 7192(1) 2089(1) 43(1) F(28) 1060(2) 7485(1) 2114(1) 44(1) O(1) 3481(1) 4938(1) 2525(1) 23(1) O(2) 2464(1) 3697(1) 1542(1) 23(1) O(3) 2023(1) 5775(1) 1382(1) 22(1) C(1) 6772(3) 5066(2) 502(1) 41(1) C(2) 6955(2) 5442(2) 2003(1) 39(1) C(3) 6213(2) 3365(2) 1496(1) 30(1) C(4) 3103(2) 4706(2) 3153(1) 21(1) C(5) 4175(2) 5144(2) 3626(1) 26(1) C(6) 3027(2) 3560(2) 3245(1) 27(1) C(7) 1717(2) 5175(2) 3308(1) 28(1) C(8) 1775(2) 3094(2) 1127(1) 22(1) C(9) 1705(2) 2046(2) 1443(1) 28(1) C(10) 337(2) 3494(2) 1016(1) 30(1) C(11) 2511(2) 3023(2) 454(1) 30(1) C(12) 1931(2) 6723(2) 1153(1) 21(1) C(13) 512(2) 6854(2) 842(1) 28(1) C(14) 3005(2) 6911(2) 609(1) 28(1) C(15) 2124(2) 7469(2) 1722(1) 32(1)

154

Table M-9 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Aring2

x 103) for E-2 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) 1052(1) 7454(1) 2941(1) 15(1) F(1) 1011(1) 7762(1) 2261(1) 23(1) F(2) ndash146(1) 8593(1) 2592(1) 32(1) F(3) ndash799(1) 7718(1) 2107(1) 39(1) F(4) ndash1130(1) 8438(1) 2741(1) 40(1) F(5) ndash730(1) 6262(1) 2580(1) 40(1) F(6) ndash1429(1) 6913(1) 2945(1) 45(1) F(7) ndash646(1) 6240(1) 3500(1) 39(1) F(8) ndash848(1) 7828(1) 3864(1) 39(1) F(9) ndash29(1) 8537(1) 3734(1) 34(1) F(10) 157(1) 7387(1) 4114(1) 38(1) F(11) 1758(1) 9309(1) 2606(1) 35(1) F(12) 945(1) 9613(1) 2989(1) 43(1) F(13) 1904(1) 10163(1) 3299(1) 42(1) F(14) 1234(1) 9543(1) 4154(1) 44(1) F(15) 2309(1) 9546(2) 4407(1) 45(1) F(16) 1756(1) 8502(1) 4527(1) 41(1) F(17) 2756(1) 8080(1) 4022(1) 35(1) F(18) 2932(1) 9109(1) 3540(1) 36(1) F(19) 2498(1) 8059(1) 3089(1) 32(1) F(20) 865(1) 5769(1) 3851(1) 36(1) F(21) 1590(1) 6665(1) 4170(1) 38(1) F(22) 1850(1) 5433(1) 4311(1) 38(1) F(23) 2782(1) 6391(1) 3888(1) 38(1) F(24) 2724(1) 5159(1) 3636(1) 35(1) F(25) 2723(1) 6070(1) 3000(1) 37(1) F(26) 1477(1) 4555(1) 3286(1) 34(1) F(27) 1709(1) 5105(1) 2534(1) 34(1) F(28) 772(1) 5337(1) 2749(1) 35(1) O(1) 282(1) 7168(1) 3039(1) 21(1) O(2) 1351(1) 8203(1) 3429(1) 20(1) O(3) 1545(1) 6617(1) 3030(1) 20(1) C(1) ndash320(2) 7428(2) 3096(1) 20(1) C(2) ndash607(2) 8055(2) 2630(2) 27(1) C(3) ndash792(2) 6702(2) 3030(2) 29(1) C(4) ndash266(2) 7795(2) 3708(2) 28(1) C(5) 1796(2) 8801(2) 3553(1) 20(1) C(6) 1599(2) 9486(2) 3107(2) 29(1) C(7) 1775(2) 9100(2) 4171(2) 32(1) C(8) 2504(2) 8516(2) 3553(2) 26(1) C(9) 1728(2) 5947(2) 3342(1) 18(1) C(10) 1509(2) 5950(2) 3929(2) 29(1) C(11) 2502(2) 5890(2) 3467(2) 27(1) C(12) 1417(2) 5223(2) 2975(2) 25(1) C(13) 2752(2) 7515(2) 814(1) 26(1) C(14) 2592(2) 8025(2) 1215(1) 23(1) C(15) 2268(2) 7756(2) 1637(1) 24(1) C(16) 2098(2) 6962(2) 1650(2) 26(1) C(17) 2249(2) 6447(2) 1242(2) 28(1) C(18) 2576(2) 6716(2) 837(2) 29(1) C(19) 3117(2) 7803(3) 372(2) 47(1) C(20) 643(2) 5591(2) 680(2) 22(1) C(21) 483(2) 6268(2) 342(2) 25(1) C(22) 153(2) 6897(2) 530(2) 27(1) C(23) ndash7(2) 6865(2) 1072(2) 29(1) C(24) 167(2) 6196(2) 1416(2) 32(1)

