Transistor Bipolaire eng v2 -...

56
BIPOLAR TRANSISTOR 1

Transcript of Transistor Bipolaire eng v2 -...

Page 1: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

BIPOLARTRANSISTOR

1

Page 2: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Bibliography:

2

• H. Mathieu, « Physique des semi-conducteurs et des composantsélectroniques », 4° édition, Masson 1998.

• D.A. Neamen, « semiconductor physics and devices », McGraw-Hill, Inc 2003.• P. Leturcq et G.Rey, « Physique des composants actifs à semi-conducteurs »,

Dunod Université, 1985.• J. Singh, « semiconductors devices :an introduction », McGraw-Hill, Inc 1994.• Y. Taur et T.H. Ning, « Fundamentals of Modern VLSI devices », Cambridge

University Press, 1998.• K.K. Ng, « complete guide to semiconductor devices », McGraw-Hill, Inc 1995.• D.J. Roulston, « Bipolar semiconductor devices », McGraw-Hill, Inc 1990.

Page 3: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Plan• Geometry• Principle of operating• Static characteristics• Ebers-Moll Equations• Static parameters ( gain…)• Second order effects• Switching performances• Transistor in HF domain• Hetero-junction Bipolar Transistor (HBT or TBH)

3

Page 4: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Geometry

• Geometry:• Lateral• Vertical

• For digital circuits, vertical design

4

lateral

vertical

npn

BC

E

Page 5: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Geometry for IC

5

Muller et Kamins, « device electronics for IC »,2nd Ed., Wiley, 1986

Page 6: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Geometry with insulating oxide

6

Muller et Kamins, « device electronics for IC »,2nd Ed., Wiley, 1986

Page 7: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

BJT always present: why?• speed• Low noise• High gain• Low output resistance

• Still present in mobile phone ( analog part)• Low density, mainly in power stage• BiCMOS

7

Analogueamplifier

Page 8: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Working principle

• 2 PN Junctions with one common region (base)• The first Junction (EB) will

inject carriers• The second one (CB) will

collect carriers• The base must be thin (lower than diffusion length)

8

Page 9: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Reverse biased Junction:• Low current due to empty

tank , reservoir.• By modifying the filling of the

tank, we can modulate the collected current (collector)

• We fill the reservoir ( the base) par a forward bias of the EB junction.

9

Working principle

Page 10: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• The reverve biasing CB junctioncreates a favorable electric fieldfor the collect

• Conditions: • Thin base:

• Avoid recombination effects• Ligthly doped base compared to

emitter• favors one type of injected

carriers (better injection efficiency)

10

Working principle

Page 11: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Statics characteristics

11

NPN Transistor NPN Transistor 

Page 12: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

12

Minority carrier distribution in a forward biased npntransistor

ideal

With recombination

Page 13: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

13

PNP Transistor

No recombination in the Base  ! (        )

1D Approximation

Homogeneous doping in the Base

Low Injection

Statics characteristics + simplifying hypotheses

Page 14: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Current components in the NPN Transistor• In the neutral Base region:

• Fundamental equation

• and ,

• Integrating from E-B to C-B:

• finally:

• In forward active regime, Jn is negative ( e- vers x<0)

14

dxnpd

eDJ

neDJ

pp

p

n

n ).(

dxnpd

eDJ

neDJ

pp

p

n

n ).(

pn JJ pn

dxnpd

eDJ

pn

n ).(

dxnpd

eDJ

pn

n ).(

'

'

)(

)exp()exp(2

C

E

BCBE

iBnbn

dxxp

kTeV

kTeV

neDJ

'

'

)(

)exp()exp(2

C

E

BCBE

iBnbn

dxxp

kTeV

kTeV

neDJ

'

'

)(

)1()1(2

C

E

kTeV

kTeV

iBnbn

dxxp

eeneDJ

BCBE

'

'

)(

)1()1(2

C

E

kTeV

kTeV

iBnbn

dxxp

eeneDJ

BCBE( )( )

( )( )

P P

N N

dp xJ eD p x

kT dxdn x

J eD n xkT dx

Page 15: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

15

)1(

)()1(

)()(

)1()1(

'

'

'

'

'

'