155

C(25) 482(2) 5569(2) 1219(2) 28(1) C(26) 985(2) 4905(2) 464(2) 30(1) C(27) ndash355(2) 8950(2) 318(2) 25(1) C(28) ndash296(2) 9000(2) 912(2) 30(1) C(29) 315(2) 9100(2) 1290(2) 35(1) C(30) 887(2) 9143(2) 1079(2) 33(1) C(31) 838(2) 9088(2) 485(2) 33(1) C(32) 224(2) 8995(2) 110(2) 27(1) C(33) ndash1026(2) 8846(2) -97(2) 38(1) Ag(2) 6160(1) ndash2489(1) 1060(1) 25(1) Al(2) 6033(1) ndash2605(1) 2756(1) 15(1) F(29) 6039(1) ndash2337(1) 2075(1) 26(1) F(30) 3522(1) ndash3122(2) 2395(1) 52(1) F(31) 4340(1) ndash3751(2) 2196(1) 60(1) F(33) 4838(1) ndash1420(1) 2412(1) 41(1) F(34) 3847(1) ndash1566(1) 2533(1) 51(1) F(36) 3907(1) ndash2492(2) 3490(1) 55(1) F(37) 4919(2) ndash2812(2) 3838(1) 72(1) F(39) 6834(1) ndash839(1) 2386(1) 41(1) F(40) 5946(1) ndash507(1) 2660(1) 40(1) F(41) 6866(1) 105(1) 3008(1) 38(1) F(42) 6113(1) ndash432(1) 3836(1) 40(1) F(43) 7178(1) ndash345(1) 4144(1) 34(1) F(44) 6662(1) ndash1391(1) 4318(1) 33(1) F(45) 7908(1) ndash908(1) 3378(1) 32(1) F(46) 7715(1) ndash1860(1) 3924(1) 32(1) F(47) 7532(1) ndash2029(1) 3002(1) 36(1) F(48) 6750(1) ndash3316(1) 4026(1) 42(1) F(49) 7669(1) ndash3626(1) 3801(1) 45(1) F(50) 7142(1) ndash4496(1) 4184(1) 43(1) F(51) 6217(1) ndash5360(1) 3427(1) 27(1) F(52) 5735(1) ndash4293(1) 3614(1) 29(1) F(53) 5623(1) ndash4672(1) 2732(1) 28(1) F(54) 7562(1) ndash4169(1) 2709(1) 40(1) F(55) 7465(1) ndash5177(1) 3236(1) 45(1) F(56) 6764(1) ndash4989(1) 2422(1) 39(1) O(4) 5250(1) ndash2848(1) 2834(1) 26(1) O(5) 6337(1) ndash1847(1) 3232(1) 18(1) O(6) 6496(1) ndash3466(1) 2868(1) 19(1) C(34) 4616(2) ndash2641(2) 2821(1) 22(1) F(32A) 4200(3) ndash2688(6) 1821(2) 55(2) F(35A) 4771(3) ndash1342(4) 3275(4) 51(2) F(38A) 4351(3) ndash3672(4) 3419(4) 58(3) C(35A) 4172(4) ndash3053(6) 2324(5) 39(2) C(36A) 4518(4) ndash1712(5) 2778(4) 32(2) C(37A) 4445(6) ndash2888(8) 3419(5) 45(3) F(32B) 4227(3) ndash3935(3) 2992(3) 36(2) F(35B) 4260(3) ndash2182(5) 1827(2) 33(2) F(38B) 4808(4) ndash1695(5) 3544(3) 49(2) C(35B) 4157(4) ndash3397(6) 2579(4) 25(2) C(36B) 4373(4) ndash1956(5) 2371(4) 25(2) C(37B) 4555(6) ndash2419(8) 3412(4) 38(3) C(38) 6762(2) ndash1225(2) 3339(1) 17(1) C(39) 6597(2) ndash602(2) 2842(2) 29(1) C(40) 6679(2) ndash839(2) 3918(2) 25(1) C(41) 7494(2) ndash1504(2) 3414(2) 26(1) C(42) 6674(2) ndash4124(2) 3192(1) 17(1) C(43) 7067(2) ndash3892(2) 3812(2) 31(1) C(44) 6051(2) ndash4623(2) 3241(1) 21(1) C(45) 7123(2) ndash4621(2) 2883(2) 26(1) C(46) 7868(2) ndash2918(2) 707(2) 23(1) C(47) 7543(2) ndash2300(2) 375(2) 30(1)

156

C(48) 7217(2) ndash1725(2) 609(2) 38(1) C(49) 7194(2) ndash1745(2) 1187(2) 36(1) C(50) 7501(2) ndash2368(3) 1528(2) 37(1) C(51) 7843(2) ndash2947(2) 1290(2) 29(1) C(52) 8234(2) ndash3536(2) 444(2) 37(1) C(53) 4909(2) ndash3949(2) 261(2) 27(1) C(54) 4900(2) ndash4013(2) 846(2) 34(1) C(55) 5485(2) ndash4016(2) 1272(2) 38(1) C(56) 6093(2) ndash3951(2) 1121(2) 33(1) C(57) 6109(2) ndash3871(2) 536(2) 31(1) C(58) 5521(2) ndash3872(2) 116(2) 28(1) C(59) 4270(2) ndash3952(2) ndash205(2) 40(1) C(60) 5743(2) ndash469(2) 338(1) 21(1) C(61) 5523(2) ndash1144(2) 16(2) 24(1) C(62) 5214(2) ndash1752(2) 245(2) 31(1) C(63) 5124(2) ndash1705(2) 811(2) 34(1) C(64) 5351(2) ndash1035(2) 1141(2) 32(1) C(65) 5653(2) ndash428(2) 907(1) 26(1) C(66) 6078(2) 196(2) 89(2) 28(1)

157

Table M-10 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(Aring2 x 103) for E-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq) Al(1) ndash333(1) 2466(1) 1842(1) 20(1) F(1) 94(3) 2225(2) 2619(1) 33(1) F(2) ndash3726(3) 3329(2) 2294(2) 42(1) F(3) ndash4379(3) 3448(2) 1265(2) 42(1) F(4) ndash5304(3) 2626(2) 1828(2) 43(1) F(5) ndash3209(3) 2556(2) 471(1) 34(1) F(6) ndash4792(3) 1878(2) 728(1) 38(1) F(7) ndash2878(3) 1382(2) 785(1) 31(1) F(8) ndash2152(3) 1172(2) 2081(1) 32(1) F(9) ndash4232(3) 1165(2) 1917(1) 36(1) F(10) ndash3195(3) 1857(2) 2691(1) 39(1) F(11) ndash313(4) 232(2) 1542(3) 93(2) F(12) 1201(4) ndash117(2) 1006(2) 78(1) F(13) ndash549(4) 412(3) 514(3) 105(2) F(14) 2407(3) 1903(2) 1943(2) 62(1) F(15) 3123(3) 887(2) 1520(2) 74(1) F(16) 1777(4) 789(2) 2219(2) 79(1) F(17) 2154(5) 2150(2) 663(2) 86(2) F(18) 2054(4) 989(3) 258(2) 85(1) F(19) 394(5) 1727(3) 94(2) 111(2) F(20) 1997(3) 5023(2) 1311(2) 67(1) F(21) 2567(3) 3835(2) 1256(2) 76(1) F(22) 2443(4) 4348(3) 2186(2) 85(2) F(23) ndash1519(4) 4457(2) 1844(3) 85(1) F(24) ndash7(5) 5299(2) 1943(2) 83(1) F(25) 117(5) 4339(3) 2587(2) 106(2) F(26) ndash476(4) 4914(2) 664(2) 70(1) F(27) ndash1329(4) 3817(3) 698(2) 83(1) F(28) 573(5) 3948(3) 382(2) 92(2) O(1) ndash1982(3) 2658(2) 1687(2) 23(1) O(2) -8(3) 1736(2) 1320(2) 27(1) O(3) 472(3) 3302(2) 1697(2) 40(1) C(1) ndash3162(4) 2318(3) 1606(2) 22(1) C(2) ndash4160(5) 2931(3) 1753(3) 30(1) C(3) ndash3526(4) 2031(3) 891(2) 26(1) C(4) ndash3192(5) 1615(3) 2077(2) 28(1) C(5) 915(4) 1247(3) 1160(2) 28(1) C(6) 307(6) 424(4) 1056(4) 60(2) C(7) 2082(5) 1198(4) 1724(3) 43(2) C(8) 1366(7) 1521(4) 534(3) 62(2) C(9) 459(5) 4057(3) 1522(2) 27(1) C(10) 1888(6) 4314(3) 1567(3) 48(2) C(11) ndash223(6) 4554(3) 1989(3) 45(2) C(12) ndash226(6) 4175(4) 815(3) 51(2) C(13) ndash4937(5) 1826(3) ndash1035(2) 23(1) C(14) ndash6282(5) 1807(3) ndash1258(2) 29(1) C(15) ndash6972(5) 1127(3) ndash1253(3) 37(1) C(16) ndash6341(6) 454(3) ndash1018(3) 40(1) C(17) ndash017(6) 451(3) ndash799(3) 37(1) C(18) ndash4307(5) 1131(3) ndash807(2) 28(1) C(19) ndash2899(4) 2537(3) ndash1167(2) 21(1) C(20) ndash2468(5) 1961(3) ndash1567(2) 28(1) C(21) ndash1195(5) 1958(3) ndash1685(2) 33(1) C(22) ndash337(5) 2517(3) ndash1398(3) 38(1) C(23) ndash744(5) 3087(3) ndash1000(3) 34(1) C(24) ndash2014(4) 3099(3) ndash887(2) 26(1)

158

C(25) ndash4855(4) 3265(3) ndash934(2) 22(1) C(26) ndash4577(5) 3946(3) ndash1268(2) 30(1) C(27) ndash5191(5) 4629(3) ndash1165(3) 39(1) C(28) ndash6061(5) 4666(3) ndash722(3) 45(2) C(29) ndash6335(5) 4007(3) ndash381(3) 39(1) C(30) ndash5754(5) 3306(3) ndash495(2) 30(1) C(31) ndash4225(4) 2543(3) ndash1049(2) 21(1)

159

Table M11 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-5 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Ag(2) 1721(1) 3625(1) 7594(1) 40(1) Ag(3) 3309(1) 1365(1) 2366(1) 38(1) C(201) 2032(4) 2365(4) 6900(3) 28(1) C(202) 1281(4) 2918(4) 6883(3) 31(2) C(203) 617(4) 2812(4) 7344(3) 31(2) C(204) 673(4) 2143(4) 7822(3) 28(1) C(205) 1405(4) 1604(3) 7828(3) 31(2) C(206) 2077(4) 1710(4) 7374(3) 27(1) C(207) 1133(5) 5015(4) 6896(3) 39(2) C(208) 1221(5) 5078(3) 7483(3) 37(2) C(209) 510(6) 5041(4) 7910(4) 46(2) C(210) ndash298(5) 4962(4) 7747(3) 39(2) C(211) ndash382(4) 4912(4) 7163(3) 35(2) C(212) 327(5) 4924(3) 6742(3) 33(2) C(213) 2546(5) 2220(5) 8779(3) 43(2) C(214) 2464(4) 3034(5) 8604(4) 45(2) C(215) 3051(4) 3411(4) 8168(3) 36(2) C(216) 3728(4) 2970(4) 7895(3) 33(2) C(217) 3810(4) 2180(4) 8077(3) 28(1) C(218) 3230(4) 1797(4) 8517(3) 35(2) C(301) 1313(4) 1920(4) 2104(3) 26(1) C(302) 1990(4) 1497(4) 1813(3) 29(2) C(303) 2564(4) 1897(4) 1369(3) 36(2) C(304) 2464(4) 2707(4) 1200(3) 36(2) C(305) 1775(4) 3113(4) 1471(3) 31(2) C(306) 1209(4) 2728(4) 1924(3) 26(1) C(307) 3865(4) ndash17(3) 3096(3) 33(2) C(308) 3818(4) ndash85(4) 2505(4) 36(2) C(309) 4556(4) ndash25(4) 2095(3) 36(2) C(310) 5343(4) 89(4) 2282(3) 36(2) C(311) 5380(4) 154(3) 2872(3) 30(2) C(312) 4650(4) 106(4) 3277(3) 32(2) C(313) 2990(4) 2678(4) 3031(3) 31(2) C(314) 3724(4) 2110(4) 3057(3) 26(1) C(315) 4393(4) 2210(4) 2586(3) 29(2) C(316) 4337(4) 2864(3) 2114(3) 27(1) C(317) 3618(5) 3420(3) 2106(3) 29(2) C(318) 2953(4) 3330(4) 2555(3) 30(2) F(205) 1477(3) 961(2) 8283(2) 47(1) F(206) 2776(3) 1167(2) 7403(2) 48(1) F(211) ndash1159(3) 4814(3) 7000(2) 52(1) F(212) 206(3) 4854(3) 6186(2) 58(1) F(217) 4470(2) 1733(2) 7840(2) 40(1) F(218) 3345(3) 1011(2) 8685(2) 46(1) F(305) 1628(3) 3903(2) 1313(2) 42(1) F(306) 555(2) 3158(2) 2173(2) 43(1) F(311) 6130(2) 268(2) 3062(2) 46(1) F(312) 4703(3) 195(2) 3842(2) 47(1) F(317) 3544(3) 4062(2) 1647(2) 50(1) F(318) 2249(3) 3876(2) 2535(2) 51(1) Al(1) 373(1) 802(1) 5195(1) 13(1) Al(2) 4778(1) 4212(1) 4710(1) 15(1) Al(3) 7111(1) 2099(1) 9426(1) 13(1)

160

Al(4) 7903(1) 2871(1) 10541(1) 13(1) C(1) 2272(4) 647(3) 5258(3) 23(1) C(2) 2281(4) 1057(4) 5788(3) 35(2) C(3) 2548(5) 1193(4) 4642(3) 37(2) C(4) 2927(4) ndash124(4) 5357(3) 37(2) C(5) ndash588(3) 732(3) 6415(2) 16(1) C(6) ndash1011(6) 1461(5) 6641(4) 29(2) C(7) 100(5) 238(5) 6846(4) 22(2) C(8) ndash1291(6) 196(5) 6391(4) 26(2) F(10) ndash1737(10) 1745(9) 6364(8) 46(5) F(11) ndash477(5) 2005(3) 6522(3) 29(1) F(12) ndash1190(5) 1266(3) 7257(2) 45(2) F(13) 596(6) 705(5) 7007(4) 28(2) F(14) ndash240(5) ndash193(5) 7352(3) 30(2) F(15) 660(4) ndash236(4) 6563(3) 25(1) F(16) ndash1821(3) 69(4) 6911(3) 44(2) F(17) ndash923(11) ndash505(8) 6417(7) 60(4) F(18) ndash1809(4) 516(4) 5947(3) 28(2) C(6A) ndash145(11) 1212(10) 6810(8) 19(4) C(7A) ndash369(13) ndash156(11) 6679(9) 29(5) C(8A) ndash1562(13) 1008(11) 6439(9) 26(5) F(10A) ndash1823(19) 1788(16) 6402(14) 16(6) F(11A) ndash75(10) 1920(9) 6502(7) 34(4) F(12A) ndash584(8) 1221(6) 7336(5) 26(3) F(13A) 635(15) 926(11) 6923(10) 27(5) F(14A) ndash465(14) ndash325(13) 7304(11) 45(7) F(15A) 421(11) ndash387(10) 6508(8) 31(5) F(16A) ndash1967(7) 667(7) 6983(5) 32(3) F(17A) ndash910(16) ndash540(16) 6290(11) 17(4) F(18A) ndash1914(13) 813(11) 5997(9) 50(6) C(9) ndash309(4) 2259(3) 4361(3) 22(1) C(10) ndash432(5) 2845(4) 4786(3) 35(2) C(11) ndash1209(5) 2022(4) 4276(3) 35(2) C(12) 119(4) 2644(3) 3733(3) 29(2) C(13) 5662(4) 4278(3) 3483(2) 19(1) C(14) 5865(7) 5082(6) 3024(5) 34(3) C(15) 5134(7) 3846(6) 3167(5) 31(3) C(16) 6572(6) 3783(6) 3632(5) 32(3) F(28) 5153(9) 5578(6) 2954(5) 36(2) F(29) 6106(7) 4972(5) 2451(3) 50(2) F(30) 6488(6) 5383(5) 3219(5) 48(3) F(31) 4561(6) 4411(6) 2776(4) 30(2) F(32) 5637(5) 3475(5) 2777(4) 44(2) F(33) 4833(15) 3223(14) 3627(12) 66(7) F(34) 6306(8) 2988(6) 3915(5) 45(3) F(35) 7138(5) 3814(7) 3137(4) 42(2) F(36) 6951(7) 4044(6) 4021(5) 41(3) C(14A) 5210(11) 4775(9) 2891(8) 24(4) C(15A) 5642(11) 3338(9) 3503(8) 24(4) C(16A) 6573(11) 4433(10) 3512(8) 27(4) F(28A) 4951(19) 5503(17) 3001(14) 72(11) F(29A) 5784(11) 4782(9) 2415(8) 50(5) F(30A) 6673(12) 5173(10) 3286(9) 42(5) F(31A) 4446(13) 4335(12) 2944(8) 34(5) F(32A) 5890(11) 3196(9) 2973(8) 54(5) F(33A) 4760(20) 3270(20) 3608(16) 36(7) F(34A) 6477(15) 3025(15) 3794(11) 46(7) F(35A) 7128(16) 4099(13) 3158(12) 79(9) F(36A) 6810(14) 4222(12) 4092(10) 45(6) C(17) 2857(4) 4472(3) 4659(3) 20(1) C(18) 2647(4) 4065(4) 4175(3) 30(2) C(19) 2758(5) 5374(4) 4388(3) 37(2)