222 kT

eV

C

E

iBnbkTeV

C

E

iBnbC

E

kTeV

kTeV

iBnbn

BCBE

BCBE

edxxp

neDedxxp

neD

dxxp

eeneDJ

)1(

)()1(

)()(

)1()1(

'

'

'

'

'

'

222 kT

eV

C

E

iBnbkTeV

C

E

iBnbC

E

kTeV

kTeV

iBnbn

BCBE

BCBE

edxxp

neDedxxp

neD

dxxp

eeneDJ

and:BeffA

C

E

WNdxxpB

'

'

)( BeffA

C

E

WNdxxpB

'

'

)(

So:

)1()1()1()1(

22kT

eVkT

eV

SnkT

eV

BeffA

nbiBkTeV

BeffA

nbiBEn

BCBEBC

B

BE

B

eeIeWNDene

WNDenAI

)1()1()1()1(

22kT

eVkT

eV

SnkT

eV

BeffA

nbiBkTeV

BeffA

nbiBEn

BCBEBC

B

BE

B

eeIeWNDene

WNDenAI

with :B

iE

BeffA

nbiBESn G

enAWNDenAI

B

22

B

iE

BeffA

nbiBESn G

enAWNDenAI

B

22

Saturation current of electrons in the PN narrowjunction ( or without recombination in the Base).

BeffnbiB

iBeff

nb

A

iB

iB W

Dp

nnW

DN

nnG B

2

2

2

2

BeffnbiB

iBeff

nb

A

iB

iB W

Dp

nnW

DN

nnG B

2

2

2

2

Gummel number in the Base (s/cm4)

Current components in the NPN Transistor

in the case of uniform base doping

Page 16: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Emitter current • Collector current

16

1)exp(

kTeVJJ BE

spEpE

1)exp(

kTeVJJ BC

spCpC

finally

pCpEECB

npCC

npEE

IIIII

III

III

E B C

JpE Jn JpCIE

IB

IC

NPN

Current components in the NPN Transistor

Page 17: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• And :

17

)1(exp)1](exp[ kT

eVIkT

eVIIIII BCsn

BEspEsnpEnE

)1](exp[)1(exp kT

eVIIkT

eVIIII BCspCsn

BEsnpCnC

1)exp(1)exp(

kTeVI

kTeVIIIIII BC

spCBE

spEpCpECEB

Current components in the NPN Transistor

Page 18: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Forward active region:• E‐B (forward) and C‐B (reverse)

18

kTeVII

kTeVI

QQDnAeI BE

SpESnBE

SpESB

nBiE exp)(exp)(

22

2 2

( )exp expi nB BE BEC Sn

B S

Ae n D eV eVI I

Q Q kT kT

kTeVIIII BE

SpECEB exp*

Statics characteristics

Page 19: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Emitter injection efficiency:

• DC common base current gain:

• DC common emitter current gain :

19

exp( / )exp( / )

Sn BE SnnE

pE SpE BE Sp

I eV kT III I eV kT I

1 to close but    1).(

1

1

22

SpSn

Sn

nBi

SBSpE

C

III

DneQQJI

I

ESp

Sn

B

C

II

II

1

NB:if we neglect recombinationprocess and         are equivalent E

Statics characteristics

Page 20: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Base transport factor:• Take into account recombination

in neutral base region

20

( (0) ) / 2effB p ps

rBn n

AeW n nQI

t

sC

QI

2

2

21

eff

C n n

rB t B

I LI W

Statics characteristics

Page 21: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Recombination factor:• Take into account recombination in

depleted base region

21

exp2 2

i BErD T

Aen eVI W

kT

withWT, width of E‐B space charges.

When we add up all the contribution to the base currentwe get:

rDrBBB IIII *

Statics characteristics

Page 22: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• The common emitter gain can be expressed as:

22

C

rD

EC

rDrBB

C

B

II

IIII

II

111 *

Statics characteristics

2 5

2 8

2 101000

10eff

n

B

LW

2

2 1000E E

B B

D DEeffSn iB nBE

SpE iE pE A Beff A

N NWI n DI n D N W N

2

5

80

expexp 2 10exp exp

2 10 2exp exp

2 2 2

B

B

i nB BEBE

Sn A BeffC i nB BE BE

rD A Beff TBE i BEGR T

Aen D eVeVI N W kTI nD eV eVkTI N W W kT kTeV Aen eVI W

kT kT

• IB intrisic base current (no recombination)

• IrB recombination current in the neutral base region

• IrD recombination current in the depletionzone of EB junction

If VBE>0,72V then exp() larger than 106

Modern Transistors:

Page 23: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Other modes of operation

• Saturation mode (regime):• The two junctions are forward biased.