161

C(20) 2228(5) 4276(5) 5232(4) 51(2) C(21) 5346(4) 2699(3) 5527(3) 21(1) C(22) 4724(5) 2759(5) 6082(4) 52(2) C(23) 6294(4) 2418(4) 5727(3) 32(2) C(24) 5074(5) 2096(4) 5203(4) 39(2) C(25) 5333(4) 1953(3) 10018(3) 20(1) C(26) 5472(4) 1864(4) 10697(3) 25(2) C(27) 4873(5) 2788(4) 9747(3) 27(2) C(28) 4750(4) 1339(4) 9952(3) 28(2) F(55) 6042(6) 1248(5) 10915(3) 32(2) F(56) 5758(6) 2531(6) 10769(4) 31(2) F(57) 4726(3) 1786(4) 11060(2) 32(1) F(58) 5457(3) 3290(3) 9617(3) 32(1) F(59) 4511(6) 2826(5) 9234(4) 38(2) F(60) 4249(3) 3029(2) 10139(3) 37(1) F(61) 4966(3) 648(3) 10330(3) 36(1) F(62) 4800(5) 1242(5) 9403(4) 41(2) F(63) 3905(3) 1556(4) 10085(2) 36(1) C(26A) 5290(30) 1280(30) 10670(20) 16(11) C(27A) 5210(30) 2780(30) 10320(20) 19(12) C(28A) 4550(30) 2000(30) 9710(20) 20(12) F(55A) 6030(40) 1180(40) 10780(30) 15(12) F(56A) 5940(60) 2450(70) 10750(50) 60(30) F(57A) 4650(30) 1510(20) 11060(20) 19(11) F(58A) 5550(30) 3370(30) 9819(19) 24(11) F(59A) 4410(40) 2630(30) 9270(30) 19(13) F(60A) 4460(20) 3050(20) 10438(19) 33(10) F(61A) 5110(30) 630(20) 10577(19) 28(11) F(62A) 4940(30) 1220(30) 9300(20) 0(8) F(63A) 3810(20) 1940(20) 10041(16) 23(9) C(29) 7096(4) 3084(3) 8177(3) 25(1) C(30) 6437(6) 2679(5) 7955(3) 51(2) C(31) 6829(5) 3994(4) 8036(3) 47(2) C(32) 8014(5) 2916(4) 7852(3) 36(2) C(33) 8050(4) 519(3) 9457(3) 23(1) C(34) 7268(5) 96(4) 9417(4) 39(2) C(35) 8809(5) 319(4) 8999(4) 40(2) C(36) 8352(5) 231(4) 10121(4) 43(2) C(37) 9666(4) 3081(3) 9920(3) 20(1) C(38) 10192(5) 2279(4) 10180(3) 39(2) C(39) 9501(4) 3145(4) 9254(3) 34(2) C(40) 10183(4) 3761(4) 9966(4) 40(2) C(41) 6919(4) 4424(3) 10566(3) 24(1) C(42) 6967(5) 4802(4) 9870(3) 43(2) C(43) 5946(4) 4550(4) 10835(3) 34(2) C(44) 7494(5) 4789(4) 10900(4) 43(2) C(45) 7970(4) 1834(3) 11762(3) 22(1) C(46) 7134(5) 2115(4) 12121(3) 41(2) C(47) 8111(4) 918(4) 11902(3) 31(2) C(48) 8769(6) 2146(5) 11939(4) 52(2) F(1) 2276(3) 550(3) 6322(2) 44(1) F(2) 1566(2) 1592(2) 5787(2) 40(1) F(3) 2971(3) 1457(3) 5723(2) 59(1) F(4) 2344(3) 952(2) 4165(2) 40(1) F(5) 2119(3) 1927(2) 4607(2) 45(1) F(6) 3402(3) 1243(3) 4571(2) 47(1) F(7) 3698(2) 3(3) 5511(2) 52(1) F(8) 3067(3) -388(2) 4846(2) 47(1) F(9) 2624(2) -668(2) 5811(2) 43(1) F(19) 307(3) 2866(2) 5017(2) 51(1) F(20) ndash1018(3) 2642(2) 5249(2) 41(1) F(21) ndash715(3) 3574(2) 4483(2) 55(1)

162

F(22) ndash1474(2) 1509(2) 4768(2) 38(1) F(23) ndash1825(3) 2639(3) 4177(2) 51(1) F(24) ndash1153(3) 1692(2) 3802(2) 46(1) F(25) ndash452(3) 3156(2) 3384(2) 43(1) F(26) 459(3) 2108(2) 3422(2) 41(1) F(27) 764(3) 3029(2) 3791(2) 47(1) F(37) 2954(3) 3315(2) 4299(2) 49(1) F(38) 2997(3) 4383(2) 3619(2) 48(1) F(39) 1793(3) 4104(3) 4127(2) 64(1) F(40) 3459(3) 5565(2) 4012(2) 49(1) F(41) 2734(4) 5755(3) 4834(2) 73(2) F(42) 2052(3) 5637(2) 4086(2) 58(1) F(43) 2142(3) 3510(3) 5372(2) 57(1) F(44) 2516(4) 4431(3) 5712(2) 72(2) F(45) 1430(3) 4685(4) 5142(3) 91(2) F(46) 3885(3) 2802(3) 5955(2) 74(2) F(47) 4782(4) 3418(3) 6257(2) 80(2) F(48) 4857(4) 2172(3) 6558(2) 87(2) F(49) 6482(3) 2801(2) 6122(2) 49(1) F(50) 6873(2) 2522(2) 5263(2) 48(1) F(51) 6389(3) 1645(2) 6003(2) 51(1) F(52) 4850(3) 1452(2) 5606(3) 70(2) F(53) 4393(3) 2408(2) 4885(2) 60(1) F(54) 5712(3) 1857(3) 4829(2) 63(1) F(64) 6826(4) 1915(3) 7943(3) 92(2) F(65) 5767(4) 2585(6) 8312(2) 140(4) F(66) 6226(3) 2964(3) 7397(2) 64(1) F(67) 6014(4) 4141(3) 8235(2) 110(3) F(68) 7302(5) 4344(3) 8304(3) 87(2) F(69) 6868(3) 4301(3) 7434(2) 68(2) F(70) 7994(3) 3026(2) 7250(2) 45(1) F(71) 8560(3) 3403(3) 7936(2) 64(1) F(72) 8406(3) 2227(3) 8083(2) 59(1) F(73) 6707(3) 61(2) 9920(2) 47(1) F(74) 6813(3) 468(3) 8944(2) 63(1) F(75) 7520(3) -647(2) 9366(2) 63(1) F(76) 8475(3) 382(2) 8453(2) 59(1) F(77) 9383(3) 806(2) 8900(3) 64(2) F(78) 9198(3) -407(2) 9152(2) 52(1) F(79) 8395(3) -537(2) 10322(2) 62(1) F(80) 9151(3) 414(3) 10139(3) 73(2) F(81) 7821(3) 570(3) 10498(2) 59(1) F(82) 10580(2) 2295(2) 10676(2) 43(1) F(83) 9661(3) 1722(2) 10317(2) 44(1) F(84) 10816(3) 2079(2) 9763(2) 59(1) F(85) 10220(3) 3296(2) 8866(2) 41(1) F(86) 9245(2) 2469(2) 9186(2) 35(1) F(87) 8876(3) 3737(2) 9063(2) 39(1) F(88) 9848(3) 4434(2) 9603(2) 49(1) F(89) 10146(3) 3827(2) 10540(2) 42(1) F(90) 11026(3) 3600(3) 9785(2) 61(1) F(91) 6707(4) 4361(3) 9562(2) 76(2) F(92) 7822(3) 4856(3) 9687(2) 75(2) F(93) 6563(3) 5517(2) 9734(2) 62(1) F(94) 5414(3) 4372(3) 10475(2) 60(1) F(95) 5706(3) 5294(2) 10873(2) 53(1) F(96) 5829(3) 4091(2) 11372(2) 45(1) F(97) 7396(3) 5573(2) 10727(2) 62(1) F(98) 7294(3) 4610(3) 11518(2) 60(1) F(99) 8324(3) 4529(3) 10832(3) 67(2) F(100) 7082(5) 2884(3) 12068(2) 101(2) F(101) 6437(3) 1976(4) 11923(2) 83(2)

163

F(102) 7126(3) 1803(3) 12718(2) 56(1) F(103) 7404(3) 649(2) 11811(2) 57(1) F(104) 8758(3) 664(2) 11551(2) 57(1) F(105) 8285(3) 615(2) 12480(2) 59(1) F(106) 8840(3) 2021(3) 12523(2) 74(2) F(107) 9518(3) 1785(4) 11719(2) 87(2) F(108) 8790(4) 2891(3) 11665(3) 91(2) F(201) 0 0 5000 16(1) F(202) 5000 5000 5000 17(1) F(203) 7504(2) 2497(2) 9974(1) 16(1) O(1) 1461(2) 447(2) 5234(2) 22(1) O(2) -229(2) 958(2) 5837(2) 18(1) O(3) 230(3) 1598(2) 4601(2) 22(1) O(4) 5192(3) 4467(3) 3970(2) 35(1) O(5) 3686(3) 4212(2) 4817(2) 32(1) O(6) 5351(3) 3402(2) 5126(2) 28(1) O(7) 6116(2) 1818(2) 9712(2) 20(1) O(8) 7150(3) 2849(2) 8793(2) 21(1) O(9) 7830(2) 1303(2) 9334(2) 23(1) O(10) 8890(2) 3160(2) 10252(2) 19(1) O(11) 7161(2) 3636(2) 10664(2) 21(1) O(12) 7883(2) 2086(2) 11151(2) 20(1)

164

Table M-12 Atomic coordinates (x 104) and equivalent isotropic displacement parameters

(pm2 x 10ndash1) for E-6 U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor

x y z U(eq) Al(1) 136(2) 9182(1) 2772(1) 34(1) O(1) ndash1157(3) 9063(3) 3076(2) 40(1) F(1) ndash2105(4) 8289(3) 3958(2) 69(1) C(1) ndash2048(5) 9423(4) 3327(3) 39(1) Al(2) 328(1) 7494(1) 1819(1) 32(1) O(2) ndash25(4) 9891(3) 2184(2) 42(1) F(2) ndash1221(5) 9295(4) 4517(2) 91(2) C(2) ndash2198(9) 9019(6) 3986(5) 80(3) Al(3) 452(1) 5765(1) 2731(1) 33(1) O(3) 1528(4) 9276(3) 3336(2) 42(1) F(3) ndash3268(4) 9194(3) 4130(2) 72(1) C(3) ndash1663(8) 10257(6) 3525(5) 86(3) O(4) 1695(3) 7657(3) 1613(2) 38(1) F(4) ndash1932(5) 10664(3) 2865(3) 98(2) C(4) ndash3257(7) 9391(7) 2784(4) 89(4) O(5) ndash1036(3) 7329(3) 1251(2) 38(1) F(5) ndash2355(4) 10594(3) 3887(2) 65(1) C(5) 539(6) 10454(4) 1890(3) 45(2) F(6) ndash521(4) 10363(3) 3779(3) 71(1) O(6) 461(3) 5137(3) 2090(2) 40(1) C(6) 727(16) 11180(7) 2340(5) 146(5) O(7) 1818(3) 5816(3) 3328(2) 39(1) F(7) ndash3750(4) 8617(4) 2821(3) 100(2) C(7) ndash290(9) 10598(8) 1181(6) 145(5) O(8) ndash877(3) 5688(3) 3002(2) 39(1) F(8) ndash3167(4) 9483(3) 2173(2) 72(1) C(8) 1782(11) 10194(7) 1817(8) 132(4) C(9) 2403(5) 8986(4) 3854(3) 40(2) F(9) ndash4100(4) 9889(4) 2914(2) 82(2) C(10) 3248(6) 9649(5) 4216(3) 52(2) F(10) 944(5) 11097(3) 2955(2) 83(2) C(11) 3186(6) 8411(5) 3554(3) 52(2) F(11) 1465(5) 11707(3) 2144(3) 89(2) C(12) 1798(6) 8581(4) 4369(3) 48(2) F(12) ndash635(7) 11515(4) 2086(5) 160(3) C(13) 2558(5) 7353(4) 1300(3) 41(2) F(13) ndash1423(4) 10531(3) 1124(2) 77(1) C(14) 1928(6) 6893(5) 667(4) 60(2) F(14) ndash6(4) 11264(3) 914(2) 83(2) C(15) 3307(8) 8030(7) 1100(4) 82(3) F(15) 107(9) 9941(5) 770(3) 151(4) C(16) 3414(7) 6813(7) 1821(4) 74(3) F(16) 2250(4) 10578(3) 1360(2) 76(1) C(17) ndash1949(5) 7644(4) 745(3) 37(1) F(17) 1924(4) 9472(3) 1770(2) 73(1) C(18) ndash2857(6) 6990(5) 419(3) 53(2) F(18) 2632(5) 10441(4) 2513(3) 132(3) F(19) 3925(4) 9454(3) 4823(2) 77(1) C(19) ndash1384(6) 8030(5) 209(3) 52(2) F(20) 2564(4) 10253(3) 4310(2) 63(1) C(20) ndash2636(6) 8243(5) 1077(3) 46(2) F(21) 4015(4) 9905(3) 3839(2) 62(1) C(21) ndash105(5) 4550(4) 1677(3) 41(2)