23

kTeV

BS

nBikTeV

spEBS

nBiE

BCBE

eQQDnAe

eIQQDnAe

I

2222

kTeV

spCBS

nBikTeV

BS

nBiC

BCBE

eIQQDnAee

QQDnAeI

2222

QS1

nex(0)

WB

QS2

nex(W)

WB

nex(0)nex(W)

QS1+QS2

WB

Page 24: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Low injection : (QS<<QB):• Current is due to saturation charge injected into the base, ie

QST = QS1 +QS2

• If we deal with « narrow » junction, this charge is simplygiven by the surface of ½ trapeze (linear decay)

24

kTeV

sntkT

eV

A

iBBBS

kTeV

sntkT

eV

A

iBBS

BCBC

BEBE

eJeNnWWxenWQ

eJeNnWxenWQ

2

2

2

1

21)(

21

21)0(

21

Saturation mode

Page 25: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Saturation mode

• Low injection: (QS<<QB):• An other « view » of saturation charge (from Ablard):

• We consider transistor in active mode with a charge QSN and a charge QSAT (we have to determine) which supply the samesaturation current Icsat.

25

0 WB

n(x)

)0(exn

)( Bex Wn

Base

)()0( Bexex Wnn

QSN

QSAT

kTeV

sntkT

eV

sntSN

BBSN

BCBE

eJeJQ

WWnneQ

))()0((21

kTeV

sntkT

eV

sntSN

BBSN

BCBE

eJeJQ

WWnneQ

))()0((21

We get :

kTeV

sntSAT

BC

eJQ 2 kTeV

sntSAT

BC

eJQ 2

Responsible for the degradation of dynamic performance

QST = QSN+QSAT

Page 26: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Nonideal Effects

• « Gummel plot »:• Graph of IC and IB versusVBE

26

1

2

3

Page 27: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Early effect / collector punchthrough

• Base – collector junction breakdown

• Emitter and Base serie resistance

• Ic « collapse » fort high current

• « crowding effect »

• Early effect / collector punchthrough

• Base – collector junction breakdown

• Emitter and Base serie resistance

• Ic « collapse » fort high current

• « crowding effect »

27

Nonideal Effects

Page 28: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• At "first glance" Ic is independent of VCB

• In fact we have the modulation of the width of the neutral region in the base, so in the same wayQB+QS , and so Ic !

28

'

'

2 2 2 2 2 2

( )exp exp exp

( ) B

i nB BE i nB BE i nB BEC C

B S A Beff

E

Ae n D eV Ae n D eV Ae n D eVI

Q Q kT kT N W kTp x dx

if VBC WB QB+QS

Ic

ZCE B-C

Early effect / collector punchthrough

Page 29: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

29

BCZCE

SC

BB

dBC

pBA

W

WeNCQ

V

Early effect / base punchthrough

Collector current is due to diffusion of electrons in the base

Page 30: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• At the limit:• The space charge BC

« depletes » totaly the neutral base

• collector injects directlycurrent into the emitterbecause energy barrier islowering

• Current only limited by serieresistance Rserie from E and C

30

C

CBB

DSC

DAABpt N

NNNeWV

2)(2

Early effect / base punchthrough

Page 31: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Base - Collector junction breakdown

• Avalanche of BC:• Often occurs before punchthrough

• How to prevent it?• Lowering the electric field:

• Reduce the doping gradient in the collector

• Lightly doped layer between base and collector

31

Ionisation par impacts

BrBfB III BrBfB III

Page 32: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Emitter and Base resistance (effet 3)

• At low current negligeableeffects

• In high speed circuits, B-C allways reverse biased (rc2 and rc3 as low as possible)• Resistances rc have no

effects on current flow• Only re and rb play a major role .