165

F(22) 4218(4) 8210(3) 4001(2) 68(1) F(23) 3501(4) 8700(3) 3010(2) 64(1) F(24) 2510(4) 7763(2) 3344(2) 59(1) C(25) 2695(5) 5445(4) 3799(3) 39(2) F(25) 2567(4) 8143(3) 4813(2) 62(1) F(26) 864(4) 8126(3) 4044(2) 60(1) C(26) 3588(6) 6048(5) 4208(3) 53(2) F(27) 1326(4) 9087(3) 4729(2) 64(1) C(27) 2086(6) 4976(4) 4287(3) 47(2) C(28) 3427(6) 4896(5) 3434(3) 48(2) F(28) 2668(4) 6365(3) 485(2) 72(1) F(29) 1513(4) 7365(3) 131(2) 66(1) C(29) ndash1739(5) 6000(4) 3310(3) 36(1) F(30) 947(4) 6497(3) 789(2) 63(1) C(30) ndash2694(6) 5362(5) 3368(3) 47(2) C(31) ndash1108(6) 6299(4) 4032(3) 45(2) F(31) 4098(4) 8312(4) 1661(3) 94(2) C(32) ndash2388(6) 6653(4) 2866(3) 45(2) F(32) 3982(5) 7757(4) 670(3) 102(2) F(33) 2572(5) 8562(3) 772(3) 82(1) F(34) 2738(5) 6146(3) 1853(3) 79(1) F(35) 4425(4) 6650(4) 1614(2) 96(2) F(36) 3748(4) 7142(3) 2416(2) 75(2) F(37) ndash3599(4) 7229(3) ndash162(2) 64(1) F(38) ndash2239(4) 6394(3) 266(2) 58(1) F(39) ndash3567(3) 6761(3) 821(2) 55(1) F(40) ndash2124(4) 8547(3) ndash158(2) 68(1) F(41) ndash1100(4) 7517(3) ndash222(2) 59(1) F(42) ndash330(3) 8410(3) 509(2) 57(1) F(43) ndash2908(4) 7984(2) 1640(2) 52(1) F(44) ndash3689(3) 8473(3) 661(2) 56(1) F(45) ndash1902(3) 8876(2) 1255(2) 54(1) F(46) ndash486(8) 3206(3) 1708(3) 120(3) F(47) 328(4) 3770(3) 2653(2) 72(1) F(48) 1538(4) 3672(3) 1888(2) 72(1) F(49) -527(5) 5186(3) 607(2) 70(1) F(50) 85(4) 3934(3) 646(2) 86(2) F(51) 1425(3) 4794(3) 1058(2) 56(1) F(52) ndash1811(4) 4280(3) 2150(2) 76(1) F(53) ndash2098(4) 4200(3) 975(2) 82(2) F(54) ndash1895(4) 5322(3) 1448(2) 65(1) F(55) 4320(4) 5768(3) 4770(2) 73(1) F(56) 2963(4) 6622(3) 4415(2) 60(1) F(57) 4300(4) 6367(3) 3836(2) 65(1) F(58) 1775(4) 5436(3) 4752(2) 67(1) F(59) 2836(4) 4436(3) 4623(2) 62(1) F(60) 1056(3) 4627(3) 3941(2) 61(1) F(61) 4469(3) 4652(3) 3849(2) 60(1) F(62) 3720(4) 5229(3) 2912(2) 70(1) F(63) 2743(4) 4272(3) 3204(2) 68(1) F(64) ndash2122(4) 4711(3) 3586(2) 59(1) F(65) ndash3467(3) 5216(3) 2763(2) 65(1) F(66) ndash3358(4) 5568(3) 3806(2) 63(1) F(67) ndash1834(4) 6763(3) 4285(2) 56(1) F(68) ndash62(4) 6674(3) 4019(2) 55(1) F(69) ndash799(4) 5723(3) 4469(2) 57(1) F(70) ndash3409(3) 6880(3) 3049(2) 58(1) F(71) ndash1608(4) 7268(2) 2918(2) 57(1) F(72) ndash2701(4) 6459(3) 2215(2) 60(1) F(100) 447(3) 6701(2) 2354(1) 35(1) F(101) 184(3) 8277(2) 2337(1) 35(1) C(101) 3950(6) 7962(5) 7860(3) 51(2)

166

C(102) 4952(7) 8424(5) 8348(3) 59(2) C(103) 4349(9) 8888(7) 8830(5) 86(3) C(104) 5051(13) 9542(10) 9213(8) 143(6) C(105) 5023(6) 7905(4) 6914(3) 47(2) C(106) 5352(7) 7466(5) 6328(4) 53(2) C(107) 6009(8) 8014(5) 5939(4) 60(2) C(108) 6420(8) 7611(6) 5361(4) 67(2) C(109) 5269(5) 6841(4) 7743(3) 45(2) C(110) 4832(5) 6391(4) 8287(3) 45(2) C(111) 5815(7) 5816(5) 8622(3) 53(2) C(112) 5375(8) 5325(5) 9142(4) 64(2) C(113) 3243(5) 7000(4) 6926(3) 46(2) C(114) 2233(7) 7506(5) 6520(3) 57(2) C(115) 1177(7) 7018(5) 6091(4) 63(2) C(116) 94(7) 7513(7) 5763(4) 75(3) N(1) 4373(5) 7424(4) 7368(3) 46(1) C(22) 376(10) 3759(6) 1984(5) 52(3) C(23) 240(9) 4646(6) 964(5) 46(3) C(24) ndash1524(9) 4594(7) 1550(5) 50(3) C(22A) ndash610(20) 3964(14) 2116(13) 56(6) C(23A) 790(20) 4168(16) 1318(9) 64(8) C(24A) ndash1220(19) 4834(14) 1122(13) 55(7)

167

N Publications

bull PX4+ P2X5

+ and P5X2+ (X=Br I) salts of the superweak Al(OR)4

--anion [R=C(CF3)3]

M Gonsior I Raabe L Muumlller J Martin L v Wuumlllen I Krossing Chemistry 2002

8(19) 4475-92

bull Patent Method for the production of salts of weakly fluorinated alcoholato

complex anions of main group elements M Gonsior L Muumlller I Krossing PCT

Int Appl 2005 WO 2005054254 A1 20050616

bull Chasing an elusive alkoxide attempts to synthesize [OC(tert-Bu)(CF3)2]-

L O Muumlller R Scopelliti I Krossing Chimia 2006 60(4) 220-223

bull Lewis acid stabilized OPI3 implications for the nature of free OPI3 M Gonsior

L Muumlller I Krossing Chemistry 2006 12(22) 5815-5822

bull A hexane soluble lithium salt of a fluorinated weakly coordinating anion

Li[Al(OC(CF3)2(CH2SiMe3))4] L O Muumlller I Krossing Z Anorg Allg Chem

in press

bull Structural variations of new fluorinated Lithiumalkoxides and attempts to

prepare new WCAs from them L O Muumlller R Scopelitti I Krossing

Z Anorg Allg Chem in press

bull Lewis Superacidity A Definition Simple Access to the Non-Oxidizing Superacid

PhndashFrarrAl(ORF)3 (RF = C(CF3)3) L O Muumlller D Himmel J Stauffer G Steinfeld J

Slattery V Brecht I Krossing publication in progress

168

bull The Chemistry of the Lewis Superacid Al(ORF)3 and its conjugated anion

[FAl(ORF)3]- (RF = C(CF3)3) L O Muumlller J Stauffer G Santiso D Himmel

R Scopelitti I Krossing publication in progress

169

O Lectures conferences and posters 092007 Definition of Lewis Superacidity and Simple Access to the

Non-Oxidizing Lewis Superacid Ph-FrarrAl(ORF)3 (RF = C(CF3)3) G Steinfeld L O Muumlller D Himmel J Stauffer V Brecht I Krossing GdCh Jahrestagung Chemie Ulm (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2007 -) 072007 Die Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3) G Steinfeld

L O Muumlller I Krossing Tag der Forschung Albert-Ludwigs-Universitaumlt Freiburg

092006 Zur Chemie der Lewis Super Saumlure Al(ORF)3 (RF = C(CF3)3)

L O Muumlller I Krossing 12 Deutscher Fluortag Schmitten

102005 Development of new Weakly Coordinating Anions (WCAs)

L O Muumlller R Scopelliti I Krossing SCS ndash Fall Meeting

Lausanne (- Award in Best poster presentation in Inorganic and

Coordination Chemistry 2005 -)