• IR drop Voltage

32

)exp(

)(

'

'

kTVeII

VVV

rrIIrrIIrV

BEBB

BEBEBE

beBCebBEeBE

0 BEC III

Measured current:IB’

Page 33: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Collector « collapse » for high injection level (effect 1)

• Numbers of physicalmechanisms can cause thisfalloff of IC0:• Increase of the charge (holes)

into the base (maintainneutrality)

• Increase the width of the quasineutral base layer (push off the space charge into the collector): Kirk effect

33

kTeV

dxxpneDAI

kTeVJAI

BEC

E p

ieBnBEC

BECEC

exp)(

exp

'

'

2

0

Nc

Nb

x)

Wb0

E’ C’

Nc-n

Nb+n

x)

Wb0

E’ C’

Page 34: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

34

And the effect #2  ????????????????

Page 35: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

« crowding effect »

• The view of a 1D devices is an approximation

• Drop voltage IR in the base. • The edge of the emitter contact is

more biased than the core/center• Favour a high density of current

essentially along the edges• Not a good thing for high power

devices

• Solutions: interdigitatedapproach

35

Page 36: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Bipolar Transistor: a switch ?

• ON state: the switch isclosed (saturation mode)

• OFF state: the switch is open (cutoff mode)

• ON state: the switch isclosed (saturation mode)

• OFF state: the switch is open (cutoff mode)

36

Page 37: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Input signal as low as possible

• input power as low as possible

common emitter

• Input signal as low as possible

• input power as low as possible

common emitter

37

Bipolar Transistor: a switch ?

Page 38: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Switching velocity?• Limiting factors?

38

Turn on transient: Continuity equation

for the charge:

B BB

n

Q dQI

dt

Base charge can bewritten:

Collector current is givenby:

transit time

in the base (narrow)

( ) [1 exp( )]B B nn

tQ t I

( )( ) B

Ct

Q tI t

( )[1 exp( )]B n

c Bt t n

Q t tI I

Bipolar Transistor: a switch ?

Page 39: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Turn on:• IC increases until the saturation

regime is reached:(we neglect VCEsat)

• The limit charge QB(ton) to saturate the transistor is givenby :

• The on state time is given by:

39

C

DDC R

VIsat

C

DDC R

VIsat

nB

pBCS D

dIQ sat

2

2

nB

pBCS D

dIQ sat

2

2

)(1

1ln)(1

1ln

Bc

nnBS

nON IIIQt

)(1

1ln)(1

1ln

Bc

nnBS

nON IIIQt

)]exp(1[)(n

nBBtItQ

Bipolar Transistor: a switch ?

Page 40: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Remark: the charge can increaseover QB(ON) to over saturate the transistor.this charge is injectedfrom the collector

• Turn off time : input with a « 0 »:• Evacuation of the stored charge

• This is the storage time ts

• after, this is the samemechanism than for PN Junction

40

S

nBnS Q

It

ln

S

nBnS Q

It

ln

Final value:

Bn I

Bipolar Transistor: a switch ?

Page 41: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Storage time (desaturation) limits the switching time

• 2 ways to reduce it:• Add impurities which

decrease strongly the lifetimeinto the base (pb withtransport factor)

• Schottky Diode in // with CB junction: avoid saturation of the transistor

41

Bipolar Transistor: a switch ?

Page 42: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

AC signal : equivalent circuitAC signal : equivalent circuit

42

CµIB Ib Ic

Page 43: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Transistor and ac signal: equivalent circuit

• Transconductance :links the variation of the collector current to the base – emiter voltage:

• Input resistance : links the variation of Base current to the base – emitervoltage:

• Output resistance:

43

   .C Cm c m BE

BE

I eIg i g v

V kT

1

11B

BE B m

I kTr h

V eI g

1

22

1C Ao

CE C

I Vr

V I h

Page 44: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Capacitance :

• Storage capacitance

• transit time

• Capacitance : CB junction capacitance reverse biased

• Collector –substrate (depletion layer) capacitance:

44

EBTSE CCC

CBTCC

dCSC

mFSE gC

BCBEB tttEF tttt

C

C

Transistor and ac signal: equivalent circuit

Page 45: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Cut off frequency (current gain =1 when short circuit load)• We neglect r0

• Current gain is given by:

45

beµb

beµbemc

vCjCjr

i

vCjvgi

1

21)()/1()( h

CCjrCjg

ii

µ

µm

b

c

21)()/1()( h

CCjrCjg

ii

µ

µm

b

c

Transistor and ac signal: equivalent circuit

21 00 then  (0)  static gain(1 / )

c mm

b

i gif g r h

i r

21 00 then  (0)  static gain(1 / )

c mm

b

i gif g r h

i r

Page 46: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• In modern devices , in general• At low frequency:

• At high frequency, the imaginary term dominates and :

46

mµ gC

)(1)(

µ

m

b

c

CCrjrg

ii

)(1)(

µ

m

b

c

CCrjrg

ii

)()(

µ

m

CCjg

)(

)(µ

m

CCjg

Transistor and ac signal: equivalent circuit

Page 47: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Transistor en ac: schéma équivalent

• We get the « cutoff frequency » by considering iC/iB=1

• By replacing all the terms by their expressions

47

µ

mT CC

gf

2

)()(2

1ceTTSE

CF

T

rrCCCeIkT

f BCBC

Forward Transit time

12 ( )

m

T µ

gf C C

12 ( )

m

T µ

gf C C

Resistance neglected

Page 48: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Transistor en ac: schéma équivalent

• Maximun oscillation frequencyPower gain=1• Laborious and tedious calculation/ we have to take into account the

base resistance

48

dBCb

T

Crff

8max dBCb

T

Crff

8max

Page 49: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Heterojunction Bipolar Transistor

• Current gain:

• In the case of narrow base:

49

2 2

2 21 12

E E B

E B B E B

i p A Beff Beff

D n i p n

n D N W WN D n L L

2 2

2 21 12

E E B

E B B E B

i p A Beff Beff

D n i p n

n D N W WN D n L L

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

Page 50: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• If we want a gain with a high value, we need close to 1. It means: • Lowering base doping• Lowering base width (careful with punchthrough!)

50

Increase of the base resistance fmax decreases

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

Heterojunction Bipolar Transistor

Page 51: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• Other solution:• Increase emitter doping

• Improve emitter efficiency• Problem: « gap shrinking »

• This « problem » can be transform in opportunity !! (next twoslides)

51

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

2

21 E E B

E B B E

i p A Beff

D n i p

n D N WN D n L

)exp()()( 22

kTE

Basenémetteurn gii

.0)()( émetteurgbasegg EEE

Heterojunction Bipolar Transistor

Page 52: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

52

kTE

LW

nN

DD

Nn g

p

Beff

i

A

n

p

D

i

EB

B

B

E

E

e exp1 2

2

kTE

LW

nN

DD

Nn g

p

Beff

i

A

n

p

D

i

EB

B

B

E

E

e exp1 2

2

1)exp(

1 kTE

WL

DD

NN g

Beff

p

p

n

A

D E

E

B

B

E

1)exp(

1 kTE

WL

DD

NN g

Beff

p

p

n

A

D E

E

B

B

E

We see that it is difficult to have at the same time a large emitter doping, a lightly doped and thin base and a large gain

Heterojunction Bipolar Transistor

Page 53: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

• We design a structure with a negative energy gap difference: this is an HBT

53

eb EgEgEg

Heterojunction Bipolar Transistor

Page 54: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

54

Requirements for a bipolar device

•High gain

•High emitter efficiency

•High speed

Demands and Problems for a BJT

Demands Problems

Heavy emitter doping Bandgap shrinkage causingbase injection

Low base dopingNarrow base width High base resistance

Solution: Heterojunction Bipolar Transistors

•Emitter can be heavely doped using a SC with Eg larger than the base semiconductor•Base can be heavely doped and be made narrow without increasing base resistance•Collector can be chosen from a material to increase breakdown voltage

(From Singh)

Page 55: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

55

Page 56: Transistor Bipolaire eng v2 - unice.frusers.polytech.unice.fr/~lorenz/Bipolar_Transistor_eng2.pdf · 2020. 10. 1. · nb iB and: A Beff C E p x dx N W B ' ' So: ( 1) ( 1) ( 1) ( 1)

Transistor with a Silicon –Germanium base

56

Electrons density

kTeV

IQQDnAe

I BESpE

SB

nBiE exp)(

22

kTeV

QQDnAeI BE

SB

nBiC exp)(

22

emettir collector

base

)(2 Sini

)(2 SiGeni

Improve gainImprove transist timeIncrease Early voltage