092005 Synthesis attempts to new Weakly Coordinating (per-)fluorinated

Anions Al(ORF)4- L O Muumlller R Scopelliti I Krossing GdCh

Hauptversammlung Duumlsseldorf

092004 11 Deutscher Fluortag Schmitten

Page 8: Weakly Coordinating Anions and Lewis Superacidity
Page 9: Weakly Coordinating Anions and Lewis Superacidity
Page 10: Weakly Coordinating Anions and Lewis Superacidity
Page 11: Weakly Coordinating Anions and Lewis Superacidity
Page 12: Weakly Coordinating Anions and Lewis Superacidity
Page 13: Weakly Coordinating Anions and Lewis Superacidity
Page 14: Weakly Coordinating Anions and Lewis Superacidity
Page 15: Weakly Coordinating Anions and Lewis Superacidity
Page 16: Weakly Coordinating Anions and Lewis Superacidity
Page 17: Weakly Coordinating Anions and Lewis Superacidity
Page 18: Weakly Coordinating Anions and Lewis Superacidity
Page 19: Weakly Coordinating Anions and Lewis Superacidity
Page 20: Weakly Coordinating Anions and Lewis Superacidity
Page 21: Weakly Coordinating Anions and Lewis Superacidity
Page 22: Weakly Coordinating Anions and Lewis Superacidity
Page 23: Weakly Coordinating Anions and Lewis Superacidity
Page 24: Weakly Coordinating Anions and Lewis Superacidity
Page 25: Weakly Coordinating Anions and Lewis Superacidity
Page 26: Weakly Coordinating Anions and Lewis Superacidity
Page 27: Weakly Coordinating Anions and Lewis Superacidity
Page 28: Weakly Coordinating Anions and Lewis Superacidity
Page 29: Weakly Coordinating Anions and Lewis Superacidity
Page 30: Weakly Coordinating Anions and Lewis Superacidity
Page 31: Weakly Coordinating Anions and Lewis Superacidity
Page 32: Weakly Coordinating Anions and Lewis Superacidity
Page 33: Weakly Coordinating Anions and Lewis Superacidity
Page 34: Weakly Coordinating Anions and Lewis Superacidity
Page 35: Weakly Coordinating Anions and Lewis Superacidity
Page 36: Weakly Coordinating Anions and Lewis Superacidity
Page 37: Weakly Coordinating Anions and Lewis Superacidity
Page 38: Weakly Coordinating Anions and Lewis Superacidity
Page 39: Weakly Coordinating Anions and Lewis Superacidity
Page 40: Weakly Coordinating Anions and Lewis Superacidity
Page 41: Weakly Coordinating Anions and Lewis Superacidity
Page 42: Weakly Coordinating Anions and Lewis Superacidity
Page 43: Weakly Coordinating Anions and Lewis Superacidity
Page 44: Weakly Coordinating Anions and Lewis Superacidity
Page 45: Weakly Coordinating Anions and Lewis Superacidity
Page 46: Weakly Coordinating Anions and Lewis Superacidity
Page 47: Weakly Coordinating Anions and Lewis Superacidity
Page 48: Weakly Coordinating Anions and Lewis Superacidity
Page 49: Weakly Coordinating Anions and Lewis Superacidity
Page 50: Weakly Coordinating Anions and Lewis Superacidity
Page 51: Weakly Coordinating Anions and Lewis Superacidity
Page 52: Weakly Coordinating Anions and Lewis Superacidity
Page 53: Weakly Coordinating Anions and Lewis Superacidity
Page 54: Weakly Coordinating Anions and Lewis Superacidity
Page 55: Weakly Coordinating Anions and Lewis Superacidity
Page 56: Weakly Coordinating Anions and Lewis Superacidity
Page 57: Weakly Coordinating Anions and Lewis Superacidity
Page 58: Weakly Coordinating Anions and Lewis Superacidity
Page 59: Weakly Coordinating Anions and Lewis Superacidity
Page 60: Weakly Coordinating Anions and Lewis Superacidity
Page 61: Weakly Coordinating Anions and Lewis Superacidity
Page 62: Weakly Coordinating Anions and Lewis Superacidity
Page 63: Weakly Coordinating Anions and Lewis Superacidity
Page 64: Weakly Coordinating Anions and Lewis Superacidity
Page 65: Weakly Coordinating Anions and Lewis Superacidity
Page 66: Weakly Coordinating Anions and Lewis Superacidity
Page 67: Weakly Coordinating Anions and Lewis Superacidity
Page 68: Weakly Coordinating Anions and Lewis Superacidity
Page 69: Weakly Coordinating Anions and Lewis Superacidity
Page 70: Weakly Coordinating Anions and Lewis Superacidity
Page 71: Weakly Coordinating Anions and Lewis Superacidity
Page 72: Weakly Coordinating Anions and Lewis Superacidity
Page 73: Weakly Coordinating Anions and Lewis Superacidity
Page 74: Weakly Coordinating Anions and Lewis Superacidity
Page 75: Weakly Coordinating Anions and Lewis Superacidity
Page 76: Weakly Coordinating Anions and Lewis Superacidity
Page 77: Weakly Coordinating Anions and Lewis Superacidity
Page 78: Weakly Coordinating Anions and Lewis Superacidity
Page 79: Weakly Coordinating Anions and Lewis Superacidity
Page 80: Weakly Coordinating Anions and Lewis Superacidity
Page 81: Weakly Coordinating Anions and Lewis Superacidity
Page 82: Weakly Coordinating Anions and Lewis Superacidity
Page 83: Weakly Coordinating Anions and Lewis Superacidity
Page 84: Weakly Coordinating Anions and Lewis Superacidity
Page 85: Weakly Coordinating Anions and Lewis Superacidity
Page 86: Weakly Coordinating Anions and Lewis Superacidity
Page 87: Weakly Coordinating Anions and Lewis Superacidity
Page 88: Weakly Coordinating Anions and Lewis Superacidity
Page 89: Weakly Coordinating Anions and Lewis Superacidity
Page 90: Weakly Coordinating Anions and Lewis Superacidity
Page 91: Weakly Coordinating Anions and Lewis Superacidity
Page 92: Weakly Coordinating Anions and Lewis Superacidity
Page 93: Weakly Coordinating Anions and Lewis Superacidity
Page 94: Weakly Coordinating Anions and Lewis Superacidity
Page 95: Weakly Coordinating Anions and Lewis Superacidity
Page 96: Weakly Coordinating Anions and Lewis Superacidity
Page 97: Weakly Coordinating Anions and Lewis Superacidity
Page 98: Weakly Coordinating Anions and Lewis Superacidity
Page 99: Weakly Coordinating Anions and Lewis Superacidity
Page 100: Weakly Coordinating Anions and Lewis Superacidity
Page 101: Weakly Coordinating Anions and Lewis Superacidity
Page 102: Weakly Coordinating Anions and Lewis Superacidity
Page 103: Weakly Coordinating Anions and Lewis Superacidity
Page 104: Weakly Coordinating Anions and Lewis Superacidity
Page 105: Weakly Coordinating Anions and Lewis Superacidity
Page 106: Weakly Coordinating Anions and Lewis Superacidity
Page 107: Weakly Coordinating Anions and Lewis Superacidity
Page 108: Weakly Coordinating Anions and Lewis Superacidity
Page 109: Weakly Coordinating Anions and Lewis Superacidity
Page 110: Weakly Coordinating Anions and Lewis Superacidity
Page 111: Weakly Coordinating Anions and Lewis Superacidity
Page 112: Weakly Coordinating Anions and Lewis Superacidity
Page 113: Weakly Coordinating Anions and Lewis Superacidity
Page 114: Weakly Coordinating Anions and Lewis Superacidity
Page 115: Weakly Coordinating Anions and Lewis Superacidity
Page 116: Weakly Coordinating Anions and Lewis Superacidity
Page 117: Weakly Coordinating Anions and Lewis Superacidity
Page 118: Weakly Coordinating Anions and Lewis Superacidity
Page 119: Weakly Coordinating Anions and Lewis Superacidity
Page 120: Weakly Coordinating Anions and Lewis Superacidity
Page 121: Weakly Coordinating Anions and Lewis Superacidity
Page 122: Weakly Coordinating Anions and Lewis Superacidity
Page 123: Weakly Coordinating Anions and Lewis Superacidity
Page 124: Weakly Coordinating Anions and Lewis Superacidity
Page 125: Weakly Coordinating Anions and Lewis Superacidity
Page 126: Weakly Coordinating Anions and Lewis Superacidity
Page 127: Weakly Coordinating Anions and Lewis Superacidity
Page 128: Weakly Coordinating Anions and Lewis Superacidity
Page 129: Weakly Coordinating Anions and Lewis Superacidity
Page 130: Weakly Coordinating Anions and Lewis Superacidity
Page 131: Weakly Coordinating Anions and Lewis Superacidity
Page 132: Weakly Coordinating Anions and Lewis Superacidity
Page 133: Weakly Coordinating Anions and Lewis Superacidity
Page 134: Weakly Coordinating Anions and Lewis Superacidity
Page 135: Weakly Coordinating Anions and Lewis Superacidity
Page 136: Weakly Coordinating Anions and Lewis Superacidity
Page 137: Weakly Coordinating Anions and Lewis Superacidity
Page 138: Weakly Coordinating Anions and Lewis Superacidity
Page 139: Weakly Coordinating Anions and Lewis Superacidity
Page 140: Weakly Coordinating Anions and Lewis Superacidity
Page 141: Weakly Coordinating Anions and Lewis Superacidity
Page 142: Weakly Coordinating Anions and Lewis Superacidity
Page 143: Weakly Coordinating Anions and Lewis Superacidity
Page 144: Weakly Coordinating Anions and Lewis Superacidity
Page 145: Weakly Coordinating Anions and Lewis Superacidity
Page 146: Weakly Coordinating Anions and Lewis Superacidity
Page 147: Weakly Coordinating Anions and Lewis Superacidity
Page 148: Weakly Coordinating Anions and Lewis Superacidity
Page 149: Weakly Coordinating Anions and Lewis Superacidity
Page 150: Weakly Coordinating Anions and Lewis Superacidity
Page 151: Weakly Coordinating Anions and Lewis Superacidity
Page 152: Weakly Coordinating Anions and Lewis Superacidity
Page 153: Weakly Coordinating Anions and Lewis Superacidity
Page 154: Weakly Coordinating Anions and Lewis Superacidity
Page 155: Weakly Coordinating Anions and Lewis Superacidity
Page 156: Weakly Coordinating Anions and Lewis Superacidity
Page 157: Weakly Coordinating Anions and Lewis Superacidity
Page 158: Weakly Coordinating Anions and Lewis Superacidity
Page 159: Weakly Coordinating Anions and Lewis Superacidity
Page 160: Weakly Coordinating Anions and Lewis Superacidity
Page 161: Weakly Coordinating Anions and Lewis Superacidity
Page 162: Weakly Coordinating Anions and Lewis Superacidity
Page 163: Weakly Coordinating Anions and Lewis Superacidity
Page 164: Weakly Coordinating Anions and Lewis Superacidity
Page 165: Weakly Coordinating Anions and Lewis Superacidity
Page 166: Weakly Coordinating Anions and Lewis Superacidity
Page 167: Weakly Coordinating Anions and Lewis Superacidity
Page 168: Weakly Coordinating Anions and Lewis Superacidity
Page 169: Weakly Coordinating Anions and Lewis Superacidity
Page 170: Weakly Coordinating Anions and Lewis Superacidity
Page 171: Weakly Coordinating Anions and Lewis Superacidity
Page 172: Weakly Coordinating Anions and Lewis Superacidity
Page 173: Weakly Coordinating Anions and Lewis Superacidity
Page 174: Weakly Coordinating Anions and Lewis Superacidity
Page 175: Weakly Coordinating Anions and Lewis Superacidity
Page 176: Weakly Coordinating Anions and Lewis Superacidity
Page 177: Weakly Coordinating Anions and Lewis Superacidity
Page 178: Weakly Coordinating Anions and Lewis Superacidity
Page 179: Weakly Coordinating Anions and Lewis Superacidity
Page 180: Weakly Coordinating Anions and Lewis Superacidity